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Abstract

U-statistics play central roles in many statistical learning tools
but face the haunting issue of scalability. Despite extensive
research on accelerating computation by U-statistic reduction,
existing results almost exclusively focused on power analysis.
Little work addresses risk control accuracy, which requires
distinct and much more/challenging techniques. In this paper, we
establish the first statistical inference procedure with provably
higher-order accuraterisk control for incomplete U-statistics.
The sharpness of.our.new result enables us to reveal how risk
control accuracyalso trades off with speed, for the first time in
literature, which complements the well-known variance-speed
trade-off /Our'general framework converts the challenging and
case-by-case analysis for many different designs into a
surprisingly principled and routine computation. We conducted
comprehensive numerical studies and observed results that
validate our theory’s sharpness. Our method also demonstrates
effectiveness on real-world data applications.

Keywords: Nonparametrics, statistical learning, Edgeworth expansion, fast computation.
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1 Introduction

A U-statistic, denoted by U, is associated with an i.i.d. sample Koo X, drawn from a

general probability space and a degree-r permutation-invariant kernel function

h(x,,...,X,) st h(x,,...,x.) = h(x,,),- mil:r] e [1:7]

< %x0) for any bijection tis

defined as

o =" =" S,
r 7 e

1<i <. <i.<n

ko grs N . .
where G = 1l 0) 11 < <B S1} o 46 collection of all Etuplés and define the

(X, kell:r]

shorthand Xy, =X X)) for any . U-statistics play central roles in many

contemporary statistical learning methods, such ag in the'following applications:

Example 1.1 (Example 1 of Kong and Zheng(2021)). 7est the symmetry of the
distribution of X €R py

h(x,,x,,x;) =sign(2x, —x, —x;) +sign(2x, —xp—Xx,) +sign(2x; —x, — x,)

Example 1.2 (Bergsma-Dassios sign covariance (Bergsma and Dassios, 2014; Moon

X eS YeS S S

and Chen, 2022)). To testithe.independence of X and Y where “X and ~Y

are Banach spaces.equipped with metrics pxand py, respectively, define

M2 00 ) 580 (o35 D) ore

Sy(lseonty)i= Sign{px(t1at2)+px(t3’t4) — px(t,t;) _pX(tzat4)} , and define sysimilarly.

Example 1.3 (Treatment effect measurement (Rosenbaum, 2011; Zhao, 2019)). Let

Y., denote the observed treated-minus-control matched pair differences. Given

1<r<r<r Y, =(,...Y)

integers " and v satisfying , consider any r observations - © %



h(YIV ) = 1[Y,r’(/)>0] I | Y. |
Define t=r , where """ denotes the index of the { -th largest ' ' for

k=1,....r

One primary challenge in the practical use of U-statistics is the high computational cost.

Even just evaluating U, costs O(n") time, where rvaries across applications, ranging
from r= 2 for Maximum Mean Discrepancy (MMD) (Gretton et al., 2012; Schrab

et al., 2021) and energy distance (Székely et al., 2007), to r= 4 for dCov (Székely

et al., 2007; Yao et al., 2018) and SignCov (Example 1.2), and even up.to around 20 in
Example 1.3 (see Tables 3 and 4 in Zhao (2019)). To mitigate this burden, researchers
have developed two main approaches. The first explores shortcuts to fast-compute U:
Rosenbaum (2011); Huo and Székely (2016); Chaudhuri and\Hu_(2019); Even-Zohar
and Leng (2021) showed that some U-statistics can be eemputed in O(nlogn) fime
However, these shortcuts only work for scalar inputs!, limiting their applicability to
complex input data types. For instance, the Bergsma-Dassios sign covariance (Example
1.2) with manifold-valued functional trajectories as inputs (Moon and Chen, 2022)

cannot benefit from the acceleration tricks in Heller and Heller (2016); Even-Zohar and

Leng (2021). Moreover, for non-scalar.X-inputs, even evaluating a single MX,) term

can sometimes be expensivefln our data analysis in Section 5.2, we consider

X,(0) gor t €[0.T]

earthquake and starlight change curves , see Figure 1. We aim to

assess their within- and between- cluster dissimilarity by mean pairwise distance for

different earthquake scales and star types, using a distance X ), X0 between

curves, eliminating nuisance phase discrepancy. A mature technique for aligning curves
by matching their key landscape features is to compute a “warping function” (Srivastava

h(X,(), X;())

et al., 2011; Strait et al., 2019). However, evaluating a single using this

method can take a few seconds on a high-performance computing (HPC) server.

This naturally motivates the second acceleration strategy: U-stafistic reduction, that is,

to average over a much smaller set of ~tuples. Let



T = (I’fl)’.."lﬂjn.ul)) (2)

~
—~

jn ,a

ae(l,r)

r a
be a collection of elements in “ with | T for some — we shall treat

almost like a subset of C, , except that Ina allows duplication. The reduced U-statistic

(also known as an incomplete U-statistic (Blom, 1976; Chen and Kato, 2019a)) with

T,

design “ "« is defined as

Uy=1T,.1" 2 hX,) (3)

1, Ejn,a

There are two kinds of prices we must pay for computation reduction. First, this

Var(U,)

reduction inflates , Which further determines: (i) the confidence interval radius;

| by — My,

and (ii) the minimum separation condition | for consistently? testing

Hi:p=py, versus Hyp=py, . where #~ E[Un]. This,aspect of computational-

statistical trade-off is easy to quantify thus well-understood. The overwhelming majority
of existing literature on U-statistic reductionregards this aspect, pioneered by

Blom (1976) and followed up by many works aiming at designing Ina smartly to

minimize Var(U,) under a given computational budget O(n")
(Lee, 1979, 1982, 2019; Rempala and Wesolowski, 2003; Clémencon et al., 2016; Kong

and Zheng, 2021; Durre and Paindaveine, 2021).

The second kind of price'for speeding-up, namely, the deterioration of risk contro/
accuracy in statistical inference, is much more elusive and difficult to characterize. Here,
by “risk control accuracy”, we refer to: (i) | F(trues €CH=(1=B)| for confidence intervals:
and (ji) | F'(actualtype Lerrorrate) - | ¢4 hynothesis testing, where ! =# and gare the
nominal confidence and significance levels, respectively. Characterizing this accuracy
requires a higher-order accurate approximation to the sampling distribution of the
studentized reduced U-statistic, which most existing works fail to describe by only
providing asymptotic results (Brown and Kildea, 1978; Janson, 1984; Chen and

Peng, 2021; Chen and Kato, 2019a). Our paper is the first to uncover the



computational-statistical trade-off in risk control accuracy, filling in a critical gap in the

literature.

This paper makes several significant contributions. We present the first comprehensive
study on risk control accuracy in statistical inference for reduced U-statistics. We
establish the first higher-order accurate distribution approximation for non-degenerate
reduced U-statistics under general designs, leading to Cornish-Fisher confidence
intervals and tests both with higher-order accurate risk controls. Our approach requires
only two natural, weak, and easy-to-verify assumptions that are satisfied.by.many

O(n

popular designs. Notably, our method strictly complies with the ) computational

budget in all parts and allows for easy parallel computing.

Our method’s accuracy significantly improves over the best existing results. The
sharpness of our error bounds enables us to reveal, for thefirst time, the trade-off
between computation complexity (speed) and risk control accuracy of reduced U-
statistics. Interestingly, we discovered that.higher-erder risk control accuracy can be
achieved for any @>1: meanwhile, it may beisurprising that we also find that the

r 2
O(n") o OM) is nearly free lunch, without deteriorating

Var(U,)

computation reduction from

risk control error rate and only. inflating imperceptibly. For practitioners, our
method provides fast and easy-to-implement solutions with tuning guidance, as well as
advice on the minimum sample size requirement to achieve a target risk control

accuracy goal.

The theoretical'analysis in this paper differs significantly from the complete U-statistic
literature (Helmers, 1991; Maesono, 1997; Putter and van Zwet, 1998) and features
several innovations. Incompleteness introduces new and complicated leading terms and
breaches the symmetry of remainder terms, rendering existing bounds and analysis
routines in Helmers (1991); Maesono (1997) inapplicable. We tackle these challenges
with our original analyses. A key methodological contribution of this paper is the
development of a succinct and weak condition on the reduction design, formalized as

Assumption 2, which was distilled from our theoretical explorations. In the proof of



Lemma 3.2, a crucial supporting result for Corollary 3.2, we address the intricate

dependency structures that arise in certain random sampling schemes.

Our paper goes beyond any single application or specific data structure, focusing
instead on the fundamental question of risk control accuracy in U-statistic reduction.
The general and comprehensive theoretical and methodological framework we present
fills in a critical gap in the literature, providing a much-needed toolkit for many U-

statistic-based learning methods that aim to maintain accurate risk control while'scaling

up.
1.1 Notation

— A ) _ 4
We write B" - OP (bn) if IP)(Bn > Cbn) = O(l’l

n. Let P0) and ?O) be the CDF and PDF of MO, 1), respectively. For simplicity, we

) for some constant. G>"0 and large enough

regard n“ and "“" as integers throughout, omitting dulyfloor/ceiling operations. We

adopt the Matlab style notation for arithmetic sequence: [, :a,] denotes

(a,a,+1,a,+2,.. :0:a, a,+9o,a,+20,...,a,)

""2), whereas L% 1 denotes (4

2 Reduction of non-degenerate noiseless U-statistics

Recall that the reduced U-statisticut/, is the average of individual h(X,)=hX,,.... X, )

oy : " .
terms, where L= o ranges over a small subset Ina inside G {the collection

of all ~tuples in [1:ah=htsn}} oyr goal is to perform accurate statistical inference for

p=EU,] O(n

based on,U,, within a limited computational budget of ") for a given

constant &: <% Following the convention (Lee, 2019), we call T the design of U..

J,

Throughout this section, © " is fixed. To ease narration, we set up two sets of symbols.

« Define the projection term gi's recursively: first set &(X,) = BLA(Xy,) | X ] - p ;

h k:2,...,7"

then for eac in order, define



k-1

8k (X[I:k]) = E[h(X[lzr]) | X[l:k]] —H— Z 8r (X1k,)

— k!
K=y Gy . All g« terms are mean-zero and

mutually uncorrelated (Maesono, 1997).

()=, ed,, I, <1}

e For any size-k subset / of [1:”], let “ra count how

many times / shows up in the design ‘7”’“. For example, if r=3, n=7 and
k7;1,05 = {(19 29 4)9 (29 537)7(33 49 6)} , then an’a31 (2) =2 and a"’a§2({3’4}) =1 .

Example 2.1. 7o understand the random variation in U,, suppose r = 3‘and inspect just
h(X,, X, 5)=(124)

one term ’X‘S). For example, suppose UL , we.have
h(X15X2’X4):ﬂ+g1(X1)+g1(X2)+g1(X4) (4)
+2,(X, X))+ &,(X,, X))+ g,(X,, X,) + g,(X,, X, X)).

. u ., L, h(X,)
We call the form like (4) the ‘one-term Hoeffding's decomposition” of .

h(X19X25X4)

Consequently, contributes a count'ef 1.to each “»= (1"), where

D1, {1,2,4)

In general, decomposing each MX,) in_U,as in Example 2.1, by (Han and Qian, 2018),

we have

U, =17, 'S Y a, fOpaX,). ()

k=11, ek
Next, we address two fundamental questions regarding (5) in Sections 2.1 and 2.2.

2.1 What makes a good/bad design?

There are two main considerations that define a good design. They will both translate

into our regularity assumptions and be reflected in our proposed methods.

(i) This design should comply with computation budget and be easy to implement.

(ii) Under the premise of i, this design minimizes Var(Uj)_



Ouir first regularity assumption reflects consideration i.

J,

Assumption 1. 7he design of © "¢ [s data-oblivious, namely,

Jpe L(X,... X)) (6)

For a deterministic ‘7"’“, (6) means that I /s designed without consulting the data
X

[Ln]

The motivation behind Assumption 1 is two-fold, both weighing on consideration i. First,

although as pointed out by Kong and Zheng (2021) that dafa-aware designs may have

superior variance reduction, the step of adapting the design Jia to the data Xt may

O(n

require expensive computation that can exceed the ‘) budget. The second

motivation regards implementation feasibility. It is inspired by the study of network
moments as “noisy U-statistics”3, where X/s are not only unobserved, but inestimable
due to identifiability issues (Gao et al., 2016; Zhang,and Xia, 2022).

Consideration ii has long been the focus'in existing literature (but not always with much

J,

attention to consideration i). Clearly, the"dummy construction of " by repeating [1:7]

Var(U,)

for T times is useless. What'makes small then? By (5), we have

VarU,) =17, 1> SASY a0k, (@)

K=l 1.eCy
r
. Z an,a;k(]k) = k ’jn,a |
while for each * €[1:71 it always holds that < . Therefore,
minimizing ¥ 2 U,) demands that for each &, all % (1)'s are as similar as possible —

this lets U, maximally explore different index combinations. For instance, if ¢ e(12) ,

this is requiring a1 ()= TN T el gng BT €01 g0 5y K €12:7] 1 other

words, we need different MX,) terms to contribute unique 82>** & terms (while g1

terms will unavoidably repeat as @>1) — we call this the “non-overlapping property’ of



the design. In alignment with these discussions, our second assumption aims at

avoiding bad designs.

. k
Assumption 2. Set ¢ €LINL s potgs for an * €171 ang L € that
[C,C,n"", ifk<a,
an,a;k (Ik) € 1 2 . (8)
[0,C,], ifk>a,
where GG :0<C <G are universal constants.

In Assumption 2, we exclude integer a choices for sophisticated technical reasons — but
in plain language, this would make theoretical analysis much cleaner. Practitioners who

set a working a = 2 can use our formulas for @ =2.001 without causing noticeable error.

Last but important, the two considerations i and ii intertwine; to our best knowledge,
principled and fast construction of a variance-minimizing, design remains an open

challenge before this paper. The variance-minimalmethods in existing literature

typically depend on brilliant, but case-by-casej.constructions for special (1.7 T )

AN

configurations. They provide little clue for handling general ( settings. In

Section 3.1, we will solve this standing problem with an innovative design method.

2.2 How to develop a higher-order accurate statistical inference?

2.2.1 Non-degeneracy, variance estimation and studentization

With Assumptions 1,and 2, we can consider the design as “reasonably good” that
provides a'solid'basis for downstream analysis. In this section, we will develop higher-

order accurate statistical inference method for any given design that satisfies both

assumptions. In other words, through this section, we fix ‘7”’“. Like in the study of
complete U-statistics, we will first formulate a variance estimator and use it to studentize
U,, then formulate an accurate distribution approximation to the studentization. All these

steps critically depend on the degeneracy status of the U-statistic.



2 .
Definition 2.1. We call U, “‘non-degenerate’, /'1”fl = Var(g,(X,)) 2 constant > 0 )

Due to page limit, we leave the degenerate case, i.e., G=0 to future work. Next up, we

face two routes for variance estimation: we could target at either the full variance

n
2 . -2 2 NI
o’ =Var(U,) e VA Zan,a;l (O _
- ! =1 . This was not a

o(n™)

or just the dominating term

2 2
question for complete U-statistics, where % and %7 differ only by

(Maesono, 1997; Zhang and Xia, 2022); but for an incomplete U,, we have
| O-:z/ - O-:z/;l |X n_a :

, Which cannot be directly ignored. We choose to estimate 2/, because
2
it leads to cleaner formulation and faster computation. The discrepancy between O

and Var(U,) will be accounted for by our Edgeworth correctienterms, see Remark 2.4

for more details.

2 2 . _ ]
To estimate °7*, we need to estimate & = Var(g (X)) (since we know @0 (7) ’S).

Classical variance estimators, such as jackknife (Maesono (1997), Section 2) and

Zhang and Xia (2022), do not comply with the o(n”) computation budget limit.
Therefore, we propose the following estimator
512 ::niazZh(X[i:d:(i+(r—1)d)])h(X i:(—d):(i—(r—l)d)]) -7, (9)

i=l d=1

n na—l

~2 — —
H =n ¢ h(X[i:d:(i+(z~—l)d)])h(X[(i+rd):d:(i+(2r—l)d)])'
where izhyd=l The formula (9) may seem

intricate atfirst sight, but its idea is very simple. To illustrate, set r= 3 as in Example 2.1

and inspect the summands corresponding to d= 1 in the first term in (9):

i+d>“"i i

Y WX X X DXL X X )=+ E+R, (10)
i=1

2
where R consists of several types of terms, such as & (Xi)_é', and gl(Xf*d)ﬂ, and

gl(Xt‘)gl(XMd), and so on, all averaged over / Clearly, 9 is mean-zero and



~2 2
concentrates. Similarly, we can understand why # s also an unbiased estimator for #

O(n

. We stress that our variance estimator (9) strictly complies with the ") computation

budget constraint. With the variance estimator, we can studentize U, as

T, = vy~ H —. (1)
1T A (D)
i=1

2.3 Accurate distribution approximation to studentization

An accurate distribution approximation for 7is the premise of accurate inference. For

this goal, it is important to understand the stochastic variations in . A'hatural method

is to compare 7,to the standardization of U, (replacing & in{11) by the true &) and

then account for the plug-in error on the denominator. Define

M, = |‘7W |’1 Zaim] ()= n“?t, (12)
i=1

Zn:an,a;] (g (X)) Zr: Z Ly (/,)g, (XIk)

T — k=21, EC:

TI =" > 2 n D
.01 DI ANOIE (13)

S (GRS
3=
i-1 nflz nMaéjlz i=ld=1 (=1

g(X)) {gZ(Xi’X[Jr(d)+g2(Xi’Xi7(d)}'

M

Let us explain these definitions for general audience. First, © « accounts for a

7,+7,

frequently=used non-random factor. Then is the standardization of U, we

T,

separate g and “2 because 7 is a weighted i.i.d. sum and the dominating term, while

7, is a higher-order bias-correction to enhance risk control accuracy. Finally, T

captures the plug-in error in using G in 7. Formally, we have the following lemma.

Lemma 2.1. Set * €(b2) e pave &-&=8T,+0,(n " logn).



With the above notation preparation and supporting results, we can decompose 7.
_ 1 A -a
T,=(T.+T,)1+T,) ‘/Z:TI+TZ—ETIT3+OP(n 2logn). (14)

So far, everything may seem familiar to readers who know the U-statistic literature.
However, next we will see how U-statistic reduction leads to very different bias-
correction terms in the Edgeworth expansion. Before that, we make a quick technical

remark.

Remark 2.1. Aside from Assumptions 1 and 2, another commonly required assumption
in U-statistic literature is Cramér’s condition (Helmers, 1991; Maesono,1997):

limsup | B[« (] |< 1.
1 This condition is undesirably restrictive and violated by

important applications, e.g., Example 1.1 with a discrete”Xi distribution. Inspired by
Lahiri (1993) and Shao et al. (2022), we add to 7, amartificial smoothing term

8, ~N(0,05=C; lognn™*) >0

independent of 7, with alarge enough constant G, . We
will show that &, waives Cramér’s condition without altering the distribution

approximation formula“.

Now we present our main results and accompanying remarks. Let &= Var(gk(X“i’f])).

Define the population Edgeworth expansion formula for 7,to be

[
Cr.. () Z=®<u>+¢<u>{r3(;u)+ >

a

(19)

where we recall the definition of M, from (12), and define shorthand Ty and L 'S, as

follows.



n

Zaia;l (i)(uz -1 2
1—‘\0/(14) — (_ i=1 - + p rl \7’1’(1 [ )E[gf(Xl)]
T 6RO 20X a0 s

a, Da, (Na,, ,{i, ] Yu® —1)
l<;<n il ai\J)y, o0 {6, 7} r(r—l)]j”\uz
+(- == +— :

n
{z a’ia;l (l-r)}3/2 513 {z ai,a;l (il)}1/2n§13
i'=1 i'=1

Elg, (X))g,(X,)g,(X,, X,)],

) (16)

S‘;(Li) — 5[2(71(7/‘) x {Zr: z aia;k (Ik)ék}(a (17)
‘ (26) ! {Z aj,a;l (l')}[ 12[ k=21 <G

w (_1\Nk W2 gk kg —u*/2
where 17:+():=(=1)"e""d"/du (e ) s the 4th Hermite polynomiial (Slater (1960), page

99). In (15), the first correction term (16) generalizes its familiar counterpart in literature.

J0a=6C

To see this, consider the special case of complete’U-statistic, where , We have

v} _resto- )G

an , thus (16) reproduces Eq. (1.6) in
Helmers (1991).

The second term (17), however; isiunique to reduced U-statistics and was never seen in
existing literature. To facilitate understanding, in Table 1, we sketch some important
properties of the main terms in.the decomposition (5). Here, while the first term in 7 is

clearly = ”71/2, its sécond'term is also <" —to see this, simply notice that for each (,

1 n My 1 n
szgl(Xi)gz(Xi’XH[d):;ZE[gl(Xi—(d)gz(Xi+[d>Xi)|Xi]
i i=1 ndziua i=1 (18)
=D e (X)& (X, X, )~ B8 (X)&,(X,0 X, ) | X1}
a i=l d=1

A —al2
where the second term on the RHS of (18) is O, (n IOgn), thus ignorable®. From

Table 1, we see that 7, leads to our newly-discovered Edgeworth expansion terms. It is

-1)/

crucial that we clarify that «T, lying in the n" " order” does not automatically



O(n—(a—l)/Z

guarantee that there will exist an ) term in the Edgeworth expansion. Roughly

speaking, this all depends on which terms will lead in the Taylor expansion
- N2

e |- e (e, + 8072 )
2 while others enter the remainder. See the

proofs of Lemma S.1.3-(d) and Proposition S.1.1 in Supplementary Material for more

details.

In practice, we use the empirical version of (15) with estimated coefficients. Define

1< -
]E[gl3 (X)]= ; Z h(X[i:(i+r—1)])h(X i [G+r) i+ 2r=2)]) )h(X{i,[(i+2r—1):(i+3r—3)]}) - ,U3 (19)
i=1

1 n
Elg (X))g (X,)g,(X,,X,)]= ; Z h(X[(ifrH):i] Yh(X, i(i+r—1)] )h(X[(i+r—1):(i+2r—2)] ) (20)
i=1

_[13 -2U, '5:12

a-1

- 1 n n 4 ke—1 k -
ff;f = e Z Z MK inrnay) X [<f+(k-1>d):(—d):(i—(r—k)d)]) S Z [ ]9613 ., (21)

!
i=1 d=1 co\k

. 2
for ¥ €[2:7] These estimators all shafe the same idea in our development of g in (9),

G ) be the empirical version of Gs,.. ) with
coefficients estimated by (9);(19),(20) and (21). We have

thus can be understood similarly. Let

J

Theorem 2.1. Set .02 [jr U, is non-degenerate and * "* satisfies Assumptions 1

and 2, then we have
(F 14510, WGy (1) (F O(n™*" log"* n), (22)

(F 1,+6,17,, ()~ GJ (u) (o: ép (n"*?1log"” n). (23)

Remark 2.2. Theorem 2.1 highlights an important practical guidance that for non-
degenerate U-statistics, setting &> 2 will not further merit risk control accuracy, since

the error bound at a = 2 already matches that for a complete U-statistic



-2
(Helmers, 1991; Maesono, 1997). Also, increasing a beyond 2 only brings O(n™)

improvement fo Var(U,) (Lee, 2019). Considering the computational cost grows
exponentially in a, it is therefore not worthwhile to set @>2 under non-degeneracy.

Remark 2.3. Remark 3.1 in Chen and Kafo (2019a) points out that as a decreases, T

becomes a poorer approximation to g, when a = 1, 101 =0y no longer vanishes as
n— % which Weber (1981);, Chen and Kafo (2019a) refer to as a ‘phase change”’.

Var(U,))

While Weber (1981); Chen and Kato (2019a) exclusively studied as a1 our

results reveal how risk control accuracy behaves in this regime, completing.the,missing
piece in the big picture. We find that the Edgeworth expansion becomes lengthier, and
the risk control accuracy also depreciates. If we do not incorporaté an increasing
number of bias-correction terms in the Edgeworth expansien, the risk control accuracy
depreciates even faster: the " “" term in Theorem 2.1 will'be replaced by """, which

is the Berry-Esseen bound of the normal approximation.to T..
2.3.1 Higher-order accurate statisticaliinference

To test the hypotheses

Hy:pu=p; vs. H,:u#uy,,

we use the empirical p-value; denoted by P and defined as follows

p=2min{G, (T9+),1-G, (T +5)}, (24)

T](ObS) = (UJ _,uo)/{| jn,a |*1 {Z aj,a;l (Z)}1/2(§l}

where i )

Corollary 2.1. Under the conditions of Theorem 2.1, the test (24) enjoys a higher-order

_ —al2 1/2
accurate type-I error control: PHO (p <p | ‘7'%0’) =f+0(n " log ™ n).



Next, we invert the Edgeworth expansion to formulate the Cornish-Fisher confidence
interval (CF-CI) with higher-order accurate confidence level control. Before presenting
our method, for readers who are not familiar with this topic, we give a quick review of
how the CF-CIl was derived in the classical setting. Constructing a Cl requires quantiles
of the distribution of the pivot, but the Edgeworth expansion Gis not guaranteed to be a
valid CDF, as its value may exceed the range [0.1] , thus cannot be naively inverted.

The Edgeworth expansions for an i.i.d. sample mean and a complete U-statistic both

G(u) = @(u)+n""Pu)T(u)

-1
take the form , at O(n™) accuracy. Given the significance

level 6(0’1/2), we need to find a v that well approximates the lower:£ quantile of the

_ =
distribution approximated by G, that is, the v such that Gu)=p+0(n") This can be

achieved by the Cornish-Fisher expansion (Hall, 1983, 2013), which takes the form

ol 12 — P!
u=G(z)=2,=n""¥(25) \yhere =P B 16 determine 1t * ), we expand

G(z,—n "W, (2)) o) =T,(z5)

-1/2 > .
andsetall ”  terms to sum to zero. This gives

-1 _ 12
Therefore, G (z5) = Hzp) —n ro(zﬁ).

In contrast, the Cornish-Fisher expansion in our setting is much complicated by the

— 4, (a-1)(
Fe=n terms in the Edgeworth expansion. Our C-F expansion reads:

al2
- [o(zp) & ¥izy)
Gjiya(zﬂ)zzzﬂ— \/; + [Z_; Ol

a

(25)

Y

e
Technically speaking, when plugging u=0y,, (z) into (15), the term ~ ¢ will release

) M F pf D M —(a/2)/(a-1) |
expansion termstat‘the orders of "« >« > e . Therefore, we formulate

Fiog recursively. We describe step 1 ({=1):

(i) Only keep T and T on the RHS of (15), temporarily ignoring other 1ﬂf’s. Do the
-1
same for Y. (only keep Lo and \Pl).

(iy Plug “ = 92..@) into (15).

-1
(iii) Set the sum of M, terms to zero. This would solve ¥ .



-2
To solve \PZ, add I and ¥, back into consideration in i and set the sum of M, terms

to zero in iii. Repeat this procedure until all ¥, ’s are solved.

Now, we formalize the above method. Readers who do not wish to read involved math

¥, (Zﬁ’) = _rl(zﬂ)'

may jump to Theorem 2.2. To start, set Then for each

k=2,...[(a/D)/(a=D)] in order, recursively compute Fi(zy) by
k $ "z
EACATEREES I EED VIS STCAREE SHEA] ( g,),ﬂ }
U=2 ey ik—on ’
Jitetje=k
[{ ¢([ )( ﬂ)
LRLIED S M A e et SN
kkll kokl ki 4 1<{/1 // ;{<kl —0'+1
it je=k
ky—1ky—( r(f”)(z )
{F (z)+ 2, Z { Z ¥ (2p) W (2p) ((ﬁ”)vﬂ }}]
S PYE S ;{<k2( (—r 41 :
it +j/ 2

To provide readers a more concrete view ofithewresult, let us calculate the first three T

S.

From (34) and Table 2, we see thatall C-F expansion terms are functions of L, ’s. Thus,
71
jw )

replacing T s by f’s we,obtain the empirical C-F expansion, denoted by

Theorem 2.2. Underthe conditions of Theorem 2.1, for any given p <)) , the

population and empirical Cornish-Fisher expansions respectively satisfy
Fr s (GiA(2)) =B+ O(n " log"” ), (27)
(6 -G @ (=0(r>10gn).  (28)

Corollary 2.2. Under the conditions of Theorem 2.1, the Cornish-Fisher confidence

interval %y defined by



Z,=(U,~ (G} Gy - 01 T, S0} .
i=1

U, =G5 ()-8 T, I D D))
i=1

enjoys a higher-order accurate control of the actual coverage probability around 1-5.
P(ueZ,|T,,)=1-p+00n"*log" n).

2.3.2 Two remarks

Var(U,

First, as mentioned in Section 1, reducing the U-statistic inflates ). However, we

Var(l/,)

studentize U, by G“, which only captures the leading term in , whose order
does notvary with a. Readers naturally wonder where the‘variance inflation is reflected
in our statistical inference procedure. Here, we use our Cl formula as an example to

clarify.

0(7171/2 +n7(a71/2))
Remark 2.4. The radius of our Cornish-Fisher.Cl'is 9, Studentizing U,

V2 _ O(n—l/z i

~ —1 -a —(a-1/2)
with @7 will also yield a Cl radius of {97 ")} " ) In other words,

using ©7 or %91 to studentize:U, leadfto different pivors as infermedjate steps, but

eventually, their eventually preduced C/ lengths are on the same order.

Our second remark regards test power. In fact, any test based on an asymptotically MO,
1) pivot (including our method) is asymptotically power-optimal (see how Theorem 3.5
of Banerjee and Ma (2017) establishes asymptotic power-optimality). We reiterate that
power-optimalityand risk control accuracy are distinct goals. As pointed out in Shao

et al. (2022), achieving either goal alone is not difficult, however, achieving both is
usually rather challenging. To our best knowledge, our work is the first to achieve both

goals for inference based on reduced U-statistics.

3 Our method: application to specific designs



In this subsection, we apply our general results in Section 2 to analyzing several
designs. First, we propose and analyze a novel variance-optimal deterministic reduction
scheme in Section 3.1. Then in Section 3.2, we present the first provably higher-order

accurate inference for a few randomized designs (Lee, 2019; Chen and Kato, 2019a).

3.1 A novel variance-optimal deterministic design

As discussed in Section 2.1, existing works typically focused on minimizing thesariance

for special configurations. In this section, we present a novel method to principally

construct variance-minimizing Ina for general (@.r) Tq start, recall an important

simplification that we proposed in Remark 2.2 that we only need to consider ¢ €(1,2)

Var(U,)

The key to minimize is that the design Ina needs to satisfy the following

properties.
(D1) Al %1 (1) ’s are equal;

k
(D2) Forall k=2 and I, <G, , all Bgrldly) 's are 0 or 1; or equivalently, any two

jﬂ

member sets of © "* may not averlap (intersect) by more than 1 index.

d
g

Now we describe our design. We set I to be the union of a few Y =« sets, defined as

TD = {(i+ @7 =D, i #22 Nl)d, -, i+ (27 =Dd):i=1,...,n}, (29)

where we circulate indexes outside the range [1:n] Eor instance, when r=3 as in

Tria = {124,239, (113 Gieany any individual o

J@
ne gsets, we need to watch out

Example 2.1.we have
satisfies both (D1) and (D2). But when we union a few

) @)
for the compliance with (D2). For example, (1, 2, 4) from T and (2, 4, 8) from T
overlap by 2 indexes, violating (D2). We meticulously select the set of d values to avoid

such multiple overlap. Our choice is:



bz'na’1
7= | 79 (30)

d=b-n""!
where b1, b2 are chosen according to the following lemma.

b /b, e(@-1/2"

Lemma 3.1. Suppose "> . Set @ €(1.2) gpg ’1). Our design

N a1
T specified by (37) and (38) satisfies e (D) =1 and “re () € 0.1, for. all

I i € an Var(UJ)

1e[l:r] gpg ke[2ir ]. Thus it satisfies (D1) and (D2) and minimizes

T,

Lemma 3.1 ensures that this * "« satisfies Assumption 2. Therefore,.Theorem 2.1 and

J,

Corollaries 2.1 and 2.2 apply. This * "« also greatly simplifies the' Edgeworth formulas.

J,

Corollary 3.1. Under our design * "+ as described by (30) andLemma 3.1, we have

ro(u)=22 g 1+ 0 D e o). XL (31)
£ 28
(1] \ .
__J_ k=2 k [,HZ(—I(u)__ o, TS ('HZH(u)
Fw = e o Aetyre a2

for (= Leeslal i2@=D} ] fpoke 0, = Varth(X))) (32).

2
We can estimate %% by.

1 n M,

Zzhz(X[i:d:(i+(r—1)d)]) —/le, (33)

nmt , “iofa=1

=2
o, =

where in contrast to (9), we should multiply two /identical X)) terms in term 1 in (41).

Now the empirical Edgeworth expansion formula Gy... )

computed by combining (15), (19), (20) and (31)—(33). Then with (25) and (26), we can

compute the Cornish-Fisher confidence interval. We skip repetitive formula

for hypothesis testing can be

presentation.



Interestingly, our method not only serves as an acceleration tool itself but also
enhances the performance of other acceleration tools. One example is the divide-and-
conquer acceleration through parallel computing (Chen and Peng, 2021). They utilize K
parallel computing servers that return summary statistics to a main server for
aggregation. But in Chen and Peng (2021), each server still computes a complete U-
statistic, leaving significant space for further acceleration. Here, we present Algorithm 1
that couples our method with the divide-and-conquer idea in Chen and Peng (2021). In

fact, this algorithm can be viewed as a parallelized version of our own method:

Algorithm 1 Our method + Chen-Peng Reduction

X, h(x,,...,x,)

Input: Data: ""Xn; kernel function . a, number of servers K

(b1, bo).

Output: Coefficients of the empirical Edgeworth.expansion GJ(“).
Part |I: data splitting

for k=1:K do

. h’ n’bl’bz’X[(k—l)n/K+1—(r—k)n“_1):(k)z/[(+max{(r—1)n"_',(2r']—1)11a'1}] to server k.

Pass
end for &

Part Il: local computation

for k=1"K do (On the Ath local server, compute the following quantities.)

e« Compute and return:

Ly wx,) (34

U,, =
Jik *
n“ /K, 5



b,n”

nak U ‘711([101)/»" j(d) j(d)
with d=bn where Yk is defined similarly to “ =« in (29),

except that /ranges in [{(K—Dn/ K+13:(kn/ K)] jngtead of [1:7]

e Compute and return:

@ 1
gg1;3 = Z h( [(i—r+1)i] )h(Xl(l+I -1)] )h( [(i+r—-1):(i+2r— 2)])
n/K id((k=1)n/ K+1):(kn/K)]
w1
5g1g1gz =T Z h(X[(i—rH):i])h(X[i:(Hr—l)])h(X[(i+;'—1):(i+2r—2)])'

n/K id(k=1)n/ K+1):(kn/K)]

For each ¢ €[0:71 compute and return:

1
n®/ K z Zh( [i:d:(i+(r— l)d)])h( [G+k-1)d):(—d):(i—(r— k)d))
id((k=1yn/ K+1):(kn/K)] d

;7(;1{
end for &

Part 111: result aggregation

On the central server, compute and output:

1 K

U, =—>U,,,

1 R

/’l ::_zno;k7

A 1 A !

512 ::E;nl;k_luza

n 1 K R (

égcz 12;277(;1{ Z[ ]‘fca
k=l

1 @ .
Elg; (X)]:=— § Eqn— I
KT

~

~ T

~

Elg,(X))g (X,)g, (X, X,)] = Zgglglg -2U, éjl

Finally, plug these estimated quantities into Corollary 3.1 for statistical inference.



We compare our method coupled with Chen and Peng (2021) to the vanilla Chen and
Peng (2021) in Table 3. For clarity, we unified all split sizes, set K = n” as in Chen and
Peng (2021) and aligned the orders of the second leading terms in the variance
formulas of both approaches, by setting @=2—7"_ Table 3 shows that our method
speeds up Chen and Peng (2021) by a factor of "M*a, without noticeable relative

variance inflation and achieving a higher risk control accuracy.

3.2 Analysis of randomized incomplete U-statistics

Our general framework in Section 2 is a powerful tool for analyzing randomized designs.
Here, we showcase its application to some popular designs (and.close variants) in

literature:

(J1) Sample n” size-rsubsets from . at random, with replacement.

(J2) Similar to (J1), but sample without replacement?2.

(J3) For i=L--n sample<u®_size-rsubsets from “» containing / with

replacement.
(J4) Similar to (d3), but for each /, sample without replacement?3.

These sampling schemes are very natural, and there are many more similar
randomized designs in existing literature (Blom, 1976; Chen and Kato, 2019a).
However, nosavailable theory and methods yet exist to provide higher-order accurate
risk control for inference under these schemes. Conventional analysis (Chen and

Kato, 2019a) typically starts with re-expressing U, as follows.

U, ~u=U,-w+T,, "3 {ux,)-U}=U,-w+v, (35

(Partl) [eTna

(Partll)



where part | is a rescaled complete U-statistic (see definition in Eq. (1)) and part Il

captures the randomness in ‘7"’“. One can normal-approximate both parts and
eventually U, via careful conditioning and convolution, see page 9-20 in Chen and
Kato (2019b). While (35) is useful for analyzing degenerate U-statistics, it is not a sharp
tool in the non-degenerate case, where the two parts, dependent on each other, both

noticeably impact the Edgeworth formula.

In sharp contrast, our analysis takes a very different route: the key is to apply-our
general framework in Section 2 to analyze U, directly, without going throughy(35). As a
premise, we first verify that these randomized designs indeed satisfies Assumption 2
with high probability. (Assumption 1 is easily verified.)

Lemma 3.2. Let T be constructed by one of (J1)-(J4). For any given constant G >0 ,

C,C,:C,>C, >0 J

there exist constants depending on Cp.and the design * ", such that

Assumption 2 with these C1 and Cz holds with probability at least 1 - n

All four designs (J1)-(J4) have clean analytical Edgeworth formulas, which can be

handily found by taking another layer of expectation B[] over the randomness of ‘7”’“.

Corollary 3.2. Under the setting"® €%2) | we have the following resuits.

e For randomizeddesigns (J1) and (J2), we have

B, [T ()] 2 2‘; o2 1+ L2004 D

1 1

H,,_ 1(“){ [ ]é:k ¢

20)] e }‘, for(>1. (37)

Elg,(X)g (X,)g,(X,, X,)], (36)

B, [T, @)]=-

e Forrandomized designs (J3) and (J4), we have



B, T, 0] = 22 = g (X))

{ 3 12 2 3 2 (38)
+(7"_1) (" +2r 2_32)1: o +2}E[gl(Xl)gl(XZ)gZ(Xl’XZ)]a

e
E, [T, (u)] is the same as the E,[T", («)] under (J1) and(J2). (39)

Then set

al2

=
G, (u) ::CD(u)+¢(u){E"[5Z_(u)]+ s BALGIIy 40

(=1

where

1+ L”:(”D under(J1)and(J2),
;(kjg"

n* & (r-1)

£(1k

M, =n"" {141/ (m )}/ (41)

1+ » under(J3)and(J4).

We have
(7,5, ) =G, () (=0 logn). (42)

We can naturally define the empirical version G, () with coefficient estimated by (9),
(19), (20)‘and.(33)-and use it for downstream analysis, accompanied by theoretical

guarantees'exactly similar to Corollaries 2.1 and 2.2. We skip the repetitive detailed

descriptions.

We conclude this section by instantiating the general formula for the Cornish-Fisher

. ;[Jg

hy(=1) " 22
rg

confidence interval, using the formula under (J1). Define . We have



4 Simulations

We assess the accuracy of the CDF approximation for noiseless non-degenerate U-

o . . F .
statistics. The goal is to accurately approximate ~ *%/ | where we set a small variance
iid.

X, ~ PDF:

(x+1)/2,x €[~L1] an4 use the kernel function h(x,,%,,%;) =8I0(x, +2,+3) e

with C; =0.008 for 6. We generate synthetic data with Kiseoos

experiment with our proposed deterministic design from Section 3.1 and the random
design (J1) from Section 3.2. We compare our method to the following benchmarks: 1.
MO, 1); 2. resample bootstrap (bootstrap iteration 8= 200 (Levin and<evina, 2019));
and 3. subsample bootstrap (subsample size: n' ). To emulate the true sampling

T+, e =10

6
distribution of , we use a Monte-Carlo approximation with samples'4.

The performance measure is:

sup |y, )-F, 5 w)]. (43)
ud-2,2ueZ/10
We vary  €110,20,40,80} 504 set o =1.5 (results for @=1.7 are provided in
Supplementary Material). For each (n,00) setting, we repeated the experiment 30 times
and recorded the mean and standard-deviation of the distribution approximation errors
(43).

I+ 51. Our method’s estimated

Figure 2 shows the true and estimated CDF curves for
CDF almost overlaps the true curve; whereas all other methods exhibit much more
noticeable estimation errors. It also shows the log-transformed CDF approximation
errors of all methods under different (@) configurations. Our method shows clear
advantage in.accuracy across all settings, and we are the only method that exhibits an
empirical error rate faster than A these results well-align with our theory’s

prediction and demonstrate the higher-order accuracy of our method.

Next, we compare our Cornish-Fisher confidence interval to that produced by the

benchmark methods in Simulation 1, plus the C-F CI constructed based on the



complete U-statistic. Performance measurements include: coverage probability, Cl
length and computation time. We fix the confidence level at 1=$=90% and focus on
the two-sided CI for simplicity. The simulation set up is mostly inherited from Simulation
1, except that now we no longer need a large nuc and can test for larger r7's:

n €{25,50,100,200,400} |, g5ch experiment, which will produces one empirical ClI
coverage probability, we generate 3000 ClI’s for our method, MO, 1) and complete U-
statistics; and 500 ClI’s for resampling and subsampling bootstraps since they:are
slower. Then we repeat the experiment 100 times for all methods except the complete
U-statistic method (repeated 20 times) to evaluate the variance of the coverage

probability of each method.

Figure 3 shows the result for deterministic and random designs."Our method shows
clear advantage in accuracy of controlling the empirical coverage probability around the
nominal level level of 90%, significantly improving over normal approximation, especially
for small ’s. As n grows large, our method’s speed advantage over bootstrap methods
becomes clearer. Compared to inference based onicomplete U-statistic, our method
effectively reduces computational complexity, reflected by its much flatter log-time
curve, without noticeable loss in risk control accuracy. All methods except subsampling
bootstrap produce similar Cl lengths: This echoes our earlier remarks that the Cl length
reflects a different aspect of U-statistic reduction (inference power, Section 2.3.2); and
different approaches may perform similarly in this aspect, if they are all asymptotically

normal approximations.

5 Data examples
5.1 Data example 1: Stock market data

The S&P 500 historical data ((Datahub), (Datahub)) records the daily prices of 412
stocks from 11 sectors. Following Chakraborty and Zhang (2021), we computed the
monthly logarithmic return rafes of each stock from 1-Mar-2000 to 29-Aug-2022,
yielding n= 138 observations. Our goal is to assess the pairwise dependency between

sectors via independence tests. Denote the log-return sequence of stock /from sector X



SY =(SX,...85); S’

by > similarly define ~* . We measure dependency between sectors X

and Yby dCov, rewritten as a complete U-statistic (Lemma 1 of Yao et al. (2018)):

1

dCov?(X,Y) :=@ > WZ.Z,,Z,Z,), (44)

i<j<g<r

L,j.q,r

h(Zi’Z.I"Zq’Zr) = Z (astbuv +astbst _astbsu _astbtv)/24 . SX SX
where RNRTRY 15 a; _H i P ||2’ and

by =lIS) =S/l get @=1.5 We test o : EIdCov*(X,Y)]=0

versus a two-sided alternative. As a reference, on the diagonal, we randomly split the

between each sector pair,

stocks in each sector into two sets and tested their dependency. Figure 4 shows that
our method well-aligns with the test decisions that would have been made using the
complete U-statistic, but our method computes much fastery(see Table 5). On the
diagonal, the sectors that exhibit strongest inner dependency include cp, £, r, 1 and
1T. This is understandable since they tend to be more sensitive to global economic
fluctuations. In contrast, members of cms, ¢ens andw sectors focus more on local
markets, so their within-sector price fluctuations are less synchronized. This
understanding also applies to cross-sectorrelations, such as the tight connection
between the pairs (cp, 1) and (1, 11); Whereas v is comparatively less dependent on

other sectors except k.

5.2 Data example2:'UCR time series data (Earthquakes, Starlight)

In the second example, we analyze two UCR time series data sets (Dau et al., 2018):

Earthquakes and, Starlight. The earthquakes data consist of n= 461 earthquake curves,

each of length 7= 512. These curves are classified into K'= 2 clusters: n, = 368 non-

majorand ™ =93

major earthquakes. Following the approach of Chakraborty and
Zhang (2021) and Zhu and Shao (2021), we treat each earthquake curve as a point in a
Hilbert space and aim at comparing the population distributions of the curves of different
types using Maximum Mean Discrepancy (MMD). We measure the distance between

two earthquake curves by comparing their SRVF transforms (Srivastava et al., 2011),



which synchronize their phases in the presence of amplitude discrepancy. However,

computing the SRVF for each curve pair is slow (Strait et al., 2019). To accelerate and

512
also to tame the violent fluctuation in the raw data, we pre-processed each curve i

by a moving average (window size () with down-sampling:

{x’ = Mean(x[“‘(“””}:{”(“”/2”)}’6{4“‘»"40“7“ . Due to page limit, we only present results for

(=" leaving results for more window sizes to Supplementary Material.

We applied our method with @=1.5 to estimate the average pairwise distance(using
SRVF) within each cluster to assess its internal cohesion. For the between-cluster
comparison, we sub-sampled the larger group (non-major earthquakes) and rewrote the

MMD a one-sample U-statistic following Equation (6) in Schrab’et.al.(2021) with the
.— 2
RBF kernel K(%.»):=exp(-SRVE(x,1)"/5000) The we applied'oufmethod with @ =1.5

to reduce this MMD U-statistic. Figure 5 shows the results;iin ' which, we used the
complete two-sample MMD U-statistic value in lieu'of the:'unknown population mean
discrepancy. Our Cornish-Fisher confidence intervals-with randomized design (J1)
demonstrate good coverage in both inference tasks for within- and between-cluster

distances, respectively.

Next, we apply this analysis method to the much larger Starlight data set that contains K

=1329, n, = 2580 and 5 = 5327

= 3 types of stars, with cluster sizes ! . Here, each
curve is a length 1024 sequence, which we down-sampled to length 128 without
smoothing, becausg the starlight curves are much smoother than that in the earthquake
data. Even withithe dewn-sampling, evaluating a complete U-statistic for comparing any
two star types,remains computationally infeasible, due to the large sample sizes. Our

method with. @ =1.5 allows users to implement a reduced version of Equation (6) in

Schrab et al. (2021) with the RBF kernel #(X:3)=exp(=SRVF(x,»)* /100) ¢ to page
limit, in Figure 5, we only present the result for the comparison between type 1 and type
2 stars, relegating the rest to Supplemental Material. We observed that the MMD Cl’s
produced by the starlight data are much narrower than the counterpart from the

earthquakes data, possibly due to the much larger sample size. Also, for the between-



cluster comparison, some MMD ClI’s of the earthquakes data contain 0 (will not reject
Ho), while all CI's for the starlight data clearly support a two-sided alternative. This is
echoed by the much smaller within-cluster distance and the clearer between-cluster

differences in the starlight data.



6 Discussion

Our study throughout this paper exclusively focuses on data-oblivious reduction

schemes. Recently, Kong and Zheng (2021) proposed a data-aware reduction scheme,

based on their key observation that Xiiry = Y implies I Xpy) = h(Y

“]), thus by
clustering X/s, one can effectively reduce the U-statistic’s computation. While their
method shows very attractive performance, finite-sample higher-order analysis for their
method poses an interesting open challenge. There is also a computational.price\for

being data-aware. For example, in the setting considered by Moon and.Chen (2022),

2
the clustering of all X/s in some Banach space requires computing atleast o0@”) many

potentially expensive (like in our second data example) pairwise“distances.
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Notes

1Even-Zohar and Leng (2021) exploits the coordinate-wise order relations, but its trick

cannot apply to non-vector inputs.

2Test consistency: a test is called consistent if its type-l and type-Il errors both

converge to 0.

3 Despite this paper exclusively studies conventional, noiseless U-statisticsyifta closely
related work, we will make use of the analysis techniques in this paper toianalyze

network U-statistics.

4 This means that the same Edgeworth expansion formula accurately approximates both

Frye, without Crameér’s condition and £, assuming this.condition.

7,

5 Notice that although this term has similar numerator as» ~2, its denominator is much

larger.

6 This is the maximum # such that ¥y appears in the C-F expansion. It equals

L(a/l)/(a—l)J_

7 Since all functions are evaluated at Zﬂ, we omit all (Z4) notions, e.g., we only write “
lPI ” fOI’ “ \PI (Zﬂ) n.
8The formula for ¥ uses the ¥ computed in the “4 =1” case. The same goes for the

formula for ‘{13.

Lo =T0@) ywhitle T == g5r a1 €21 Also notice

n
|jn,a |—1 {zaia;l(i)}l/z — 2
d = .

9 To see this, notice that

(é}i.a (zip,)—0,) =1+ @

that an



10 This further requires X = O(n™) fort €(0,1/4) ' see Theorem 3.3(i) in Chen and
Peng (2021).

11 Chen and Peng (2021) standardizes U

accurate, that is unless it further employs a “bias-correction” that consults and

7, therefore, their inference is not higher-order

eventually reproduces our method. See Hall (2013), Section 3.10.2.

2|n theory, sampling Toa 1T, |5 O(0%)

O(n

without replacement could be doneswithin

") budget, in terms of both time and memory, via a lexicographic indexing-of C"r.

13 But subsets from different ~strata can still coincide

-5N\2 4
14\We need to set "¢ to be much larger than (1/e7)" ~2.2x10 »in view of DKW

inequality.

L, ].9,r

15 The summation notation “s-«»” means summing (s:6,1,9) over all permutations of
(i, 7,9,7)

16 https://math.stackexchange.com/questions/4387849/



References

Banerjee, D. and Z. Ma (2017). Optimal hypothesis testing for stochastic block models
with growing degrees. arXiv preprint arXiv:1705.05305 .

Bergsma, W. and A. Dassios (2014). A consistent test of independence based on a sign
covariance related to Kendall's tau. Bernoulli 20 (2), 1006-1028.

Blom, G. (1976). Some properties of incomplete U-statistics. Biometrika 634(3); 573—
580.

Brown, B. and D. Kildea (1978). Reduced U-statistics and the Hodges-Lehmann
estimator. The Annals of Statistics , 828-835.

Chakraborty, S. and X. Zhang (2021). A new framewark for. distance and kernel-based
metrics in high dimensions. Electronic Journal of Stalistics 15 (2), 5455-5522.

Chaudhuri, A. and W. Hu (2019). A fast algorithm for computing distance correlation.
Computational Statistics & Data Analysis 135, 15-24.

Chen, S. X. and L. Peng (2021). Distributed statistical inference for massive data. 7he
Annals of Statistics 49 (5), 2851-2869.

Chen, X. and K. Kato (2019a)..Randomized incomplete U-statistics in high dimensions.
The Annals of Statistics 47 (6), 3127-3156.

Chen, X. and K. Kato (2019b). Supplementary Material to “Randomized incomplete U-

statistics in‘high dimensions”. The Annals of Stafistics .

Clémencon, S., I. Colin, and A. Bellet (2016). Scaling-up empirical risk minimization:
optimization of incomplete U-statistics. The Journal of Machine Learning Research 17
(1), 2682-2717.



(Datahub). S&P 500 companies with financial information. https://datahub.io/core/s-and-

p-500-companies#data-cli. Accessed 18-Nov-2022.

Dau, H. A., E. Keogh, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A.
Ratanamahatana, Yanping, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. Batista, and
Hexagon-ML (2018, October). The UCR time series classification archive.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

Durre, A. and D. Paindaveine (2021). On the consistency of incomplete, U-statistics

under infinite second-order moments. arXiv preprint arXiv.2112. 14666..

Even-Zohar, C. and C. Leng (2021). Counting small permutation“patterns. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete'Algorithms (SODA),
pp. 2288-2302. SIAM.

Gao, C., Y. Lu, and H. H. Zhou (2015). Rate-optimal/graphon estimation. 7he Annals of
Statistics 43 (6), 2624-2652.

Gretton, A., K. M. Borgwardt, M. J. Rasch, B. Schélkopf, and A. Smola (2012). A kernel
two-sample test. 7The Journal of Maehined earning Research 13 (1), 723-773.

Hall, P. (1983). Inverting an/Edgeworth expansion. 7he Annals of Statistics 117 (2), 569-
576.

Hall, P. (2013). 7The Bootstrap and Edgeworth Expansion. Springer Science & Business
Media.

Han, F. andT. Qian (2018). On inference validity of weighted U-statistics under data
heterogeneity. Electronic Journal of Stafistics 12 (2), 2637-2708.

Heller, Y. and R. Heller (2016). Computing the bergsma dassios sign-covariance. arXiv
preprint arXiv:1605.08732 .



Helmers, R. (1991). On the Edgeworth expansion and the bootstrap approximation for a
studentized U-statistic. 7The Annals of Statistics 19 (1), 470-484.

Huo, X. and G. J. Székely (2016). Fast computing for distance covariance.
Technometrics 58 (4), 435447 .

Janson, S. (1984). The asymptotic distributions of incomplete U-statistics. Zeitschrift fiir
Wahrscheinlichkeitstheorie und Verwandte Gebiete 66 (4), 495-505.

Kong, X. and W. Zheng (2021). Design based incomplete U-statistics. Statistica Sinica
37(3), 1593-1618.

Lahiri, S. N. (1993). Bootstrapping the studentized sample meanof lattice variables.
Journal of Multivariate Analysis 45 (2), 247-256.

Lee, A. J. (1979). On the asymptotic distribution of'certain incomplete U-statistics.
Technical report, North Carolina State University.:Dept. of Statistics.

Lee, A. J. (1982). On incomplete U-statistics having minimum variance. Australian
Journal of Statistics 24 (3), 275-282.

Lee, A. J. (2019). U-Statistics: Theory and Practice. Routledge.

Levin, K. and E. Levina (2019). Bootstrapping networks with latent space structure.
arXiv preprint arXiv. 1907. 108217 .

Maesono, Yu(1997). Edgeworth expansions of a studentized U-statistic and a jackknife

estimator of variance. Journal of Statistical Planning and Inference 61 (1), 61-84.

Moon, H. and K. Chen (2022). Interpoint-ranking sign covariance for the test of
independence. Biometrika 109 (1), 165-179.

Putter, H. and W. R. van Zwet (1998). Empirical edgeworth expansions for symmetric
statistics. 7he Annals of Statistics 26 (4), 1540-15609.



Rempala, G. and J. Wesolowski (2003). Incomplete U-statistics of permanent design.
Journal of Nonparametric Statistics 15(2), 221-236.

Rosenbaum, P. R. (2011). A new U-statistic with superior design sensitivity in matched
observational studies. Biometrics 67 (3), 1017-1027.

Schrab, A, I. Kim, M. Albert, B. Laurent, B. Guedj, and A. Gretton (2021). MMD
aggregated two-sample test. arXiv preprint arXiv:2110.15073 .

Shao, M., D. Xia, Y. Zhang, Q. Wu, and S. Chen (2022). Higher-order accurate two-

sample network inference and network hashing. arXiv preprint arXiv:i2208.07573 .
Slater, L. J. (1960). Confluent Hypergeometric Functions. Cambridge University Press.

Srivastava, A., W. Wu, S. Kurtek, E. Klassen, and J. S/ Marron (2011). Registration of

functional data using fisher-rao metric. arXiv preprintarXiv.1103.3817 .

Strait, J., O. Chkrebtii, and S. Kurtek (2019). Automatic detection and uncertainty
quantification of landmarks on elastic curves. Journal of the American Statistical
Association 114 (527), 1002-1017.

Székely, G. J., M. L. Rizzo, and'N. K. Bakirov (2007). Measuring and testing
dependence by correlation of distances. 7The Annals of Statistics 35 (6), 2769-2794.

Weber, N. (1981). Incomplete degenerate U-statistics. Scandinavian Journal of
Statistics , 120-123;

Yao, S., X. Zhang, and X. Shao (2018). Testing mutual independence in high dimension
via distance covariance. Journal of the Royal Statistical Society. Series B (Staftistical
Methodology) 80 (3), 455-480.

Zhang, Y. and D. Xia (2022). Edgeworth expansions for network moments. 7he Annals
of Statistics 50 (2), 726-753.



Zhao, Q. (2019). On sensitivity value of pair-matched observational studies. Journal of
the American Statistical Association 114 (526), 713-722.

Zhu, C. and X. Shao (2021). Interpoint distance based two sample tests in high
dimension. Bernoulli 27 (2), 1189-1211.



Major earthquake, £ =7

—Raw — Smoothed

ﬂmuhuullhlullllillIlMIIlhn
ZIulniuHillll e
il ol i 1 £

o W ot

Reading

Non-major earthquake, £ =7

il ol ok

5

2l o o
i

128 285
Time Time
Type 1 star Type 2 star Type 3 staf
2 & 2 &— &  \
—Raw
0 2] | o
al . . . : 0 ; : ' 2 R 99
B 2 @ 3! Bz ? i
@ @ @
£ £ 2] =N
=07 1 L e
=3 =2 =
Ll i : . : = PN A W g .
5 & : - - ; =
2 3l A |
27 b
il 1t 0
0
a2l y : ; : 1 W ; ; .
256 512 768 1024 256 512 768 024 256 512 768 1024
Time Time Time

Fig. 1 UCR data sets: row 1: Earthquakesywhere blue curves show raw data and red

curves show a moving average smoothing of window size {=7; row 2: Starlight
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Pairwise dependency, test statistic
Our method, @ = 1.5
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Table 1 Properties of main terms in 7/s decomposition (5)

Term in 7/s decomp.|Asymp. order|Corresp. Edgeworth terms
7, 1 ® and lo

7, @ Lo ang T s, (21

T, r,

Table 2 Examples of C-F expansion formulas

Range of a|k® Formula for computing Y7
[4/3,2] 1 ¥ =-T,
[6/5,4/3) 2_ ¥, =Y, +0,)+ (¥ /2+ Y. D)d / gy
] ~¥, =, +¥,[+¥T, /24T,
[8/7,6/5) ||3[+(¥\¥,+ P, +WIT, + W,T )JAHQP 16+ W, /2)¢" / §




Table 3 our method enhances Chen and Peng (2021)’'s method. Set @ €(1:2)

Recall ¥=2,

Vanilla Chen and
Peng (2021)

Our method + Chen and
Peng (2021)

Time cost on each server

O(n(rfl)(afl)ﬂ)

O(n(a72)(a—l)+l)

Variance of aggregated U-

stat. r2§12 /n+0(n™") r2§12 /n+0(n™“)
-1/2
CDF approximation error |27 )10 O(n™*?)
0,4

Risk control accuracy

ép (nfa/2 10g1/2 n)

Table 4 First three " +’s under (J1).

Range of | i ¥, (1)
T
[4/3,2] 1[5 *%nmen
BE
[6/5,4/3) 24 {w -3ua; ) +3uey )}
u 6 4 2 2
——— e —TTu* +25u% 15
720(u2—1){(” w+25u” =15)0;, )
8/7,6/5) |3|| +45@ 216, —(15u> ~45)0% , }




Table 5 Time cost: our method (¢ =1.5) vs. complete U-statistic

Stock Market (r
=4) Earthquakes (r= 2)
Time cost (Unit = Non-
sec.) All Major major Maj. vs. Non-Maj.
Our method 3.47 303.94 |2471.70 1223.50
Complete U 8099.73 708.99 (111199.92 17912.91
Starlight (r=2)

Time cost (Unit =
sec.) Type 1 Type2 |Type3d |[1wvs.2 /|1vs.3 |2vs.3
Our method 4512.95 12773.76|41282.26(|19140.13/19149.33|50413.75

(Time (Time (Time (Time
Complete U 48227.72 158233.7|jout) out) out) out)
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