
HgPCN: A Heterogeneous Architecture for E2E

Embedded Point Cloud Inference

1st Yiming Gao

University of Florida

gaoyiming@ufl.edu

4th Xiangru Chen

University of Florida

cxr1994816@ufl.edu

2nd Chao Jiang

University of Florida

jc19chaoj@ufl.edu

5th Bhavesh Patel

Dell EMC

Bhavesh.A.Patel@dell.com

3rd Wesley Piard

University of Florida

wespiard@ufl.edu

6th Herman Lam*

University of Florida

hlam@ufl.edu

Abstract—Point cloud is an important type of geometric data
structure for many embedded applications such as autonomous
driving and augmented reality. Current Point Cloud Networks
(PCNs) have proven to achieve great success in using inference to
perform point cloud analysis, including object part segmentation,
shape classification, and so on. However, point cloud applications
on the computing edge require more than just the inference
step. They require an end-to-end (E2E) processing of the point
cloud workloads: pre-processing of raw data, input preparation,
and inference to perform point cloud analysis. Current PCN
approaches to support end-to-end processing of point cloud
workload cannot meet the real-time latency requirement on the
edge, i.e., the ability of the AI service to keep up with the speed
of raw data generation by 3D sensors.

Latency for end-to-end processing of the point cloud workloads
stems from two reasons: memory-intensive down-sampling in the
pre-processing phase and the data structuring step for input
preparation in the inference phase. In this paper, we present
HgPCN, an end-to-end heterogeneous architecture for real-time
embedded point cloud applications. In HgPCN, we introduce
two novel methodologies based on spatial indexing to address
the two identified bottlenecks. In the Pre-processing Engine
of HgPCN, an Octree-Indexed-Sampling method is used to
optimize the memory-intensive down-sampling bottleneck of the
pre-processing phase. In the Inference Engine, HgPCN extends
a commercial DLA with a customized Data Structuring Unit
which is based on a Voxel-Expanded Gathering method to
fundamentally reduce the workload of the data structuring step
in the inference phase.

The initial prototype of HgPCN has been implemented on
an Intel PAC (Xeon+FPGA) platform. Four commonly available
point cloud datasets were used for comparison, running on
three baseline devices: Intel Xeon W-2255, Nvidia Xavier NX
Jetson GPU, and Nvidia 4060ti GPU. These point cloud datasets
were also run on two existing PCN accelerators for compar-
ison: PointACC and Mesorasi. Our results show that for the
inference phase, depending on the dataset size, HgPCN achieves

speedup from 1.3× to 10.2× vs. PointACC, 2.2× to 16.5× vs.

Mesorasi, and 6.4× to 21× vs. Jetson NX GPU. Along with
optimization of the memory-intensive down-sampling bottleneck
in pre-processing phase, the overall latency shows that HgPCN
can reach the real-time requirement by providing end-to-end
service with keeping up with the raw data generation rate.

This research was supported in part by the National Science Founda-

tion (NSF) Center for Space, High-Performance, and Resilient Computing
(SHREC) through the IUCRC Program under Grant No. CNS-1738420.

Index Terms—Heterogeneous Computing, Edge AI Service,
Point Cloud Network Inference

I. INTRODUCTION

With the development of 3D sensors, such as LiDARs,

and RGB-D cameras, there are increased interests in research

and development of processing point cloud data. Point Cloud

Networks (PCNs) have proven to achieve great success in

different tasks of point cloud analysis, including object part

segmentation, shape classification, and so on. Point cloud ap-

plications on the computing edge, such as autonomous robotics

and drones, have stringent real-time requirements. Many PCNs

for point cloud AI tasks have been proposed [9], including

DSA (Domain-Specific Architecture) PCN accelerators such

as Mesorasi [6], PointACC [16], and Crescent [5], which have

been proposed to accelerate PCN inference. However, point

cloud applications on the computing edge require more than

just the inference step. They require an end-to-end processing

of the point cloud workloads. A recent paper [23] indicated

that the processing of AI services for edge computing suffer

the problem of high “AI tax”, which includes the supporting

steps for AI workload such as pre-processing of raw data,

input preparation, and offloading communication overhead.

These steps contribute to a major part of overall latency in

edge AI services. Unfortunately, this high “AI tax” problem is

more serious for point cloud applications. Due to the inherent

irregularity and large size of raw point cloud data, the pre-

processing and communication overhead of point cloud data

are far more expensive than traditional data types, such as

image or video. Due to the high AI-tax, the current PCN

approaches to support end-to-end processing of point cloud

workload cannot meet the real-time requirement [10], i.e., the

ability of the AI service to keep up with the speed of raw data

generation by 3D sensors. In PCN edge services, the AI tax

is mainly stemmed from two reasons: the expensive down-

sampling pre-processing phase and the data structuring step

for input preparation in the inference phase.

As shown in Figure 1(a), an end-to-end point cloud AI

service based on PCNs comprise of two major phases after

raw data generation: pre-processing of the point cloud data

mailto:gaoyiming@ufl.edu
mailto:cxr1994816@ufl.edu
mailto:jc19chaoj@ufl.edu
mailto:Bhavesh.A.Patel@dell.com
mailto:wespiard@ufl.edu
mailto:hlam@ufl.edu

Fig. 1. (a) Two phases of an end-to-end point clouds AI service (classification
task), (b) Overall architecture to process the two phases.

and PCN inference. After obtaining the raw point cloud data

from the sensor, the size of the raw data is enormous: e.g.,

for every frame, a LiDAR sensor produces approximately 2

million points. Also, the number of points in each frame

is highly irregular because different objects have different

reflectivity to the laser. Thus, point cloud applications on the

edge require an effective front-end pre-processing phase to

deal with this kind of irregularity before feeding the data

into the PCN for inference. For each frame, it has to be

down-sampled from million-level, variable-number points into

thousands-level, fixed number points (e.g., 4096 points per

frame to feed into the input layer of a PCN). Because of

the large amounts of points in raw point cloud data and

expensive nature of down-sampling methods, down-sampling

pre-processing is extremely memory intensive and is a major

bottleneck in a real-time point cloud application.

As a type of Deep Neural Network (DNN), the backend

PCN inference phase is a computationally intensive task. In

recent years, there have been much advance in Deep Learning

Accelerators (DLAs), including commercially available DLAs

[2], which perform well in satisfying the computationally in-

tensive inference requirements of traditional DNNs. However,

current DLAs cannot be directly applied to PCN inference.

The reason is, unlike traditional dense data types, points in

a point cloud are sparsely distributed in a 3D space [9],

[28]. Thus, before the actual feature computation with MVM

(matrix-vector multiplication), an additional step, data struc-

turing, is necessary to adapt the spatial sparsity of the point

cloud and prepare the input for the following convolutional

layers. The data structuring step is not supported by current

DLAs. However, if unaccelerated, this step results in a non-

trivial part of the total computation of PCN inference. Data

structuring before feature computation is the second major

bottleneck in a real-time point cloud application.

Current general-purpose architectures fail to effectively

solve these two bottlenecks of end-to-end point cloud AI

services for real-time applications. For example, the most com-

monly used down-sampling pre-processing method, farthest-

point sampling (FPS), takes over 200 seconds to sample 10%

of 1 million points [10] on GPUs. For CPUs, such enormous

amount of computation is rather slow because their limited

parallel capability. We will show in Section III that the down-

sampling pre-processing phase occupies a major part of the

end-to-end latency, which greatly exacerbating the problem of

high “AI tax” [23].

Currently, there is a very limited number of hardware-based

designs for point cloud accelerators [6], [16]. Furthermore,

these works do not provide a complete solution since they do

not fully consider the two bottlenecks. They focus solely on the

AI (inference) phase, based on the assumption that the input is

already down-sampled (pre-processed) and restructured. More

details on these previous works will be given in Section II.

In this paper, we first identify the workload characteristics

and bottlenecks of the two major phases of end-to-end point

cloud edge applications. The frontend pre-processing phase

is a memory-intensive task, whereas the backend inference

phase is a computationally intensive task. The workload char-

acteristics are discussed in Section III. An overall architecture

for HgPCN to support end-to-end processing of point-cloud

applications is presented in Section IV.

To enable the real-time PCN process in HgPCN, we intro-

duce two novel methodologies to replace the brute-force tradi-

tional pre-processing and data structuring methods (introduced

in Section II) by converting them into efficient Octree-based

spatial query. To address the memory-intensive bottleneck

in the pre-processing phase, we develop an Octree-Indexed-

Sampling (OIS) method. The OIS method uses an Octree

data structure as a spatial index [25] to organize the point

cloud data in memory. With an Octree pre-organization, down-

sampling can be done with only reading out the desired after-

sampled points among raw point cloud data from the memory,

eliminating the need for repetitive access of input and interme-

diate data from memory. In the HgPCN architecture, the OIS

method is implemented in the Pre-processing Engine shown

in Figure 1(b), which comprised of the Octree-Build Unit in

the CPU and the Down-sampling Unit in the accelerator (e.g.,

FPGA). The design and implementation of the Pre-processing

Engine are described in detail in Section V.

For the Inference phase, we develop an Octree-based Voxel-

Expanded Gathering (VEG) method to optimize the data

structuring step. In our prototype implementation, the In-

ference Engine (shown in Figure 1(b)) will make use of

a commercially available DLA. It will be enhanced by a

Data Structuring Unit (DSU) to form the PCN Inference

Accelerator. As described in more detail in Section VI, the

Data Structuring Unit is based on the VEG method and

fundamentally reduces the workload of the data structuring

step as compared against current methods.

The initial prototype of HgPCN has been implemented on

an Intel PAC (Xeon+FPGA) platform. The evaluation of the

HgPCN prototype is performed using four modern point cloud

datasets: ModelNet40 [27], ShapeNet [1], S3DIS [15], and

FPS method will return a subset p1, · · ·, pk, · · ·, pK from

Fig. 2. Illustration of the steps of an end-to-end PCN inference (toy-valued pedestrian classification task).

KITTI [8]. The comparing baseline includes CPU/GPUs, and

existing DSA PCN accelerators: PointACC [16], Mesorasi [6].

The evaluation of HgPCN is first performed independently

for the two major phases (from engine-level), then evaluate

the E2E latency from the HgPCN system-level in the edge

computing scenario. The description of the prototype HgPCN

and its evaluation are detailed in Section VII.

In Section VIII, we provide the conclusions of our work

and a discussion of our future directions.

II. BACKGROUND AND RELATED WORK

A. Point Cloud Data and PCNs

A point cloud is a set of points x = {(pk, fk)}, where

pk = (xk, yk, zk) is the coordinate of the kth point, and fk
is the corresponding 1-D feature vector. Unlike a traditional

image, which is a dense 2D pixel-matrix, a point cloud is

comprised of numerous spatially distributed points in a 3D

space. Point clouds are commonly generated by 3D data

acquisition devices (such as LiDAR) and generally are massive

and ever-changing. For example, in the KITTI dataset [8],

each frame includes approximately (N ∼106) to (N ∼107)
points; and the number of points varies widely between frames.

Current DLAs processing DNNs cannot consume such large

and irregular input datasets. Thus, a pre-processing (down-

sampling) step is necessary. As shown in Figure 2, the down-

sampling step is used to decimate the original point cloud

into a fixed number of points, while maintaining the spatial

information structure.

The down-sampled input point cloud is the input to the

The feature computation step for inference of PCNs in

Figure 2 makes use of traditional DNNs outputted from the

data structuring step. The weight will be applied to the input

points subset in the MLP hidden layer and the final outputs are

obtained from the output layer. The feature computation step

can be decomposed into MVM, and can be directly accelerated

by existing commercially avaibable DLAs such as NPU [4].

In summary, an end-to-end PCN inference process contains

three major steps: down-sampling pre-processing of the raw

point cloud data, data structuring, and feature computation.

Among these operations, down-sampling and data structuring

are point-cloud-specific operations and have not been fully

optimized. However, these two operations are quite expensive

and become major bottlenecks for end-to-end PCN inference.

Expensive downsampling pre-processing. In real-world edge

computing applications, pre-processing is a necessary step in

the AI pipeline [23]. Furthermore, for point clouds, the pre-

processing is far more expensive than traditional data types

and contributes to a major part of the latency. There are two

main causes of the high latency. The first is the enormous size

of raw point cloud data. The number of points in raw point

cloud data is from N ∼105 to N ∼106. The second reason is

the expensive down-sampling methods used. For example, the
FPS method samples the raw point cloud iteratively. It starts

by randomly selecting a seed point from the raw point cloud

set (denoted as set C) and putting it in the sampled points set

(denoted as set S). In each iteration, it picks a point from the

unpicked point set C − S that is the farthest from the sampled

point set S and adds it into the sampled point set S, until S
contains the predefined number of points K. In this w}ay, the

to the concept of a “stride window” in convolution, weight

kernels in PCN will only be applied to a subset of input points

while moving over the entire point set. Because point clouds

are sparsely scattered in a 3D space, forming the input subset

of points is far more difficult than traditional dense input

like images. Unlike the pixels in images, there is no direct

neighbor-indexing method in point clouds. Thus, as shown in

Figure 2, before the feature computation step, an extra data

structuring step is required to form the subset of points as the

“input feature map” by using neighbor-gathering methods.

raw points C, such that each pk is the farthest point from the

first k − 1 points. K is a selected fixed number (e.g., 4096).

We will show later in Section III that the down-sampling pre-

processing phase is a memory-intensive task and is a huge

computational workload. In addition, the down-sampling pre-

processing phase does not use memory bandwidth efficiently.

In the FPS method, over 99% of memory accesses are wasted

because most of these points will be filtered out and not

be used again after down-sampling. Among all the existing

sampling methods, only the Random Sampling (RS) method

backend PCN inference phase, as shown in Figure 2. Similar

is possibly fast enough to satisfy real-time requirements on

general-purpose architectures. The RS method simply picks

K points from the raw point cloud randomly. As a result,

the accuracy of random sampling is low and cannot be fully

trusted [10], especially in some safety-oriented applications.

Expensive Data Structuring. As mentioned, in order to use

commercially available DLAs, PCNs need to gather point-

subsets, which are in the neighboring set N (xk) of selected

central points (red points in the Figure 2), to form the

“input feature map” for feature computation. (For example,

in Figure 2, central point A gathers nearest points B, C, D, E,

and F to form the point-subset A.) Unlike pixels in images,

the points in point clouds are scattered over a 3D space in an

irregular manner. There is no direct neighbor-indexing method

to gathering the neighboring set N (xk). The gathering process

can be achieved by expensive nearest neighbor gathering,

such as KNN (K-nearest-neighbors) and BQ (Ball query). In

traditional methods, neighbor points gathering for each central

point needs to search over the entire input point cloud. Let’s

assume the size of the input point cloud is n, and neighbor

gathering size is k. For neighbor gathering of each central

point, it is necessary to compute the distances from this central

point to every other n−1 points, and pick the top k points with

nearest distances. Each neighbor gathering process of a central
point replicates these steps and results in a high workload.

B. Current PCN Accelerators

Existing PCN accelerators mainly focus on optimizing the

expensive data structuring step (second bottleneck), with the

assumption the point cloud data is already pre-processed

(first bottleneck). Unlike these PCN accelerators, the proposed

HgPCN will not assume the point cloud data has been pre-

processed. The HgPCN architecture supports efficient online

pre-processing, together with an Inference Engine to supports

efficient end-to-end PCN inference service.

To perform the data structuring step in the inference phase,

existing PCN accelerators can be divided into two types. The

first type [6], [16] performs data structuring by using accurate

neighbor search methods, which returns the same result as

traditional data structuring methods. The second type is to

improve the latency of the data structuring step by using some

tree-based methods [5], [20], [29], to perform an approximate

neighbor search. As a result, these approximation methods

require some adaptation in the model training phase [5]. The

data structuring method used in HgPCN results in accurate

(not approximate) data structuring, which is compatible with

current training method. Thus, we will compare our inference

results (in Section VII) to the first type of PCN accelerators.

III. MOTIVATION

In this section, we identify the key performance bottle-

necks of an end-to-end PCN in general (not considering

accelerators). The evaluation was performed using general-

purpose platforms: Intel® Xeon® W-2255 CPU and 4060Ti

GPU. For down-sampling in the pre-processing phase, the

most commonly used FPS [3] method was used. For the

backend, Pointnet++ [22] was used to perform inference on

the Modelnet40 [27], ShapeNet [1], S3DIS [15], and KITTI

[8] datasets. The end-to-end PCN application was run to

obtain a breakdown of the latency. Then, we quantitatively

analyze the detailed operations in the two phases to identify

the bottlenecks which motivate the HgPCN design.

Fig. 3. End-to-end execution time breakdown (actual time not shown).

Overall Latency Analysis. Figure 3 shows the percentage of

the total end-to-end latency spent on the pre-processing phase

and inference phase for each of the four example datasets. As

expected, datasets with larger raw point clouds require more

time for pre-processing. From Figure 3, it can be observed that

the latency of pre-processing is far greater than the latency of

the actual inference. The results confirm that the high cost

of the AI tax for point cloud applications is far more serious

than traditional AI applications [23]. Optimizing only the PCN

inference phase, as done in existing PCN Accelerators [13], is

far from enough to meet the real-time requirements of point

cloud applications on the computing edge.

A. Analysis of Frontend Pre-processing

Bottleneck Identification. The bottleneck in the pre-

processing phase is caused by large data movement, result-

ing from the large memory footprint of the down-sampling

process. One reason is the large input size. In our baseline

datasets, for every frame of raw point cloud data, KITTI con-
tains (N ∼106), Modelnet40 contains (N ∼105), and S3DIS

contains (N ∼105) points, respectively. The second reason is

that an excessive amount of intermediate data is generated

during the down-sampling phase. As we discussed in Section

II, the FPS algorithm samples the raw point cloud by itera-

tively picking the farthest point. For each iteration, we have to

compute the distances between every point in unpicked points

set C − S to picked points set S and rank these distances. This

process exhibits low data locality because all of the computed

distances (intermediate data) are written into the memory, and

then read again after all distances are calculated. For these

reasons, the down-sampling phase is a very time-consuming

memory-intensive task, and the major resource of AI tax.

B. Analysis of Backend PCN Inference

As shown in Figure 2, PCN inference contains two separate

steps: data structuring (DS) and feature computation (FC). The

DS step is used as input preparation for the FC step, which is

the actual convolution (CONV) step.

Bottleneck Identification. The data structuring step consists

of the neighbor search of central points, which can be solved

by algorithms such as k-nearest-neighbors (KNN) or Ball

query (BQ). Even though the neighbor search operations them-

selves do not involve complicated computations, it is still time-

consuming because the neighbor search algorithms operate

over the entire input point cloud. For the data structuring step

of a point-subset of PCNs, we need to compute the distance

from every point to the central point and pick the top k nearest

points by ranking these distances (using the KNN example).

And this data structuring step is replicated for every central

point in the input point cloud. As a result, a large amount of

computation is required by the data structuring steps for each

feature computation step. A recent work [16] shows that in

PointNet++, approximately 50% of total computation of the

inference phase is consumed by the data structuring step and

becomes another source of AI tax.

The feature computation in PCNs (i.e., actual inference)

shares the same requirements as the traditional DNNs and

can be directly optimized by using DLAs [13]. But the data

structuring step is unique for PCNs and are not supported

by existing commercial accelerators. To take advantage of

commercial DLAs to accelerating the feature computation

step, the data structuring bottleneck needs to be addressed.

IV. HGPCN ARCHITECTURE

Shown in Figure 4 is an overview of the architecture of

HgPCN, which is based on a CPU-FPGA shared memory

platform (e.g., Intel PAC card [12]). The major system compo-

nents of the architecture are: (1) CPU, (2) Host Memory, and

(3) FPGA. The major architectural components of HgPCN are

(1) Pre-processing Engine (Octree-build Unit in the CPU and

Down-sampling Unit in the FPGA) and (2) Inference Engine

(Data Structuring Unit and Feature Computation Unit) in the

FPGA. A key feature of the HgPCN architecture is that both

the CPU and FPGA can access the data in the shared Host

Memory. For each frame of the point cloud, we assume the raw

data from the data sensor (e.g., LiDAR) is collected and stored

in the Host Memory. Recall from Section I (Figure 1), an end-

to-end point cloud AI service based on PCNs comprise of two

major phases after raw data generation: pre-processing of the

point cloud data and PCN inference. As will be described in

more detail later, for the HgPCN, the pre-processing phase

consists of two steps; (1) an Octree construction & memory

pre-configuration step which is performed using the CPU

and Host Memory, and (2) a down-sampling step which is

performed in the Down-sampling Unit in the FPGA. The PCN

inference phase is performed in the Inference Engine in the

FPGA. As shown in Figure 4, the Inference Engine consists

of a Data Structuring Unit and a Feature Computation Unit.

Pre-processing: Octree construction & memory pre-

configuration For each frame of the point cloud, an Octree is

constructed in the CPU according to the raw point cloud data

and configured into an Octree-Table. The Octree can be built

Fig. 4. Architecture overview of HgPCN.

by traversing points in the raw point cloud in a single pass of

the data. Additionally, the point cloud data in the Host Memory

will be configured (i.e., reorganized) according to the Octree-

based sequence. The Octree-Table will record the addresses

of the re-arranged points. More details of this process and

how it greatly reduces Host Memory access will be given in

Section V. After the Octree-Table is built, it is transferred to

the Down-sampling Unit in the FPGA.

Preprocessing: downsampling. In Section V, we will intro-

duce an Octree-Indexed-Sampling (OIS) method which will

make use of the Octree-Table [17] to perform the down-

sampling process on memory addresses without having to ac-

cess the Host Memory, greatly reducing the memory-intensive.

As shown in Figure 4, this down-sampling step is performed

in the FPGA in the Down-sampling Unit. The output of

the down-sampling is recorded in the Sampled-Points-Table

(SPT), which contains the addresses of after-sampled points.

Using these addresses in the SPT, the Down-sampling Unit

can read the after-sampled points directly from Host Memory

and these points provide the input for the inference phase.

Inference Engine. The Inference Engine consists of two main

modules, the Data Structuring Unit (DSU) and the Feature

Computation Unit (FCU), both of which are implemented

in the FPGA. In our prototype implementation, the FCU is

a commercially available Deep Learning Accelerator (DLA),

like the Intel NPU [26]. The DLA will perform inference on

the point-subset as the “input feature map”, which is the output

from the DSU.

The Data Structuring Unit (DSU) performs a preparation

step to produce an input feature map that can be used by

existing DLAs. The implementation of the DSU is based

on a Voxel-Expanded Gathering method and fundamentally

reduces the workload of the data structuring step as compared

to current methods. The details of the DSU and the Voxel-

Expanded Gathering method will be presented in Section VI.

V. PRE-PROCESSING ENGINE

As we discussed in Section III, the pre-processing of a point

cloud frame using standard methods is a memory-intensive

Fig. 5. Octree-Indexed-Sampling method overview: (a) A point cloud character “A” (black and color points). Note, for simplicity, that it is a 2D Quadtree
illustration of our Octree-Index-Sampling (OIS) method. An Octree contains two horizontal levels of Quadtrees, having an extra Z dimension. (b) Corresponding
Quadtree representation. For simplicity, only node “11” is fully expanded. As shown, the content of a Quad-tree is stored in a Quadtree-Table in the Down-
sampling Unit; and the raw points corresponding to the Quadtree are pre-configurated in the Host Memory. (c) An example of OIS steps to create the
Sampled-Point-Table, which contains the corresponding Host Memory addresses of the K picked points, where K is a pre-defined number, e.g., 4096.

task. An extremely large amount of input points and inter-

mediate data need to be accessed repetitively from memory;

and as a result, the computational workload for pre-processing

is also extremely heavy. In this section, we introduce an

Octree-Indexed-Sampling (OIS) method to greatly reduce the

memory-intensive bottleneck in the down-sampling process.

With the OIS method, the HgPCN builds the Octree Table in

the Octree-build Unit in the CPU and transfer it to the FPGA

via MMIO. Based on the Octree Table, the down-sampling

process is performed in the Down-sampling Unit in the FPGA,

which directly access the desired after-sampled points from

memory. Also in this section, we present how the Down-

sampling Unit accelerates the large computational workload

through hardware parallelism.

Octree-Index-Sampling (OIS) Our OIS method is based on

a key observation: down-sampling can be based on the relative

position of a point in a 3D space. For example, most of

the down-sampling methods normalize the point cloud data

(to produce the relative positions) before the actual down-

sampling process. In the OIS method, we will describe how

we can obtain the relative position information beforehand by

using a spatial indexing method. Then we can directly use the

index to perform the down-sampling without having to access

the memory to read out the absolute XYZ coordinates.

A. Octree-build Unit in the CPU

Octree Construction. The Octree structure is a way to reg-

ularize the point cloud using voxels. It decomposes the point

cloud distributed in a 3D space into a 1D-array, where the

leaf level of the generated Octree is the resulting 1D-array.

Figure 5(a) illustrates the steps of creating a Quadtree (note

that a Quadtree, a simplified 2D-version of an Octree, is used

for illustration). In the beginning, we put the point cloud (e.g.,

point cloud character “A”) into a root-level voxel (the outer

black bordered “box” in Figure 5(a)). Then we continuously

divide each non-empty voxel into sub-voxels (4 “blue” sub-

voxels for the example Quadtree in Figure 5(a); 8 sub-voxels

in an actual Octree) until it reaches a pre-defined depth (root

plus three levels in this example). For each division, the level

of the Octree is increased by one and the m-codes [18] of the

subdivided nodes add two more bits at the end (three more

bits in the Octree). In these newly added bits, the first bit

represents the X-axis, and the second bit represents the Y-axis

(for an Octree, the third bit represents the Z-axis).

As shown in Figure 5(a), these new-added bits are based

on the Space-Filling Curve (SFC) traversal order [24]. For the

sub-voxels (child-nodes) generated by each subdivision, the

new-added code of each sub-voxel, when compared with its

parent voxel, is based on its relative position inside the parent

voxel: i.e., the bottom-left quadrant is 00; the top-left is 01;

the bottom-right is 10, and the top-right is 11.

Shown in Figure 5(b) is a partial representation of the

resulting Quadtree. The root and three levels are color-coded,

corresponding to Figure 5(a). Every non-empty voxel from

Figure 5(a) will be represented by a node in the Quadtree

in Figure 5(b). In the final generated Quadtree, each non-leaf

node includes up to four child-nodes (sub-voxels). Each leaf

node includes the actual points within that node. For example,

the leaf node 110011 shown in Figure 5(a) includes one point

(11001100) and the leaf node 001101 contains four points.

As described in [25], Octree can be used as an indexing

method in a spatial database to optimize spatial queries.

In HgPCN, the spatial information of each point is stored

in Host Memory and can be obtained efficiently through an

Octree-Table lookup. To do so, the point cloud data has to be

reorganized as described next.

Octree-based Organization in Host Memory. The Octree

construction (as described in the previous section) is a process

of mapping the voxels (nodes) from a higher dimension (2D in

Quadtree; 3D in Octree) to 1-D linear ordering. This resulting

1D linear ordering can be naturally mapped to consecutive

memory addresses, which is also a 1D array. In Figure 5(b),

connecting the leaf nodes together from the left-most leaf node

(110001) to the right-most leaf node (110101) is the 1D linear

ordering based on SFC traversal. Based on this 1D order, we

can construct a 1D array comprised of the points inside the leaf

Fig. 6. Pseudocodes of 1) common method for FPS. 2) OIS method for FPS.

nodes. In cases when a leaf node contains multiple points (such

as Node 110010 or 110100), the intra-node point arrangement

also follows the SFC traversal. Note again that Figure 5(b)

is only a partial representation of the example Quadtree from

Figure 5(a), thus the 1D array [P1, P2, . . . , P8] shown at the

bottom of Figure 5(b) represents only a part of the complete

1D array for this example. The key point is that this 1D-array

represents the same points in the raw point cloud, but are in

a reorganized sequence.

Next, the resulting 1D array is used to pre-configure the

point cloud data in Host Memory by creating a reorganized

copy in the memory. Using the simplified example in Fig-

ure 5(b), the points [P1, P2, . . . , P8] are initially distributed

“irregularly” throughout the million-point dataset in Host

Memory. After the Octree-based reorganization process, those

points [P1, P2, . . . , P8] are stored in consecutive addresses in

the Host Memory.

In summary, the Octree construction and the point cloud

data reorganization are performed at the same time by a single

pass of raw point cloud data. As will be described in the next

subsection, through an Octree-Table lookup, we can obtain the

memory address to directly access the spatial information (or

characteristics) of the desired point. In contrast, the commonly

used FPS method has to read out every point in the raw point

cloud in Host Memory and searches for the desired next point

by a ranking operation.

B. Down-sampling Unit in the FPGA

Configuration and use of Octree-Table. As shown in Fig-

ure 5(b), the generated Octree will be configured into an

equivalent Octree-Table, to be transferred to and used by

the Down-sampling Unit in the FPGA. In the Octree, the

leaf nodes contain the address (or address range) of the

contained point(s). In the Down-sampling Unit, the Sampling

Modules perform (in parallel) the down-sampling task by

performing Octree-Table lookup operations. When a Sampling

Module reaches a leaf node during an Octree-Table lookup, the

Down-sampling Unit can determine the address containing the

desired point and access the Host Memory directly to obtain

the spatial information (xk, yk, zk) and feature information

(fk) of that point, as described in the following example.

Octree-Indexed-Sampling Algorithm and an Example. Fig-

ure 5(c) shows an example of the steps in using the OIS

method to achieve the same function as the commonly-used

FPS method, but without incurring the cost of repetitive

memory accesses. As illustrated in Algorithm 1 in Figure 6, for

picking the farthest point as the next picked point, the common

FPS method searches every point in unpicked point set (C −S)
and compares distances. The OIS method substitutes the

operations of Algorithm 1, which work on sparse points, with

Octree-Table lookup operations. In the OIS method (Algorithm

2 in Figure 6), the step that picks the farthest point is first

approximated by picking the farthest voxel. Then within that

voxel, pick the farthest of the points inside this voxel according

to the SFC (Space-Filling Curve) traversal order. In Algorithm

1, the for-loop for finding the next point (Line 4 to Line 6)

iterates N times (N is the number of points in an up-to-million

point raw point cloud frame). In contrast, the while-loop in

the Algorithm 2 for finding the next point (Line 3 to Line 11)

iterates at most a number equal to the depth of the Octree,

which is quite limited.

For example, assume that we pick the red point (left bottom-

most point in Figure 5(a)) as the seed point. As the first

picked point, the seed point is written into the first entry of the

Sampled-Point-Table, as shown in Figure 5(c). Since this seed

point belongs to voxel 000000, we want to find the farthest

voxel from 000000. The process is explained as follows.

In the Octree (Figure 5(c)), the seed voxel 000000 belongs

to voxel 00 in the first level; 0000 in the second level; and

000000 in the third (leaf) level. We begin to search for the

desired farthest voxel of the seed voxel at the first level.

At the first level, voxel 000000 belongs to voxel 00 and its

farthest first-level voxel is 11. (Note that the distance between

two voxels can be determined by the Hamming distance [19]

between m-code [11]). Voxel 11 has two child-voxels in the

second level, 1101 and 1100, of which 1101 is the farther voxel

from the 0000. Continuing, voxel 1101 has two child-voxels,

110100 and 110101, of which 110101 is the farther voxel from

000000. Now we reached the leaf and find voxel 110101 as

our desired farthest voxel from the seed voxel 000000. For

the points inside voxel 110101, we pick the farthest point

according to SFC traversal sequence and insert it into the next

entry of the Sampled-Point-Table, as shown in Figure 5(c).

Continuing, in the standard FPS method [3], when the

picked points set S contains more than one point (two points

in this example thus far), the seed point for the next iteration

will be the Euclidean norm of S (i.e., a virtual summary point

to represent S), denoted by ||S||2. The OIS method follows the

same approach and repeats the steps of picking the subsequent

farthest points from ||S||2 until the size of the point set N(S)

reaches the pre-defined number K.

Hardware Acceleration Figure 7(a) shows the details the

Sampling Modules of the Down-sampling Unit in HgPCN.

Each Sampling Module has two inputs: m-codes of the as-

signed voxel and m-codes of the seed voxel. A Sampling

Fig. 7. Hardware design of voxel-level parallelism.

Module calculates the Hamming distance between the two

m-codes using an efficient XOR operation [19]. The outputs

from the Sampling Modules are simultaneously inputted into

a bitonic sorter (not shown) to select the node with the largest

Hamming distance as the next searched node.

To further accelerate the OIS-based down-sampling phase,

the Down-sampling Unit deploys multiple Sampling Modules

based on voxel-level parallelism. Figure 7(b) shows the steps

of OIS-based FPS using voxel-level parallelism. At any given

time, eight Sampling Modules are each assigned one of these

child-nodes to find the farthest node in parallel.

Summary: In summary, to efficiently perform point

cloud down-sampling, HgPCN employs an Octree-Indexed-

Sampling (OIS) method by utilizing the Octree-based spatial

queries to directly access the target points in Host Memory. To

do so, HgPCN first constructs an Octree-Table and performs a

pre-configuration step by reorganizing the point cloud data

in the Host Memory. In our prototype HgPCN, these two

processes are performed simultaneously in the Octree-build

Unit (in the CPU) with a single pass of the raw point cloud

data. After that, the Down-sampling Unit of HgPCN (in the

FPGA) will perform the down-sampling by directly obtaining

the memory addresses of the desired after-sampled points

from the Octree-Table. In this manner, HgPCN greatly reduces

the memory-intensive bottleneck of the pre-processing phase

by indexing the 3D relative position of points with the 1D

memory address. To further accelerate the OIS-based down-

sampling phase, HgPCN exploits voxel-level parallelism by

using multiple Sampling Modules in the Down-sampling Unit.

Finally, the OIS method also provides a significant saving

of on-chip memory in the FPGA. This is important because it

allows the FPGA to have enough on-chip memory to support

the accelerators for the two phases in HgPCN (down-sampling

and inference) within one device. In Section VII, we will

evaluate and analyze of the on-chip memory-saving benefit

provided by the OIS method.

VI. INFERENCE ENGINE

As we discussed in Section III, for point cloud inference,

before the actual feature computation step in the Inference

Engine, an expensive data structuring step is required to form

an input feature map; without which the inference cannot be

supported by current commercially available DLAs. Thus, as

shown in Figure 8, the HgPCN Inference Engine consists of

a Data Structuring Unit (DSU) and Feature Computation Unit

(FCU). The FCU is a commercially available Deep Learning

Accelerator (DLA) which implements a classic systolic array

design. The Data Structuring Unit (DSU) is a custom-designed

module to optimize the expensive data structuring step and will

be described below.

Data Structuring Unit Most existing PCN accelerators [6],

[16] accelerate this step mainly from a hardware perspective,

e.g., using parallel execution. In this paper, we propose a

Voxel-Expanded Gathering (VEG) method, in which opti-

mization is achieved through algorithm and hardware co-

design. The VEG method utilize the spatial indexing nature of

Octree to algorithmically minimize the required computational

workload in the data structuring (DS) step, and then further

accelerate through parallel execution. Furthermore, the VEG

method can efficiently support commonly used DS methods,

e.g., KNN (K-Nearest-Neighbors) and BQ (Ball Query). In

this section, we will use KNN as the example.

Traditional Method for Input Feature Map. After the down-

sampling step, current PCNs typically pick a fixed number

of central points (e.g., red points in the input point cloud of

Figure 2) from the down-sampled input point cloud. The data

structuring step is used to form the subset of points as the

“input feature map” by gathering nearby points of these central

points. For the data structuring step of each central point,

current PCN accelerators search all the points from a (down

sampled) input point cloud, and then calculate the distance

from every other point to the center point. Next, they sort

and pick out the nearest K neighbor points from input point

cloud. For example, if we assume the down-sampled input

point cloud (after the processing phase) has 4096 points, and

KNN needs to gather the K = 32 nearest points from the

central point. With traditional methods, they need to compute

4095 distances from the central point to every other point, and

select the top K = 32 points with shortest distances. In this

process, most of the 4095 distance calculation (except for the

32 nearest neighbors) can be regarded as wasted.

Voxel-Expanded Gathering (VEG) Method. In the VEG

method, before the actual sorting step, we first narrow the

range of nearest point search by adjacent-indexing through

the use of an Octree. The standard Octree neighbor-search

operation [7] is used to search the voxels adjacent to a central

point’s voxel. More details of the steps of VEG method

are discussed below. The HgPCN Data Structure Unit can

execute multiple Octree neighbor search operations in parallel

to search all adjacent voxels at the same time.

Architectural Support In HgPCN. As shown in Figure 8,

the design of the HgPCN Data Structuring Unit consists of

six pipeline stages:

• 1) Fetch Central Points (FP): Fetch a central point and

the corresponding m-code [18] of this point.

• 2) Locate Central Voxel (LV): Locate the voxel that

contains the central point Vseed (yellow voxel shown in

Fig. 8. Inference Engine overview.

Figure 8 (2 and 3)).

• 3) Voxel Expansion (VE): At the first level of voxel

expansion (V 1), neighboring voxels touching the central

voxel Vseed are included (the gray voxels in Figure 8 (3)).

Voxel expansion continues outward and include the next

level of touching voxels (the green voxels are included

for the second expansion V2). Voxel expansion continues

until the total number of points included in the expanded

voxels is at least K.

• 4) Gather Points (GP): Let’s assume that there are

N0 points in the initial voxel Vseed and that we need

n expansions to collect enough points (>= K). Also,

assume there are N1 points in gathered voxels by first

expansion V1; and Nn points in gathered voxels by the

n-th expansion Vn . Gather the points from Vseed to Vn−1
(i.e., total of N0 + N1... + Nn−1 points).

• 5) Sort (ST): Sort the points in last voxel set Vn and pick

the K - sum(N0 to Nn−1) points with nearest distances

VII. EVALUATION

A. Evaluation Setup

Implementation Method A prototype of HgPCN has

been implemented on an Intel PAC, a shared memory

CPU-FPGA (Intel Arria 10 GX) platform. The accelera-

tors are implemented on the FPGA side with SystemVer-

ilog and VHDL, and the software implemented on the

CPU side with C++.

Benchmark datasets As shown in Table I, four common

point cloud datasets (for four applications), with different

raw-dataset frame sizes, were selected as our benchmarks.

TABLE I

EVALUATION BENCHMARKS

from the central point. Together with the N0 + N1... +
Nn−1 points, the K nearest points are found.

• 6) Buffering (BF): Output the gathered K points, includ-

ing the coordinates (pk) and feature information (fk), to

the input buffer for the feature computation step.

The above steps are repeated for each central point.

Example: Assume we need to gather the 32 nearest neighbors

for the central point (red point) in Figure 8.

• The voxel (yellow) that contains the red point is the seed

voxel Vseed. Let’s assume there are N0 points gathered

in Vseed and that N0 < 32.

• The voxel search is expanded outward from Vseed and

includes first-level neighbor voxels of V1 (grey voxels in

Figure 8). Assume there are N1 points in the set of grey

voxels and that N0 + N1 < 32. These N1 points are

gathered in V1.

• Since there are still < 32 in the gathered voxels, we

continue to include the second-level neighbor voxels

(green voxels). Let’s assume there are N2 points in the

set of green voxels. These N2 points are gathered in V2.

• Let’s assume that N0 + N1 + N2 > 32, then pick the top

nearest (32 − N0 − N1) points in V2 and combine them

with N0 and N1 to form the 32 nearest neighbors.

Baseline devices and accelerators for comparison

General-purpose devices used in our comparison include

the Intel® Xeon® W-2255, Nvidia Jetson GPU, and

4060ti GPU. These general-purpose devices are used

for end-to-end comparison, including the pre-processing

phase and the inference phase.

The second type of baseline hardware for comparison
is against existing PCN accelerators, Mesorasi [6] and

PointACC [16], with 16 × 16 systolic arrays for the

feature computation step. Because these PCN accelerators
do not include the pre-processing phase (i.e., not end-to-

end), we will perform the comparison only on the PCN

inference phase.

Note that it is unnecessary to sort or compute the distances

of points in N0 (from Vseed) and N1 (from V1), because

they are definitely among the 32 nearest neighbors. Existing

methods usually compute the distance from the central point

to every other point in the 4096 input points, and pick the

32 nearest points. With the VEG method, the computation

workload (of sorting and picking the nearest points) is reduced

from 4095 to N2.

B. Analysis of the OIS method on CPU

As stated, for the FPS down-sampling algorithm, the OIS

method converts original operations (Algorithm 1 in Figure 6)

Application Dataset input Size PCN Model

Object Classification ModelNet40 1024 Pointnet++(c) [22]

Part Segmentation ShapeNet 2048 Pointnet++(ps) [22]

Indoor Segmentation S3DIS 4096 Pointnet++(s) [22]

Outdoor Segmentation KITTI 16384 Pointnet++(s) [21]

Fig. 9. Memory-access saving from OIS-method.

on sparse points into efficient Octree lookup operations (Al-

gorithm 2), optimizing the memory-intensive problem of the

pre-processing phase. To demonstrate the inherent advantage

of the OIS method against the common FPS method, we first

evaluated these algorithms running on the same CPU (for OIS,

both Octree-build Unit and Down-sampling Unit are on CPU).

Benefits of the OIS method. Both Algorithm 1 (common

FPS-method) and Algorithm 2 (OIS method) were run on an

Intel® Xeon® W-2255 CPU, using point cloud frames with

different sizes. The results are shown in Figure 9 and 10. In

both figures, the x-axis shows the different point cloud frames.

Labels beginning with “MN.” are frames from the ModelNet40

dataset and the label “kitti.avg” represent a frame from the

KITTI database of the average size. Note that for Shapenet,

the raw data size is smaller than 4096 points, so it doesn’t

include a column for down-sampled to 4096 points. For the

y-axis, 6000× means the OIS method requires 6000 times less

memory accesses than FPS method.

As shown in Figure 9, memory-access saving for these

benchmarks ranges from 1700× to 7900× for point cloud

frames of different sizes. This result is consistent with the the-
oretical analysis of memory-access saving between Algorithm
1 and Algorithm 2 in Figure 6.

Figure 10 shows the overall measured latency improvement
of the OIS-based method, as a result of the memory-access

savings. The OIS-based sampling outperforms the common

FPS method with 800× to 7500× speedup.

Overhead from Octree Build. As discussed in Section V

(Pre-processing Engine section) and shown in Algorithm 2, the

Octree-indexed Sampling method requires an initial overhead

of building the Octree. Figure 11 details the overhead for

different point cloud datasets and frame sizes. The Octree-

construction overhead can range from 0.25 to 0.8 of the total

latency of the OIS method when implemented only on CPU.

In OIS-based sampling (on CPU), most of the latency and

memory accesses are from the Octree-construction, because

the OIS method must go through the entire raw point cloud

data once to build the Octree. Note also, that the latency of OIS

is impacted by two factors: the number of points in the point

cloud and the depth of the Octree. The Octree-construction

latency is determined by the number of points in a point cloud,

and the speed of Octree-search is linearly related to the Octree

depth. The Octree depth is influenced by the non-uniformity

of a point cloud [14]. In Figure 11, even though MN.piano

Fig. 10. latency speedup from OIS-method on CPU.

and MN.plant contain almost the same number of points, the

spatial distribution of MN.piano is more non-uniform than

that of MN.plant, resulting in a deeper Octree for MN.piano.

Unlike traditional methods, which require repetitive searching

among the raw point cloud data, OIS can greatly reduce the

amount of memory access (as demonstrated in Figure 9).

Furthermore in HgPCN, the VEG method (for DS step) can

reuse the built Octree to amortize the overhead.

Fig. 11. Octree-build overhead of OIS-based sampling.

C. Pre-processing Engine Performance

In Figure 12, we first compare the OIS-on-CPU (software

implementation on CPU) vs OIS-on-HgPCN to illustrate the

speedup resulting from the hardware Down-sampling Unit. As

seen from the first two columns in Figure 12, compared with

OIS-on-CPU, the OIS-on-HgPCN can provide a from 1.2×

to 4.1× speedup. This speedup stems from the reason that

the hardware Down-sampling Unit (described in Section V-B)

can achieve a 5.95× to 6.24× speedup compared to the CPU-

implemented Down-sampling Unit.

Fig. 12. Latency comparison of Pre-processing Engine against the baselines

In the remainder of Figure 12, we compared the runtime

latency of HgPCN’s Pre-processing Engine with three existing

sampling methods on the baseline devices where they can

get the best performance (CPU or GPU). (To our best of

knowledge, there is no existing DSA for point cloud pre-

processing). Among these sampling methods, FPS is the most

commonly used because it results in the least information loss.

However, it has the highest runtime latency. Random sampling

(RS) has the lowest runtime latency, but is not generally

used because it has the highest information loss. In some

existing methods [10], a reinforcement process uses an encoder

architecture to enhance RS (as RS+reinforce). But this method

is not universal. It can only be applied to PCNs with encoder-

decoder architectures.

In Figure 12, the total latency of the Octree-indexed-

sampling (OIS) method on HgPCN (light-blue columns) is

shown. This latency includes the CPU-end (Octree-build Unit)

and the FPGA-accelerator-end (Down-sampling Unit). The

results show that the OIS method on HgPCN possesses the

best advantages of the tested sampling methods. Although the

performance of OIS on HgPCN is a little slower than random

sampling, it can achieve the same accuracy as the FPS method.

Unlike RS+reinforce, it is universal to all types of point cloud

networks. Furthermore, compared to the FPS method, HgPCN

offers a more consistent latency for different sizes of point

cloud frames, providing better tail latency for edge computing.

On-chip memory-saving with the OIS method. Reducing

on-chip memory usage in an FPGA is important: 1) to free

up resources to implement other parts of the application and

2) to have the opportunity to keep an entire implementation

on a single FPGA. Figure 13 shows the memory-consumption

comparison between the FPS method and the OIS method:

OIS can provide from 12× to 22× memory-saving.

Fig. 13. On-chip memory-saving benefit from the OIS method.

In our prototype implementation of HgPCN, the device used
is the Intel Arria 10 GX 1150 FPGA, which has 65Mb total on-
chip RAM. From our evaluation, if the raw point cloud frame

contains more than ∼5 × 105 points and is stored in the FPGA

memory (as in the case of FPS), the input points and generated

intermediate data during the pre-processing phase will exceed

the total capacity (65Mb) of on-chip memory. In this case,

there will be no space for the Inference Engine. With the OIS

method, only the Octree-Table needs to be stored in the on-

chip memory, along with minimum amount of intermediate

data. Even if raw point cloud frames contain ∼1 × 106 points,

the OIS method only consumes approximate 10 Mb of memory
in the pre-processing phase.

D. Evaluation of Inference Engine

In this section, we will present the evaluation results of the

HgPCN Inference Engine against a GPU accelerator and two

PCN accelerators: PointACC and Mesorasi. Recall that these

PCN accelerators do not include the pre-processing phase (i.e.,

not end-to-end); thus we can only perform the comparison on

the PCN inference phase. Also, because the Mesorasi PCN

accelerator uses a random picking method to generate central

points for the data structuring step, we will do the same for

the GPU, PointACC, and HgPCN to ensure a fair comparison.

The evaluation results are shown in Figure 14, in which the

x-axis shows the four PCN tasks from Table I and the y-axis

shows the speedup of HgPCN against the baselines.

As shown in Figure 14, when compared to Nvidia Jetson

NX GPU (blue columns), HgPCN achieves from 6.4× to

21× speedup. When compared to Mesorasi (grey columns),

based on the same systolic array architecture for the feature

computation step, HgPCN achieves 2.2× to 16.5× speedup.

We noted that Mesorasi uses a GPU to perform the data struc-

turing step, which still occupies a major part of the latency.

Even though Mesorasi tries to overlap the data structuring and

feature computation, the inference speed is still largely limited

by the latency of the data structuring step.

Fig. 14. Speedup of HgPCN over baseline hardware.

When compared to PointACC (orange columns), HgPCN

achieves 1.3× to 10.2× speedup. Like HgPCN, PointACC

also developed a customized unit (Mapping Unit) for the data
structuring step. Like HgPCN’s DSU, the Mapping Unit of
PointACC also uses a bitonic sorter to accelerate the ranking

process. However, while based on the same bitonic sorter

approach to select the top K nearest points, the HgPCN can

outperform PointACC because of the fundamentally reduced

workload resulting from the VEG method. Through the VEG

method, HgPCN narrows the range for searching the nearest

points. In Figure 15, we compare HgPCN against PointACC

to show the benefits of the VEG method. Like other current

existing methods, the searched range of PointACC’s bitonic

sorter is over the entire input point cloud. In contrast, the

required workload of the bitonic sorter in HgPCN’s Data

Structuring Unit only sorts the points in Nn (from the last

expansion Vn in Figure 8). Thus, the required workload of the

bitonic sorter in HgPCN’s DSU is fundamentally less than that

of PointACC’s Mapping Unit. Figure 15 shows the workload

reduction due to the benefits of the VEG method. Note that

for PCN tasks with larger input sizes, the VEG method can

achieve an even greater level of workload reduction. Figure 16

shows the latency breakdown of the VEG method.

Fig. 15. VEG benefit. Fig. 16. VEG breakdown.

E. Evaluation of System-level HgPCN

In previous subsections, we analyzed separately the de-

tails of the performance of HgPCN in the pre-processing

phase (heterogeneously implemented on the CPU side and the

FPGA-accelerator side) and the inference phase (on FPGA

side). Here, we combine these two phases to evaluate the E2E

system-level performance of HgPCN in an edge computing

scenario. For this evaluation, the KITTI dataset is used as our

benchmark dataset because each frame of KITTI is associated

with a time-label of frame generation, from which we can

determine the maximum generation rate of KITTI data frames.

Let’s assume the point cloud frames are generated in real-

time frame by frame. Our definition of meeting real-time re-

quirement is the end-to-end processing of each frame can keep

up with the sampling (data generation) rate. For the KITTI

dataset, it was shown that HgPCN can process 16 average

frames per second (FPS). For the KITTI dataset, according

to the time label of frame-generation, we can determine the

maximum generation rate of KITTI data frames is less than

16 frames per second. Thus, we can conclude that HgPCN can

keep up with the data generation rate of KITTI to meet the

real-time requirement of such an application.

VIII. CONCLUSIONS AND DISCUSSION

Latency for end-to-end processing of the point cloud

workloads stems from two reasons: memory-intensive down-

sampling in the pre-processing phase and the data structuring

step for input preparation in the inference phase. In this

paper, we presented HgPCN, an end-to-end heterogeneous

architecture for real-time embedded point cloud application. In

HgPCN, we utilize the space-indexing function of the Octree

structure to develop two novel methodologies to address the

two identified bottlenecks and accelerate them by using a het-

erogeneous CPU-FPGA implementation. In the Pre-processing

Engine of HgPCN, an OIS method is used to optimize

the memory-intensive down-sampling bottleneck of the pre-

processing phase. In the Inference Engine, HgPCN extends

a commercial DLA with a customized Data Structuring Unit

which is based on a VEG method to fundamentally reduce the

workload of the data structuring step in the inference phase.

Our results from the previous section showed that for
the inference phase, depending on the dataset size, HgPCN

achieves speedup from 1.3× to 10.2× vs. PointACC, 2.2×

to 16.5× vs. Mesorasi, and 6.4× to 21× vs. Jetson Xavier

NX GPU. Along with optimization of the memory-intensive

down-sampling bottleneck in pre-processing phase, the overall

latency shows that HgPCN can provide the capability of

satisfying real-time requirement by keeping up with the raw

data generation rate of a benchmark application.

A. Discussion and Future Directions

Practical Implications Note that even though both the OIS

method in the pre-processing phase and the VEG method in

the inference phase are based on the Octree structure, they

are independent methods and can be used independently. For

example, the HgPCN Pre-processing Engine can be a plug-

in to other PCN inference accelerators (not using the VEG

method) to perform the end-to-end PCN inference. Similarly,

the HgPCN Inference Engine (with VEG method) can be used

as an independent PCN inference accelerator. In addition, the

OIS and VEG are not only limited to PCN tasks. OIS is appli-

cable to other non-AI point cloud applications (e.g., AR/VR)

which require down-sampling of the raw point cloud data.

VEG can be used for other point cloud applications [29] which

requires neighbor gathering. Also note that the implementation

of these two methods for point cloud nets is not limited to a

CPU-FPGA platform (as in this paper). The proposed methods

are also can be implemented on other accelerators, such GPU

and CGRA (Coarse-Grained Reconfigurable Arrays).

Finally, compared to images, the analysis and processing of

point cloud data is a relatively unexplored area. The arrange-

ment methods of image pixels (e.g., row-major or column-

major) are well-developed, with which a 1D-address can be

used as the index to a 2D-coordinate of a pixel. However, to

our best of Knowledge, OIS is the first method that can be used

to index the 3D-coordinate with 1D-address (by arranging the

points). In HgPCN, we demonstrated the benefit of the OIS

method and believe it can inspire future works to propose other

efficient arranging methods for point cloud.

Future Direction of OIS: Approximate OIS-based FPS.

Based on OIS, the current prototyped HgPCN accelerates

the commonly used down-sampling method, farthest-point

sampling (FPS). Considering the approximate nature of DNNs,

an approximate OIS-based FPS method can be explored to

further enhance the speed while potentially causing only

marginal information loss. In the current OIS-based FPS

method, the accurate farthest point is identified and added to

the sampled point set S by first finding the farthest leaf node

and then selecting the farthest point within that node. With

the approximate FPS method, instead of finding the accurate

farthest point, we can randomly pick a point contained by

current accessed node once Octree search is near leaf level.

Because the randomly picked point belongs to the same node

as the actual farthest point, it is spatially adjacent to the actual

farthest point and can serve as an approximate substitute being

added to the sampled points set S. We will explore the tradeoff

between the enhance performance of OIS (by reducing the

number of Octree search operations) vs. the lost in accuracy.

Future Direction of VEG: Semi-approximate Data Struc-

turing. As we introduced in Section II, unlike the accu-

rate Data Structuring (DS) method used by HgPCN, some

PCN accelerators [5], [20] opt for the approximate method

to accelerate the PCN data structuring step. which requires

extra adaption in training. Based on the VEG method, a

semi-approximate VEG method can be explored as a future

direction, positioned in the middle between accurate and

approximate data structuring methods. This semi-approximate

VEG method aims to integrate the benefits of both methods.

In the current VEG method, the majority of nearest points

are gathered directly from the points included in voxel ex-

pansions, except for the final voxel expansion. The points

collected in the final voxel expansion need to be sorted to

select the rest of the nearest points. This sorting process

contributes to most of the computational workload for VEG.

With a semi-approximate VEG, the rest of nearest points

gathered in the final voxel expansion can be approximated

by randomly picking points. Among the results of the semi-

approximate VEG, most of the gathered points are accurate,

and the points from the final expansion can serve as substitutes

for the accurate points because they are spatially adjacent.

This way, the semi-approximate VEG can further accelerate

the current VEG and potentially without the need for training

adaptation.

REFERENCES

[1] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-
rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.

[2] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A survey of accelerator
architectures for deep neural networks,” Engineering, vol. 6, no. 3, pp.
264–274, 2020.

[3] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi, “The farthest point
strategy for progressive image sampling,” IEEE Transactions on Image
Processing, vol. 6, no. 9, pp. 1305–1315, 1997.

[4] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-
eration for general-purpose approximate programs,” Communications of
the ACM, vol. 58, no. 1, pp. 105–115, 2014.

[5] Y. Feng, G. Hammonds, Y. Gan, and Y. Zhu, “Crescent: taming memory
irregularities for accelerating deep point cloud analytics,” in Proceedings
of the 49th Annual International Symposium on Computer Architecture,
2022, pp. 962–977.

[6] Y. Feng, B. Tian, T. Xu, P. Whatmough, and Y. Zhu, “Mesorasi:
Architecture support for point cloud analytics via delayed-aggregation,”
in 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2020, pp. 1037–1050.

[7] S. F. Frisken and R. N. Perry, “Simple and efficient traversal methods
for quadtrees and octrees,” Journal of Graphics Tools, vol. 7, no. 3, pp.
1–11, 2002.

[8] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[9] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
learning for 3d point clouds: A survey,” IEEE transactions on pattern
analysis and machine intelligence, vol. 43, no. 12, pp. 4338–4364, 2020.

[10] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and
A. Markham, “Randla-net: Efficient semantic segmentation of large-
scale point clouds,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 11 108–11 117.

[11] R. H. Hunter, B. C. White, R. R. Patel, and J. R. Ballard, “Using morton
codes to partition faceted geometry: an architecture for terabyte-scale
geometry models,” 2020.

[12] C. Jiang, D. Ojika, T. Kurth, S. Vallecorsa, B. Patel, and H. Lam, “Accel-
eration of scientific deep learning models on heterogeneous computing
platform with intel® fpgas,” in High Performance Computing: ISC High
Performance 2019 International Workshops, Frankfurt, Germany, June
16-20, 2019, Revised Selected Papers. Springer, 2019, pp. 587–600.

[13] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,

S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
44th annual international symposium on computer architecture, 2017,
pp. 1–12.

[14] S. Laine and T. Karras, “Efficient sparse voxel octrees-analysis, ex-
tensions,” and Implementation. Technical report, NVIDIA, Tech. Rep.,
2010.

[15] L. Landrieu and M. Simonovsky, “Large-scale point cloud semantic
segmentation with superpoint graphs,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 4558–
4567.

[16] Y. Lin, Z. Zhang, H. Tang, H. Wang, and S. Han, “Pointacc: Efficient
point cloud accelerator,” in MICRO-54: 54th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, 2021, pp. 449–461.

[17] D. Madeira, A. Montenegro, E. Clua, and T. Lewiner, “Gpu octrees
and optimized search,” in Proceedings of VIII Brazilian Symposium on
Games and Digital Entertainment, 2009, pp. 73–76.

[18] G. M. Morton, “A computer oriented geodetic data base and a new
technique in file sequencing,” 1966.

[19] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov, “Hamming distance
metric learning,” Advances in neural information processing systems,
vol. 25, 2012.

[20] R. Pinkham, S. Zeng, and Z. Zhang, “Quicknn: Memory and perfor-
mance optimization of kd tree based nearest neighbor search for 3d point
clouds,” in 2020 IEEE International symposium on high performance
computer architecture (HPCA). IEEE, 2020, pp. 180–192.

[21] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets
for 3d object detection from rgb-d data,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 918–
927.

[22] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” Advances in neural
information processing systems, vol. 30, 2017.

[23] D. Richins, D. Doshi, M. Blackmore, A. Thulaseedharan Nair, N. Patha-
pati, A. Patel, B. Daguman, D. Dobrijalowski, R. Illikkal, K. Long,
D. Zimmerman, and V. Janapa Reddi, “Missing the forest for the
trees: End-to-end ai application performance in edge data centers,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2020, pp. 515–528.

[24] U. Sakoglu, L. Bhupati, N. Beheshti, N. Tsekos, and L. Johnsson, “An
adaptive space-filling curve trajectory for ordering 3d datasets to 1d:
Application to brain magnetic resonance imaging data for classification,”
in Computational Science–ICCS 2020: 20th International Conference,
Amsterdam, The Netherlands, June 3–5, 2020, Proceedings, Part III 20.
Springer, 2020, pp. 635–646.

[25] B. Scho¨n, A. S. M. Mosa, D. F. Laefer, and M. Bertolotto, “Octree-based
indexing for 3d pointclouds within an oracle spatial dbms,” Computers
& Geosciences, vol. 51, pp. 430–438, 2013.

[26] J. Song, Y. Cho, J.-S. Park, J.-W. Jang, S. Lee, J.-H. Song, J.-G. Lee,

and I. Kang, “7.1 an 11.5 tops/w 1024-mac butterfly structure dual-
core sparsity-aware neural processing unit in 8nm flagship mobile soc,”
in 2019 IEEE International Solid-State Circuits Conference-(ISSCC).
IEEE, 2019, pp. 130–132.

[27] J. Sun, Q. Zhang, B. Kailkhura, Z. Yu, C. Xiao, and Z. M. Mao,
“Modelnet40-c: Arobustness benchmark for 3d point cloud recognition
under corruption.”

[28] Q. Xu, X. Sun, C.-Y. Wu, P. Wang, and U. Neumann, “Grid-gcn for fast
and scalable point cloud learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
5661–5670.

[29] T. Xu, B. Tian, and Y. Zhu, “Tigris: Architecture and algorithms for
3d perception in point clouds,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
629–642.

