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Identifying offshore wind energy sites involves analyzing multiple variables, such as wind speed, proximity to
the coastline, and sociocultural factors. This complex decision-making process often involves many
stakeholders, resulting in conflicting data and goals. Decision analysis that promotes collaboration,
transparency, understanding, and sustainability is key. This study presents a unique model of human-—
environment interaction that reconciles different perspectives and visualizes the balance between fisheries
and wind power. Using three multicriteria decision models (weighted aggregated sum product assessment
[WASPAS], technique for order of preference by similarity to ideal solution [TOPSIS], and analytical
hierarchy process [AHP]), we analyze the decision mix for wind farm selection and assess the impacts on
fisheries using historical data. Our approach was applied to an upwelling system in California, generating ten
tailored decision scenarios for different stakeholder groups. The results showed that adaptation scores for
specific call areas in northern California decreased when the weight of fishery factors increased, and there
was a tendency for high-scoring areas to shift southward as fishery parameters increased. The results of the
sensitivity analysis showed that the first-order sensitivity scores of WASPAS were better correlated with the
weights compared to TOPSIS, whereas the second-order sensitivity scores were generally lower, indicating a
reduced interdependence of our model. Key Words: human—environment interactions, multicriteria decision-
making, offshore wind energy, site selection, sustainability.

ffshore wind energy represents one of the

largest potential renewable energy sources in

the United States. Developing an offshore
wind generating capacity is one of the essential steps
for reducing global warming (Mekonnen and
Gorsevski 2015). The Biden—Harris administration
announced plans in February 2022 to generate 30
gigawatts of energy from offshore wind by 2030
nationally (The White House 2022). At the same
time, California has set aggressive decarbonization
goals, including ambitious renewable portfolio stand-
ards and a target of 100 percent carbon-free power
generation by 2045. In 2021, California Governor
Gavin Newsom signed a bill mandating an offshore
wind-energy development plan in federal waters
from the California Energy Commission (Garner and

Maroon 2022). The
required to establish the maximum feasible capacity
for offshore floating wind turbines by 1 June 2022.
The California grid operator is currently struggling
with “duck curve” challenges, which means the
demand peaks in the morning and evening while the

Energy Commission was

supply peaks at noon, requiring nonsolar power gen-
eration (or electricity storage), such as offshore
wind, to meet evening peak demand for electricity.
One significant problem in offshore development
is identifying appropriate sites for wind energy farms
(Mekonnen and Gorsevski 2015). Determining wind
farm sites is a challenging, complex, and protracted
process that requires the evaluation of many differ-
ent criteria, such as wind and geophysical conditions
and environmental impacts (Tegou, Polatidis, and
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Haralambopoulos 2010; Grassi, Chokani, and Abhari
2012). Research in the eastern United States has
shown the importance of stakeholder engagement at
all stages of offshore wind farm development in the
interest of increasing procedural fairness and a
“chain of trust” between stakeholders and developers
(Dwyer and Bidwell 2019; Ferguson et al. 2021;
Gonyo et al. 2021). Offshore wind farms could have
significant negative impacts on ocean ecosystems
(Wahlberg and Westerberg 2005; Thomsen et al.
2006; Mooney, Andersson, and Stanley 2020). For
example, Mooney, Andersson, and Stanley (2020)
discussed the impacts of the entire lifetime of wind
turbines on marine species’ habitats by applying
physical modeling. Haggett et al. (2020) pointed out
that the opinions of fishing industry representatives
should be strongly considered when determining the
sites for offshore wind power. Many researchers,
however, discussed the issues related to social and
political perspectives. They claimed that a holistic
information platform is needed to visualize all the
variables in making such complex decisions when
building an offshore wind farm. Numerous studies
have indicated that establishing offshore wind energy
infrastructures could interact with fisheries in com-
plex ways. Some interactions could be negative, but
others can potentially contribute to the ecosystem,
such as providing new habitats for marine life. Still,
a pressing need exists for improved dialogue and
cooperation between the fisheries and energy sectors,
largely due to the current lack of information plat-
forms that can foster effective collaborative decision-
making processes.

Multicriteria decision-making (MCDM) has been
applied to renewable energy site selection problems,
which evaluates candidates from multiple locations
based on multiple criteria (Shao et al. 2020). The
most common criteria include (1) natural or marine
reserve areas, (2) military areas, (3) distance from
shore, and (4) wind speed (Mekonnen and
Gorsevski 2015; Fetanat and Khorasaninejad 2015;
Y. Wu et al. 2016; Chaouachi, Felix Covrig, and
Ardelean 2017; Mahdy and Bahaj 2018; B. Wu
et al. 2018; X.-Y. Zhang et al. 2018; Russell,
Bingaman, and Garcia 2021). The third component
can be explained from a construction cost perspec-
tive: The closer to the coastline, the higher the
transmission line efficiency, and the lower the trans-
portation costs during construction and maintenance
costs during operational phases. From the aspect of

high transmission efficiency, wind farms are primar-
ily located close to the coastline. At the same time,
these areas are commonly associated with the dense
distribution of military bases and nature reserves.
Therefore, the conflict decision objectives associated
with offshore wind energy development come from
several perspectives, such as maintaining military
services, sustaining fishery and marine ecosystems,
and maximizing the offshore wind energy construc-
tion portfolio.

In the MCDM analysis, developing a weighting
method plays an important role. Several weighting
methods have been commonly used in MCDM,
including the analytical hierarchy process (AHP;
Chaouachi, Felix Covrig, and Ardelean 2017,
Mahdy and Bahaj 2018; B. Wu et al. 2018),
weighted aggregated sum product assessment
(WASPAS; Zavadskas et al. 2012; Mekonnen and
Gorsevski  2015; Chaouachi, Felix Covrig, and
Ardelean 2017), and technique for order of prefer-
ence by similarity to ideal solution (TOPSIS; Z.
Zhang et al. 2018). Many previous studies in off-
shore wind energy site selection applied the fuzzy
MCDM algorithms, such as the fuzzy AHP used in
Sanchez-Lozano, Garcia-Cascales, and Lamata
(2016) to tackle a common problem: how to give a
decision-making solution that is acceptable to all
parties when the opinions and priorities conflict
when selecting the best location to implant an
onshore wind farm.

Research gaps still exist, however, regarding the
ability to use MCDM to handle collaborative (or
participatory) decision-making processes in the off-
shore wind energy application area. First, it is chal-
lenging to identify and quantify criteria and
weightings, which depend on how much the deci-
sion-makers know about the area and their preferen-
ces. Second, most spatial decision support systems
are focused on areas with only limited decision vari-
ables and rules, which cannot be used where there
are conflicting decision objectives. For instance,
industry energy managers might consider the wind
speed variable as the most important in deciding the
location of a wind farm, and environmental agency
managers might think likewise regarding the distance
to the natural reserve areas. Finally, there exist bar-
riers to knowledge-sharing and communication
among different decision-makers. Decision-making in
offshore energy site selection problems requires the
cooperation of a group of stakeholders, including
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domain experts, engineers, system developers, fishery
and energy industry managers, and application users.
Therefore, more advanced methods to collect, inte-
grate, interpret, and visualize decision variables from
different parties of interest are critical to both energy
management and sustainable fishery.

In this research article, we aim to investigate the
following research questions:

1. Are there overlaps or conflicts between expected
fishing efforts, bycatch, protected species, and human
activities such as offshore energy development, and
can management decisions mitigate them?

2. Can we find spatial solutions for balancing the trade-
offs between Energy Commission goals and the
sustainability of fisheries and conservation of
ecosystems?

In this article, we developed a participatory decision
support information system using MCDM models
and advanced visualization techniques to illustrate
trade-offs between fishery management and offshore
wind energy development. This decision information
system enables different decision-makers, such as
fishing and offshore energy industry managers, poli-
cymakers, researchers, and environmental protection
agency officers, to make risk-informed decisions
when developing a new offshore wind farm.

Background Theory

This section introduces the background and
theories used to implement the decision support
information system. In this application, we help
decision-makers to find suitable locations for build-
ing offshore wind energy infrastructure by consider-
ing the impacts on fisheries and marine ecosystems.
MCDM theory combines all the decision criteria to
form an overall evaluation score for offshore wind
location selection problems.

Multicriteria Decision Analysis

Multicriteria decision analysis (MCDA) is a
mathematical decision-making framework that com-
bines many decision criteria to meet one or several
objectives that support decision-making (Shao et al.
2020). In the weighted sum method (WSM), given
a set of m alternatives, denoted as Al, A2, A3,

, Am, and a set of n decision criteria, denoted as
Cl, C2, C3, , Cn, it is assumed that a decision-

maker has to determine the weight value wj; (for

i=1,2,3, ,mand j=1, 2, 3, , n) of each
alternative in terms of each criterion (Fishburn
1967). For each row of data set X with xj, values are
defined, along with the criteria weight matrix W
(the weight of the relative performance of the deci-
sion criteria). Usually, these weights are normalized
to add up to one, and the alternatives are ranked. If
there are m alternatives and n criteria, the score cal-
culated using WSM for the ith decision alternative
can be represented as Equation 1 (Fishburn 1967;
Thakkar 2021), where w; is the weight for the jth
criteria in the ith decision alternative; x; is the data
value of the jth column (attribute); and QIWSM is the
WSM score for the ith decision alternative.

@M= Yoy )

The weighted product method (WPM) is similar
to the WSM. The main difference is that instead of
addition in the model, there is multiplication.
Each alternative is compared with the others by
multiplying a number of ratios, one for each crite-
rion. Each ratio is raised to the power equivalent of
the relative weight of the corresponding criterion
(Triantaphyllou and Mann 1989). In WPM, under
the same problem conditions, the score for the ith
decision alternative can be expressed as Equation 2,
where w; represents the weight for the jth criteria in
the ith decision alternative; x; represents the data
value of the jth column (attribute); and QIWP M repre-

sents the WPM score for the ith decision alternative
(Thakkar 2021).

Q™ =TI, 5 @

The WSM and WPM are widely used in MCDM
processes, but each has limitations. WSM'’s main dis-
advantage is its assumption of additive criteria, over-
looking potential interactions, whereas WPM
assumes criteria are multiplicative, which might
neglect interactions and distort results with zero val-
ues. The WASPAS method seeks to balance these
models’ strengths and weaknesses by providing a
weighted average of both approaches, offering more
comprehensive and flexible decision-making out-
comes (Zavadskas et al. 2012). WASPAS is pre-
ferred to the variety of available methods because of
its ability to increase the accuracy of ranking.
WASPAS leads to the highest accuracy of estima-
tion for optimization of the weighted aggregate func-
tion. It combines two well-known methods—the

WSM and the WPM—to provide a method with
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accuracy greater than the original two methods, with
an optimization of the aggregation being conducted
(Thakkar 2021). WASPAS uses a A value to coordi-
nate the output share of the two models, which gen-
erally defaults to 0.5 out of 1; that is, equal
reception of the outputs from WSM and WPM. The
weighted score value calculated using the WASPAS
method can be expressed in Equation 3, where w;
represents the weight for the jth criteria in the ith
decision alternative; x; represents the data value of
the jth column (attribute); and QIWASPAS represents
the WASPAS score for the ith decision alternative
(Thakkar 2021).

QWVASPAS — ) ijl wj * x5 + (1=2) szl X
(3)

In this project, the decision alternatives refer to a
set of combinations of weights corresponding to cri-
teria. These criteria represent four environmental
factors, including wind speed at 90 m, along with
statistics on fishing landings for 2019 to 2021, for a
total of seven decision criteria. These are used to
gauge the feasibility of constructing a wind turbine
at specific locations. The WASPAS method serves
as the primary algorithm for assessing the suitability
of diverse locations within the study area. A key
innovation of this research involves the integration
of two additional algorithms—AHP and TOPSIS—
alongside the WASPAS method in creating our
Web-based, participatory decision support system.
This allows users to compute adaptive scores for
weight combinations aligning with their preferences.
We explore these two algorithms and their respec-
tive roles within our modeling framework in the sub-
sequent sections.

Analytic Hierarchy Process

In addition to the WASPAS model (described in
the last section), the AHP was used as another
weighting method for constructing the MCDM
model. AHP has been applied in different fields,
such as planning, selecting the best alternative, and
resource allocations (Vaidya and Kumar 2006;
Chaouachi, Felix Covrig, and Ardelean 2017,
Mahdy and Bahaj 2018; Wu et al. 2018). AHP
involves breaking down a decision problem into a
hierarchy of criteria and alternatives. The hierarchy
consists of a goal at the top, followed by a set of cri-
teria that contribute to the achievement of the goal.

These criteria are further divided into subcriteria,
forming a hierarchical structure. Once the hierarchy
is established, pairwise comparisons are made
between the elements of each level (Saaty 1977). In
the AHP analysis, users construct a pairwise weight-
ing matrix, wherein each element signifies the rela-
tive importance of one criterion compared to
another during the decision-making process. The
weighting vector is the feature vector of the matrix
corresponding with the maximum nonzero feature
value.

1. Constructing pairwise weighting matrix. The AHP
pairwise weights matrix is shown in Table 1.
2. Feature vector

Aw = ApaxW (4)
3. Normalization
w
WAHP = T (5)
|w]|

4. Consistency check.

The ideal pairwise weighting matrix is supposed to
be a consensus matrix, but the constraints are strict
for practical application. Thus, to ensure the error is
within the acceptable range, the consensus index
(CI) and random consensus index (RI) were intro-
duced. CI measures the consistency of the pairwise
comparisons. It is calculated as (A — n)/(n — 1),
where A is the maximum eigenvalue of the pairwise
comparison matrix, and n is the number of criteria,
as shown in Equation 6, where 1 is the feature value
and n is the order number.

(6)

RI is used to measure the consistency of judgment
matrices; it is derived from many randomly filled
matrices that are the same size as the judgment

Table 1. Analytical hierarchy process (AHP) weight

matrix
Al A2 A3 A4 A5 A6
Al 1 wl /w2 wl /w3 wl /w4 wl /w5 wl /w6
A2 1 w2/w3 w2/w4 w2/w5 w2/wb
A3 1 w3/w4 w3/w5 w3/wb
A4 1 wd/w5 wéfw5
A5 1 w5 /w6
A6 1
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Table 2. Analytical hierarchy process (AHP) random
consensus index (RI) statistics

N 1 2 3 4 5 6 7 8 9

RI 0 O 052 089 112 124 136 141 149

matrix we are examining. The values of RI are fixed
and vary according to the size of the matrix, as
shown in Table 2 (Saaty 1988).

Consensus ratio (CR) serves as a measure of how
consistent the judgments have been relative to large
samples of purely random judgments as shown in
Equation 7. Provided CR falls within an acceptable
range (lower than 0.1), the weight matrix entered by
the user can be incorporated as input into the deci-
sion model. Subsequently, the output suitability
scores will be updated and visualized.

CI
RI
The AHP method, with its matrix of pairwise
compared weights, proves more effective as a direct,
user-oriented approach to obtaining weights than
using an array of absolute weights. In this project,
AHP was used as another method for setting a
weight for evaluation criteria for this application.

CR = (7)

The Technique for Order of Preference by
Similarity to Ideal Solution

TOPSIS is an MCDM method used to evaluate
and rank alternatives based on their proximity to an
ideal solution (Uzun et al. 2021). The procedure of
TOPSIS application in this study includes the fol-
lowing steps.

1. Construct the normalized matrix. Let matrix X
represent the initial data sample matrix. The matrix Z
represents the normalized data matrix, as shown in
Equation 8.

X = |:X11 ot Ximo- Te D Xpl t xnm}
o m
v (8)
2 n 2
21 %
Z= |:le Tt ™m - T vl an}

2. Identify positive and negative ideal solutions (PIS and
NIS). Among all the samples, pick the best and the
worst scenario for each feature to form the best and
the worst case vectors. Here, V* (the output vector of
PIS) and V= (the output vector of NIS) are identified

in Equation 9, where v; = wgz; i=1,..,
m; j=1,..,n; 3", = 1. The PIS maximizes
the benefit criteria and minimizes the cost criteria,
whereas the NIS maximizes the cost criteria and
minimizes the benefit criteria.

VE = (of, v], 5, of, o vf) = [[maxy]
Vo o= (o], v3, v3, v, ., vy) = [[minw]]
9)

3. Calculate the Euclidean distance to the PIS and NIS
in Equation 10.

Df = Z,m:1 (‘V,‘+ - 4)ij)z
Df = /30 (v — vy

VEL (4 — o)’
VIR o

— o)’
(10)

4. Evaluate the closeness of samples and best and worst
cases. The closeness of each sample and the best and
worst cases is calculated in Equation 11:

D~

’ 0 <G <1 (11)

Ci= ="+,
D} + Dr

The alternatives are ranked based on their relative
closeness. The alternative with the highest relative
closeness value is considered the most favorable
choice. The greater C; is, the closer each sample is
to the best case. The TOPSIS method facilitates a
good understanding of how closely a model’s charac-
teristics align with an ideal solution, as determined
by a specific set of weights and the encompassing
data set. Its robustness, validity, and inherent intui-
tiveness make it a favored instrument for post hoc
evaluation and validation, especially following the
selection of weights. Within the scope of our current
project, TOPSIS is leveraged twofold: first, as an
evaluative measure assessing the efficacy of weight
combinations procured through a multistakeholder
interest-balancing exercise corresponding to each
decision alternative; second, as an intrinsic decision-
support algorithm within the Web application, paral-
leling the roles of WASPAS and AHP methods.

Sensitivity Analysis

Sensitivity analysis refers to the process of exam-
ining the impact of changes in criteria weights or
alternative evaluations on the overall decision out-
come. It is a valuable technique for assessing the
robustness and stability of the decision-making
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process (Saltelli et al. 2004; Z. Zhang et al. 2018).
A numeric value often represents the sensitivity of
each input called the sensitivity index (Iwanaga,
Usher, and Herman 2022): (1) First-order indexes
measure the contribution of the output variance by a
single model input alone; (2) second-order indexes
measure the contribution of the output variance
caused by the interaction between two model inputs;
and (3) total-order index measures the contribution
of the output variance caused by a model input,
including both its first-order effects (the input vary-
ing alone) and all higher order interactions (Herman
and Usher 2017). In practice, the total-order index
is commonly used when discovering the effects of
each decision criterion on the decision modeling
outputs. The second-order indexes are used when
discussing the correlation between different decision
criteria in MCDM problems.

In this project, we applied sensitivity analysis to
these three MCDM models to help understand how
sensitive the decision outcomes are to changes in cri-
teria weights or alternative evaluations. Through sen-
sitivity analysis, we can identify the most impactful
criterion (as suggested by the first-order SA index)
and pair of criteria (as indicated by the
second-order SA index) under the influence of weight
combinations specific to each decision alternative.

Methodology

Data Sources

The following factors have been considered for
modeling the trade-offs between fisheries and off-
shore wind energy development to ensure the run-
ning efficiency and legality of the site selection and
construction: (1) wind speed at a 90-m height, (2)
distance to shorelines, (3) the distances to military
bases, and (4) natural protected area locations
(Fetanat and Khorasaninejad 2015; Mekonnen and
Gorsevski  2015; Chaouachi, Felix Covrig, and
Ardelean 2017; Mahdy and Bahaj 2018; Y. Wu
et al. 2016; B. Wu et al. 2018; X. Zhang et al.
2018). This project was developed based on the
National Science Foundation—funded Convergence
Accelerator-Networked  Blue  Economy  project,
where our team has conducted sixteen interviews
with fishery managers, policymakers, and scientists
regarding sustainable fishery management strategies.
Many interview participants have pointed out the

concerns regarding the impacts of building offshore
wind energy on marine ecosystems and fishery pro-
duction. In addition to the previously mentioned
variables, we included fishery landing statistics data
collected from 2019 to 2021 in the decision-making
model (California Department of Fish and Wildlife
2022). We collected annual average offshore wind
speed for the Pacific Coast (California, Oregon, and
Washington) at a 90-m height from the National
Renewable Energy Laboratory (AWS Truepower/
NREL 2011) and the shoreline and military bases
map from public databases released by the National
Transportation Atlas Databases 2014 (NTAD2014)
and U.S. Geological Survey.

Study Area

Our study area is in California, where floating off-
shore wind is emerging as a promising source of
renewable energy generation for the state. The
development of floating offshore wind energy in
California will diversify the state’s energy portfolio
and provide an opportunity for good-paying jobs and
statewide economic benefits (California Energy
Commission 2019). On 18 August 2016, the federal
Bureau of Ocean Energy Management (BOEM) pub-
lished a Request for Interest in California Offshore
Wind in response to an unsolicited lease request.
Two years later, BOEM published a Call for
Information and Nominations from companies inter-
ested in commercial wind energy leases within the
proposed areas of central and northern California
(BOEM 2018). In addition, BOEM sought public
input on the potential for wind energy development
in the Call Areas. On 25 May 2021, the
Departments of the Interior and Defense and the
State of California announced their agreement to
advance areas for wind energy development offshore
the northern and central coasts of California,
enabling a path forward for the Humboldt Call Area
and areas within and adjacent to the Morro Bay
Call Area. BOEM published the Morro Bay East and
West  Extensions—Call  for Information and
Nominations in the Federal Register, which initiated
a forty-fivel-day public comment period. BOEM
accepted industry nominations and public comments
until 13 September 2021. The coastal fishing region
in the Pacific California area was divided into 615
equal segments, each approximately 550km?. This
specific area dimension was derived from the average
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of three proposed call areas from 2018 (BOEM
2018). Consequently, each polygon can symbolize a
prospective call area.

This study aims to evaluate the adaptability of
established offshore wind energy areas by considering
multiple geophysical, environmental, and fishery
management factors. More than 8,000 random
weight combinations were generated and processed
using the WASPAS as the primary weighting algo-
rithm. This approach facilitated the calculation of
score rankings for the three designated call areas
under diverse weight combinations. Subsequently,
the scores corresponding to the polygons within
these call areas were organized in descending order.
An analysis of the weight combinations leading to
higher scores on the corresponding polygons was
then undertaken. This evaluation helped identify
which parameters were more skewed and hence
which stakeholder groups were more prominently
represented by such weight combinations. The
intent was to infer the degree to which the interests
of all parties are incorporated in the decision-making
process concerning the given call areas. The out-
comes of this section are further elucidated in the
results section.

Experiments

The proposed study categorizes the seven evalua-
tion criteria into two distinct classifications.
Category 1 (Cl) encompasses parameters such as
wind speed at a 90-m height, distance from the
shoreline, proximity to military installations, and dis-
tance from marine nature reserves. These parameters
primarily cater to the interests of energy planning
authorities that aim to enhance the operational effi-
ciency of wind turbines and curtail costs associated
with construction and operation. Category 2 (C2)
incorporates parameters like fishing statistics from
2019 to 2021 that are predominantly of concern to
corporate executives and research scholars. The pri-
mary objective of this research is to model and visu-
alize the trade-offs between fisheries and offshore
wind farms to assist the decision-making process in
constructing a new offshore wind site. Table 3 dem-
onstrates a simulated weight matrix for the MCDM
model. The study constructed five distinct sets (L1—
L5) with a total of ten alternative strategies (LI_a—
L5_b), each to showcase an array of decision-making
strategies. Each set embodies unique weight ratios,

which signify diverse weight allocations for the two
types of parameters, with each alternative within the
set demonstrating distinct weight distribution among
parameters within the same category. To provide an
illustrative example, decision alternatives LI_a and
L4_b possess divergent weight allocations. LI_a
attributes 90 percent and 10 percent weights to cate-
gories CI and C2, respectively, maintaining a uni-
form weight distribution within the corresponding
parameter groups. Conversely, L4_b assigns 60 per-
cent and 40 percent weights to categories CI and
C2, respectively, with weight distributions of
(7:7:3:3) within the parameters of Cl and (1:2:3)
within the parameters of C2.

Figure 1 exemplifies the user input via the
WASPAS simulating the LI_a alternative delineated
in Table 3. The coastal fishing region in the Pacific
California area was divided into 615 equal segments,
each approximately 550km’. This specific area
dimension was derived from the average of three
proposed call areas from 2018 (BOEM 2018).
Consequently, each polygon can symbolize a pro-
spective call area. Normalization of the weights
ensures their sum equals one, with the resultant
scores depicted on the right indicating each poly-
gon’s suitability for offshore wind turbine construc-
tion. On submission, the map undergoes an update
to spotlight the vulnerable areas derived from the
user-selected criteria and weightings via the chosen
MCDA algorithms. Similarly, Figures 2 and 3
embody analogous user inputs for the L4_b alterna-
tive using AHP and L5_b alternative via TOPSIS,
respectively. The weight sets in Table 3 undergo
normalization; however, this process is not obligatory
for user interface inputs. The SWING Weighting
method (Zilinskas 2001; Patel, Vashi, and Bhatt
2017) was used in this experiment. It allows users to
assign weights ranging from O (least preferred) to
100 (most preferred), facilitating a more intuitive
weighting of the different criteria. Consequently, the
output suitability scores are normalized within a
scale of O to 1.

Results

By generating multiple (more than 8,000) ran-
dom weight combinations, we did a mixed qualita-
tive—quantitative  study of multiple regions,
including existing call areas. We found among all
weight combinations as input, a higher focus on
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Figure 1. An illustration of the human-ocean interaction tool user interface.

nonfishery criteria (e.g., wind speed, etc.) is highly
positively correlated with a higher suitability score
for the existing northern California call area near
Eureka. To be quantitative, to position the Eureka
call area in the top 5 percent of the suitability
score, the weighting strategy required scaling the
nonfisheries weight sum to approximately three
times the sum of the fisheries weights, as shown in
Figure 4. The areas with higher suitability scores

can be found if the weights on fisheries criteria are
increased, as shown in Figure 5. These findings sug-
gest that the decision-making process for the call
area near Eureka did not adequately factor in the
potential impacts on fisheries following the wind
farm’s construction. It is further noted that with
increased consideration for fisheries, additional areas
in the vicinity become more suitable for wind
power site locations.
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Figure 2. Analytical hierarchy process (AHP) weighting user interface.
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Figure 3. Technique for order of preference by similarity to ideal
solution (TOPSIS) weighting user interface.

Wind energy site selection decisions are often
made based on multiple constraints. For example,
industry practitioners prioritize wind plant efficiency
and cost-effectiveness. As such, preferred locations
are those with a minimum average wind speed of
7m/s at a 90-m altitude and a safe distance from mil-
itary zones and coastlines. In contrast, fishing com-
munities favor areas rich in marine biodiversity and
high-yield catches, placing a high emphasis on the
impact of wind farm construction on local wildlife
habitats. This dichotomy presents a challenge for
traditional decision-support models to find a bal-
anced solution. Consequently, we have applied the
MCDM approach across five scenarios, each reflect-
ing a different criterion of focus. The suitability
scores for these scenarios are illustrated in Figures 6
through 15. We have also designed a Web-based
GIScience application, an interactive tool enabling
users to set their weights using a range of

multicriteria techniques. The areas highlighted in
Figure 5 represent potential sites for the construction
of new offshore energy platforms. The application
allows users to select multiple fishing areas and
assign weights to different criteria to ascertain a
location’s suitability score for wind farm construc-
tion. As evident in Figures 6 through 15, polygon
shading intensity indicates the suitability score, with
darker shades denoting higher scores. From left to
right, these results were calculated using the
WASPAS, AHP, and TOPSIS methods, respec-
tively. The graphical outcomes depicted in Figures 6
through 15 can be analyzed in two ways. First, we
have a longitudinal evaluation of the five distinct
decision alternative groups, (LI, L2, L3, L4, and
L5). Within this context, the weightings vary from a
C1:C2 ratio of 90:10 to a more balanced ratio of
50:50. The visualization indicates that areas with
higher suitability scores typically transition from the
north to the south. Second, there is an intragroup
comparison of the decision alternatives (designated
as Lx_a and Lx_b). When compared to the evenly
distributed intragroup weighting set (Lx_a), the non-
uniform intragroup weighting set (Lx_b) demon-
strates that the outcomes of suitability scores are
more geographically focused.

Discussion

Stakeholders within the fisheries sector have voiced
significant concerns regarding the potential implica-
tions for both fisheries and ecosystems when expansive
offshore energy platforms are constructed. A pressing
need exists for the creation of a comprehensive deci-
sion-support platform. This platform should encapsu-
late all requisite information for both the fisheries and
energy sectors, to aid informed decision-making about
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Figure 7. Suitability scores using decision alternative L1_b for various algorithms. (A) WASPAS; (B) AHP; (C) TOPSIS.

the construction of offshore wind energy infrastruc-
tures, while concurrently minimizing environmental
impacts. In this study, a model employing MCDA
algorithms is introduced. This model integrates and
synthesizes a range of crucial geospatial data along
with fisheries statistics to compute suitability scores for

distinct areas, such as offshore wind site locations,
forming the model’s output. The developed model
yields several pertinent applications:

1. The work reveals that the extant call area in the vicinity
of Eureka failed to consider the potential adverse effects
on fisheries during the decision-making process.
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2. A variety of weight combination sets were provided as 3. A collaborative spatial decision support platform was

recommendations, indicative of decision choices constructed. This platform enables users to configure
catering to different stakeholders’ focus. In each weight combinations more flexibly, thereby promoting
recommendation, the areas yielding the highest scores a decision-making process that optimizes benefits for
were highlighted all concerned parties.
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In this section, the previously mentioned
methods and conclusions are validated and evaluated
mainly using sensitivity analysis (Simanaviciene and
Ustinovichius 2010).

To illustrate how different criteria affect decision
model outputs, we conducted a sensitivity analysis of
all MCDM models using an open-sourced Python

Library SALib (Herman and Usher 2017; Iwanaga,
Usher, and Herman 2022). The AHP method is partic-
ularly suited to capturing user inputs and converting
them into combinations of weights; we executed a sta-
tistical evaluation of the outcomes from both first- and
second-order sensitivity analyses. These analyses were
derived using two MCDA algorithmic models, namely
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Figure 13. Suitability scores using decision alternative L4_b for various algorithms. (A) WASPAS; (B) AHP; (C) TOPSIS.

the WASPAS and TOPSIS. In sensitivity analysis, the
first-order sensitivity index (SI value) quantifies the
impact of an individual criterion on the ultimate out-
come, taking both the data and the model into
account. As such, the SI value in an MCDA model
generally displays a strong positive correlation with its
corresponding weight value. The correlation between
the S1 values and their respective weight values under

the WASPAS and TOPSIS models is illustrated in
Figure 16. The graphical representations indicate that
both S1 values maintain a roughly linear positive cor-
relation with weight values. The WASPAS method,
however, offers a superior linear fit between S1 values
and weights as compared to the TOPSIS method. This
implies that the influence of a single criterion overall

is more diffused in the TOPSIS model.
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Figure 15. Suitability scores using decision alternative L5_b for various algorithms. (A) WASPAS; (B) AHP; (C) TOPSIS.

In sensitivity analysis, although the first-order sen-
sitivity index (S1) quantifies the impact of individ-
ual criteria on the outcome, the second-order
sensitivity index (S2) gauges the combined influence
of pairs of criteria. To visualize these S2 values for
the two employed algorithms, we construct two
upper triangular matrices, as illustrated by the heat

map in Figure 17. Notably, all S2 values are less
than 107, suggesting negligible interdependence
between criteria. The homogeneity of these values
further underscores the absence of data redundancy
and criterion interdependence in our selection and
regression processes. In the future, more indicators,
including sea water temperature, sea floor depth, and
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Figure 17. Second-order sensitivity scores heat map using WASPAS (left) and TOPSIS (right).

habitat movement data, could be combined into this
proposed MCDM model to achieve compatibility for
different groups of stakeholders. The flexibility and
portability of this application make it adaptable to
other geographic regions.

Conclusion

In this study, we implemented a Web-based spa-
tial decision support framework, which integrated
three types of MCDA models (WASPAS, AHP, and
TOPSIS), and various indicators important in mak-
ing decisions on offshore wind energy site selection
and fishery landing statistics (California Department
of Fish and Wildlife 2022) to enable a more efficient
spatial decision-making process. There are three

major advantages of this MCDM. First, this proposed
framework enables multivariate spatial data analytics
by which multiple types of data sets can be com-
bined into a single spatial decision-making platform.
Second, conflicting decision goals are common issues
in offshore wind energy plant site selection. In this
article, besides the multicriteria baseline decision
model (WSM), two types of MCDM models (AHP
and TOPSIS) were adopted, where indirect decision
criteria can be combined to meet several objectives
and aid in complex decision-making problems.
Third, this application supports collaborative deci-
sion-making by developing an interactive user inter-
face in that users can assign weights for different
criteria to reach a common goal in energy and
fishery management. This tool provides a com-
munication bridge between decision-makers and
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practitioners in the fishery and wind energy fields to
help them develop more sustainable management
strategies.
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