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Abstract 
U-statistics play central roles in many statistical learning tools 
but face the haunting issue of scalability. Despite extensive 
research on accelerating computation by U-statistic reduction, 
existing results almost exclusively focused on power analysis. 
Little work addresses risk control accuracy, which requires 
distinct and much more challenging techniques. In this paper, we 
establish the first statistical inference procedure with provably 
higher-order accurate risk control for incomplete U-statistics. 
The sharpness of our new result enables us to reveal how risk 
control accuracy also trades off with speed, for the first time in 
literature, which complements the well-known variance-speed 
trade-off. Our general framework converts the challenging and 
case-by-case analysis for many different designs into a 
surprisingly principled and routine computation. We conducted 
comprehensive numerical studies and observed results that 
validate our theory’s sharpness. Our method also demonstrates 
effectiveness on real-world data applications. 
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1 Introduction 

A U-statistic, denoted by Un, is associated with an i.i.d. sample 1, , nX X  drawn from a 
general probability space and a degree-r permutation-invariant kernel function 

1( , , )rh x x , s.t. 1 (1) ( )( , , ) ( , , )r rh x x h x x     for any bijection :[1: ] [1: ]r r  . It is 
defined as 

1

1

1 1

1

: ( , , ) : ( ),
r r

r
r r n

n i i I
i i n I

n n
U h X X h X

r r

 

   

 



  

         (1) 

where 1 1: {( , , ) :1 }k
n k ki i i i n      is the collection of all r-tuples and define the 

shorthand 1
: ( , , )

k kI i iX X X   for any [1: ]k r . U-statistics play central roles in many 
contemporary statistical learning methods, such as in the following applications: 

Example 1.1 (Example 1 of Kong and Zheng (2021)). Test the symmetry of the 
distribution of X   by 

1 2 3 1 2 3 2 3 1 3 1 2( , , ) : sign(2 ) sign(2 ) sign(2 )h x x x x x x x x x x x x         . 

Example 1.2 (Bergsma-Dassios sign covariance (Bergsma and Dassios, 2014; Moon 

and Chen, 2022)). To test the independence of XX   and YY  , where X  and Y  
are Banach spaces equipped with metrics ρX and ρY , respectively, define 

1 4 1 41 1 4 4( , ), ( , ) : ( , , ) ( , , )( ) X i i Y i ih x y x y s x x s y y    , where 

1 4 1 2 3 4 1 3 2 4( , , ) : sign ( , ) ( , ) ( , ) ( , ){ }X X X X Xs t t t t t t t t t t        , and define sY similarly. 

Example 1.3 (Treatment effect measurement (Rosenbaum, 2011; Zhao, 2019)). Let 
1, , nY Y  denote the observed treated-minus-control matched pair differences. Given 

integers ,r r  and r  satisfying 1 r r r   , consider any r observations 1
: ( , , )

r rI i iY Y Y  . 
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Define 
,( )[ 0]( ) :

r Ir

r

I Y
r

h Y 


  1
, where ,( )rI  denotes the index of the -th largest | |

ki
Y  for 

1, ,k r  . 

One primary challenge in the practical use of U-statistics is the high computational cost. 

Even just evaluating Un costs ( )rO n  time, where r varies across applications, ranging 
from r = 2 for Maximum Mean Discrepancy (MMD) (Gretton et al., 2012; Schrab 
et al., 2021) and energy distance (Székely et al., 2007), to r = 4 for dCov (Székely 
et al., 2007; Yao et al., 2018) and SignCov (Example 1.2), and even up to around 20 in 
Example 1.3 (see Tables 3 and 4 in Zhao (2019)). To mitigate this burden, researchers 
have developed two main approaches. The first explores shortcuts to fast-compute Un: 
Rosenbaum (2011); Huo and Székely (2016); Chaudhuri and Hu (2019); Even-Zohar 

and Leng (2021) showed that some U-statistics can be computed in ( log )O n n  time. 
However, these shortcuts only work for scalar inputs1, limiting their applicability to 
complex input data types. For instance, the Bergsma-Dassios sign covariance (Example 
1.2) with manifold-valued functional trajectories as inputs (Moon and Chen, 2022) 
cannot benefit from the acceleration tricks in Heller and Heller (2016); Even-Zohar and 

Leng (2021). Moreover, for non-scalar X-inputs, even evaluating a single ( )
rI

h X  term 
can sometimes be expensive. In our data analysis in Section 5.2, we consider 

earthquake and starlight change curves ( )iX t  for [0, ]t T , see Figure 1. We aim to 
assess their within- and between- cluster dissimilarity by mean pairwise distance for 

different earthquake scales and star types, using a distance ( (·), (·))i jh X X  between 
curves, eliminating nuisance phase discrepancy. A mature technique for aligning curves 
by matching their key landscape features is to compute a “warping function” (Srivastava 

et al., 2011; Strait et al., 2019). However, evaluating a single ( (·), (·))i jh X X  using this 
method can take a few seconds on a high-performance computing (HPC) server. 

This naturally motivates the second acceleration strategy: U-statistic reduction, that is, 
to average over a much smaller set of r-tuples. Let 
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,(| |)(1)
, : , ,( )n
n r rI I 
    (2) 

be a collection of elements in 
r
n  with ,| |n n  for some (1, )r   – we shall treat ,n   

almost like a subset of 
r
n , except that ,n   allows duplication. The reduced U-statistic 

(also known as an incomplete U-statistic (Blom, 1976; Chen and Kato, 2019a)) with 

design ,n   is defined as 

,

1
,:  | | ( ).

r

r n

J n I
I

U h X







   (3) 

There are two kinds of prices we must pay for computation reduction. First, this 

reduction inflates Var( )JU , which further determines: (i) the confidence interval radius; 

and (ii) the minimum separation condition 0
| |

aH H   for consistently2 testing 

00 : HH    versus :
aa HH   , where : [ ]nU  . This aspect of computational-

statistical trade-off is easy to quantify thus well-understood. The overwhelming majority 
of existing literature on U-statistic reduction regards this aspect, pioneered by 

Blom (1976) and followed up by many works aiming at designing ,n   smartly to 

minimize Var( )JU  under a given computational budget ( )O n  
(Lee, 1979, 1982, 2019; Rempala and Wesolowski, 2003; Clémençon et al., 2016; Kong 
and Zheng, 2021; Dürre and Paindaveine, 2021). 

The second kind of price for speeding-up, namely, the deterioration of risk control 
accuracy in statistical inference, is much more elusive and difficult to characterize. Here, 

by “risk control accuracy”, we refer to: (i) | (true CI) (1 ) |     for confidence intervals; 

and (ii) | (actual type I error rate) |  for hypothesis testing, where 1   and β are the 
nominal confidence and significance levels, respectively. Characterizing this accuracy 
requires a higher-order accurate approximation to the sampling distribution of the 
studentized reduced U-statistic, which most existing works fail to describe by only 
providing asymptotic results (Brown and Kildea, 1978; Janson, 1984; Chen and 
Peng, 2021; Chen and Kato, 2019a). Our paper is the first to uncover the 
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computational-statistical trade-off in risk control accuracy, filling in a critical gap in the 
literature. 

This paper makes several significant contributions. We present the first comprehensive 
study on risk control accuracy in statistical inference for reduced U-statistics. We 
establish the first higher-order accurate distribution approximation for non-degenerate 
reduced U-statistics under general designs, leading to Cornish-Fisher confidence 
intervals and tests both with higher-order accurate risk controls. Our approach requires 
only two natural, weak, and easy-to-verify assumptions that are satisfied by many 

popular designs. Notably, our method strictly complies with the ( )O n  computational 
budget in all parts and allows for easy parallel computing. 

Our method’s accuracy significantly improves over the best existing results. The 
sharpness of our error bounds enables us to reveal, for the first time, the trade-off 
between computation complexity (speed) and risk control accuracy of reduced U-
statistics. Interestingly, we discovered that higher-order risk control accuracy can be 
achieved for any 1  ; meanwhile, it may be surprising that we also find that the 

computation reduction from ( )rO n  to 
2( )O n  is nearly free lunch, without deteriorating 

risk control error rate and only inflating Var( )JU  imperceptibly. For practitioners, our 
method provides fast and easy-to-implement solutions with tuning guidance, as well as 
advice on the minimum sample size requirement to achieve a target risk control 
accuracy goal. 

The theoretical analysis in this paper differs significantly from the complete U-statistic 
literature (Helmers, 1991; Maesono, 1997; Putter and van Zwet, 1998) and features 
several innovations. Incompleteness introduces new and complicated leading terms and 
breaches the symmetry of remainder terms, rendering existing bounds and analysis 
routines in Helmers (1991); Maesono (1997) inapplicable. We tackle these challenges 
with our original analyses. A key methodological contribution of this paper is the 
development of a succinct and weak condition on the reduction design, formalized as 
Assumption 2, which was distilled from our theoretical explorations. In the proof of 
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Lemma 3.2, a crucial supporting result for Corollary 3.2, we address the intricate 
dependency structures that arise in certain random sampling schemes. 

Our paper goes beyond any single application or specific data structure, focusing 
instead on the fundamental question of risk control accuracy in U-statistic reduction. 
The general and comprehensive theoretical and methodological framework we present 
fills in a critical gap in the literature, providing a much-needed toolkit for many U-
statistic-based learning methods that aim to maintain accurate risk control while scaling 
up. 

1.1 Notation 

We write ( )n p nB O b  if 
1( · ) ( )n nB C b O n   for some constant C > 0 and large enough 

n. Let (·)  and (·)  be the CDF and PDF of N(0, 1), respectively. For simplicity, we 

regard n


 and 
1n  as integers throughout, omitting duly floor/ceiling operations. We 

adopt the Matlab style notation for arithmetic sequence: 1 2[ : ]a a  denotes 
1 1 1 2( , 1, 2, , )a a a a   , whereas 1 2[ : : ]a a  denotes 1 1 1 2( , , 2 , , )a a a a    . 

2 Reduction of non-degenerate noiseless U-statistics 

Recall that the reduced U-statistic UJ is the average of individual 1
( ) : ( , , )

r rI i ih X h X X   

terms, where 1: { , , }r rI i i   ranges over a small subset ,n   inside : {r
n  the collection 

of all r-tuples in [1: ] : {1, , }}n n  . Our goal is to perform accurate statistical inference for 
[ ]JU   based on UJ, within a limited computational budget of ( )O n  for a given 

constant : r   . Following the convention (Lee, 2019), we call ,n   the design of UJ. 

Throughout this section, ,n   is fixed. To ease narration, we set up two sets of symbols. 

 Define the projection term gk’s recursively: first set 1 1 [1: ] 1( ) : [ ( ) | ]rg X h X X   ; 

then for each 2, ,k r   in order, define 
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[1: ]

1

[1: ] [1: ] [1: ]
1

( ) : [ ( ) | ] ( )
k

k
k k

k

k k r k k I
k I

g X h X X g X








 

   
. All gk terms are mean-zero and 

mutually uncorrelated (Maesono, 1997). 

 For any size-k subset Ik of [1: ]n , let , ; ,( ) : { : }| |n k k r n k ra I I I I     count how 

many times Ik shows up in the design ,n  . For example, if r = 3, n = 7 and 
, {(1,2,4), (2,5,7), (3,4,6)}n   , then , ;1(2) 2na    and , ;2 ({3,4}) 1na   . 

Example 2.1. To understand the random variation in UJ, suppose r = 3 and inspect just 

one term 1 2 3
( , , )i i ih X X X . For example, suppose 1 2 3( , , ) (1,2,4)i i i  , we have 

1 2 4 1 1 1 2 1 4

2 1 2 2 1 4 2 2 4 3 1 2 4

( , , )  ( ) ( ) ( )
( , ) ( , ) ( , ) ( , , ).

h X X X g X g X g X
g X X g X X g X X g X X X

   
   

 (4) 

We call the form like (4) the “one-term Hoeffding’s decomposition” of ( )
rI

h X . 

Consequently, 1 2 4( , , )h X X X  contributes a count of 1 to each , ; ( )n k ka I , where 
{1,2,4}kI  . 

In general, decomposing each ( )
rI

h X  in UJ as in Example 2.1, by (Han and Qian, 2018), 
we have 

1
, , ;

1

 | | ( ) ( ).
k

k
k n

r

J n n k k k I
k I

U a I g X 


 

    (5) 

Next, we address two fundamental questions regarding (5) in Sections 2.1 and 2.2. 

2.1 What makes a good/bad design? 

There are two main considerations that define a good design. They will both translate 
into our regularity assumptions and be reflected in our proposed methods. 

(i) This design should comply with computation budget and be easy to implement. 

(ii) Under the premise of i, this design minimizes Var( )JU . 
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Our first regularity assumption reflects consideration i. 

Assumption 1. The design of ,n   is data-oblivious, namely, 

, 1( , , ).n nX X    (6) 

For a deterministic ,n  , (6) means that ,n   is designed without consulting the data 
[1: ]nX . 

The motivation behind Assumption 1 is two-fold, both weighing on consideration i. First, 
although as pointed out by Kong and Zheng (2021) that data-aware designs may have 

superior variance reduction, the step of adapting the design ,n   to the data [1: ]nX  may 

require expensive computation that can exceed the ( )O n  budget. The second 
motivation regards implementation feasibility. It is inspired by the study of network 
moments as “noisy U-statistics”3, where Xi’s are not only unobserved, but inestimable 
due to identifiability issues (Gao et al., 2015; Zhang and Xia, 2022). 

Consideration ii has long been the focus in existing literature (but not always with much 

attention to consideration i). Clearly, the dummy construction of ,n   by repeating [1: ]r  

for ,| |n   times is useless. What makes Var( )JU  small then? By (5), we have 

2 2 2
, , ;

1

Var( )  | | ( ) ,{ }
k

k n

r

J n n k k k
k I

U a I  

 

    (7) 

while for each [1: ]k r , it always holds that 
, ; ,( ) | |

k
k n

n k k n
I

r
a I

k 


 
  


. Therefore, 

minimizing Var( )JU  demands that for each k, all , ; ( )n k ka I ’s are as similar as possible – 

this lets UJ maximally explore different index combinations. For instance, if (1,2)  , 

this is requiring , ;1 ,( ) ( / )·| |n na i r n   and , ; ( ) {0,1}n k ka I   for all [2 : ]k r . In other 

words, we need different ( )
rI

h X  terms to contribute unique 2 , , rg g  terms (while g1 
terms will unavoidably repeat as 1  ) – we call this the “non-overlapping property” of 
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the design. In alignment with these discussions, our second assumption aims at 
avoiding bad designs. 

Assumption 2. Set (1, ) \r  . It holds for all [1: ]k r  and 
k

k nI   that 

1 2
, ;

2

[ , ] , if ,
( )

[0, ], if ,

k

n k k

C C n k
a I

C k








 



 (8) 

where 1 2 1 2, : 0C C C C   are universal constants. 

In Assumption 2, we exclude integer α choices for sophisticated technical reasons – but 
in plain language, this would make theoretical analysis much cleaner. Practitioners who 
set a working α = 2 can use our formulas for 2.001  , without causing noticeable error. 

Last but important, the two considerations i and ii intertwine: to our best knowledge, 
principled and fast construction of a variance-minimizing design remains an open 
challenge before this paper. The variance-minimal methods in existing literature 

typically depend on brilliant, but case-by-case, constructions for special ,( , ,| |)nn r   

configurations. They provide little clue for handling general ,( , ,| |)nn r   settings. In 
Section 3.1, we will solve this standing problem with an innovative design method. 

2.2 How to develop a higher-order accurate statistical inference? 

2.2.1 Non-degeneracy, variance estimation and studentization 

With Assumptions 1 and 2, we can consider the design as “reasonably good” that 
provides a solid basis for downstream analysis. In this section, we will develop higher-
order accurate statistical inference method for any given design that satisfies both 

assumptions. In other words, through this section, we fix ,n  . Like in the study of 
complete U-statistics, we will first formulate a variance estimator and use it to studentize 
UJ, then formulate an accurate distribution approximation to the studentization. All these 
steps critically depend on the degeneracy status of the U-statistic. 
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Definition 2.1. We call UJ “non-degenerate”, if 
2
1 1 1: Var( ( )) constant 0g X    . 

Due to page limit, we leave the degenerate case, i.e., 1 0   to future work. Next up, we 
face two routes for variance estimation: we could target at either the full variance 

2 : Var( )J JU   or just the dominating term 
2 2 2 2

;1 , , ;1 1
1

: | | ( )
n

J n n
i

a i  



 
. This was not a 

question for complete U-statistics, where 
2
J  and 

2
;1J  differ only by 

2( )O n  
(Maesono, 1997; Zhang and Xia, 2022); but for an incomplete UJ, we have 

2 2
;1| |J J n    , which cannot be directly ignored. We choose to estimate 

2
;1J , because 

it leads to cleaner formulation and faster computation. The discrepancy between 
2

;1J  

and Var( )JU  will be accounted for by our Edgeworth correction terms, see Remark 2.4 
for more details. 

To estimate 
2

;1J , we need to estimate 
2
1 1 1: Var( ( ))g X   (since we know , ;1( )na i ’s). 

Classical variance estimators, such as jackknife (Maesono (1997), Section 2) and 

Zhang and Xia (2022), do not comply with the ( )O n  computation budget limit. 
Therefore, we propose the following estimator 

1

2 2
1 [ : :( ( 1) )] [ :( ):( ( 1) )]

1 1

:  ( ) ( ) ,
n n

i d i r d i d i r d
i d

n h X h X


 



    

 

   (9) 

where 

1

2
[ : :( ( 1) )] [( ): :( (2 1) )]

1 1

: ( ) ( ).
n n

i d i r d i rd d i r d
i d

n h X h X






    

 

 
 The formula (9) may seem 

intricate at first sight, but its idea is very simple. To illustrate, set r = 3 as in Example 2.1 
and inspect the summands corresponding to d = 1 in the first term in (9): 

1 2 2
2 2 1

1

( , , ) ( , , ) ,
n

i i d i d i i d i d
i

n h X X X h X X X  
   



    (10) 

where   consists of several types of terms, such as 
2
1 ( )i ig X  , and 1( )i dg X  , and 

1 1 2( ) ( )i i dg X g X  , and so on, all averaged over i. Clearly,   is mean-zero and 
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concentrates. Similarly, we can understand why 
2  is also an unbiased estimator for 

2

. We stress that our variance estimator (9) strictly complies with the ( )O n  computation 
budget constraint. With the variance estimator, we can studentize UJ as 

1 2 1/2
, , ;1 1

1

:  .
| | ( ) ·{ }

J
J n

n n
i

UT
a i 











 (11) 

2.3 Accurate distribution approximation to studentization 

An accurate distribution approximation for TJ is the premise of accurate inference. For 
this goal, it is important to understand the stochastic variations in UJ. A natural method 

is to compare TJ to the standardization of UJ (replacing 1  in (11) by the true ξ1) and 
then account for the plug-in error on the denominator. Define 

1 2 1
, , ;1

1

:  | | ( ) ,
n

n n
i

M a i n  
 



   (12) 

, ;, ;1 1
21

1 2
2 1/2 2 1/2
, ;1 1 , ;1 1

1 1

2 2 1
1 1

3 1 2 22 2
1 1 1 11 1

( ) ( )( ) ( )
:  , : ,

( ) ( )

( ) 1:  ( ) ( , ) ( , ) .

{ } { }

{ }

k
k

k n

rn

n k k k In i
k Ii

n n

n n
i i

Mn n r
i

i i i d i i d
i i d

a I g Xa i g X

a i a i

g X g X g X X g X X
n nM





 



 


 

 

 



 
   

 


  

 

 

 

 (13) 

Let us explain these definitions for general audience. First, M  accounts for a 

frequently-used non-random factor. Then 1 2  is the standardization of UJ: we 

separate 1  and 2  because 1  is a weighted i.i.d. sum and the dominating term, while 
2  is a higher-order bias-correction to enhance risk control accuracy. Finally, 3  

captures the plug-in error in using 1  in TJ. Formally, we have the following lemma. 

Lemma 2.1. Set (1,2)  , we have 
2 2 2 /2
1 1 1 3· ( log ).pO n n       

Acce
pte

d M
an

us
cri

pt



With the above notation preparation and supporting results, we can decompose TJ: 

1/2 /2
1 2 3 1 2 1 3

1 ( )(1 ) log .
2

( )J pT O n n         (14) 

So far, everything may seem familiar to readers who know the U-statistic literature. 
However, next we will see how U-statistic reduction leads to very different bias-
correction terms in the Edgeworth expansion. Before that, we make a quick technical 
remark. 

Remark 2.1. Aside from Assumptions 1 and 2, another commonly required assumption 
in U-statistic literature is Cramér’s condition (Helmers, 1991; Maesono, 1997): 

1
1 1 1· ( )sup [ ] 1.lim | |t g X

t
e 


i

 This condition is undesirably restrictive and violated by 
important applications, e.g., Example 1.1 with a discrete X1 distribution. Inspired by 
Lahiri (1993) and Shao et al. (2022), we add to TJ an artificial smoothing term 

2~ (0, log · )
JJ N C nn 

     independent of TJ with a large enough constant 0
J

C  . We 
will show that δJ waives Cramér’s condition without altering the distribution 
approximation formula4. 

Now we present our main results and accompanying remarks. Let 
2

[1: ]: Var( ( ))k k kg X  . 
Define the population Edgeworth expansion formula for TJ to be 

,

/2
1

0

1

( ) ( )( ) :  ( ) ( ) ,{ }
n

u uG u u u
Mn








 
  



 
     (15) 

where we recall the definition of M  from (12), and define shorthand 0  and  ’s, as 
follows. Acce
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3 2
2, ;1

, 30 1
1 1

3 2 3/2 2 1/2 3
1 , ;1 , ;1 1

1 1

2
, ;1 , ;1 , ;2 2

1 ,

2 3/2 3
, ;1 1 , ;

1

( )( 1) | |( ) :  [ ( )]
6 { ( )} 2{ ( )}

( ) ( ) ({ , })( 1)
( 1) | |

{ ( )} {

( )

(

n

n
ni

n n

n n
i i

n n n
i j n n

n

n n
i

a i u r uu g X
n a i a i n

a i a j a i j u
r r u

a i a




 

  


 

 





 

  






  
 




  




 



 2 1/2 3
1 1

1

1 1 1 2 2 1 2

( )}

[ ( ) ( ) ( , )],

)n

i

i n

g X g X g X X





 (16) 

22 1
, ;

2 2 2
, ;1 1

1

( ) ( ):  ( ) ,
(2 )!{ ( )}

{ }
k

k n

r

n k k kn
k I

n
i

u H u a I
M a i











 




  


 


 (17) 

where 
2 2/2 /2( ) : ( 1) d / d ( )k u k k u

kH u e u e   is the kth Hermite polynomial (Slater (1960), page 
99). In (15), the first correction term (16) generalizes its familiar counterpart in literature. 

To see this, consider the special case of complete U-statistic, where ,
r

n n  , We have 

,| |n

n
r

 
 


  and 

, ; ( ) /n k k

r n n n k
a I

k r k r k
       
             


 

 , thus (16) reproduces Eq. (1.6) in 
Helmers (1991). 

The second term (17), however, is unique to reduced U-statistics and was never seen in 
existing literature. To facilitate understanding, in Table 1, we sketch some important 

properties of the main terms in the decomposition (5). Here, while the first term in 3  is 

clearly 
1/2n , its second term is also 

1/2n  – to see this, simply notice that for each , 

1 2 1 2
1 1 1

1 2 1 2
1 1

1 1( ) ( , ) [ ( ) ( , ) | ]

1 ( ) ( , ) [ ( ) ( , ) | ] ,{ }

Mn n

i i i d i d i d i i
i d i

Mn

i i i d i i i d i d
i d

g X g X X g X g X X X
nM n

g X g X X g X g X X X
nM









  
  

  
 



 

 


 (18) 

where the second term on the RHS of (18) is 
/2( log )pO n n

, thus ignorable5. From 

Table 1, we see that 2  leads to our newly-discovered Edgeworth expansion terms. It is 

crucial that we clarify that “ 2  lying in the 
( 1)/2n  

 order” does not automatically 
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guarantee that there will exist an 
( 1)/2( )O n  

 term in the Edgeworth expansion. Roughly 
speaking, this all depends on which terms will lead in the Taylor expansion 

1 2 1

2
( ) 2

2 2
( )1 ,

2
[ ] [ ( )]t t te e t    i i ii

 while others enter the remainder. See the 
proofs of Lemma S.1.3-(d) and Proposition S.1.1 in Supplementary Material for more 
details. 

In practice, we use the empirical version of (15) with estimated coefficients. Define 

3 3
1 1 [ :( 1)] { ,[( ):( 2 2)]} { ,[( 2 1):( 3 3)]}

1

1[ ( )]: ( ) ( ) ( )
n

i i r i i r i r i i r i r
i

g X h X h X h X
n

        


   (19) 

1 1 1 2 2 1 2 [( 1): ] [ :( 1)] [( 1):( 2 2)]
1

3 2
1

1[ ( ) ( ) ( , )] :  ( ) ( ) ( )

2 ·

n

i r i i i r i r i r
i

J

g X g X g X X h X h X h X
n

U 

       




 

  (20) 

1 1
2 2 2

[ : :( ( 1) )] [( ( 1) ):( ):( ( ) )]
1 1 1

1: ( ) ( ) ,
n n k

k i d i r d i k d d i r k d k
i d k

k
h X h X

kn



  
 

       
  

 
 

 


   (21) 

for [2 : ]k r . These estimators all share the same idea in our development of 
2
1  in (9), 

thus can be understood similarly. Let ,
( )

n
G u

  be the empirical version of ,
( )

n
G u

  with 
coefficients estimated by (9), (19), (20) and (21). We have 

Theorem 2.1. Set (1,2)  . If UJ is non-degenerate and ,n   satisfies Assumptions 1 
and 2, then we have 

, ,

/2 1/2
| ( ) ( )  log ,( )

J J n nTF u G u O n n
 





  ( (  (22) 

, ,

/2 1/2
| ( ) ( )  ( log ).

J J n nT pF u G u O n n
 





  ( (  (23) 

Remark 2.2. Theorem 2.1 highlights an important practical guidance that for non-
degenerate U-statistics, setting 2   will not further merit risk control accuracy, since 
the error bound at α = 2 already matches that for a complete U-statistic 
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(Helmers, 1991; Maesono, 1997). Also, increasing α beyond 2 only brings 
2( )O n  

improvement to Var( )JU  (Lee, 2019). Considering the computational cost grows 
exponentially in α, it is therefore not worthwhile to set 2   under non-degeneracy. 

Remark 2.3. Remark 3.1 in Chen and Kato (2019a) points out that as α decreases, ;1J  

becomes a poorer approximation to σJ; when α = 1, ;1| |J J   no longer vanishes as 
n , which Weber (1981); Chen and Kato (2019a) refer to as a “phase change”. 

While Weber (1981); Chen and Kato (2019a) exclusively studied Var( )JU  as 1 , our 
results reveal how risk control accuracy behaves in this regime, completing the missing 
piece in the big picture. We find that the Edgeworth expansion becomes lengthier, and 
the risk control accuracy also depreciates. If we do not incorporate an increasing 
number of bias-correction terms in the Edgeworth expansion, the risk control accuracy 
depreciates even faster: the /2n   term in Theorem 2.1 will be replaced by ( 1)n   , which 
is the Berry-Esseen bound of the normal approximation to TJ. 

2.3.1 Higher-order accurate statistical inference 

To test the hypotheses 

0 0 0: ; vs. : ,aH H      

we use the empirical p-value, denoted by p  and defined as follows 

, ,

(o ) (o ):  2min ( ),1 ( ) ,{ }
n n

bs bs
J J J JG T G T

 
    p  (24) 

where 
(o ) 1 2 1/2

0 , , ;1 1
1

: ( ) / | | { ( )}{ }
n

bs
J J n n

i

T U a i  



  
. 

Corollary 2.1. Under the conditions of Theorem 2.1, the test (24) enjoys a higher-order 

accurate type-I error control: 0

/2 1/2
, ( log ).( | )H n O n n
    p  
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Next, we invert the Edgeworth expansion to formulate the Cornish-Fisher confidence 
interval (CF-CI) with higher-order accurate confidence level control. Before presenting 
our method, for readers who are not familiar with this topic, we give a quick review of 
how the CF-CI was derived in the classical setting. Constructing a CI requires quantiles 
of the distribution of the pivot, but the Edgeworth expansion G is not guaranteed to be a 

valid CDF, as its value may exceed the range [0,1] , thus cannot be naively inverted. 
The Edgeworth expansions for an i.i.d. sample mean and a complete U-statistic both 

take the form 
1/2

0( ) ( ) ( ) ( )G u u n u u    , at 
1( )O n  accuracy. Given the significance 

level (0,1/ 2)  , we need to find a u that well approximates the lower-β quantile of the 

distribution approximated by G, that is, the u such that 
1( ) ( )G u O n   . This can be 

achieved by the Cornish-Fisher expansion (Hall, 1983, 2013), which takes the form 
1 1/2

0( ) : ( )u G z z n z  
     , where 

1: ( )z   . To determine 0 ( )z , we expand 
1/2

0( ( ))G z n z 
   and set all 

1/2n  terms to sum to zero. This gives 0 0( ) ( )u z   . 

Therefore, 
1 1/2

0( ) ( ) ( )G z z n z      . 

In contrast, the Cornish-Fisher expansion in our setting is much complicated by the 
( 1)n    terms in the Edgeworth expansion. Our C-F expansion reads: 

,

/2
1

01

1

( ) ( )
( ) : .

n

z z
G z z

Mn




 
 



 
  





 
     (25) 

Technically speaking, when plugging ,

1 ( )
n

u G z
 

  into (15), the term k  will release 

expansion terms at the orders of 
( /2)/( 1)( 1), , ,k kM M M  

  
       . Therefore, we formulate 

k ’s recursively. We describe step 1 ( 1 ): 

(i) Only keep 0  and 1  on the RHS of (15), temporarily ignoring other  ’s. Do the 

same for ,

1
n

G




 (only keep 0  and 1 ). 

(ii) Plug ,

1 ( )
n

u G z
 

  into (15). 

(iii) Set the sum of 
1M



 terms to zero. This would solve 1 . 
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To solve 2 , add 2  and 2  back into consideration in i and set the sum of 
2M


 terms 

to zero in iii. Repeat this procedure until all k ’s are solved. 

Now, we formalize the above method. Readers who do not wish to read involved math 

may jump to Theorem 2.2. To start, set 1 1( ) : ( ).z z     Then for each 
2, , ( / 2) / ( 1)k        in order, recursively compute ( )k z  by 

1
, , :1

1
1

1

1 1
, : , , :1 2 1 2 1

1 1 1
1 1

( 1)

2
1 { , , } 1

[ 0]
1

0, , 1 1 { , , } 1

( )
( )· ( ) ( ) ( )·

( )!

( )· ( ) ( )·

{ }

[{

j j

k k k k k j j

k

k j j

j j k
j j k

k

k j j

k k j j k
j j k

z
z z z z

z z z


   

  







 





   







    
  




       
  

    


   

 

  1

2 2

2 1
, , :1

1 2
1 2

( )

( )1

1 1
1 { , , } 1

( )
( )!

( )
( ) ( ) ( )· .

( )!

}

{ { }}]
j j

k k

k j j

j j k
j j k

z

z
z z z




  




 






  


  
      
    




    

  

 (26) 

To provide readers a more concrete view of the result, let us calculate the first three k ’
s. 

From (34) and Table 2, we see that all C-F expansion terms are functions of  ’s. Thus, 

replacing  ’s by  ’s, we obtain the empirical C-F expansion, denoted by ,

1 (·)
n

G




. 

Theorem 2.2. Under the conditions of Theorem 2.1, for any given (0,1)  , the 
population and empirical Cornish-Fisher expansions respectively satisfy 

, ,

1 /2 1/2
| ( )  log ,( ) ( )

J J n nTF G z O n n
 


   

    (27) 

, ,

1 1 /2 1/2( ) ( )  log .( )
n n

G u G u O n n
 

  
 ( (  (28) 

Corollary 2.2. Under the conditions of Theorem 2.1, the Cornish-Fisher confidence 

interval   defined by 
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,

,

1 1 2 1/2
1 /2 , , ;1 1

1

1 1 2 1/2
/2 , , ;1 1

1

: ( ( ) )·| | ( ) · ,

( ( ) )·| | ( ) ·

( { }

{ } )

n

n

n

J J n n
i

n

J J n n
i

U G z a i

U G z a i





   

  

 

 

 




 



  

 




 

enjoys a higher-order accurate control of the actual coverage probability around 1  : 
/2 1/2

, 1 ( log ).( | )n O n n
        

 

2.3.2 Two remarks 

First, as mentioned in Section 1, reducing the U-statistic inflates Var( )JU . However, we 

studentize UJ by ;1J , which only captures the leading term in Var( )JU , whose order 
does not vary with α. Readers naturally wonder where the variance inflation is reflected 
in our statistical inference procedure. Here, we use our CI formula as an example to 
clarify. 

Remark 2.4. The radius of our Cornish-Fisher CI is 
1/2 ( 1/2)( )O n n    9. Studentizing UJ 

with J  will also yield a CI radius of 
1 1/2 1/2 ( 1/2){ ( )} ( )O n n O n n        . In other words, 

using J  or ;1J  to studentize UJ lead to different pivots as intermediate steps, but 
eventually, their eventually produced CI lengths are on the same order. 

Our second remark regards test power. In fact, any test based on an asymptotically N(0, 
1) pivot (including our method) is asymptotically power-optimal (see how Theorem 3.5 
of Banerjee and Ma (2017) establishes asymptotic power-optimality). We reiterate that 
power-optimality and risk control accuracy are distinct goals. As pointed out in Shao 
et al. (2022), achieving either goal alone is not difficult, however, achieving both is 
usually rather challenging. To our best knowledge, our work is the first to achieve both 
goals for inference based on reduced U-statistics. 

3 Our method: application to specific designs 
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In this subsection, we apply our general results in Section 2 to analyzing several 
designs. First, we propose and analyze a novel variance-optimal deterministic reduction 
scheme in Section 3.1. Then in Section 3.2, we present the first provably higher-order 
accurate inference for a few randomized designs (Lee, 2019; Chen and Kato, 2019a). 

3.1 A novel variance-optimal deterministic design 

As discussed in Section 2.1, existing works typically focused on minimizing the variance 
for special configurations. In this section, we present a novel method to principally 

construct variance-minimizing ,n   for general ( , )r . To start, recall an important 

simplification that we proposed in Remark 2.2 that we only need to consider (1,2)  . 

The key to minimize Var( )JU  is that the design ,n   needs to satisfy the following 
properties. 

(D1) All , ;1( )na i ’s are equal; 

(D2) For all 2k   and 
k

k nI  , all , ; ( )n k ka I ’s are 0 or 1; or equivalently, any two 

member sets of ,n   may not overlap (intersect) by more than 1 index. 

Now we describe our design. We set ,n   to be the union of a few 
( )
,
d
n   sets, defined as 

( ) 1 1 2 1 1
, : (2 1) , (2 1) , , (2 1) : 1, , ,{( ) }d r
n i d i d i d i n

            (29) 

where we circulate indexes outside the range [1: ]n . For instance, when r = 3 as in 

Example 2.1, we have 
(1)
, {(1,2,4),(2,3,5), ,( ,1,3)}n n   . Clearly, any individual 

( )
,
d
n   

satisfies both (D1) and (D2). But when we union a few 
( )
,
d
n   sets, we need to watch out 

for the compliance with (D2). For example, (1, 2, 4) from 
(1)
,n   and (2, 4, 8) from 

(2)
,n   

overlap by 2 indexes, violating (D2). We meticulously select the set of d values to avoid 
such multiple overlap. Our choice is: 
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1
2

1
1

·
( )

, ,
·

: ,
b n

d
n n

d b n




 





  (30) 

where b1, b2 are chosen according to the following lemma. 

Lemma 3.1. Suppose n r . Set (1,2)   and 
1 1

1 2/ (2 1) / 2 ,1( )r rb b    . Our design 
,n   specified by (37) and (38) satisfies 

1
, ;1( )na i n

  and , ; ( ) {0,1},n k ka I   for all 
[1: ]i r  and , [2 : ]k

k nI k r  . Thus it satisfies (D1) and (D2) and minimizes Var( )JU . 

Lemma 3.1 ensures that this ,n   satisfies Assumption 2. Therefore, Theorem 2.1 and 

Corollaries 2.1 and 2.2 apply. This ,n   also greatly simplifies the Edgeworth formulas. 

Corollary 3.1. Under our design ,n   as described by (30) and Lemma 3.1, we have 

2 2
3

0 1 1 1 1 1 2 2 1 23 3
1 1

2 1 ( 1)( 1)( )  [ ( )] [ ( ) ( ) ( , )],
6 2
u r uu g X g X g X g X X
 
  

    (31) 

2
2 2

2 12 1 2 1
2 2 2 2

2 1 1 2 1 1

( ) ( )( )  · · ,
( ) (2 )! ( ) (2 )!

{ } { }

r

k
k h

r
k rH u H uu

b b r b b r


 

 
  

 
  

   
 


 (32) 

for 1, , /{2( 1)}      , where 
2

[1: ]: Var( ( ))h rh X   in (32). 

We can estimate 
2
h  by 

2 2 2
[ : :( ( 1) )]

1 1

1:  ( ) ,
Mn

h i d i r d
i d

h X
nM





  
 

   (33) 

where in contrast to (9), we should multiply two identical ( )
rI

h X  terms in term 1 in (41). 

Now the empirical Edgeworth expansion formula ,
( )

n
G u

  for hypothesis testing can be 
computed by combining (15), (19), (20) and (31)–(33). Then with (25) and (26), we can 
compute the Cornish-Fisher confidence interval. We skip repetitive formula 
presentation. 
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Interestingly, our method not only serves as an acceleration tool itself but also 
enhances the performance of other acceleration tools. One example is the divide-and-
conquer acceleration through parallel computing (Chen and Peng, 2021). They utilize K 
parallel computing servers that return summary statistics to a main server for 
aggregation. But in Chen and Peng (2021), each server still computes a complete U-
statistic, leaving significant space for further acceleration. Here, we present Algorithm 1 
that couples our method with the divide-and-conquer idea in Chen and Peng (2021). In 
fact, this algorithm can be viewed as a parallelized version of our own method. 

Algorithm 1 Our method + Chen-Peng Reduction 

Input: Data: 1, , nX X ; kernel function 1( , , )rh x x ; α; number of servers K; 
(b1, b2). 

Output: Coefficients of the empirical Edgeworth expansion 
ˆ ( )JG u . 

Part I: data splitting 

for 1:k K  do 

Pass: 1 1 1 11 2 [( 1) / 1 ( ) ):( / max{( 1) ,(2 1) }]
, , , , rk n K r k n kn K r n n
h n b b X              to server k. 

end for k 

Part II: local computation 

for 1:k K  do (On the kth local server, compute the following quantities.) 

 Compute and return: 

, ;

;
1:  ( )
/ r

r n k

J k I
I

U h X
n K






   (34) 
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with 

1
2

1
1

( )
, ; , ;: ,

b n
d

n k n k
d b n




 






 where 

( )
, ;
d
n k  is defined similarly to 

( )
,
d
n   in (29), 

except that i ranges in [{( 1) / 1}: ( / )]k n K kn K   instead of [1: ]n . 

 Compute and return: 

1

1 1 2

( )
;3 [( 1): ] [ :( 1)] [( 1):( 2 2)]

[(( 1) / 1):( / )]

( )

[( 1): ] [ :( 1)] [( 1):( 2 2)]
[(( 1) / 1):( / )]

1:  ( ) ( ) ( ),
/

1:  ( ) ( ) ( ).
/

d
g i r i i i r i r i r

i k n K kn K

k
g g g i r i i i r i r i r

i k n K kn K

h X h X h X
n K

h X h X h X
n K

       
  

       
  








 

 For each [0 : ]r , compute and return: 

1

; [ : :( ( 1) )] [( ( 1) ):( ):( ( ) )]
[(( 1) / 1):( / )] 1

1ˆ :  ( ) ( ).
/

n

k i d i r d i k d d i r k d
i k n K kn K d

h X h X
n K






      
   

    

end for k 

Part III: result aggregation 

On the central server, compute and output: 

1

1 1 2

;
1

2
0;

1

2 2
1 1;

1

2 2 2
;

1 1

( )3 3
;31 1

1

( ) 3 3
1 1 1 2 2 1 2 1

1

1:  ,

1 ˆˆ :  ,

1ˆ ˆ ˆ:  ,

1ˆ ˆˆ ˆ:  ,

1 ˆ[ ( )] :  ,

1 ˆˆ[ ( ) ( ) ( , )] :  2 · .

K

J J k
k
K

k
k
K

k
k

K

k
k

K d
g

k
K d

g g g J
k

U U
K

K

K

K

g X
K

g X g X g X X U
K

 

  

   



 








 





 
  





 

  


 

  







 





 

Finally, plug these estimated quantities into Corollary 3.1 for statistical inference. 
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We compare our method coupled with Chen and Peng (2021) to the vanilla Chen and 

Peng (2021) in Table 3. For clarity, we unified all split sizes, set K n   as in Chen and 
Peng (2021) and aligned the orders of the second leading terms in the variance 
formulas of both approaches, by setting 2    . Table 3 shows that our method 

speeds up Chen and Peng (2021) by a factor of 
1rn  

, without noticeable relative 
variance inflation and achieving a higher risk control accuracy. 

 

3.2 Analysis of randomized incomplete U-statistics 

Our general framework in Section 2 is a powerful tool for analyzing randomized designs. 
Here, we showcase its application to some popular designs (and close variants) in 
literature: 

(J1) Sample n


 size-r subsets from 
r
n  at random, with replacement. 

(J2) Similar to (J1), but sample without replacement12. 

(J3) For 1, ,i n  , sample 
1n  size-r subsets from 

r
n  containing i, with 

replacement. 

(J4) Similar to (J3), but for each i, sample without replacement13. 

These sampling schemes are very natural, and there are many more similar 
randomized designs in existing literature (Blom, 1976; Chen and Kato, 2019a). 
However, no available theory and methods yet exist to provide higher-order accurate 
risk control for inference under these schemes. Conventional analysis (Chen and 
Kato, 2019a) typically starts with re-expressing UJ as follows. 

,

1
,

(PartI)
(PartII)

:  ( ) | | ( ) : ( ) ,{ }
r

r n

J n n I n n J
I

U U h X U U V


  



         (35) 
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where part I is a rescaled complete U-statistic (see definition in Eq. (1)) and part II 

captures the randomness in ,n  . One can normal-approximate both parts and 
eventually UJ, via careful conditioning and convolution, see page 9–20 in Chen and 
Kato (2019b). While (35) is useful for analyzing degenerate U-statistics, it is not a sharp 
tool in the non-degenerate case, where the two parts, dependent on each other, both 
noticeably impact the Edgeworth formula. 

In sharp contrast, our analysis takes a very different route: the key is to apply our 
general framework in Section 2 to analyze UJ directly, without going through (35). As a 
premise, we first verify that these randomized designs indeed satisfies Assumption 2 
with high probability. (Assumption 1 is easily verified.) 

Lemma 3.2. Let ,n   be constructed by one of (J1)–(J4). For any given constant 0 0C  , 

there exist constants 1 2 2 1, : 0C C C C   depending on C0 and the design ,n  , such that 
Assumption 2 with these C1 and C2 holds with probability at least 01 Cn . 

All four designs (J1)–(J4) have clean analytical Edgeworth formulas, which can be 

handily found by taking another layer of expectation [·]J  over the randomness of ,n  . 

Corollary 3.2. Under the setting (1,2)  , we have the following results. 

 For randomized designs (J1) and (J2), we have 

2 2
3

0 1 1 1 1 1 2 2 1 23 3
1 1

2 1 ( 1)( 1)[ ( )] :  [ ( )] [ ( ) ( ) ( , )],
6 2J
u r uu g X g X g X g X X
 
  

    (36) 

2

22 1
2 2

1

( )[ ( )] :  , for 1.
(2 )!

{ }

r

k
k

J

r
kH uu
r






 
  

   


 (37) 

 For randomized designs (J3) and (J4), we have 
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2
3

0 1 13
1

3 2 2 3 2

1 1 1 2 2 1 23 3
1

2 1[ ( )] : [ ( )]
6

( 1) ( 2 2) 2 2
[ ( ) ( ) ( , )],

2
{ }

J
uu g X

r r r u r r
g X g X g X X

r






 

     


 (38) 

[ ( )] is the same as the [ ( )] under (J1) ( 2).J Ju u and J   (39) 

Then set 

/2
1

0

1

[ ( )] [ ( )]( ) :  ( ) ( ) ,{ }J J
J

u uG u u u
n M








 
  



 
     (40) 

where 

2 2
2

2

21 1
2 2 2

2

2

2

· ( 1)1 , under(J1)and(J2),

:  · 1 1/ ( )
· ( 1)1 , under(J3)and(J4).

2

{ }/

r

k
k

r

k
k

n r r
r
k

M n rn
n r r

r
k



 
 











 




 





  


 
  

 
  

 







 (41) 

We have 

/2( ) ( )  ( log ).
J JT JF u G u O n n




  ( (  (42) 

We can naturally define the empirical version ( )JG u  with coefficient estimated by (9), 
(19), (20) and (33) and use it for downstream analysis, accompanied by theoretical 
guarantees exactly similar to Corollaries 2.1 and 2.2. We skip the repetitive detailed 
descriptions. 

We conclude this section by instantiating the general formula for the Cornish-Fisher 

confidence interval, using the formula under (J1). Define 

2

22
,( 1) 2 2

1

:

r

k
k

h

r
k

r









 
  




. We have 
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4 Simulations 

We assess the accuracy of the CDF approximation for noiseless non-degenerate U-

statistics. The goal is to accurately approximate J JTF  , where we set a small variance 

with 0.008C   for δJ. We generate synthetic data with 
i.i.d.

1, , ~nX X  PDF: 
( 1) / 2, [ 1,1]x x   , and use the kernel function 1 2 3 1 2 3( , , ) : sin( )h x x x x x x   . We 
experiment with our proposed deterministic design from Section 3.1 and the random 
design (J1) from Section 3.2. We compare our method to the following benchmarks: 1. 
N(0, 1); 2. resample bootstrap (bootstrap iteration B = 200 (Levin and Levina, 2019)); 

and 3. subsample bootstrap (subsample size: 
1/2n ). To emulate the true sampling 

distribution of J JT  , we use a Monte-Carlo approximation with 
6

MC : 10n   samples14. 
The performance measure is: 

[ 2,2]; /10

ˆsup ( ) ( ) .| |
J J J JT T

u u
F u F u  

  
  (43) 

We vary {10,20,40,80}n  and set 1.5   (results for 1.7   are provided in 

Supplementary Material). For each ( , )n   setting, we repeated the experiment 30 times 
and recorded the mean and standard deviation of the distribution approximation errors 
(43). 

Figure 2 shows the true and estimated CDF curves for J JT  . Our method’s estimated 
CDF almost overlaps the true curve; whereas all other methods exhibit much more 
noticeable estimation errors. It also shows the log-transformed CDF approximation 

errors of all methods under different ( , )n   configurations. Our method shows clear 
advantage in accuracy across all settings, and we are the only method that exhibits an 

empirical error rate faster than 
1/2n . All these results well-align with our theory’s 

prediction and demonstrate the higher-order accuracy of our method. 

Next, we compare our Cornish-Fisher confidence interval to that produced by the 
benchmark methods in Simulation 1, plus the C-F CI constructed based on the 
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complete U-statistic. Performance measurements include: coverage probability, CI 

length and computation time. We fix the confidence level at 1 90%   and focus on 
the two-sided CI for simplicity. The simulation set up is mostly inherited from Simulation 
1, except that now we no longer need a large nMC and can test for larger n’s: 

{25,50,100,200,400}n . In each experiment, which will produces one empirical CI 
coverage probability, we generate 3000 CI’s for our method, N(0, 1) and complete U-
statistics; and 500 CI’s for resampling and subsampling bootstraps since they are 
slower. Then we repeat the experiment 100 times for all methods except the complete 
U-statistic method (repeated 20 times) to evaluate the variance of the coverage 
probability of each method. 

Figure 3 shows the result for deterministic and random designs. Our method shows 
clear advantage in accuracy of controlling the empirical coverage probability around the 
nominal level level of 90%, significantly improving over normal approximation, especially 
for small n’s. As n grows large, our method’s speed advantage over bootstrap methods 
becomes clearer. Compared to inference based on complete U-statistic, our method 
effectively reduces computational complexity, reflected by its much flatter log-time 
curve, without noticeable loss in risk control accuracy. All methods except subsampling 
bootstrap produce similar CI lengths. This echoes our earlier remarks that the CI length 
reflects a different aspect of U-statistic reduction (inference power, Section 2.3.2); and 
different approaches may perform similarly in this aspect, if they are all asymptotically 
normal approximations. 

5 Data examples 

5.1 Data example 1: Stock market data 

The S&P 500 historical data ((Datahub), (Datahub)) records the daily prices of 412 
stocks from 11 sectors. Following Chakraborty and Zhang (2021), we computed the 
monthly logarithmic return rates of each stock from 1-Mar-2000 to 29-Aug-2022, 
yielding n = 138 observations. Our goal is to assess the pairwise dependency between 
sectors via independence tests. Denote the log-return sequence of stock i from sector X 
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by ,1 ,( ,..., );X X X
i i i nS S S  similarly define 

Y
tS . We measure dependency between sectors X 

and Y by dCov, rewritten as a complete U-statistic (Lemma 1 of Yao et al. (2018)): 

1
2dCov ( , ) :  ( , , , ),

4 i j q r
i j q r

n
X Y h Z Z Z Z



  

 
  

   (44) 

where 

, , ,

, , ,

( , , , ) : ( ) 24/
i j q r

i j q r st uv st st st su st tv
s t u v

h Z Z Z Z a b a b a b a b   
 15, 2|| ||X X

ij i ja S S  , and 

2|| ||Y Y
ij i jb S S  . Set 1.5  . We test 

2
0 : [dCov ( , )] 0H X Y   between each sector pair, 

versus a two-sided alternative. As a reference, on the diagonal, we randomly split the 
stocks in each sector into two sets and tested their dependency. Figure 4 shows that 
our method well-aligns with the test decisions that would have been made using the 
complete U-statistic, but our method computes much faster (see Table 5). On the 
diagonal, the sectors that exhibit strongest inner dependency include CD, E, F, I and 
IT. This is understandable since they tend to be more sensitive to global economic 
fluctuations. In contrast, members of CmS, CnS and U sectors focus more on local 
markets, so their within-sector price fluctuations are less synchronized. This 
understanding also applies to cross-sector relations, such as the tight connection 
between the pairs (CD, I) and (I, IT), whereas U is comparatively less dependent on 
other sectors except E. 

5.2 Data example 2: UCR time series data (Earthquakes, Starlight) 

In the second example, we analyze two UCR time series data sets (Dau et al., 2018): 
Earthquakes and Starlight. The earthquakes data consist of n = 461 earthquake curves, 

each of length T = 512. These curves are classified into K = 2 clusters: 0 368n   non-

major and 1 93n   major earthquakes. Following the approach of Chakraborty and 
Zhang (2021) and Zhu and Shao (2021), we treat each earthquake curve as a point in a 
Hilbert space and aim at comparing the population distributions of the curves of different 
types using Maximum Mean Discrepancy (MMD). We measure the distance between 
two earthquake curves by comparing their SRVF transforms (Srivastava et al., 2011), 
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which synchronize their phases in the presence of amplitude discrepancy. However, 
computing the SRVF for each curve pair is slow (Strait et al., 2019). To accelerate and 

also to tame the violent fluctuation in the raw data, we pre-processed each curve 
512

1{ }t tx   
by a moving average (window size ) with down-sampling: 

[{ ( 1)/2}:{ ( 1)/2}] {4 1, [0:127]}: Mean{ ( )}t t t t k kx x        . Due to page limit, we only present results for 
7 , leaving results for more window sizes to Supplementary Material. 

We applied our method with 1.5   to estimate the average pairwise distance (using 
SRVF) within each cluster to assess its internal cohesion. For the between-cluster 
comparison, we sub-sampled the larger group (non-major earthquakes) and rewrote the 
MMD a one-sample U-statistic following Equation (6) in Schrab et al. (2021) with the 

RBF kernel 
2( , ) : exp( SRVF( , ) / 5000)k x y x y  . The we applied our method with 1.5   

to reduce this MMD U-statistic. Figure 5 shows the results, in which, we used the 
complete two-sample MMD U-statistic value in lieu of the unknown population mean 
discrepancy. Our Cornish-Fisher confidence intervals with randomized design (J1) 
demonstrate good coverage in both inference tasks for within- and between-cluster 
distances, respectively. 

Next, we apply this analysis method to the much larger Starlight data set that contains K 

= 3 types of stars, with cluster sizes 1 21329, 2580n n   and 3 5327n  . Here, each 
curve is a length 1024 sequence, which we down-sampled to length 128 without 
smoothing, because the starlight curves are much smoother than that in the earthquake 
data. Even with the down-sampling, evaluating a complete U-statistic for comparing any 
two star types remains computationally infeasible, due to the large sample sizes. Our 
method with 1.5   allows users to implement a reduced version of Equation (6) in 

Schrab et al. (2021) with the RBF kernel 
2( , ) : exp( SRVF( , ) /100)k x y x y  . Due to page 

limit, in Figure 5, we only present the result for the comparison between type 1 and type 
2 stars, relegating the rest to Supplemental Material. We observed that the MMD CI’s 
produced by the starlight data are much narrower than the counterpart from the 
earthquakes data, possibly due to the much larger sample size. Also, for the between-
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cluster comparison, some MMD CI’s of the earthquakes data contain 0 (will not reject 
H0), while all CI’s for the starlight data clearly support a two-sided alternative. This is 
echoed by the much smaller within-cluster distance and the clearer between-cluster 
differences in the starlight data. 
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6 Discussion 

Our study throughout this paper exclusively focuses on data-oblivious reduction 
schemes. Recently, Kong and Zheng (2021) proposed a data-aware reduction scheme, 

based on their key observation that [1: ] [1: ]r rX Y  implies [1: ] [1: ]( ) ( )r rh X h Y , thus by 
clustering Xi’s, one can effectively reduce the U-statistic’s computation. While their 
method shows very attractive performance, finite-sample higher-order analysis for their 
method poses an interesting open challenge. There is also a computational price for 
being data-aware. For example, in the setting considered by Moon and Chen (2022), 

the clustering of all Xi’s in some Banach space requires computing at least 
2( )O n  many 

potentially expensive (like in our second data example) pairwise distances. 
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Notes 
1 Even-Zohar and Leng (2021) exploits the coordinate-wise order relations, but its trick 
cannot apply to non-vector inputs. 

2 Test consistency: a test is called consistent if its type-I and type-II errors both 
converge to 0. 

3 Despite this paper exclusively studies conventional, noiseless U-statistics, in a closely 
related work, we will make use of the analysis techniques in this paper to analyze 
network U-statistics. 

4 This means that the same Edgeworth expansion formula accurately approximates both 

J JTF   without Cramér’s condition and JT
F  assuming this condition. 

5 Notice that although this term has similar numerator as 2 , its denominator is much 
larger. 

6 This is the maximum k  such that k  appears in the C-F expansion. It equals 
( /1) / ( 1)     . 

7 Since all functions are evaluated at z , we omit all “ ( )z ” notions, e.g., we only write “

1 ” for “ 1( )z ”. 

8The formula for 2  uses the 1  computed in the “ 1k  ” case. The same goes for the 

formula for 3 . 

9 To see this, notice that 0 0( ) ( )u u    , while ( ) ( )u u     for all 1 . Also notice 

that ,

1 ( 1)
1 /2( ( ) ) 1

n JG z n



   

    and 
1 2 1/2 1/2

, , ;1
1

| | ( ){ }
n

n n
i

a i n 
 




. 
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10 This further requires ( ) (0,1/ 4)K O n for    , see Theorem 3.3-(i) in Chen and 
Peng (2021). 

11 Chen and Peng (2021) standardizes JU , therefore, their inference is not higher-order 
accurate, that is unless it further employs a “bias-correction” that consults and 
eventually reproduces our method. See Hall (2013), Section 3.10.2. 

12 In theory, sampling , ,:| | ( )n n O n    without replacement could be done within 
( )O n  budget, in terms of both time and memory, via a lexicographic indexing of 

r
n . 

13 But subsets from different i-strata can still coincide 

14 We need to set MCn  to be much larger than 
5 2 4(1/ ) 2.2 10e   , in view of DKW 

inequality. 

15 The summation notation “

, , ,

, , ,

i j q r

s t u v


” means summing ( , , , )s t u v  over all permutations of 
( , , , )i j q r . 

16 https://math.stackexchange.com/questions/4387849/ 
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Fig. 1 UCR data sets: row 1: Earthquakes, where blue curves show raw data and red 
curves show a moving average smoothing of window size 7 ; row 2: Starlight. 

 

Fig. 2 CDF approximation accuracy: plots 1–2: true CDF ( )
J JTF u , n = 80; plots 3–

4: log-transformed CDF approximation error. Acce
pte
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Fig. 3 CI-related performance measures: column 1: CI coverage probability, dashed 
blue line 90% ; column 2: CI length; column 3: log-transformed time cost (log-second). 
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Fig. 4 Pairwise dependency test: heatmaps of test statistics. High values (red): high 
detected dependency. Each cell reports mean(std.) of test statistics over 30 repeated 
experiments, except the off-diagonal of complete U-statistic method (no repetition 
needed). 

  

Acce
pte

d M
an

us
cri

pt



 

 

Fig. 5 Results of data example 2. Plots 1–2: Earthquakes; plots 3–4: Starlight. Plots 1 
& 3: 90% CI of based on reduced between-cluster MMD; column 4: 90% CI of within-
cluster average pairwise distance (using SRVF (Srivastava et al., 2011)). Dashed line: 
complete U-statistic (evaluations of complete U-statistics timed out (> 48 hours) in most 
settings for Starlight). 
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Table 1 Properties of main terms in TJ’s decomposition (5) 

Term in TJ’s decomp. Asymp. order  Corresp. Edgeworth terms  

1   1    and 0   

2   
( 1)/2n  

 
0  and  ’s, 1  

1 3·   
1/2n  0   

Table 2 Examples of C-F expansion formulas 

Range of α k6 Formula for computing k 7 

[4 / 3,2]   1  1 1     

[6 / 5,4 / 3)   2  
2

2 1 1 2 1 1 1( ) ( / 2 ) /            8  

[8 / 7,6 / 5)   3   

2
3 3 2 1 1 1 1 2

2 3 2
1 2 1 2 1 1 2 1 1 1 1

( / 2 )
( ) / ( / 6 / 2) /   

             
                    
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Table 3 Our method enhances Chen and Peng (2021)’s method. Set (1,2)  . 
Recall 2r  . 

 

Vanilla Chen and 
Peng (2021)  

Our method + Chen and 
Peng (2021)  

Time cost on each server  ( 1)( 1) 1( )rO n   

  
( 2)( 1) 1( )O n    

 
Variance of aggregated U-
stat. 2 2

1 / ( )r n O n     
2 2

1 / ( )r n O n    

CDF approximation error  
1/2( )o n 10 /2( )O n 

 

Risk control accuracy  (1)po 11 /2 1/2( log )pO n n

 

Table 4 First three k ’s under (J1). 

Range of   k  ( )k u   

[4 / 3,2]   1  
2
,( 1)

1
2 hu 

  

[6 / 5,4 / 3)   2  
3 2 4

,( 1) ,( 1)
1 ( 3 ) 3
24

{ }h hu u u   
  

[8 / 7,6 / 5)   3  

6 4 2 2
,( 1)2

2 2 4 2 6
,( 1) ,( 1)

( 11 25 15)
720( 1)

45( 1) (15 45)

{

}
h

h h

u u u u
u

u u



 



 

  


     
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Table 5 Time cost: our method ( 1.5  ) vs. complete U-statistic 

 

Stock Market (r 
= 4) Earthquakes (r = 2) 

Time cost (Unit = 
sec.) All  Major  

Non-
major Maj. vs. Non-Maj. 

Our method 3.47  303.94  2471.70  1223.50 

Complete U 8099.73  708.99  11199.92  17912.91 

 
Starlight (r = 2) 

Time cost (Unit = 
sec.) Type 1  Type 2  Type 3  1 vs. 2  1 vs. 3  2 vs. 3  

Our method 4512.95  12773.76 41282.26  19140.13  19149.33  50413.75  

Complete U 48227.72 158233.7 
(Time 
out) 

(Time 
out) 

(Time 
out) 

(Time 
out) 
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