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Identifying offshore wind energy sites involves analyzing multiple variables, such as wind speed, proximity to

the coastline, and sociocultural factors. This complex decision-making process often involves many

stakeholders, resulting in conflicting data and goals. Decision analysis that promotes collaboration,

transparency, understanding, and sustainability is key. This study presents a unique model of human–

environment interaction that reconciles different perspectives and visualizes the balance between fisheries

and wind power. Using three multicriteria decision models (weighted aggregated sum product assessment

[WASPAS], technique for order of preference by similarity to ideal solution [TOPSIS], and analytical

hierarchy process [AHP]), we analyze the decision mix for wind farm selection and assess the impacts on

fisheries using historical data. Our approach was applied to an upwelling system in California, generating ten

tailored decision scenarios for different stakeholder groups. The results showed that adaptation scores for

specific call areas in northern California decreased when the weight of fishery factors increased, and there

was a tendency for high-scoring areas to shift southward as fishery parameters increased. The results of the

sensitivity analysis showed that the first-order sensitivity scores of WASPAS were better correlated with the

weights compared to TOPSIS, whereas the second-order sensitivity scores were generally lower, indicating a

reduced interdependence of our model. Key Words: human–environment interactions, multicriteria decision-
making, offshore wind energy, site selection, sustainability.

O
ffshore wind energy represents one of the

largest potential renewable energy sources in

the United States. Developing an offshore

wind generating capacity is one of the essential steps

for reducing global warming (Mekonnen and

Gorsevski 2015). The Biden–Harris administration

announced plans in February 2022 to generate 30

gigawatts of energy from offshore wind by 2030

nationally (The White House 2022). At the same

time, California has set aggressive decarbonization

goals, including ambitious renewable portfolio stand-

ards and a target of 100 percent carbon-free power

generation by 2045. In 2021, California Governor

Gavin Newsom signed a bill mandating an offshore

wind-energy development plan in federal waters

from the California Energy Commission (Garner and

Maroon 2022). The Energy Commission was

required to establish the maximum feasible capacity

for offshore floating wind turbines by 1 June 2022.

The California grid operator is currently struggling

with “duck curve” challenges, which means the

demand peaks in the morning and evening while the

supply peaks at noon, requiring nonsolar power gen-

eration (or electricity storage), such as offshore

wind, to meet evening peak demand for electricity.
One significant problem in offshore development

is identifying appropriate sites for wind energy farms

(Mekonnen and Gorsevski 2015). Determining wind

farm sites is a challenging, complex, and protracted

process that requires the evaluation of many differ-

ent criteria, such as wind and geophysical conditions

and environmental impacts (Tegou, Polatidis, and
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Haralambopoulos 2010; Grassi, Chokani, and Abhari

2012). Research in the eastern United States has

shown the importance of stakeholder engagement at

all stages of offshore wind farm development in the

interest of increasing procedural fairness and a

“chain of trust” between stakeholders and developers

(Dwyer and Bidwell 2019; Ferguson et al. 2021;

Gonyo et al. 2021). Offshore wind farms could have

significant negative impacts on ocean ecosystems

(Wahlberg and Westerberg 2005; Thomsen et al.

2006; Mooney, Andersson, and Stanley 2020). For

example, Mooney, Andersson, and Stanley (2020)

discussed the impacts of the entire lifetime of wind

turbines on marine species’ habitats by applying

physical modeling. Haggett et al. (2020) pointed out

that the opinions of fishing industry representatives

should be strongly considered when determining the

sites for offshore wind power. Many researchers,

however, discussed the issues related to social and

political perspectives. They claimed that a holistic

information platform is needed to visualize all the

variables in making such complex decisions when

building an offshore wind farm. Numerous studies

have indicated that establishing offshore wind energy

infrastructures could interact with fisheries in com-

plex ways. Some interactions could be negative, but

others can potentially contribute to the ecosystem,

such as providing new habitats for marine life. Still,

a pressing need exists for improved dialogue and

cooperation between the fisheries and energy sectors,

largely due to the current lack of information plat-

forms that can foster effective collaborative decision-

making processes.
Multicriteria decision-making (MCDM) has been

applied to renewable energy site selection problems,

which evaluates candidates from multiple locations

based on multiple criteria (Shao et al. 2020). The

most common criteria include (1) natural or marine

reserve areas, (2) military areas, (3) distance from

shore, and (4) wind speed (Mekonnen and

Gorsevski 2015; Fetanat and Khorasaninejad 2015;

Y. Wu et al. 2016; Chaouachi, Felix Covrig, and

Ardelean 2017; Mahdy and Bahaj 2018; B. Wu

et al. 2018; X.-Y. Zhang et al. 2018; Russell,

Bingaman, and Garcia 2021). The third component

can be explained from a construction cost perspec-

tive: The closer to the coastline, the higher the

transmission line efficiency, and the lower the trans-

portation costs during construction and maintenance

costs during operational phases. From the aspect of

high transmission efficiency, wind farms are primar-

ily located close to the coastline. At the same time,

these areas are commonly associated with the dense

distribution of military bases and nature reserves.

Therefore, the conflict decision objectives associated

with offshore wind energy development come from

several perspectives, such as maintaining military

services, sustaining fishery and marine ecosystems,

and maximizing the offshore wind energy construc-

tion portfolio.

In the MCDM analysis, developing a weighting

method plays an important role. Several weighting

methods have been commonly used in MCDM,

including the analytical hierarchy process (AHP;

Chaouachi, Felix Covrig, and Ardelean 2017;

Mahdy and Bahaj 2018; B. Wu et al. 2018),

weighted aggregated sum product assessment

(WASPAS; Zavadskas et al. 2012; Mekonnen and

Gorsevski 2015; Chaouachi, Felix Covrig, and

Ardelean 2017), and technique for order of prefer-

ence by similarity to ideal solution (TOPSIS; Z.

Zhang et al. 2018). Many previous studies in off-

shore wind energy site selection applied the fuzzy

MCDM algorithms, such as the fuzzy AHP used in

S�anchez-Lozano, Garc�ıa-Cascales, and Lamata

(2016) to tackle a common problem: how to give a

decision-making solution that is acceptable to all

parties when the opinions and priorities conflict

when selecting the best location to implant an

onshore wind farm.

Research gaps still exist, however, regarding the

ability to use MCDM to handle collaborative (or

participatory) decision-making processes in the off-

shore wind energy application area. First, it is chal-

lenging to identify and quantify criteria and

weightings, which depend on how much the deci-

sion-makers know about the area and their preferen-

ces. Second, most spatial decision support systems

are focused on areas with only limited decision vari-

ables and rules, which cannot be used where there

are conflicting decision objectives. For instance,

industry energy managers might consider the wind

speed variable as the most important in deciding the

location of a wind farm, and environmental agency

managers might think likewise regarding the distance

to the natural reserve areas. Finally, there exist bar-

riers to knowledge-sharing and communication

among different decision-makers. Decision-making in

offshore energy site selection problems requires the

cooperation of a group of stakeholders, including
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domain experts, engineers, system developers, fishery

and energy industry managers, and application users.
Therefore, more advanced methods to collect, inte-

grate, interpret, and visualize decision variables from
different parties of interest are critical to both energy

management and sustainable fishery.
In this research article, we aim to investigate the

following research questions:

1. Are there overlaps or conflicts between expected

fishing efforts, bycatch, protected species, and human

activities such as offshore energy development, and

can management decisions mitigate them?

2. Can we find spatial solutions for balancing the trade-

offs between Energy Commission goals and the

sustainability of fisheries and conservation of

ecosystems?

In this article, we developed a participatory decision

support information system using MCDM models
and advanced visualization techniques to illustrate

trade-offs between fishery management and offshore
wind energy development. This decision information

system enables different decision-makers, such as
fishing and offshore energy industry managers, poli-

cymakers, researchers, and environmental protection
agency officers, to make risk-informed decisions
when developing a new offshore wind farm.

Background Theory

This section introduces the background and

theories used to implement the decision support
information system. In this application, we help

decision-makers to find suitable locations for build-
ing offshore wind energy infrastructure by consider-

ing the impacts on fisheries and marine ecosystems.
MCDM theory combines all the decision criteria to
form an overall evaluation score for offshore wind

location selection problems.

Multicriteria Decision Analysis

Multicriteria decision analysis (MCDA) is a
mathematical decision-making framework that com-
bines many decision criteria to meet one or several

objectives that support decision-making (Shao et al.
2020). In the weighted sum method (WSM), given

a set of m alternatives, denoted as A1, A2, A3,
… , Am, and a set of n decision criteria, denoted as

C1, C2, C3, … , Cn, it is assumed that a decision-
maker has to determine the weight value xij (for

i¼ 1,2,3, … , m and j¼ 1, 2, 3, … , n) of each

alternative in terms of each criterion (Fishburn
1967). For each row of data set X with xj, values are

defined, along with the criteria weight matrix W
(the weight of the relative performance of the deci-

sion criteria). Usually, these weights are normalized
to add up to one, and the alternatives are ranked. If

there are m alternatives and n criteria, the score cal-

culated using WSM for the ith decision alternative
can be represented as Equation 1 (Fishburn 1967;

Thakkar 2021), where xij is the weight for the jth
criteria in the ith decision alternative; xj is the data

value of the jth column (attribute); and QWSM
i is the

WSM score for the ith decision alternative.

QWSM
i ¼

Xn

j¼1
xij � xj (1)

The weighted product method (WPM) is similar
to the WSM. The main difference is that instead of

addition in the model, there is multiplication.
Each alternative is compared with the others by

multiplying a number of ratios, one for each crite-
rion. Each ratio is raised to the power equivalent of

the relative weight of the corresponding criterion

(Triantaphyllou and Mann 1989). In WPM, under
the same problem conditions, the score for the ith
decision alternative can be expressed as Equation 2,
where xij represents the weight for the jth criteria in

the ith decision alternative; xj represents the data
value of the jth column (attribute); and QWPM

i repre-

sents the WPM score for the ith decision alternative
(Thakkar 2021).

QWPM
i ¼

Yn

j¼1
xjxij (2)

The WSM and WPM are widely used in MCDM
processes, but each has limitations. WSM’s main dis-

advantage is its assumption of additive criteria, over-
looking potential interactions, whereas WPM

assumes criteria are multiplicative, which might
neglect interactions and distort results with zero val-

ues. The WASPAS method seeks to balance these

models’ strengths and weaknesses by providing a
weighted average of both approaches, offering more

comprehensive and flexible decision-making out-
comes (Zavadskas et al. 2012). WASPAS is pre-

ferred to the variety of available methods because of
its ability to increase the accuracy of ranking.

WASPAS leads to the highest accuracy of estima-
tion for optimization of the weighted aggregate func-

tion. It combines two well-known methods—the
WSM and the WPM—to provide a method with
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accuracy greater than the original two methods, with

an optimization of the aggregation being conducted

(Thakkar 2021). WASPAS uses a k value to coordi-

nate the output share of the two models, which gen-

erally defaults to 0.5 out of 1; that is, equal

reception of the outputs from WSM and WPM. The

weighted score value calculated using the WASPAS

method can be expressed in Equation 3, where xij

represents the weight for the jth criteria in the ith
decision alternative; xj represents the data value of

the jth column (attribute); and QWASPAS
i represents

the WASPAS score for the ith decision alternative

(Thakkar 2021).

QWASPAS
i ¼ k

Xn

j¼1
xij � xj þ ð1 − kÞ

Yn

j¼1
xjxij

(3)

In this project, the decision alternatives refer to a

set of combinations of weights corresponding to cri-

teria. These criteria represent four environmental

factors, including wind speed at 90 m, along with

statistics on fishing landings for 2019 to 2021, for a

total of seven decision criteria. These are used to

gauge the feasibility of constructing a wind turbine

at specific locations. The WASPAS method serves

as the primary algorithm for assessing the suitability

of diverse locations within the study area. A key

innovation of this research involves the integration

of two additional algorithms—AHP and TOPSIS—

alongside the WASPAS method in creating our

Web-based, participatory decision support system.

This allows users to compute adaptive scores for

weight combinations aligning with their preferences.

We explore these two algorithms and their respec-

tive roles within our modeling framework in the sub-

sequent sections.

Analytic Hierarchy Process

In addition to the WASPAS model (described in

the last section), the AHP was used as another

weighting method for constructing the MCDM

model. AHP has been applied in different fields,

such as planning, selecting the best alternative, and

resource allocations (Vaidya and Kumar 2006;

Chaouachi, Felix Covrig, and Ardelean 2017;

Mahdy and Bahaj 2018; Wu et al. 2018). AHP

involves breaking down a decision problem into a

hierarchy of criteria and alternatives. The hierarchy

consists of a goal at the top, followed by a set of cri-

teria that contribute to the achievement of the goal.

These criteria are further divided into subcriteria,

forming a hierarchical structure. Once the hierarchy

is established, pairwise comparisons are made

between the elements of each level (Saaty 1977). In

the AHP analysis, users construct a pairwise weight-

ing matrix, wherein each element signifies the rela-

tive importance of one criterion compared to

another during the decision-making process. The

weighting vector is the feature vector of the matrix

corresponding with the maximum nonzero feature

value.

1. Constructing pairwise weighting matrix. The AHP

pairwise weights matrix is shown in Table 1.

2. Feature vector

Aw ¼ kmaxw (4)

3. Normalization

wAHP ¼ w
j wj jj (5)

4. Consistency check.

The ideal pairwise weighting matrix is supposed to

be a consensus matrix, but the constraints are strict

for practical application. Thus, to ensure the error is

within the acceptable range, the consensus index

(CI) and random consensus index (RI) were intro-

duced. CI measures the consistency of the pairwise

comparisons. It is calculated as (k – n)/(n − 1),
where k is the maximum eigenvalue of the pairwise

comparison matrix, and n is the number of criteria,

as shown in Equation 6, where k is the feature value

and n is the order number.

CI ¼ k − n
n − 1

(6)

RI is used to measure the consistency of judgment

matrices; it is derived from many randomly filled

matrices that are the same size as the judgment

Table 1. Analytical hierarchy process (AHP) weight
matrix

A1 A2 A3 A4 A5 A6

A1 1 w1/w2 w1/w3 w1/w4 w1/w5 w1/w6
A2 1 w2/w3 w2/w4 w2/w5 w2/w6
A3 1 w3/w4 w3/w5 w3/w6
A4 1 w4/w5 w4/w5
A5 1 w5/w6
A6 1
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matrix we are examining. The values of RI are fixed

and vary according to the size of the matrix, as

shown in Table 2 (Saaty 1988).
Consensus ratio (CR) serves as a measure of how

consistent the judgments have been relative to large

samples of purely random judgments as shown in

Equation 7. Provided CR falls within an acceptable

range (lower than 0.1), the weight matrix entered by

the user can be incorporated as input into the deci-

sion model. Subsequently, the output suitability

scores will be updated and visualized.

CR ¼ CI
RI

(7)

The AHP method, with its matrix of pairwise

compared weights, proves more effective as a direct,

user-oriented approach to obtaining weights than

using an array of absolute weights. In this project,

AHP was used as another method for setting a

weight for evaluation criteria for this application.

The Technique for Order of Preference by
Similarity to Ideal Solution

TOPSIS is an MCDM method used to evaluate

and rank alternatives based on their proximity to an

ideal solution (Uzun et al. 2021). The procedure of

TOPSIS application in this study includes the fol-

lowing steps.

1. Construct the normalized matrix. Let matrix X
represent the initial data sample matrix. The matrix Z
represents the normalized data matrix, as shown in

Equation 8.

X ¼ x11 � � � x1m ..
. . .
. ..

.
xn1 � � � xnm

h i

zij ¼ xijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xij2

2

q

Z ¼ z11 � � � z1m ..
. . .
. ..

.
zn1 � � � znm

h i
(8)

2. Identify positive and negative ideal solutions (PIS and

NIS). Among all the samples, pick the best and the

worst scenario for each feature to form the best and

the worst case vectors. Here, Vþ (the output vector of

PIS) and V− (the output vector of NIS) are identified

in Equation 9, where vij ¼ xjzij; i ¼ 1, ::: ,
m; j ¼ 1, ::: , n;

Pn
j¼1 xj ¼ 1: The PIS maximizes

the benefit criteria and minimizes the cost criteria,

whereas the NIS maximizes the cost criteria and

minimizes the benefit criteria.

Vþ ¼ ðvþ1 , vþ2 , vþ3 , vþ4 , :::, vþn Þ ¼ ½½maxivij��
V− ¼ ðv−1 , v−2 , v−3 , v−4 , :::, v−n Þ ¼ ½½minivij��

(9)

3. Calculate the Euclidean distance to the PIS and NIS

in Equation 10.

Dþ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1 ðvþj − vijÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1 ðvþj � xjzijÞ2

q

D−
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1 ðv−j − vijÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1 ðv−j � xjzijÞ2

q

(10)

4. Evaluate the closeness of samples and best and worst

cases. The closeness of each sample and the best and

worst cases is calculated in Equation 11:

Ci ¼ D−
i

Dþ
i þ D−

i
, 0 � Ci � 1 (11)

The alternatives are ranked based on their relative

closeness. The alternative with the highest relative

closeness value is considered the most favorable

choice. The greater Ci is, the closer each sample is

to the best case. The TOPSIS method facilitates a

good understanding of how closely a model’s charac-

teristics align with an ideal solution, as determined

by a specific set of weights and the encompassing

data set. Its robustness, validity, and inherent intui-

tiveness make it a favored instrument for post hoc

evaluation and validation, especially following the

selection of weights. Within the scope of our current

project, TOPSIS is leveraged twofold: first, as an

evaluative measure assessing the efficacy of weight

combinations procured through a multistakeholder

interest-balancing exercise corresponding to each

decision alternative; second, as an intrinsic decision-

support algorithm within the Web application, paral-

leling the roles of WASPAS and AHP methods.

Sensitivity Analysis

Sensitivity analysis refers to the process of exam-

ining the impact of changes in criteria weights or

alternative evaluations on the overall decision out-

come. It is a valuable technique for assessing the

robustness and stability of the decision-making

Table 2. Analytical hierarchy process (AHP) random
consensus index (RI) statistics

N 1 2 3 4 5 6 7 8 9

RI 0 0 0.52 0.89 1.12 1.24 1.36 1.41 1.49
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process (Saltelli et al. 2004; Z. Zhang et al. 2018).

A numeric value often represents the sensitivity of

each input called the sensitivity index (Iwanaga,

Usher, and Herman 2022): (1) First-order indexes

measure the contribution of the output variance by a

single model input alone; (2) second-order indexes

measure the contribution of the output variance

caused by the interaction between two model inputs;

and (3) total-order index measures the contribution

of the output variance caused by a model input,

including both its first-order effects (the input vary-

ing alone) and all higher order interactions (Herman

and Usher 2017). In practice, the total-order index

is commonly used when discovering the effects of

each decision criterion on the decision modeling

outputs. The second-order indexes are used when

discussing the correlation between different decision

criteria in MCDM problems.

In this project, we applied sensitivity analysis to

these three MCDM models to help understand how

sensitive the decision outcomes are to changes in cri-

teria weights or alternative evaluations. Through sen-

sitivity analysis, we can identify the most impactful

criterion (as suggested by the first-order SA index)

and pair of criteria (as indicated by the

second-order SA index) under the influence of weight

combinations specific to each decision alternative.

Methodology

Data Sources

The following factors have been considered for

modeling the trade-offs between fisheries and off-

shore wind energy development to ensure the run-

ning efficiency and legality of the site selection and

construction: (1) wind speed at a 90-m height, (2)

distance to shorelines, (3) the distances to military

bases, and (4) natural protected area locations

(Fetanat and Khorasaninejad 2015; Mekonnen and

Gorsevski 2015; Chaouachi, Felix Covrig, and

Ardelean 2017; Mahdy and Bahaj 2018; Y. Wu

et al. 2016; B. Wu et al. 2018; X. Zhang et al.

2018). This project was developed based on the

National Science Foundation–funded Convergence

Accelerator-Networked Blue Economy project,

where our team has conducted sixteen interviews

with fishery managers, policymakers, and scientists

regarding sustainable fishery management strategies.

Many interview participants have pointed out the

concerns regarding the impacts of building offshore

wind energy on marine ecosystems and fishery pro-

duction. In addition to the previously mentioned

variables, we included fishery landing statistics data

collected from 2019 to 2021 in the decision-making

model (California Department of Fish and Wildlife

2022). We collected annual average offshore wind

speed for the Pacific Coast (California, Oregon, and

Washington) at a 90-m height from the National

Renewable Energy Laboratory (AWS Truepower/

NREL 2011) and the shoreline and military bases

map from public databases released by the National

Transportation Atlas Databases 2014 (NTAD2014)

and U.S. Geological Survey.

Study Area

Our study area is in California, where floating off-

shore wind is emerging as a promising source of

renewable energy generation for the state. The

development of floating offshore wind energy in

California will diversify the state’s energy portfolio

and provide an opportunity for good-paying jobs and

statewide economic benefits (California Energy

Commission 2019). On 18 August 2016, the federal

Bureau of Ocean Energy Management (BOEM) pub-

lished a Request for Interest in California Offshore

Wind in response to an unsolicited lease request.

Two years later, BOEM published a Call for

Information and Nominations from companies inter-

ested in commercial wind energy leases within the

proposed areas of central and northern California

(BOEM 2018). In addition, BOEM sought public

input on the potential for wind energy development

in the Call Areas. On 25 May 2021, the

Departments of the Interior and Defense and the

State of California announced their agreement to

advance areas for wind energy development offshore

the northern and central coasts of California,

enabling a path forward for the Humboldt Call Area

and areas within and adjacent to the Morro Bay

Call Area. BOEM published the Morro Bay East and

West Extensions—Call for Information and

Nominations in the Federal Register, which initiated

a forty-five1-day public comment period. BOEM

accepted industry nominations and public comments

until 13 September 2021. The coastal fishing region

in the Pacific California area was divided into 615

equal segments, each approximately 550 km2. This

specific area dimension was derived from the average
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of three proposed call areas from 2018 (BOEM

2018). Consequently, each polygon can symbolize a

prospective call area.
This study aims to evaluate the adaptability of

established offshore wind energy areas by considering

multiple geophysical, environmental, and fishery

management factors. More than 8,000 random

weight combinations were generated and processed

using the WASPAS as the primary weighting algo-

rithm. This approach facilitated the calculation of

score rankings for the three designated call areas

under diverse weight combinations. Subsequently,

the scores corresponding to the polygons within

these call areas were organized in descending order.

An analysis of the weight combinations leading to

higher scores on the corresponding polygons was

then undertaken. This evaluation helped identify

which parameters were more skewed and hence

which stakeholder groups were more prominently

represented by such weight combinations. The

intent was to infer the degree to which the interests

of all parties are incorporated in the decision-making

process concerning the given call areas. The out-

comes of this section are further elucidated in the

results section.

Experiments

The proposed study categorizes the seven evalua-

tion criteria into two distinct classifications.

Category 1 (C1) encompasses parameters such as

wind speed at a 90-m height, distance from the

shoreline, proximity to military installations, and dis-

tance from marine nature reserves. These parameters

primarily cater to the interests of energy planning

authorities that aim to enhance the operational effi-

ciency of wind turbines and curtail costs associated

with construction and operation. Category 2 (C2)
incorporates parameters like fishing statistics from

2019 to 2021 that are predominantly of concern to

corporate executives and research scholars. The pri-

mary objective of this research is to model and visu-

alize the trade-offs between fisheries and offshore

wind farms to assist the decision-making process in

constructing a new offshore wind site. Table 3 dem-

onstrates a simulated weight matrix for the MCDM

model. The study constructed five distinct sets (L1–
L5) with a total of ten alternative strategies (L1_a–
L5_b), each to showcase an array of decision-making

strategies. Each set embodies unique weight ratios,

which signify diverse weight allocations for the two

types of parameters, with each alternative within the

set demonstrating distinct weight distribution among

parameters within the same category. To provide an

illustrative example, decision alternatives L1_a and

L4_b possess divergent weight allocations. L1_a
attributes 90 percent and 10 percent weights to cate-

gories C1 and C2, respectively, maintaining a uni-

form weight distribution within the corresponding

parameter groups. Conversely, L4_b assigns 60 per-

cent and 40 percent weights to categories C1 and

C2, respectively, with weight distributions of

(7:7:3:3) within the parameters of C1 and (1:2:3)

within the parameters of C2.
Figure 1 exemplifies the user input via the

WASPAS simulating the L1_a alternative delineated

in Table 3. The coastal fishing region in the Pacific

California area was divided into 615 equal segments,

each approximately 550 km2. This specific area

dimension was derived from the average of three

proposed call areas from 2018 (BOEM 2018).

Consequently, each polygon can symbolize a pro-

spective call area. Normalization of the weights

ensures their sum equals one, with the resultant

scores depicted on the right indicating each poly-

gon’s suitability for offshore wind turbine construc-

tion. On submission, the map undergoes an update

to spotlight the vulnerable areas derived from the

user-selected criteria and weightings via the chosen

MCDA algorithms. Similarly, Figures 2 and 3

embody analogous user inputs for the L4_b alterna-

tive using AHP and L5_b alternative via TOPSIS,

respectively. The weight sets in Table 3 undergo

normalization; however, this process is not obligatory

for user interface inputs. The SWING Weighting

method (Zilinskas 2001; Patel, Vashi, and Bhatt

2017) was used in this experiment. It allows users to

assign weights ranging from 0 (least preferred) to

100 (most preferred), facilitating a more intuitive

weighting of the different criteria. Consequently, the

output suitability scores are normalized within a

scale of 0 to 1.

Results

By generating multiple (more than 8,000) ran-

dom weight combinations, we did a mixed qualita-

tive–quantitative study of multiple regions,

including existing call areas. We found among all

weight combinations as input, a higher focus on
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nonfishery criteria (e.g., wind speed, etc.) is highly

positively correlated with a higher suitability score

for the existing northern California call area near

Eureka. To be quantitative, to position the Eureka

call area in the top 5 percent of the suitability

score, the weighting strategy required scaling the

nonfisheries weight sum to approximately three

times the sum of the fisheries weights, as shown in

Figure 4. The areas with higher suitability scores

can be found if the weights on fisheries criteria are

increased, as shown in Figure 5. These findings sug-

gest that the decision-making process for the call

area near Eureka did not adequately factor in the

potential impacts on fisheries following the wind

farm’s construction. It is further noted that with

increased consideration for fisheries, additional areas

in the vicinity become more suitable for wind

power site locations.

Table 3. Criteria and weights of different alternatives

C1 C2

Wind speed

90 m (w1)

Distance to

shoreline

(w2)

Distance to

military

bases (w3)

Distance to

natural

protected

areas (w4)
Landing stats

2019 (w5)
Landing stats

2020 (w6)
Landing stats

2021 (w7)

L1 a 0.225 0.225 0.225 0.225 0.03333 0.03333 0.03333

b 0.315 0.315 0.135 0.135 0.01667 0.03333 0.05

L2 a 0.2 0.2 0.2 0.2 0.06667 0.06667 0.06667

b 0.28 0.28 0.12 0.12 0.03333 0.06667 0.1

L3 a 0.175 0.175 0.175 0.175 0.1 0.1 0.1

b 0.245 0.245 0.105 0.105 0.05 0.1 0.15

L4 a 0.15 0.15 0.15 0.15 0.13333 0.13333 0.13333

b 0.21 0.21 0.09 0.09 0.06667 0.13333 0.2

L5 a 0.125 0.125 0.125 0.125 0.16667 0.16667 0.16667

b 0.175 0.175 0.075 0.075 0.08333 0.16667 0.25

Figure 1. An illustration of the human–ocean interaction tool user interface.
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Wind energy site selection decisions are often

made based on multiple constraints. For example,

industry practitioners prioritize wind plant efficiency

and cost-effectiveness. As such, preferred locations

are those with a minimum average wind speed of

7m/s at a 90-m altitude and a safe distance from mil-

itary zones and coastlines. In contrast, fishing com-

munities favor areas rich in marine biodiversity and

high-yield catches, placing a high emphasis on the

impact of wind farm construction on local wildlife

habitats. This dichotomy presents a challenge for

traditional decision-support models to find a bal-

anced solution. Consequently, we have applied the

MCDM approach across five scenarios, each reflect-

ing a different criterion of focus. The suitability

scores for these scenarios are illustrated in Figures 6

through 15. We have also designed a Web-based

GIScience application, an interactive tool enabling

users to set their weights using a range of

multicriteria techniques. The areas highlighted in

Figure 5 represent potential sites for the construction

of new offshore energy platforms. The application

allows users to select multiple fishing areas and

assign weights to different criteria to ascertain a

location’s suitability score for wind farm construc-

tion. As evident in Figures 6 through 15, polygon

shading intensity indicates the suitability score, with

darker shades denoting higher scores. From left to

right, these results were calculated using the

WASPAS, AHP, and TOPSIS methods, respec-

tively. The graphical outcomes depicted in Figures 6

through 15 can be analyzed in two ways. First, we

have a longitudinal evaluation of the five distinct

decision alternative groups, (L1, L2, L3, L4, and

L5). Within this context, the weightings vary from a

C1:C2 ratio of 90:10 to a more balanced ratio of

50:50. The visualization indicates that areas with

higher suitability scores typically transition from the

north to the south. Second, there is an intragroup

comparison of the decision alternatives (designated

as Lx_a and Lx_b). When compared to the evenly

distributed intragroup weighting set (Lx_a), the non-

uniform intragroup weighting set (Lx_b) demon-

strates that the outcomes of suitability scores are

more geographically focused.

Discussion

Stakeholders within the fisheries sector have voiced

significant concerns regarding the potential implica-

tions for both fisheries and ecosystems when expansive

offshore energy platforms are constructed. A pressing

need exists for the creation of a comprehensive deci-

sion-support platform. This platform should encapsu-

late all requisite information for both the fisheries and

energy sectors, to aid informed decision-making about

Figure 2. Analytical hierarchy process (AHP) weighting user interface.

Figure 3. Technique for order of preference by similarity to ideal

solution (TOPSIS) weighting user interface.
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Figure 4. Weight ratio (nonfishery criterion/fishery criterion) with respect to percentage in ranking. Note: WSM¼weighted sum

method; WPM¼weighted product method; WASPAS¼weighted aggregated sum product assessment.

Figure 5. Suitability score visualization of Eureka Call Area of emphasizing nonfishery criteria (left) versus with consideration of fishery

criteria (right).
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the construction of offshore wind energy infrastruc-

tures, while concurrently minimizing environmental

impacts. In this study, a model employing MCDA

algorithms is introduced. This model integrates and

synthesizes a range of crucial geospatial data along

with fisheries statistics to compute suitability scores for

distinct areas, such as offshore wind site locations,

forming the model’s output. The developed model

yields several pertinent applications:

1. The work reveals that the extant call area in the vicinity

of Eureka failed to consider the potential adverse effects

on fisheries during the decision-making process.

Figure 6. Suitability scores using decision alternative L1_a for various algorithms. (A) WASPAS; (B) AHP; (C) TOPSIS.

Figure 7. Suitability scores using decision alternative L1_b for various algorithms. (A) WASPAS; (B) AHP; (C) TOPSIS.
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2. A variety of weight combination sets were provided as

recommendations, indicative of decision choices

catering to different stakeholders’ focus. In each

recommendation, the areas yielding the highest scores

were highlighted.

3. A collaborative spatial decision support platform was

constructed. This platform enables users to configure

weight combinations more flexibly, thereby promoting

a decision-making process that optimizes benefits for

all concerned parties.

Figure 8. Suitability scores using decision alternative L2_a for various algorithms. (A) WASPAS; (B) AHP; (C) TOPSIS.

Figure 9. Suitability scores using decision alternative L2_b for various algorithms. (A) WASPAS; (B) AHP; (C) TOPSIS.
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In this section, the previously mentioned

methods and conclusions are validated and evaluated
mainly using sensitivity analysis (Simanaviciene and

Ustinovichius 2010).
To illustrate how different criteria affect decision

model outputs, we conducted a sensitivity analysis of
all MCDM models using an open-sourced Python

Library SALib (Herman and Usher 2017; Iwanaga,

Usher, and Herman 2022). The AHPmethod is partic-
ularly suited to capturing user inputs and converting

them into combinations of weights; we executed a sta-
tistical evaluation of the outcomes from both first- and

second-order sensitivity analyses. These analyses were
derived using two MCDA algorithmic models, namely

Figure 10. Suitability scores using decision alternative L3_a for various algorithms. (A) WASPAS; (B) AHP; (C) TOPSIS.

Figure 11. Suitability scores using decision alternative L3_b for various algorithms. (A) WASPAS; (B) AHP; (C) TOPSIS.
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the WASPAS and TOPSIS. In sensitivity analysis, the

first-order sensitivity index (S1 value) quantifies the

impact of an individual criterion on the ultimate out-

come, taking both the data and the model into

account. As such, the S1 value in an MCDA model

generally displays a strong positive correlation with its

corresponding weight value. The correlation between

the S1 values and their respective weight values under

the WASPAS and TOPSIS models is illustrated in

Figure 16. The graphical representations indicate that

both S1 values maintain a roughly linear positive cor-

relation with weight values. The WASPAS method,

however, offers a superior linear fit between S1 values

and weights as compared to the TOPSIS method. This

implies that the influence of a single criterion overall

is more diffused in the TOPSIS model.

Figure 12. Suitability scores using decision alternative L4_a for various algorithms. (A) WASPAS; (B) AHP; (C) TOPSIS.

Figure 13. Suitability scores using decision alternative L4_b for various algorithms. (A) WASPAS; (B) AHP; (C) TOPSIS.
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In sensitivity analysis, although the first-order sen-
sitivity index (S1) quantifies the impact of individ-
ual criteria on the outcome, the second-order
sensitivity index (S2) gauges the combined influence

of pairs of criteria. To visualize these S2 values for
the two employed algorithms, we construct two
upper triangular matrices, as illustrated by the heat

map in Figure 17. Notably, all S2 values are less
than 10–3, suggesting negligible interdependence
between criteria. The homogeneity of these values
further underscores the absence of data redundancy

and criterion interdependence in our selection and
regression processes. In the future, more indicators,
including sea water temperature, sea floor depth, and

Figure 14. Suitability scores using decision alternative L5_a for various algorithms. (A) WASPAS; (B) AHP; (C) TOPSIS.

Figure 15. Suitability scores using decision alternative L5_b for various algorithms. (A) WASPAS; (B) AHP; (C) TOPSIS.
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habitat movement data, could be combined into this

proposed MCDM model to achieve compatibility for

different groups of stakeholders. The flexibility and

portability of this application make it adaptable to

other geographic regions.

Conclusion

In this study, we implemented a Web-based spa-

tial decision support framework, which integrated

three types of MCDA models (WASPAS, AHP, and

TOPSIS), and various indicators important in mak-

ing decisions on offshore wind energy site selection

and fishery landing statistics (California Department

of Fish and Wildlife 2022) to enable a more efficient

spatial decision-making process. There are three

major advantages of this MCDM. First, this proposed

framework enables multivariate spatial data analytics

by which multiple types of data sets can be com-

bined into a single spatial decision-making platform.

Second, conflicting decision goals are common issues

in offshore wind energy plant site selection. In this

article, besides the multicriteria baseline decision

model (WSM), two types of MCDM models (AHP

and TOPSIS) were adopted, where indirect decision

criteria can be combined to meet several objectives

and aid in complex decision-making problems.

Third, this application supports collaborative deci-

sion-making by developing an interactive user inter-

face in that users can assign weights for different

criteria to reach a common goal in energy and

fishery management. This tool provides a com-

munication bridge between decision-makers and

Figure 16. Relationship between first-order sensitivity analysis indexes and multicriteria decision analysis weights using WASPAS (left)

and TOPSIS (right).

Figure 17. Second-order sensitivity scores heat map using WASPAS (left) and TOPSIS (right).
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practitioners in the fishery and wind energy fields to

help them develop more sustainable management

strategies.
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