HgPCN: A Heterogeneous Architecture for E2E
Embedded Point Cloud Inference

I*" Yiming Gao
University of Florida
gaoyiming@ufl.edu

4™ Xiangru Chen
University of Florida
cxr1994816@ufl.edu

Abstract—Point cloud is an important type of geometric data
structure for many embedded applications such as autonomous
driving and augmented reality. Current Point Cloud Networks
(PCNs) have proven to achieve great success in using inference to
perform point cloud analysis, including object part segmentation,
shape classification, and so on. However, point cloud applications
on the computing edge require more than just the inference
step. They require an end-to-end (E2E) processing of the point
cloud workloads: pre-processing of raw data, input preparation,
and inference to perform point cloud analysis. Current PCN
approaches to support end-to-end processing of point cloud
workload cannot meet the real-time latency requirement on the
edge, i.e., the ability of the Al service to keep up with the speed
of raw data generation by 3D sensors.

Latency for end-to-end processing of the point cloud workloads
stems from two reasons: memory-intensive down-sampling in the
pre-processing phase and the data structuring step for input
preparation in the inference phase. In this paper, we present
HgPCN, an end-to-end heterogeneous architecture for real-time
embedded point cloud applications. In HgPCN, we introduce
two novel methodologies based on spatial indexing to address
the two identified bottlenecks. In the Pre-processing Engine
of HgPCN, an Octree-Indexed-Sampling method is used to
optimize the memory-intensive down-sampling bottleneck of the
pre-processing phase. In the Inference Engine, HZPCN extends
a commercial DLA with a customized Data Structuring Unit
which is based on a Voxel-Expanded Gathering method to
fundamentally reduce the workload of the data structuring step
in the inference phase.

The initial prototype of HgPCN has been implemented on
an Intel PAC (Xeon+FPGA) platform. Four commonly available
point cloud datasets were used for comparison, running on
three baseline devices: Intel Xeon W-2255, Nvidia Xavier NX
Jetson GPU, and Nvidia 4060ti GPU. These point cloud datasets
were also run on two existing PCN accelerators for compar-
ison: PointACC and Mesorasi. Our results show that for the
inference phase, depending on the dataset size, HGPCN achieves
speedup from 1.3X to 10.2X vs. PointACC, 2.2X to 16.5X vs.
Mesorasi, and 6.4X to 21X vs. Jetson NX GPU. Along with
optimization of the memory-intensive down-sampling bottleneck
in pre-processing phase, the overall latency shows that HgPCN
can reach the real-time requirement by providing end-to-end
service with keeping up with the raw data generation rate.

This research was supported in part by the National Science Founda-
tion (NSF) Center for Space, High-Performance, and Resilient Computing
(SHREC) through the [IUCRC Program under Grant No. CNS-1738420.

2™ Chao Jiang
University of Florida
jc19chaoj@ufl.edu

5™ Bhavesh Patel
Dell EMC
Bhavesh.A.Patel@dell.com

3" Wesley Piard
University of Florida
wespiard@ufl.edu

6™ Herman Lam”

University of Florida
hlam@ufl.edu

Index Terms—Heterogeneous Computing, Edge Al Service,
Point Cloud Network Inference

[. INTRODUCTION

With the development of 3D sensors, such as LiDARs,
and RGB-D cameras, there are increased interests in research
and development of processing point cloud data. Point Cloud
Networks (PCNs) have proven to achieve great success in
different tasks of point cloud analysis, including object part
segmentation, shape classification, and so on. Point cloud ap-
plications on the computing edge, such as autonomous robotics
and drones, have stringent real-time requirements. Many PCNs
for point cloud Al tasks have been proposed [9], including
DSA (Domain-Specific Architecture) PCN accelerators such
as Mesorasi [6], PointACC [16], and Crescent [5], which have
been proposed to accelerate PCN inference. However, point
cloud applications on the computing edge require more than
just the inference step. They require an end-to-end processing
of the point cloud workloads. A recent paper [23] indicated
that the processing of Al services for edge computing suffer
the problem of high “Al tax”, which includes the supporting
steps for Al workload such as pre-processing of raw data,
input preparation, and offloading communication overhead.
These steps contribute to a major part of overall latency in
edge Al services. Unfortunately, this high “Al tax” problem is
more serious for point cloud applications. Due to the inherent
irregularity and large size of raw point cloud data, the pre-
processing and communication overhead of point cloud data
are far more expensive than traditional data types, such as
image or video. Due to the high Al-tax, the current PCN
approaches to support end-to-end processing of point cloud
workload cannot meet the real-time requirement [10], i.e., the
ability of the Al service to keep up with the speed of raw data
generation by 3D sensors. In PCN edge services, the Al tax
is mainly stemmed from two reasons: the expensive down-
sampling pre-processing phase and the data structuring step
for input preparation in the inference phase.

As shown in Figure 1(a), an end-to-end point cloud Al
service based on PCNs comprise of two major phases after
raw data generation: pre-processing of the point cloud data

mailto:gaoyiming@ufl.edu
mailto:cxr1994816@ufl.edu
mailto:jc19chaoj@ufl.edu
mailto:Bhavesh.A.Patel@dell.com
mailto:wespiard@ufl.edu
mailto:hlam@ufl.edu

Pre-processing Phase Inference Phase

I
| Data Structuring 1
5 Feature Computation!

|
I
|
I
|
|
I
Data generation|
1
I

(a)

Accelerator
Down-sampling Unit

—Inference Engine

Data Structuring
Unit

I
Octree-build Unit Downsamgled points

Octree-Indexed-Sampling Commercial DLA

|
T

!
Host Memory

@ELLD

Fig. 1. (a) Two phases of an end-to-end point clouds Al service (classification
task), (b) Overall architecture to process the two phases.

(b)

and PCN inference. After obtaining the raw point cloud data
from the sensor, the size of the raw data is enormous: e.g.,
for every frame, a LiDAR sensor produces approximately 2
million points. Also, the number of points in each frame
is highly irregular because different objects have different
reflectivity to the laser. Thus, point cloud applications on the
edge require an effective front-end pre-processing phase to
deal with this kind of irregularity before feeding the data
into the PCN for inference. For each frame, it has to be
down-sampled from million-level, variable-number points into
thousands-level, fixed number points (e.g., 4096 points per
frame to feed into the input layer of a PCN). Because of
the large amounts of points in raw point cloud data and
expensive nature of down-sampling methods, down-sampling
pre-processing is extremely memory intensive and is a major
bottleneck in a real-time point cloud application.

As a type of Deep Neural Network (DNN), the backend
PCN inference phase is a computationally intensive task. In
recent years, there have been much advance in Deep Learning
Accelerators (DLAs), including commercially available DLAs
[2], which perform well in satisfying the computationally in-
tensive inference requirements of traditional DNNs. However,
current DLAs cannot be directly applied to PCN inference.
The reason is, unlike traditional dense data types, points in
a point cloud are sparsely distributed in a 3D space [9],
[28]. Thus, before the actual feature computation with MVM
(matrix-vector multiplication), an additional step, data struc-
turing, is necessary to adapt the spatial sparsity of the point
cloud and prepare the input for the following convolutional
layers. The data structuring step is not supported by current
DLAs. However, if unaccelerated, this step results in a non-
trivial part of the total computation of PCN inference. Data
structuring before feature computation is the second major
bottleneck in a real-time point cloud application.

Current general-purpose architectures fail to effectively
solve these two bottlenecks of end-to-end point cloud Al

services for real-time applications. For example, the most com-
monly used down-sampling pre-processing method, farthest-
point sampling (FPS), takes over 200 seconds to sample 10%
of 1 million points [10] on GPUs. For CPUs, such enormous
amount of computation is rather slow because their limited
parallel capability. We will show in Section III that the down-
sampling pre-processing phase occupies a major part of the
end-to-end latency, which greatly exacerbating the problem of
high “Al tax [23].

Currently, there is a very limited number of hardware-based
designs for point cloud accelerators [6], [16]. Furthermore,
these works do not provide a complete solution since they do
not fully consider the two bottlenecks. They focus solely on the
Al (inference) phase, based on the assumption that the input is
already down-sampled (pre-processed) and restructured. More
details on these previous works will be given in Section II.

In this paper, we first identify the workload characteristics
and bottlenecks of the two major phases of end-to-end point
cloud edge applications. The frontend pre-processing phase
is a memory-intensive task, whereas the backend inference
phase is a computationally intensive task. The workload char-
acteristics are discussed in Section III. An overall architecture
for HgPCN to support end-to-end processing of point-cloud
applications is presented in Section IV.

To enable the real-time PCN process in HgPCN, we intro-
duce two novel methodologies to replace the brute-force tradi-
tional pre-processing and data structuring methods (introduced
in Section II) by converting them into efficient Octree-based
spatial query. To address the memory-intensive bottleneck
in the pre-processing phase, we develop an Octree-Indexed-
Sampling (OIS) method. The OIS method uses an Octree
data structure as a spatial index [25] to organize the point
cloud data in memory. With an Octree pre-organization, down-
sampling can be done with only reading out the desired after-
sampled points among raw point cloud data from the memory,
eliminating the need for repetitive access of input and interme-
diate data from memory. In the HgPCN architecture, the OIS
method is implemented in the Pre-processing Engine shown
in Figure 1(b), which comprised of the Octree-Build Unit in
the CPU and the Down-sampling Unit in the accelerator (e.g.,
FPGA). The design and implementation of the Pre-processing
Engine are described in detail in Section V.

For the Inference phase, we develop an Octree-based Voxel-
Expanded Gathering (VEG) method to optimize the data
structuring step. In our prototype implementation, the In-
ference Engine (shown in Figure 1(b)) will make use of
a commercially available DLA. It will be enhanced by a
Data Structuring Unit (DSU) to form the PCN Inference
Accelerator. As described in more detail in Section VI, the
Data Structuring Unit is based on the VEG method and
fundamentally reduces the workload of the data structuring
step as compared against current methods.

The initial prototype of HgPCN has been implemented on
an Intel PAC (XeontFPGA) platform. The evaluation of the
HgPCN prototype is performed using four modern point cloud
datasets: ModelNet40 [27], ShapeNet [1], S3DIS [15], and

Pre-processing phase

Inference phase

1
1
1
1
1
1 5.
H o 356

- I ® -
Downsbmplggl « w o ®
1 o
-:: Io®

1.

. 1
1
1
1
I
1
1

Raw point cloud

I I
1
|
1
1 |
| |
1 O w
| O O 7O 5
: | O"‘ OEA) I @
©
| : O 15
1
1 I |
1
; I |
1 | |
' [I
Feature computation 1 Output layer |

Fig. 2. Illustration of the steps of an end-to-end PCN inference (toy-valued pedestrian classification task).

KITTI [8]. The comparing baseline includes CPU/GPUs, and
existing DSA PCN accelerators: PointACC [16], Mesorasi [6].
The evaluation of HgPCN is first performed independently
for the two major phases (from engine-level), then evaluate
the E2E latency from the HgPCN system-level in the edge
computing scenario. The description of the prototype HgPCN
and its evaluation are detailed in Section VII.

In Section VIII, we provide the conclusions of our work
and a discussion of our future directions.

II. BACKGROUND AND RELATED WORK
A. Point Cloud Data and PCNs

A point cloud is a set of points x = {(pi, f)}, where
pk = (Xx, Yk zi) is the coordinate of the k% point, and fi
is the corresponding 1-D feature vector. Unlike a traditional
image, which is a dense 2D pixel-matrix, a point cloud is
comprised of numerous spatially distributed points in a 3D
space. Point clouds are commonly generated by 3D data
acquisition devices (such as LIDAR) and generally are massive
and ever-changing. For example, in the KITTI dataset [§],
each frame includes approximately (N ~108) to (N~107)
points; and the number of points varies widely between frames.
Current DLAs processing DNNs cannot consume such large
and irregular input datasets. Thus, a pre-processing (down-
sampling) step is necessary. As shown in Figure 2, the down-
sampling step is used to decimate the original point cloud
into a fixed number of points, while maintaining the spatial
information structure.

The down-sampled input point cloud is the input to the
backend PCN inference phase, as shown in Figure 2. Similar
to the concept of a “stride window” in convolution, weight
kernels in PCN will only be applied to a subset of input points
while moving over the entire point set. Because point clouds
are sparsely scattered in a 3D space, forming the input subset
of points is far more difficult than traditional dense input
like images. Unlike the pixels in images, there is no direct
neighbor-indexing method in point clouds. Thus, as shown in
Figure 2, before the feature computation step, an extra data
structuring step is required to form the subset of points as the
“input feature map” by using neighbor-gathering methods.

The feature computation step for inference of PCNs in
Figure 2 makes use of traditional DNNs outputted from the
data structuring step. The weight will be applied to the input
points subset in the MLP hidden layer and the final outputs are
obtained from the output layer. The feature computation step
can be decomposed into MVM, and can be directly accelerated
by existing commercially avaibable DLAs such as NPU [4].

In summary, an end-to-end PCN inference process contains
three major steps: down-sampling pre-processing of the raw
point cloud data, data structuring, and feature computation.
Among these operations, down-sampling and data structuring
are point-cloud-specific operations and have not been fully
optimized. However, these two operations are quite expensive
and become major bottlenecks for end-to-end PCN inference.
Expensive downsampling pre-processing. In real-world edge
computing applications, pre-processing is a necessary step in
the Al pipeline [23]. Furthermore, for point clouds, the pre-
processing is far more expensive than traditional data types
and contributes to a major part of the latency. There are two
main causes of the high latency. The first is the enormous size
of raw point cloud data. The number of points in raw point
cloud data is from N ~10° to N ~10°. The second reason is
the expensive down-sampling methods used. For example, the
FPS method samples the raw point cloud iteratively. It starts
by randomly selecting a seed point from the raw point cloud
set (denoted as set C) and putting it in the sampled points set
(denoted as set S). In each iteration, it picks a point from the
unpicked point set C — S that is the farthest from the sampled
point set S and adds it into the sampled point set S, until S
contains the predefined number of points K. In this whay, the
FPS method will return a subset p', -« - pf .. pf" from
raw points C, such that each p* is the farthest point from the
firstk — 1 points. K is a selected fixed number (e.g., 4096).
We will show later in Section III that the down-sampling pre-
processing phase is a memory-intensive task and is a huge
computational workload. In addition, the down-sampling pre-
processing phase does not use memory bandwidth efficiently.
In the FPS method, over 99% of memory accesses are wasted
because most of these points will be filtered out and not
be used again after down-sampling. Among all the existing
sampling methods, only the Random Sampling (RS) method

is possibly fast enough to satisfy real-time requirements on
general-purpose architectures. The RS method simply picks
K points from the raw point cloud randomly. As a result,
the accuracy of random sampling is low and cannot be fully
trusted [10], especially in some safety-oriented applications.
Expensive Data Structuring. As mentioned, in order to use
commercially available DLAs, PCNs need to gather point-
subsets, which are in the neighboring set N(x¥) of selected
central points (red points in the Figure 2), to form the
“input feature map” for feature computation. (For example,
in Figure 2, central point A gathers nearest points B, C, D, E,
and F to form the point-subset A.) Unlike pixels in images,
the points in point clouds are scattered over a 3D space in an
irregular manner. There is no direct neighbor-indexing method
to gathering the neighboring set N (x*). The gathering process
can be achieved by expensive nearest neighbor gathering,
such as KNN (K-nearest-neighbors) and BQ (Ball query). In
traditional methods, neighbor points gathering for each central
point needs to search over the entire input point cloud. Let’s
assume the size of the input point cloud is n, and neighbor
gathering size is k. For neighbor gathering of each central
point, it is necessary to compute the distances from this central
point to every other n—1 points, and pick the top k points with
nearest distances. Each neighbor gathering process of a central
point replicates these steps and results in a high workload.

B. Current PCN Accelerators

Existing PCN accelerators mainly focus on optimizing the
expensive data structuring step (second bottleneck), with the
assumption the point cloud data is already pre-processed
(first bottleneck). Unlike these PCN accelerators, the proposed
HgPCN will not assume the point cloud data has been pre-
processed. The HgPCN architecture supports efficient online
pre-processing, together with an Inference Engine to supports
efficient end-to-end PCN inference service.

To perform the data structuring step in the inference phase,
existing PCN accelerators can be divided into two types. The
first type [6], [16] performs data structuring by using accurate
neighbor search methods, which returns the same result as
traditional data structuring methods. The second type is to
improve the latency of the data structuring step by using some
tree-based methods [5], [20], [29], to perform an approximate
neighbor search. As a result, these approximation methods
require some adaptation in the model training phase [5]. The
data structuring method used in HgPCN results in accurate
(not approximate) data structuring, which is compatible with
current training method. Thus, we will compare our inference
results (in Section VII) to the first type of PCN accelerators.

III. MOTIVATION

In this section, we identify the key performance bottle-
necks of an end-to-end PCN in general (not considering
accelerators). The evaluation was performed using general-
purpose platforms: Intel® Xeon® W-2255 CPU and 4060Ti
GPU. For down-sampling in the pre-processing phase, the
most commonly used FPS [3] method was used. For the

backend, Pointnet++ [22] was used to perform inference on
the Modelnet40 [27], ShapeNet [1], S3DIS [15], and KITTI
[8] datasets. The end-to-end PCN application was run to
obtain a breakdown of the latency. Then, we quantitatively
analyze the detailed operations in the two phases to identify
the bottlenecks which motivate the HgPCN design.

Pre-processing - PCN inference
100% T T T

g f . Z1% AV
g YAV T “telfel
- wo| o o] [© ~ o
"550%__ ©l Lo __:f_:g_ﬁ s -3 S I
& R [R] [Zal s
€ 25% ?’—/———1/(—4/— ——/ /—
2 AV A A
o g% / / o

CPU GPU CPU GPU CPU GPU CPU GPU

KITTI ModelNet40 ShapeNet S3DIS

Fig. 3. End-to-end execution time breakdown (actual time not shown).

Overall Latency Analysis. Figure 3 shows the percentage of
the total end-to-end latency spent on the pre-processing phase
and inference phase for each of the four example datasets. As
expected, datasets with larger raw point clouds require more
time for pre-processing. From Figure 3, it can be observed that
the latency of pre-processing is far greater than the latency of
the actual inference. The results confirm that the high cost
of the Al tax for point cloud applications is far more serious
than traditional Al applications [23]. Optimizing only the PCN
inference phase, as done in existing PCN Accelerators [13], is
far from enough to meet the real-time requirements of point
cloud applications on the computing edge.

A. Analysis of Frontend Pre-processing

Bottleneck Identification. The bottleneck in the pre-
processing phase is caused by large data movement, result-
ing from the large memory footprint of the down-sampling
process. One reason is the large input size. In our baseline
datasets, for every frame of raw point cloud data, KITTI con-
tains (N ~10°), Modelnet40 contains (N ~10%), and S3DIS
contains (N ~10%) points, respectively. The second reason is
that an excessive amount of intermediate data is generated
during the down-sampling phase. As we discussed in Section
II, the FPS algorithm samples the raw point cloud by itera-
tively picking the farthest point. For each iteration, we have to
compute the distances between every point in unpicked points
set C — S to picked points set S and rank these distances. This
process exhibits low data locality because all of the computed
distances (intermediate data) are written into the memory, and
then read again after all distances are calculated. For these
reasons, the down-sampling phase is a very time-consuming
memory-intensive task, and the major resource of Al tax.

B. Analysis of Backend PCN Inference

As shown in Figure 2, PCN inference contains two separate
steps: data structuring (DS) and feature computation (FC). The

DS step is used as input preparation for the FC step, which is
the actual convolution (CONV) step.

Bottleneck Identification. The data structuring step consists
of the neighbor search of central points, which can be solved
by algorithms such as k-nearest-neighbors (KNN) or Ball
query (BQ). Even though the neighbor search operations them-
selves do not involve complicated computations, it is still time-
consuming because the neighbor search algorithms operate
over the entire input point cloud. For the data structuring step
of a point-subset of PCNs, we need to compute the distance
from every point to the central point and pick the top k nearest
points by ranking these distances (using the KNN example).
And this data structuring step is replicated for every central
point in the input point cloud. As a result, a large amount of
computation is required by the data structuring steps for each
feature computation step. A recent work [16] shows that in
PointNet++, approximately 50% of total computation of the
inference phase is consumed by the data structuring step and
becomes another source of Al tax.

The feature computation in PCNs (i.e., actual inference)
shares the same requirements as the traditional DNNs and
can be directly optimized by using DLAs [13]. But the data
structuring step is unique for PCNs and are not supported
by existing commercial accelerators. To take advantage of
commercial DLAs to accelerating the feature computation
step, the data structuring bottleneck needs to be addressed.

IV. HGPCN ARCHITECTURE

Shown in Figure 4 is an overview of the architecture of
HgPCN, which is based on a CPU-FPGA shared memory
platform (e.g., Intel PAC card [12]). The major system compo-
nents of the architecture are: (1) CPU, (2) Host Memory, and
(3) FPGA. The major architectural components of HgPCN are
(1) Pre-processing Engine (Octree-build Unit in the CPU and
Down-sampling Unit in the FPGA) and (2) Inference Engine
(Data Structuring Unit and Feature Computation Unit) in the
FPGA. A key feature of the HgPCN architecture is that both
the CPU and FPGA can access the data in the shared Host
Memory. For each frame of the point cloud, we assume the raw
data from the data sensor (e.g., LIDAR) is collected and stored
in the Host Memory. Recall from Section I (Figure 1), an end-
to-end point cloud Al service based on PCNs comprise of two
major phases after raw data generation: pre-processing of the
point cloud data and PCN inference. As will be described in
more detail later, for the HgPCN, the pre-processing phase
consists of two steps; (1) an Octree construction & memory
pre-configuration step which is performed using the CPU
and Host Memory, and (2) a down-sampling step which is
performed in the Down-sampling Unit in the FPGA. The PCN
inference phase is performed in the Inference Engine in the
FPGA. As shown in Figure 4, the Inference Engine consists
of a Data Structuring Unit and a Feature Computation Unit.
Pre-processing: Octree construction & memory pre-
configuration For each frame of the point cloud, an Octree is
constructed in the CPU according to the raw point cloud data
and configured into an Octree-Table. The Octree can be built

Down-sampling Unit Inference Engine (FPGA)

(FPGA) I Data Structuring Unit Feature Computation Unit |
I
_____________ ! | Point-subaet | [
. Sampling || 1 tH |
™ Module || |2 |1 I 7
! L8 I = .
. | .] =] Point-subsat i PO
8| Sampling j E I 2~ : el i £
Y w5 | e € @ L3
— o ™ “Modue ™ 5 e
gL Modue Gy : So—== T s
g : %] :,“?, Paint-subset p 3 HH 3 Dj
: L VE © E =
, Sampling | | & | |, 5 A S 3
'?‘ Module | 4 a sy e
(e Sl ; G| 4
1 — 1 L {
\
I ———————— R T [Zp——
Updates Sampled Points ' ' Wirite Back
Host Memory -
L CPU (Octree-build Unit)

Fig. 4. Architecture overview of HgPCN.

by traversing points in the raw point cloud in a single pass of
the data. Additionally, the point cloud data in the Host Memory
will be configured (i.e., reorganized) according to the Octree-
based sequence. The Octree-Table will record the addresses
of the re-arranged points. More details of this process and
how it greatly reduces Host Memory access will be given in
Section V. After the Octree-Table is built, it is transferred to
the Down-sampling Unit in the FPGA.

Preprocessing: downsampling. In Section V, we will intro-
duce an Octree-Indexed-Sampling (OIS) method which will
make use of the Octree-Table [17] to perform the down-
sampling process on memory addresses without having to ac-
cess the Host Memory, greatly reducing the memory-intensive.
As shown in Figure 4, this down-sampling step is performed
in the FPGA in the Down-sampling Unit. The output of
the down-sampling is recorded in the Sampled-Points-Table
(SPT), which contains the addresses of after-sampled points.
Using these addresses in the SPT, the Down-sampling Unit
can read the after-sampled points directly from Host Memory
and these points provide the input for the inference phase.
Inference Engine. The Inference Engine consists of two main
modules, the Data Structuring Unit (DSU) and the Feature
Computation Unit (FCU), both of which are implemented
in the FPGA. In our prototype implementation, the FCU is
a commercially available Deep Learning Accelerator (DLA),
like the Intel NPU [26]. The DLA will perform inference on
the point-subset as the “input feature map”, which is the output
from the DSU.

The Data Structuring Unit (DSU) performs a preparation
step to produce an input feature map that can be used by
existing DLAs. The implementation of the DSU is based
on a Voxel-Expanded Gathering method and fundamentally
reduces the workload of the data structuring step as compared
to current methods. The details of the DSU and the Voxel-
Expanded Gathering method will be presented in Section VI.

V. PRE-PROCESSING ENGINE

As we discussed in Section III, the pre-processing of a point
cloud frame using standard methods is a memory-intensive

| - -
| 011111 110101
| o111 1101
| o11fof 110M0)|
" (] |
| 1 B L 1
| 011011 f 110001| 170019 ;=== - -+« :
L =, 11001100
0110 1100 -
: 01108/ I 2&10
.{ Root
- =
| 000111/001101) 00T111] ﬁlsm 100114191101
| e e h oo e
0001 0011 1%}1 1011
| o001 M| 01®o
| . -
| goon mtnm’
| 0000~ 1010° |
| ’ | 1010,
| Seed point I
1
(a) (b)

An OIS Exmaple

Search Fartherst 2

[
o __Sampled-Poims-Tabls

_Address
Point 2

1106 1101
1)
= Search Fartherst ’ 3

| 000000 —————— 416100 110101

Search Fartherst J

Address]
110101
Seed Point (© Farthest Point

Fig. 5. Octree-Indexed-Sampling method overview: (a) A point cloud character “A” (black and color points). Note, for simplicity, that it is a 2D Quadtree
illustration of our Octree-Index-Sampling (OIS) method. An Octree contains two horizontal levels of Quadtrees, having an extra Z dimension. (b) Corresponding
Quadtree representation. For simplicity, only node “11” is fully expanded. As shown, the content of a Quad-tree is stored in a Quadtree-Table in the Down-
sampling Unit; and the raw points corresponding to the Quadtree are pre-configurated in the Host Memory. (c) An example of OIS steps to create the
Sampled-Point-Table, which contains the corresponding Host Memory addresses of the K picked points, where K is a pre-defined number, e.g., 4096.

task. An extremely large amount of input points and inter-
mediate data need to be accessed repetitively from memory;
and as a result, the computational workload for pre-processing
is also extremely heavy. In this section, we introduce an
Octree-Indexed-Sampling (OIS) method to greatly reduce the
memory-intensive bottleneck in the down-sampling process.
With the OIS method, the HgPCN builds the Octree Table in
the Octree-build Unit in the CPU and transfer it to the FPGA
via MMIO. Based on the Octree Table, the down-sampling
process is performed in the Down-sampling Unit in the FPGA,
which directly access the desired after-sampled points from
memory. Also in this section, we present how the Down-
sampling Unit accelerates the large computational workload
through hardware parallelism.

Octree-Index-Sampling (OIS) Our OIS method is based on
a key observation: down-sampling can be based on the relative
position of a point in a 3D space. For example, most of
the down-sampling methods normalize the point cloud data
(to produce the relative positions) before the actual down-
sampling process. In the OIS method, we will describe how
we can obtain the relative position information beforehand by
using a spatial indexing method. Then we can directly use the
index to perform the down-sampling without having to access
the memory to read out the absolute XYZ coordinates.

A. Octree-build Unit in the CPU

Octree Construction. The Octree structure is a way to reg-
ularize the point cloud using voxels. It decomposes the point
cloud distributed in a 3D space into a 1D-array, where the
leaf level of the generated Octree is the resulting 1D-array.
Figure 5(a) illustrates the steps of creating a Quadtree (note
that a Quadtree, a simplified 2D-version of an Octree, is used
for illustration). In the beginning, we put the point cloud (e.g.,
point cloud character “A”) into a root-level voxel (the outer
black bordered “box” in Figure 5(a)). Then we continuously
divide each non-empty voxel into sub-voxels (4 “blue” sub-
voxels for the example Quadtree in Figure 5(a); 8 sub-voxels
in an actual Octree) until it reaches a pre-defined depth (root

plus three levels in this example). For each division, the level
of the Octree is increased by one and the m-codes [18] of the
subdivided nodes add two more bits at the end (three more
bits in the Octree). In these newly added bits, the first bit
represents the X-axis, and the second bit represents the Y-axis
(for an Octree, the third bit represents the Z-axis).

As shown in Figure 5(a), these new-added bits are based
on the Space-Filling Curve (SFC) traversal order [24]. For the
sub-voxels (child-nodes) generated by each subdivision, the
new-added code of each sub-voxel, when compared with its
parent voxel, is based on its relative position inside the parent
voxel: i.e., the bottom-left quadrant is 00; the top-left is 01;
the bottom-right is 10, and the top-right is 11.

Shown in Figure 5(b) is a partial representation of the
resulting Quadtree. The root and three levels are color-coded,
corresponding to Figure 5(a). Every non-empty voxel from
Figure 5(a) will be represented by a node in the Quadtree
in Figure 5(b). In the final generated Quadtree, each non-leaf
node includes up to four child-nodes (sub-voxels). Each leaf
node includes the actual points within that node. For example,
the leaf node 110011 shown in Figure 5(a) includes one point
(11001100) and the leaf node 001101 contains four points.

As described in [25], Octree can be used as an indexing
method in a spatial database to optimize spatial queries.
In HgPCN, the spatial information of each point is stored
in Host Memory and can be obtained efficiently through an
Octree-Table lookup. To do so, the point cloud data has to be
reorganized as described next.

Octree-based Organization in Host Memory. The Octree
construction (as described in the previous section) is a process
of mapping the voxels (nodes) from a higher dimension (2D in
Quadtree; 3D in Octree) to 1-D linear ordering. This resulting
1D linear ordering can be naturally mapped to consecutive
memory addresses, which is also a 1D array. In Figure 5(b),
connecting the leaf nodes together from the left-most leaf node
(110001) to the right-most leaf node (110101) is the 1D linear
ordering based on SFC traversal. Based on this 1D order, we
can construct a 1D array comprised of the points inside the leaf

Algorithm 1 Common method Algorithm 2 OIS method
1: N : raw pointcloud size 1: Octree = Octreebuild

. Picked : Picked points 2: Node + Octree.root

: Raw pointcloud: {P;,---, Py} 3: while Node is not leaf do

: for i + 1to N do 4: K = Node.childnum

D[i]+ Dist(P;, Picked) 5: fori« 1to K do

: end for 6: V Node.child|i]
7
8
9

¢ Preztlil¢ findmaz(D[]) Dli]+ Dist(V, Picked)
. Picked.append(Ppezt) end for

next = findmaz(D([])

10: Node + Node.child[next|
11: end while

12: Ppezt4— point in Node

3: Picked.append(Prext)

1) 2)

e = R

Fig. 6. Pseudocodes of 1) common method for FPS. 2) OIS method for FPS.

nodes. In cases when a leaf node contains multiple points (such
as Node 110010 or 110100), the intra-node point arrangement
also follows the SFC traversal. Note again that Figure 5(b)
is only a partial representation of the example Quadtree from
Figure 5(a), thus the 1D array [P1, P2, . . ., Pg] shown at the
bottom of Figure 5(b) represents only a part of the complete
1D array for this example. The key point is that this 1D-array
represents the same points in the raw point cloud, but are in
a reorganized sequence.

Next, the resulting 1D array is used to pre-configure the
point cloud data in Host Memory by creating a reorganized
copy in the memory. Using the simplified example in Fig-
ure 5(b), the points [P1, Py, . .., Pg] are initially distributed
“irregularly” throughout the million-point dataset in Host
Memory. After the Octree-based reorganization process, those
points [P1, Py, ..., Pg] are stored in consecutive addresses in
the Host Memory.

In summary, the Octree construction and the point cloud
data reorganization are performed at the same time by a single
pass of raw point cloud data. As will be described in the next
subsection, through an Octree-Table lookup, we can obtain the
memory address to directly access the spatial information (or
characteristics) of the desired point. In contrast, the commonly
used FPS method has to read out every point in the raw point
cloud in Host Memory and searches for the desired next point
by a ranking operation.

B. Down-sampling Unit in the FPGA

Configuration and use of Octree-Table. As shown in Fig-
ure 5(b), the generated Octree will be configured into an
equivalent Octree-Table, to be transferred to and used by
the Down-sampling Unit in the FPGA. In the Octree, the
leaf nodes contain the address (or address range) of the
contained point(s). In the Down-sampling Unit, the Sampling
Modules perform (in parallel) the down-sampling task by
performing Octree-Table lookup operations. When a Sampling
Module reaches a leaf node during an Octree-Table lookup, the
Down-sampling Unit can determine the address containing the
desired point and access the Host Memory directly to obtain

the spatial information (xk, yx z«) and feature information
(f«) of that point, as described in the following example.
Octree-Indexed-Sampling Algorithm and an Example. Fig-
ure 5(c) shows an example of the steps in using the OIS
method to achieve the same function as the commonly-used
FPS method, but without incurring the cost of repetitive
memory accesses. As illustrated in Algorithm 1 in Figure 6, for
picking the farthest point as the next picked point, the common
FPS method searches every point in unpicked point set (C—S5)
and compares distances. The OIS method substitutes the
operations of Algorithm 1, which work on sparse points, with
Octree-Table lookup operations. In the OIS method (Algorithm
2 in Figure 6), the step that picks the farthest point is first
approximated by picking the farthest voxel. Then within that
voxel, pick the farthest of the points inside this voxel according
to the SFC (Space-Filling Curve) traversal order. In Algorithm
1, the for-loop for finding the next point (Line 4 to Line 6)
iterates N times (N is the number of points in an up-to-million
point raw point cloud frame). In contrast, the while-loop in
the Algorithm 2 for finding the next point (Line 3 to Line 11)
iterates at most a number equal to the depth of the Octree,
which is quite limited.

For example, assume that we pick the red point (left bottom-
most point in Figure 5(a)) as the seed point. As the first
picked point, the seed point is written into the first entry of the
Sampled-Point-Table, as shown in Figure 5(c). Since this seed
point belongs to voxel 000000, we want to find the farthest
voxel from 000000. The process is explained as follows.

In the Octree (Figure 5(c)), the seed voxel 000000 belongs
to voxel 00 in the first level; 0000 in the second level; and
000000 in the third (leaf) level. We begin to search for the
desired farthest voxel of the seed voxel at the first level.
At the first level, voxel 000000 belongs to voxel 00 and its
farthest first-level voxel is 11. (Note that the distance between
two voxels can be determined by the Hamming distance [19]
between m-code [11]). Voxel 11 has two child-voxels in the
second level, 1101 and 1100, of which 1101 is the farther voxel
from the 0000. Continuing, voxel 1101 has two child-voxels,
110100 and 110101, of which 110101 is the farther voxel from
000000. Now we reached the leaf and find voxel 110101 as
our desired farthest voxel from the seed voxel 000000. For
the points inside voxel 110101, we pick the farthest point
according to SFC traversal sequence and insert it into the next
entry of the Sampled-Point-Table, as shown in Figure 5(c).

Continuing, in the standard FPS method [3], when the
picked points set S contains more than one point (two points
in this example thus far), the seed point for the next iteration
will be the Euclidean norm of S (i.e., a virtual summary point
to represent S), denoted by ||S||2. The OIS method follows the
same approach and repeats the steps of picking the subsequent
farthest points from ||S||2 until the size of the point set N(S)
reaches the pre-defined number K.

Hardware Acceleration Figure 7(a) shows the details the
Sampling Modules of the Down-sampling Unit in HgPCN.
Each Sampling Module has two inputs: m-codes of the as-
signed voxel and m-codes of the seed voxel. A Sampling

\Assgined M-code)
Seed M-code

Sampling Module 1

an input feature map; without which the inference cannot be
supported by current commercially available DLAs. Thus, as
shown in Figure 8, the HgPCN Inference Engine consists of
a Data Structuring Unit (DSU) and Feature Computation Unit
(FCU). The FCU is a commercially available Deep Learning
Accelerator (DLA) which implements a classic systolic array
design. The Data Structuring Unit (DSU) is a custom-designed
module to optimize the expensive data structuring step and will
be described below.

Data Structuring Unit Most existing PCN accelerators [6],

Fig. 7. Hardware design of voxel-level parallelism.

Module calculates the Hamming distance between the two
m-codes using an efficient XOR operation [19]. The outputs
from the Sampling Modules are simultaneously inputted into
a bitonic sorter (not shown) to select the node with the largest
Hamming distance as the next searched node.

To further accelerate the OIS-based down-sampling phase,
the Down-sampling Unit deploys multiple Sampling Modules
based on voxel-level parallelism. Figure 7(b) shows the steps
of OIS-based FPS using voxel-level parallelism. At any given
time, eight Sampling Modules are each assigned one of these
child-nodes to find the farthest node in parallel.

Summary: In summary, to efficiently perform point
cloud down-sampling, HgPCN employs an Octree-Indexed-

Sampling (OIS) method by utilizing the Octree-based spatial
queries to directly access the target points in Host Memory. To
do so, HgPCN first constructs an Octree-Table and performs a
pre-configuration step by reorganizing the point cloud data

in the Host Memory. In our prototype HgPCN, these two
processes are performed simultaneously in the Octree-build
Unit (in the CPU) with a single pass of the raw point cloud
data. After that, the Down-sampling Unit of HgPCN (in the
FPGA) will perform the down-sampling by directly obtaining

the memory addresses of the desired after-sampled points
from the Octree-Table. In this manner, HgPCN greatly reduces
the memory-intensive bottleneck of the pre-processing phase
by indexing the 3D relative position of points with the 1D
memory address. To further accelerate the OIS-based down-
sampling phase, HgPCN exploits voxel-level parallelism by
using multiple Sampling Modules in the Down-sampling Unit.
Finally, the OIS method also provides a significant saving
of on-chip memory in the FPGA. This is important because it

allows the FPGA to have enough on-chip memory to support
the accelerators for the two phases in HgPCN (down-sampling
and inference) within one device. In Section VII, we will
evaluate and analyze of the on-chip memory-saving benefit
provided by the OIS method.

VI. INFERENCE ENGINE

As we discussed in Section III, for point cloud inference,
before the actual feature computation step in the Inference
Engine, an expensive data structuring step is required to form

[16] accelerate this step mainly from a hardware perspective,
e.g., using parallel execution. In this paper, we propose a
Voxel-Expanded Gathering (VEG) method, in which opti-
mization is achieved through algorithm and hardware co-
design. The VEG method utilize the spatial indexing nature of
Octree to algorithmically minimize the required computational
workload in the data structuring (DS) step, and then further
accelerate through parallel execution. Furthermore, the VEG
method can efficiently support commonly used DS methods,
e.g., KNN (K-Nearest-Neighbors) and BQ (Ball Query). In
this section, we will use KNN as the example.
Traditional Method for Input Feature Map. After the down-
sampling step, current PCNs typically pick a fixed number
of central points (e.g., red points in the input point cloud of
Figure 2) from the down-sampled input point cloud. The data
structuring step is used to form the subset of points as the
“input feature map” by gathering nearby points of these central
points. For the data structuring step of each central point,
current PCN accelerators search all the points from a (down
sampled) input point cloud, and then calculate the distance
from every other point to the center point. Next, they sort
and pick out the nearest K neighbor points from input point
cloud. For example, if we assume the down-sampled input
point cloud (after the processing phase) has 4096 points, and
KNN needs to gather the K = 32 nearest points from the
central point. With traditional methods, they need to compute
4095 distances from the central point to every other point, and
select the top K = 32 points with shortest distances. In this
process, most of the 4095 distance calculation (except for the
32 nearest neighbors) can be regarded as wasted.
Voxel-Expanded Gathering (VEG) Method. In the VEG
method, before the actual sorting step, we first narrow the
range of nearest point search by adjacent-indexing through
the use of an Octree. The standard Octree neighbor-search
operation [7] is used to search the voxels adjacent to a central
point’s voxel. More details of the steps of VEG method
are discussed below. The HgPCN Data Structure Unit can
execute multiple Octree neighbor search operations in parallel
to search all adjacent voxels at the same time.
Architectural Support In HgPCN. As shown in Figure 8§,
the design of the HgPCN Data Structuring Unit consists of
six pipeline stages:

- 1) Fetch Central Points (FP): Fetch a central point and

the corresponding m-code [18] of this point.
- 2) Locate Central Voxel (LV): Locate the voxel that
contains the central point Vseed (yellow voxel shown in

Data Strucutring Unit (DSU)

Feature Computation Unit (FCU)

(1) Fetch Pointi (2) Locate Voxel (3) Voxel Expanded i (4) & (5) Gather & So
] I

M-code

u()uls

il . QD - a : DSU |[= ® ® ®

rti(6) Buffering| Systolic Array

——— (m—r, ®®®

Fig. 8. Inference Engine overview.

Figure 8 (2 and 3)).

3) Voxel Expansion (VE): At the first level of voxel
expansion (V 1), neighboring voxels touching the central
voxel Vseeq are included (the gray voxels in Figure 8 (3)).
Voxel expansion continues outward and include the next
level of touching voxels (the green voxels are included
for the second expansion V»). Voxel expansion continues
until the total number of points included in the expanded
voxels is at least K.

4) Gather Points (GP): Let’s assume that there are
No points in the initial voxel Vseea and that we need
n expansions to collect enough points (>= K). Also,
assume there are N1 points in gathered voxels by first
expansion V7; and N points in gathered voxels by the

VII. EVALUATION
A. Evaluation Setup

Implementation Method A prototype of HgPCN has
been implemented on an Intel PAC, a shared memory
CPU-FPGA (Intel Arria 10 GX) platform. The accelera-
tors are implemented on the FPGA side with SystemVer-
ilog and VHDL, and the software implemented on the
CPU side with C++.

Benchmark datasets As shown in Table I, four common
point cloud datasets (for four applications), with different
raw-dataset frame sizes, were selected as our benchmarks.

TABLE I
EVALUATION BENCHMARKS

n-th expansion V, . Gather the points from Vsees to V-1

. . Application Dataset input Size PCN Model
(i.e., total of No + N1... + Nn-1 pomts). Object Classification ModelNet40 1024 Pointnet++(c) [22]
- 5) Sort (ST): Sort the points in last voxel set V, and pick Part Segmentation ShapeNet 2048 Pointnet++(ps) [22]
_ : : : Indoor Segmentation S3DIS 4096 Pointnet++(s) [22
the K Sum(NO to Nn_1) p01nts with nearest distances Outdoor Segmentation KITTI 16384 Pointnet++(s) [21

from the central point. Together with the No + Nq... +
Nn-1 points, the K nearest points are found.

- 6) Buffering (BF): Output the gathered K points, includ-
ing the coordinates (p«) and feature information (f), to
the input buffer for the feature computation step.

The above steps are repeated for each central point.

Example: Assume we need to gather the 32 nearest neighbors
for the central point (red point) in Figure 8.

- The voxel (yellow) that contains the red point is the seed
voxel Vsees. Let’s assume there are No points gathered
in Vseed and that No < 32.

- The voxel search is expanded outward from Viees and
includes first-level neighbor voxels of V1 (grey voxels in of
Figure 8). Assume there are N1 points in the set of grey
voxels and that No + N7 < 32. These N7 points are
gathered in V7. to

- Since there are still < 32 in the gathered voxels, we 32
continue to include the second-level neighbor voxels
(green voxels). Let’s assume there are N2 points in the
set of green voxels. These N2 points are gathered in V.

- Let’s assume that Ng + N1 + N2 > 32, then pick the top B.

Baseline devices and accelerators for comparison
General-purpose devices used in our comparison include
the Intel® Xeon® W-2255, Nvidia Jetson GPU, and
4060ti GPU. These general-purpose devices are used
for end-to-end comparison, including the pre-processing
phase and the inference phase.

The second type of baseline hardware for comparison
is against existing PCN accelerators, Mesorasi [6] and
PointACC [16], with 16 X 16 systolic arrays for the
feature computation step. Because these PCN accelerators
do not include the pre-processing phase (i.e., not end-to-
end), we will perform the comparison only on the PCN
inference phase.

Note that it is unnecessary to sort or compute the distances

points in No (from Vsees) and N1 (from Vi), because

they are definitely among the 32 nearest neighbors. Existing
methods usually compute the distance from the central point

every other point in the 4096 input points, and pick the
nearest points. With the VEG method, the computation

workload (of sorting and picking the nearest points) is reduced
from 4095 to Na.

Analysis of the OIS method on CPU

nearest (32 — Ng — Nj) points in V2 and combine them As stated, for the FPS down-sampling algorithm, the OIS
with Ng and N; to form the 32 nearest neighbors. method converts original operations (Algorithm 1 in Figure 6)

|:| 1024 E 2043

4095

Down-sampled Point#:
T T T

Y
38
88
g g

000x [~

g

000x [~
1000x -

4]
MN—HUn,! M, "‘fm}anéw N.Peryo KITTY. -‘!&gM\ Bunn}zw‘ Piang MN Prap, MN. Chagapel Net.avg

g

Memory-access Reduction
MW s OO
&
8
2

Fig. 9. Memory-access saving from OIS-method.

on sparse points into efficient Octree lookup operations (Al-
gorithm 2), optimizing the memory-intensive problem of the
pre-processing phase. To demonstrate the inherent advantage
of the OIS method against the common FPS method, we first
evaluated these algorithms running on the same CPU (for OIS,
both Octree-build Unit and Down-sampling Unit are on CPU).
Benefits of the OIS method. Both Algorithm 1 (common
FPS-method) and Algorithm 2 (OIS method) were run on an
Intel® Xeon® W-2255 CPU, using point cloud frames with
different sizes. The results are shown in Figure 9 and 10. In
both figures, the x-axis shows the different point cloud frames.
Labels beginning with “MN.” are frames from the ModelNet40
dataset and the label “kitti.avg” represent a frame from the
KITTI database of the average size. Note that for Shapenet,
the raw data size is smaller than 4096 points, so it doesn’t
include a column for down-sampled to 4096 points. For the
y-axis, 6000 X means the OIS method requires 6000 times less
memory accesses than FPS method.

As shown in Figure 9, memory-access saving for these
benchmarks ranges from 1700X to 7900X for point cloud
frames of different sizes. This result is consistent with the the-
oretical analysis of memory-access saving between Algorithm
1 and Algorithm 2 in Figure 6.

Figure 10 shows the overall measured latency improvement
of the OIS-based method, as a result of the memory-access
savings. The OIS-based sampling outperforms the common
FPS method with 800X to 7500 speedup.

Overhead from Octree Build. As discussed in Section V
(Pre-processing Engine section) and shown in Algorithm 2, the
Octree-indexed Sampling method requires an initial overhead
of building the Octree. Figure 11 details the overhead for
different point cloud datasets and frame sizes. The Octree-
construction overhead can range from 0.25 to 0.8 of the total
latency of the OIS method when implemented only on CPU.
In OIS-based sampling (on CPU), most of the latency and
memory accesses are from the Octree-construction, because
the OIS method must go through the entire raw point cloud
data once to build the Octree. Note also, that the latency of OIS
is impacted by two factors: the number of points in the point
cloud and the depth of the Octree. The Octree-construction
latency is determined by the number of points in a point cloud,
and the speed of Octree-search is linearly related to the Octree
depth. The Octree depth is influenced by the non-uniformity
of a point cloud [14]. In Figure 11, even though MN.piano

|:| 1024 l:l 2048 E 4095

Down- sampled Pornt#
8000x T

o 7000x
-§ 6000x [~
@ 5000x [
D a000x |

%mmmﬂﬂmmmm

0
MN, Bung NA‘J'Na MNPU&UJGFT[M&MN B”ﬂnyz’m\’ Piang MN.Plap, MN.Cp! Epe}\ua

Fig. 10. latency speedup from OIS-method on CPU.

and MN.plant contain almost the same number of points, the
spatial distribution of MN.piano is more non-uniform than
that of MN.plant, resulting in a deeper Octree for MN.piano.
Unlike traditional methods, which require repetitive searching
among the raw point cloud data, OIS can greatly reduce the
amount of memory access (as demonstrated in Figure 9).
Furthermore in HgPCN, the VEG method (for DS step) can
reuse the built Octree to amortize the overhead.

Down-sampled Pointd:
T T

El1024 B 2048 E

—| 4096
T

d(ratio)
o ~
w (5] -

=
[
G

Octree overhea

o

MN.Bunny MN.Airplane MN.Person KITTLavg MN.Bunny2 MN.Piano MN.Plant ~MN.Chair ShapeNet.avg
8171 15910 12731 123128 34582 11022 11033 17598 2821 Pointif
8 11 11 14 8 12 9 12 8 Octree depth

Fig. 11. Octree-build overhead of OIS-based sampling.

C. Pre-processing Engine Performance

In Figure 12, we first compare the OIS-on-CPU (software
implementation on CPU) vs OIS-on-HgPCN to illustrate the
speedup resulting from the hardware Down-sampling Unit. As
seen from the first two columns in Figure 12, compared with
OIS-on-CPU, the OIS-on-HgPCN can provide a from 1.2X
to 4.1X speedup. This speedup stems from the reason that
the hardware Down-sampling Unit (described in Section V-B)
can achieve a 5.95X to 6.24X speedup compared to the CPU-
implemented Down-sampling Unit.

:IRS treinforce(GPU) FPS{GPU}

[JoIs(cPu) [E] OIS(HgPCN)
02

MN Bunny MN, “Alplape ' MN, Persop, KITTY, avg MN, Bunnvz MN, Plﬂno MN -Plang M, ("hd,rshaph\uaug
Fig. 12. Latency comparison of Pre-processing Engine against the baselines

In the remainder of Figure 12, we compared the runtime
latency of HgPCN’s Pre-processing Engine with three existing
sampling methods on the baseline devices where they can

get the best performance (CPU or GPU). (To our best of
knowledge, there is no existing DSA for point cloud pre-
processing). Among these sampling methods, FPS is the most
commonly used because it results in the least information loss.
However, it has the highest runtime latency. Random sampling
(RS) has the lowest runtime latency, but is not generally
used because it has the highest information loss. In some
existing methods [10], a reinforcement process uses an encoder
architecture to enhance RS (as RS+reinforce). But this method
is not universal. It can only be applied to PCNs with encoder-
decoder architectures.

In Figure 12, the total latency of the Octree-indexed-
sampling (OIS) method on HgPCN (light-blue columns) is
shown. This latency includes the CPU-end (Octree-build Unit)
and the FPGA-accelerator-end (Down-sampling Unit). The
results show that the OIS method on HgPCN possesses the
best advantages of the tested sampling methods. Although the
performance of OIS on HgPCN is a little slower than random
sampling, it can achieve the same accuracy as the FPS method.
Unlike RS+reinforce, it is universal to all types of point cloud
networks. Furthermore, compared to the FPS method, HgPCN
offers a more consistent latency for different sizes of point
cloud frames, providing better tail latency for edge computing.

On-chip memory-saving with the OIS method. Reducing
on-chip memory usage in an FPGA is important: 1) to free
up resources to implement other parts of the application and
2) to have the opportunity to keep an entire implementation
on a single FPGA. Figure 13 shows the memory-consumption
comparison between the FPS method and the OIS method:

OIS can provide from 12X to 22X memory-saving.

Memory-saving

MN‘BunnyN'/"-“PianeM N Perso X Infa»-y N'B“"nyQM‘\'-P iang MN.Playg MN-‘-whairsha”ENer.avg

Fig. 13. On-chip memory-saving benefit from the OIS method.

In our prototype implementation of HgPCN, the device used
is the Intel Arria 10 GX 1150 FPGA, which has 65Mb total on-
chip RAM. From our evaluation, if the raw point cloud frame
contains more than ~5 X 10° points and is stored in the FPGA
memory (as in the case of FPS), the input points and generated
intermediate data during the pre-processing phase will exceed
the total capacity (65Mb) of on-chip memory. In this case,
there will be no space for the Inference Engine. With the OIS
method, only the Octree-Table needs to be stored in the on-
chip memory, along with minimum amount of intermediate
data. Even if raw point cloud frames contain ~1 X 10° points,
the OIS method only consumes approximate 10 Mb of memory
in the pre-processing phase.

D. Evaluation of Inference Engine

In this section, we will present the evaluation results of the
HgPCN Inference Engine against a GPU accelerator and two
PCN accelerators: PointACC and Mesorasi. Recall that these
PCN accelerators do not include the pre-processing phase (i.e.,
not end-to-end); thus we can only perform the comparison on
the PCN inference phase. Also, because the Mesorasi PCN
accelerator uses a random picking method to generate central
points for the data structuring step, we will do the same for
the GPU, PointACC, and HgPCN to ensure a fair comparison.
The evaluation results are shown in Figure 14, in which the
x-axis shows the four PCN tasks from Table I and the y-axis
shows the speedup of HgPCN against the baselines.

As shown in Figure 14, when compared to Nvidia Jetson
NX GPU (blue columns), HgPCN achieves from 6.4X to
21X speedup. When compared to Mesorasi (grey columns),
based on the same systolic array architecture for the feature
computation step, HgPCN achieves 2.2X to 16.5X speedup.
We noted that Mesorasi uses a GPU to perform the data struc-
turing step, which still occupies a major part of the latency.
Even though Mesorasi tries to overlap the data structuring and
feature computation, the inference speed is still largely limited
by the latency of the data structuring step.

VS GPU

[E== VS Mesorasi [VS PointACC

21 R 165

20x

6.4
i 2.2 13
§ME_|

PointNet++(c) PointNet++(ps)
ModelNet40 ShapeNet

-
[4)]
x

10.2
8.1 23

e

PointNet-++(s)
S3DIS

(%))
>

Latency Speedup
o
>

o

PointNet++(s)
KITTI

Fig. 14. Speedup of HgPCN over baseline hardware.

When compared to PointACC (orange columns), HgPCN
achieves 1.3X to 10.2X speedup. Like HgPCN, PointACC
also developed a customized unit (Mapping Unit) for the data
structuring step. Like HgPCN’s DSU, the Mapping Unit of
PointACC also uses a bitonic sorter to accelerate the ranking
process. However, while based on the same bitonic sorter
approach to select the top K nearest points, the HgPCN can
outperform PointACC because of the fundamentally reduced
workload resulting from the VEG method. Through the VEG
method, HgPCN narrows the range for searching the nearest
points. In Figure 15, we compare HgPCN against PointACC
to show the benefits of the VEG method. Like other current
existing methods, the searched range of PointACC’s bitonic
sorter is over the entire input point cloud. In contrast, the
required workload of the bitonic sorter in HgPCN’s Data
Structuring Unit only sorts the points in Nn (from the last
expansion V, in Figure 8). Thus, the required workload of the
bitonic sorter in HEPCN’s DSU is fundamentally less than that
of PointACC’s Mapping Unit. Figure 15 shows the workload
reduction due to the benefits of the VEG method. Note that
for PCN tasks with larger input sizes, the VEG method can

achieve an even greater level of workload reduction. Figure 16
shows the latency breakdown of the VEG method.

450x - el-Expand

350x ¢

on

[3*)
wn
(=]
=

2
o =
—T——TT

ke 61% - 66%

51X

Workload Reduct

25X

w
(=]

ModelNet40 ShapeNet S3DIS KITTI

Fig. 15. VEG benefit. Fig. 16. VEG breakdown.

E. Evaluation of System-level HgPCN

In previous subsections, we analyzed separately the de-
tails of the performance of HgPCN in the pre-processing
phase (heterogeneously implemented on the CPU side and the
FPGA-accelerator side) and the inference phase (on FPGA
side). Here, we combine these two phases to evaluate the E2E
system-level performance of HgPCN in an edge computing
scenario. For this evaluation, the KITTI dataset is used as our
benchmark dataset because each frame of KITTI is associated
with a time-label of frame generation, from which we can
determine the maximum generation rate of KITTI data frames.
Let’s assume the point cloud frames are generated in real-
time frame by frame. Our definition of meeting real-time re-
quirement is the end-to-end processing of each frame can keep
up with the sampling (data generation) rate. For the KITTI
dataset, it was shown that HgPCN can process 16 average
frames per second (FPS). For the KITTI dataset, according
to the time label of frame-generation, we can determine the
maximum generation rate of KITTI data frames is less than
16 frames per second. Thus, we can conclude that HgPCN can
keep up with the data generation rate of KITTI to meet the
real-time requirement of such an application.

VIII. CONCLUSIONS AND DISCUSSION

Latency for end-to-end processing of the point cloud
workloads stems from two reasons: memory-intensive down-
sampling in the pre-processing phase and the data structuring
step for input preparation in the inference phase. In this
paper, we presented HgPCN, an end-to-end heterogeneous
architecture for real-time embedded point cloud application. In
HgPCN, we utilize the space-indexing function of the Octree
structure to develop two novel methodologies to address the
two identified bottlenecks and accelerate them by using a het-
erogeneous CPU-FPGA implementation. In the Pre-processing
Engine of HgPCN, an OIS method is used to optimize
the memory-intensive down-sampling bottleneck of the pre-
processing phase. In the Inference Engine, HgPCN extends
a commercial DLA with a customized Data Structuring Unit
which is based on a VEG method to fundamentally reduce the
workload of the data structuring step in the inference phase.

Our results from the previous section showed that for
the inference phase, depending on the dataset size, HgPCN
achieves speedup from 1.3X to 10.2X vs. PointACC, 2.2X

to 16.5X vs. Mesorasi, and 6.4X to 21X vs. Jetson Xavier

NX GPU. Along with optimization of the memory-intensive
down-sampling bottleneck in pre-processing phase, the overall
latency shows that HgPCN can provide the capability of
satisfying real-time requirement by keeping up with the raw
data generation rate of a benchmark application.

A. Discussion and Future Directions

Practical Implications Note that even though both the OIS
method in the pre-processing phase and the VEG method in
the inference phase are based on the Octree structure, they
are independent methods and can be used independently. For
example, the HgPCN Pre-processing Engine can be a plug-
in to other PCN inference accelerators (not using the VEG
method) to perform the end-to-end PCN inference. Similarly,
the HgPCN Inference Engine (with VEG method) can be used
as an independent PCN inference accelerator. In addition, the
OIS and VEG are not only limited to PCN tasks. OIS is appli-
cable to other non-Al point cloud applications (e.g., AR/VR)
which require down-sampling of the raw point cloud data.
VEG can be used for other point cloud applications [29] which
requires neighbor gathering. Also note that the implementation
of these two methods for point cloud nets is not limited to a
CPU-FPGA platform (as in this paper). The proposed methods
are also can be implemented on other accelerators, such GPU
and CGRA (Coarse-Grained Reconfigurable Arrays).

Finally, compared to images, the analysis and processing of
point cloud data is a relatively unexplored area. The arrange-
ment methods of image pixels (e.g., row-major or column-
major) are well-developed, with which a 1D-address can be
used as the index to a 2D-coordinate of a pixel. However, to
our best of Knowledge, OIS is the first method that can be used
to index the 3D-coordinate with 1D-address (by arranging the
points). In HgPCN, we demonstrated the benefit of the OIS
method and believe it can inspire future works to propose other
efficient arranging methods for point cloud.

Future Direction of OIS: Approximate OIS-based FPS.
Based on OIS, the current prototyped HgPCN accelerates
the commonly used down-sampling method, farthest-point
sampling (FPS). Considering the approximate nature of DNNs,
an approximate OIS-based FPS method can be explored to
further enhance the speed while potentially causing only
marginal information loss. In the current OIS-based FPS
method, the accurate farthest point is identified and added to
the sampled point set S by first finding the farthest leaf node
and then selecting the farthest point within that node. With
the approximate FPS method, instead of finding the accurate
farthest point, we can randomly pick a point contained by
current accessed node once Octree search is near leaf level.
Because the randomly picked point belongs to the same node
as the actual farthest point, it is spatially adjacent to the actual
farthest point and can serve as an approximate substitute being
added to the sampled points set S. We will explore the tradeoff
between the enhance performance of OIS (by reducing the
number of Octree search operations) vs. the lost in accuracy.
Future Direction of VEG: Semi-approximate Data Struc-
turing. As we introduced in Section II, unlike the accu-

rate Data Structuring (DS) method used by HgPCN, some
PCN accelerators [5], [20] opt for the approximate method
to accelerate the PCN data structuring step. which requires
extra adaption in training. Based on the VEG method, a
semi-approximate VEG method can be explored as a future
direction, positioned in the middle between accurate and
approximate data structuring methods. This semi-approximate
VEG method aims to integrate the benefits of both methods.
In the current VEG method, the majority of nearest points
are gathered directly from the points included in voxel ex-
pansions, except for the final voxel expansion. The points
collected in the final voxel expansion need to be sorted to
select the rest of the nearest points. This sorting process
contributes to most of the computational workload for VEG.
With a semi-approximate VEG, the rest of nearest points
gathered in the final voxel expansion can be approximated
by randomly picking points. Among the results of the semi-
approximate VEG, most of the gathered points are accurate,
and the points from the final expansion can serve as substitutes
for the accurate points because they are spatially adjacent.
This way, the semi-approximate VEG can further accelerate
the current VEG and potentially without the need for training
adaptation.

REFERENCES
[1] A.X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-
rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.
Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A survey of accelerator
architectures for deep neural networks,” Engineering, vol. 6, no. 3, pp.
264-274, 2020.
Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi, “The farthest point
strategy for progressive image sampling,” IEEE Transactions on Image
Processing, vol. 6, no. 9, pp. 1305-1315, 1997.
H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-
eration for general-purpose approximate programs,” Communications of
the ACM, vol. 58, no. 1, pp. 105-115,2014.
Y. Feng, G. Hammonds, Y. Gan, and Y. Zhu, “Crescent: taming memory
irregularities for accelerating deep point cloud analytics,” in Proceedings
of the 49th Annual International Symposium on Computer Architecture,
2022, pp. 962-977.
Y. Feng, B. Tian, T. Xu, P. Whatmough, and Y. Zhu, “Mesorasi:
Architecture support for point cloud analytics via delayed-aggregation,”
in 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2020, pp. 1037-1050.
S. F. Frisken and R. N. Perry, “Simple and efficient traversal methods
for quadtrees and octrees,” Journal of Graphics Tools, vol. 7, no. 3, pp.
1-11, 2002.
A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231-1237, 2013.
Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
learning for 3d point clouds: A survey,” IEEE transactions on pattern
analysis and machine intelligence, vol. 43, no. 12, pp. 43384364, 2020.
Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and
A. Markham, “Randla-net: Efficient semantic segmentation of large-
scale point clouds,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 11 108-11 117.
R. H. Hunter, B. C. White, R. R. Patel, and J. R. Ballard, “Using morton
codes to partition faceted geometry: an architecture for terabyte-scale
geometry models,” 2020.
C. Jiang, D. Ojika, T. Kurth, S. Vallecorsa, B. Patel, and H. Lam, “Accel-
eration of scientific deep learning models on heterogeneous computing
platform with intel® fpgas,” in High Performance Computing: ISC High
Performance 2019 International Workshops, Frankfurt, Germany, June
16-20, 2019, Revised Selected Papers. Springer, 2019, pp. 587-600.

(2]

(3]

(4]

(5]

(6]

(71

(8]

9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
44th annual international symposium on computer architecture, 2017,
pp. 1-12.

S. Laine and T. Karras, “Efficient sparse voxel octrees-analysis, ex-
tensions,” and Implementation. Technical report, NVIDIA, Tech. Rep.,
2010.

L. Landrieu and M. Simonovsky, “Large-scale point cloud semantic
segmentation with superpoint graphs,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 4558—
4567.

Y. Lin, Z. Zhang, H. Tang, H. Wang, and S. Han, “Pointacc: Efficient
point cloud accelerator,” in MICRO-54: 54th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, 2021, pp. 449—461.

D. Madeira, A. Montenegro, E. Clua, and T. Lewiner, “Gpu octrees
and optimized search,” in Proceedings of VIII Brazilian Symposium on
Games and Digital Entertainment, 2009, pp. 73-76.

G. M. Morton, “A computer oriented geodetic data base and a new
technique in file sequencing,” 1966.

M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov, “Hamming distance
metric learning,” Advances in neural information processing systems,
vol. 25, 2012.

R. Pinkham, S. Zeng, and Z. Zhang, “Quicknn: Memory and perfor-
mance optimization of kd tree based nearest neighbor search for 3d point
clouds,” in 2020 IEEE International symposium on high performance
computer architecture (HPCA). 1EEE, 2020, pp. 180-192.

C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets
for 3d object detection from rgb-d data,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 918—
927.

C.R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” Advances in neural
information processing systems, vol. 30, 2017.

D. Richins, D. Doshi, M. Blackmore, A. Thulaseedharan Nair, N. Patha-
pati, A. Patel, B. Daguman, D. Dobrijalowski, R. Illikkal, K. Long,
D. Zimmerman, and V. Janapa Reddi, “Missing the forest for the
trees: End-to-end ai application performance in edge data centers,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2020, pp. 515-528.

U. Sakoglu, L. Bhupati, N. Beheshti, N. Tsekos, and L. Johnsson, “An
adaptive space-filling curve trajectory for ordering 3d datasets to 1d:
Application to brain magnetic resonance imaging data for classification,”
in Computational Science—ICCS 2020: 20th International Conference,
Amsterdam, The Netherlands, June 35, 2020, Proceedings, Part III 20.
Springer, 2020, pp. 635-646.

B. Scho™n, A. S. M. Mosa, D. F. Laefer, and M. Bertolotto, “Octree-based
indexing for 3d pointclouds within an oracle spatial dbms,” Computers
& Geosciences, vol. 51, pp. 430438, 2013.

J. Song, Y. Cho, J.-S. Park, J.-W. Jang, S. Lee, J.-H. Song, J.-G. Lee,
and 1. Kang, “7.1 an 11.5 tops/w 1024-mac butterfly structure dual-
core sparsity-aware neural processing unit in 8nm flagship mobile soc,”
in 2019 IEEE International Solid-State Circuits Conference-(ISSCC).
IEEE, 2019, pp. 130-132.

J. Sun, Q. Zhang, B. Kailkhura, Z. Yu, C. Xiao, and Z. M. Mao,
“Modelnet40-c: Arobustness benchmark for 3d point cloud recognition
under corruption.”

Q. Xu, X. Sun, C.-Y. Wu, P. Wang, and U. Neumann, “Grid-gen for fast
and scalable point cloud learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
5661-5670.

T. Xu, B. Tian, and Y. Zhu, “Tigris: Architecture and algorithms for
3d perception in point clouds,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
629-642.

