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Abstract—Point cloud is an important type of geometric data 
structure for many embedded applications such as autonomous 
driving and augmented reality. Current Point Cloud Networks 
(PCNs) have proven to achieve great success in using inference to 
perform point cloud analysis, including object part segmentation, 
shape classification, and so on. However, point cloud applications 
on the computing edge require more than just the inference 
step. They require an end-to-end (E2E) processing of the point 
cloud workloads: pre-processing of raw data, input preparation, 
and inference to perform point cloud analysis. Current PCN 
approaches to support end-to-end processing of point cloud 
workload cannot meet the real-time latency requirement on the 
edge, i.e., the ability of the AI service to keep up with the speed 
of raw data generation by 3D sensors. 

Latency for end-to-end processing of the point cloud workloads 
stems from two reasons: memory-intensive down-sampling in the 
pre-processing phase and the data structuring step for input 
preparation in the inference phase. In this paper, we present 
HgPCN, an end-to-end heterogeneous architecture for real-time 
embedded point cloud applications. In HgPCN, we introduce 
two novel methodologies based on spatial indexing to address 
the two identified bottlenecks. In the Pre-processing Engine 
of HgPCN, an Octree-Indexed-Sampling method is used to 
optimize the memory-intensive down-sampling bottleneck of the 
pre-processing phase. In the Inference Engine, HgPCN extends 
a commercial DLA with a customized Data Structuring Unit 
which is based on a Voxel-Expanded Gathering method to 
fundamentally reduce the workload of the data structuring step 
in the inference phase. 

The initial prototype of HgPCN has been implemented on 
an Intel PAC (Xeon+FPGA) platform. Four commonly available 
point cloud datasets were used for comparison, running on 
three baseline devices: Intel Xeon W-2255, Nvidia Xavier NX 
Jetson GPU, and Nvidia 4060ti GPU. These point cloud datasets 
were also run on two existing PCN accelerators for compar- 
ison: PointACC and Mesorasi. Our results show that for the 
inference phase, depending on the dataset size, HgPCN achieves 

speedup from 1.3× to 10.2× vs. PointACC, 2.2× to 16.5× vs. 

Mesorasi, and 6.4× to 21× vs. Jetson NX GPU. Along with 
optimization of the memory-intensive down-sampling bottleneck 
in pre-processing phase, the overall latency shows that HgPCN 
can reach the real-time requirement by providing end-to-end 
service with keeping up with the raw data generation rate. 
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I. INTRODUCTION 

With the development of 3D sensors, such as LiDARs, 

and RGB-D cameras, there are increased interests in research 

and development of processing point cloud data. Point Cloud 

Networks (PCNs) have proven to achieve great success in 

different tasks of point cloud analysis, including object part 

segmentation, shape classification, and so on. Point cloud ap- 

plications on the computing edge, such as autonomous robotics 

and drones, have stringent real-time requirements. Many PCNs 

for point cloud AI tasks have been proposed [9], including 

DSA (Domain-Specific Architecture) PCN accelerators such 

as Mesorasi [6], PointACC [16], and Crescent [5], which have 

been proposed to accelerate PCN inference. However, point 

cloud applications on the computing edge require more than 

just the inference step. They require an end-to-end processing 

of the point cloud workloads. A recent paper [23] indicated 

that the processing of AI services for edge computing suffer 

the problem of high “AI tax”, which includes the supporting 

steps for AI workload such as pre-processing of raw data, 

input preparation, and offloading communication overhead. 

These steps contribute to a major part of overall latency in 

edge AI services. Unfortunately, this high “AI tax” problem is 

more serious for point cloud applications. Due to the inherent 

irregularity and large size of raw point cloud data, the pre- 

processing and communication overhead of point cloud data 

are far more expensive than traditional data types, such as 

image or video. Due to the high AI-tax, the current PCN 

approaches to support end-to-end processing of point cloud 

workload cannot meet the real-time requirement [10], i.e., the 

ability of the AI service to keep up with the speed of raw data 

generation by 3D sensors. In PCN edge services, the AI tax 

is mainly stemmed from two reasons: the expensive down- 

sampling pre-processing phase and the data structuring step 

for input preparation in the inference phase. 

As shown in Figure 1(a), an end-to-end point cloud AI 

service based on PCNs comprise of two major phases after 

raw data generation: pre-processing of the point cloud data 
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Fig. 1. (a) Two phases of an end-to-end point clouds AI service (classification 
task), (b) Overall architecture to process the two phases. 

 

 

and PCN inference. After obtaining the raw point cloud data 

from the sensor, the size of the raw data is enormous: e.g., 

for every frame, a LiDAR sensor produces approximately 2 

million points. Also, the number of points in each frame 

is highly irregular because different objects have different 

reflectivity to the laser. Thus, point cloud applications on the 

edge require an effective front-end pre-processing phase to 

deal with this kind of irregularity before feeding the data 

into the PCN for inference. For each frame, it has to be 

down-sampled from million-level, variable-number points into 

thousands-level, fixed number points (e.g., 4096 points per 

frame to feed into the input layer of a PCN). Because of 

the large amounts of points in raw point cloud data and 

expensive nature of down-sampling methods, down-sampling 

pre-processing is extremely memory intensive and is a major 

bottleneck in a real-time point cloud application. 

As a type of Deep Neural Network (DNN), the backend 

PCN inference phase is a computationally intensive task. In 

recent years, there have been much advance in Deep Learning 

Accelerators (DLAs), including commercially available DLAs 

[2], which perform well in satisfying the computationally in- 

tensive inference requirements of traditional DNNs. However, 

current DLAs cannot be directly applied to PCN inference. 

The reason is, unlike traditional dense data types, points in 

a point cloud are sparsely distributed in a 3D space [9], 

[28]. Thus, before the actual feature computation with MVM 

(matrix-vector multiplication), an additional step, data struc- 

turing, is necessary to adapt the spatial sparsity of the point 

cloud and prepare the input for the following convolutional 

layers. The data structuring step is not supported by current 

DLAs. However, if unaccelerated, this step results in a non- 

trivial part of the total computation of PCN inference. Data 

structuring before feature computation is the second major 

bottleneck in a real-time point cloud application. 

Current general-purpose architectures fail to effectively 

solve these two bottlenecks of end-to-end point cloud AI 

services for real-time applications. For example, the most com- 

monly used down-sampling pre-processing method, farthest- 

point sampling (FPS), takes over 200 seconds to sample 10% 

of 1 million points [10] on GPUs. For CPUs, such enormous 

amount of computation is rather slow because their limited 

parallel capability. We will show in Section III that the down- 

sampling pre-processing phase occupies a major part of the 

end-to-end latency, which greatly exacerbating the problem of 

high “AI tax” [23]. 

Currently, there is a very limited number of hardware-based 

designs for point cloud accelerators [6], [16]. Furthermore, 

these works do not provide a complete solution since they do 

not fully consider the two bottlenecks. They focus solely on the 

AI (inference) phase, based on the assumption that the input is 

already down-sampled (pre-processed) and restructured. More 

details on these previous works will be given in Section II. 

In this paper, we first identify the workload characteristics 

and bottlenecks of the two major phases of end-to-end point 

cloud edge applications. The frontend pre-processing phase 

is a memory-intensive task, whereas the backend inference 

phase is a computationally intensive task. The workload char- 

acteristics are discussed in Section III. An overall architecture 

for HgPCN to support end-to-end processing of point-cloud 

applications is presented in Section IV. 

To enable the real-time PCN process in HgPCN, we intro- 

duce two novel methodologies to replace the brute-force tradi- 

tional pre-processing and data structuring methods (introduced 

in Section II) by converting them into efficient Octree-based 

spatial query. To address the memory-intensive bottleneck 

in the pre-processing phase, we develop an Octree-Indexed- 

Sampling (OIS) method. The OIS method uses an Octree 

data structure as a spatial index [25] to organize the point 

cloud data in memory. With an Octree pre-organization, down- 

sampling can be done with only reading out the desired after- 

sampled points among raw point cloud data from the memory, 

eliminating the need for repetitive access of input and interme- 

diate data from memory. In the HgPCN architecture, the OIS 

method is implemented in the Pre-processing Engine shown 

in Figure 1(b), which comprised of the Octree-Build Unit in 

the CPU and the Down-sampling Unit in the accelerator (e.g., 

FPGA). The design and implementation of the Pre-processing 

Engine are described in detail in Section V. 

For the Inference phase, we develop an Octree-based Voxel- 

Expanded Gathering (VEG) method to optimize the data 

structuring step. In our prototype implementation, the In- 

ference Engine (shown in Figure 1(b)) will make use of 

a commercially available DLA. It will be enhanced by a 

Data Structuring Unit (DSU) to form the PCN Inference 

Accelerator. As described in more detail in Section VI, the 

Data Structuring Unit is based on the VEG method and 

fundamentally reduces the workload of the data structuring 

step as compared against current methods. 

The initial prototype of HgPCN has been implemented on 

an Intel PAC (Xeon+FPGA) platform. The evaluation of the 

HgPCN prototype is performed using four modern point cloud 

datasets: ModelNet40 [27], ShapeNet [1], S3DIS [15], and 



FPS method will return a subset p1, · · ·, pk, · · ·, pK from 

 
 

Fig. 2. Illustration of the steps of an end-to-end PCN inference (toy-valued pedestrian classification task). 

 

KITTI [8]. The comparing baseline includes CPU/GPUs, and 

existing DSA PCN accelerators: PointACC [16], Mesorasi [6]. 

The evaluation of HgPCN is first performed independently 

for the two major phases (from engine-level), then evaluate 

the E2E latency from the HgPCN system-level in the edge 

computing scenario. The description of the prototype HgPCN 

and its evaluation are detailed in Section VII. 

In Section VIII, we provide the conclusions of our work 

and a discussion of our future directions. 

II. BACKGROUND AND RELATED WORK 

A. Point Cloud Data and PCNs 

A point cloud is a set of points x = {(pk, fk)}, where 

pk = (xk, yk, zk) is the coordinate of the kth point, and fk 
is the corresponding 1-D feature vector. Unlike a traditional 

image, which is a dense 2D pixel-matrix, a point cloud is 

comprised of numerous spatially distributed points in a 3D 

space. Point clouds are commonly generated by 3D data 

acquisition devices (such as LiDAR) and generally are massive 

and ever-changing. For example, in the KITTI dataset [8], 

each frame includes approximately (N ∼106) to (N ∼107) 
points; and the number of points varies widely between frames. 

Current DLAs processing DNNs cannot consume such large 

and irregular input datasets. Thus, a pre-processing (down- 

sampling) step is necessary. As shown in Figure 2, the down- 

sampling step is used to decimate the original point cloud 

into a fixed number of points, while maintaining the spatial 

information structure. 

The down-sampled input point cloud is the input to the 

 

The feature computation step for inference of PCNs in 

Figure 2 makes use of traditional DNNs outputted from the 

data structuring step. The weight will be applied to the input 

points subset in the MLP hidden layer and the final outputs are 

obtained from the output layer. The feature computation step 

can be decomposed into MVM, and can be directly accelerated 

by existing commercially avaibable DLAs such as NPU [4]. 

In summary, an end-to-end PCN inference process contains 

three major steps: down-sampling pre-processing of the raw 

point cloud data, data structuring, and feature computation. 

Among these operations, down-sampling and data structuring 

are point-cloud-specific operations and have not been fully 

optimized. However, these two operations are quite expensive 

and become major bottlenecks for end-to-end PCN inference. 

Expensive downsampling pre-processing. In real-world edge 

computing applications, pre-processing is a necessary step in 

the AI pipeline [23]. Furthermore, for point clouds, the pre- 

processing is far more expensive than traditional data types 

and contributes to a major part of the latency. There are two 

main causes of the high latency. The first is the enormous size 

of raw point cloud data. The number of points in raw point 

cloud data is from N ∼105 to N ∼106. The second reason is 

the expensive down-sampling methods used. For example, the 
FPS method samples the raw point cloud iteratively. It starts 

by randomly selecting a seed point from the raw point cloud 

set (denoted as set C) and putting it in the sampled points set 

(denoted as set S). In each iteration, it picks a point from the 

unpicked point set C − S that is the farthest from the sampled 

point set S and adds it into the sampled point set S, until S 
contains the predefined number of points K. In this w}ay, the 

to the concept of a “stride window” in convolution, weight 

kernels in PCN will only be applied to a subset of input points 

while moving over the entire point set. Because point clouds 

are sparsely scattered in a 3D space, forming the input subset 

of points is far more difficult than traditional dense input 

like images. Unlike the pixels in images, there is no direct 

neighbor-indexing method in point clouds. Thus, as shown in 

Figure 2, before the feature computation step, an extra data 

structuring step is required to form the subset of points as the 

“input feature map” by using neighbor-gathering methods. 

raw points C, such that each pk is the farthest point from the 

first k − 1 points. K is a selected fixed number (e.g., 4096). 

We will show later in Section III that the down-sampling pre- 

processing phase is a memory-intensive task and is a huge 

computational workload. In addition, the down-sampling pre- 

processing phase does not use memory bandwidth efficiently. 

In the FPS method, over 99% of memory accesses are wasted 

because most of these points will be filtered out and not 

be used again after down-sampling. Among all the existing 

sampling methods, only the Random Sampling (RS) method 

backend PCN inference phase, as shown in Figure 2. Similar 



is possibly fast enough to satisfy real-time requirements on 

general-purpose architectures. The RS method simply picks 

K points from the raw point cloud randomly. As a result, 

the accuracy of random sampling is low and cannot be fully 

trusted [10], especially in some safety-oriented applications. 

Expensive Data Structuring. As mentioned, in order to use 

commercially available DLAs, PCNs need to gather point- 

subsets, which are in the neighboring set N (xk) of selected 

central points (red points in the Figure 2), to form the 

“input feature map” for feature computation. (For example, 

in Figure 2, central point A gathers nearest points B, C, D, E, 

and F to form the point-subset A.) Unlike pixels in images, 

the points in point clouds are scattered over a 3D space in an 

irregular manner. There is no direct neighbor-indexing method 

to gathering the neighboring set N (xk). The gathering process 

can be achieved by expensive nearest neighbor gathering, 

such as KNN (K-nearest-neighbors) and BQ (Ball query). In 

traditional methods, neighbor points gathering for each central 

point needs to search over the entire input point cloud. Let’s 

assume the size of the input point cloud is n, and neighbor 

gathering size is k. For neighbor gathering of each central 

point, it is necessary to compute the distances from this central 

point to every other n−1 points, and pick the top k points with 

nearest distances. Each neighbor gathering process of a central 
point replicates these steps and results in a high workload. 

B. Current PCN Accelerators 

Existing PCN accelerators mainly focus on optimizing the 

expensive data structuring step (second bottleneck), with the 

assumption the point cloud data is already pre-processed 

(first bottleneck). Unlike these PCN accelerators, the proposed 

HgPCN will not assume the point cloud data has been pre- 

processed. The HgPCN architecture supports efficient online 

pre-processing, together with an Inference Engine to supports 

efficient end-to-end PCN inference service. 

To perform the data structuring step in the inference phase, 

existing PCN accelerators can be divided into two types. The 

first type [6], [16] performs data structuring by using accurate 

neighbor search methods, which returns the same result as 

traditional data structuring methods. The second type is to 

improve the latency of the data structuring step by using some 

tree-based methods [5], [20], [29], to perform an approximate 

neighbor search. As a result, these approximation methods 

require some adaptation in the model training phase [5]. The 

data structuring method used in HgPCN results in accurate 

(not approximate) data structuring, which is compatible with 

current training method. Thus, we will compare our inference 

results (in Section VII) to the first type of PCN accelerators. 

III. MOTIVATION 

In this section, we identify the key performance bottle- 

necks of an end-to-end PCN in general (not considering 

accelerators). The evaluation was performed using general- 

purpose platforms: Intel® Xeon® W-2255 CPU and 4060Ti 

GPU. For down-sampling in the pre-processing phase, the 

most commonly used FPS [3] method was used. For the 

backend, Pointnet++ [22] was used to perform inference on 

the Modelnet40 [27], ShapeNet [1], S3DIS [15], and KITTI 

[8] datasets. The end-to-end PCN application was run to 

obtain a breakdown of the latency. Then, we quantitatively 

analyze the detailed operations in the two phases to identify 

the bottlenecks which motivate the HgPCN design. 

 

Fig. 3. End-to-end execution time breakdown (actual time not shown). 

 

Overall Latency Analysis. Figure 3 shows the percentage of 

the total end-to-end latency spent on the pre-processing phase 

and inference phase for each of the four example datasets. As 

expected, datasets with larger raw point clouds require more 

time for pre-processing. From Figure 3, it can be observed that 

the latency of pre-processing is far greater than the latency of 

the actual inference. The results confirm that the high cost 

of the AI tax for point cloud applications is far more serious 

than traditional AI applications [23]. Optimizing only the PCN 

inference phase, as done in existing PCN Accelerators [13], is 

far from enough to meet the real-time requirements of point 

cloud applications on the computing edge. 

A. Analysis of Frontend Pre-processing 

Bottleneck Identification. The bottleneck in the pre- 

processing phase is caused by large data movement, result- 

ing from the large memory footprint of the down-sampling 

process. One reason is the large input size. In our baseline 

datasets, for every frame of raw point cloud data, KITTI con- 
tains (N ∼106), Modelnet40 contains (N ∼105), and S3DIS 

contains (N ∼105) points, respectively. The second reason is 

that an excessive amount of intermediate data is generated 

during the down-sampling phase. As we discussed in Section 

II, the FPS algorithm samples the raw point cloud by itera- 

tively picking the farthest point. For each iteration, we have to 

compute the distances between every point in unpicked points 

set C − S to picked points set S and rank these distances. This 

process exhibits low data locality because all of the computed 

distances (intermediate data) are written into the memory, and 

then read again after all distances are calculated. For these 

reasons, the down-sampling phase is a very time-consuming 

memory-intensive task, and the major resource of AI tax. 

B. Analysis of Backend PCN Inference 

As shown in Figure 2, PCN inference contains two separate 

steps: data structuring (DS) and feature computation (FC). The 



DS step is used as input preparation for the FC step, which is 

the actual convolution (CONV) step. 

Bottleneck Identification. The data structuring step consists 

of the neighbor search of central points, which can be solved 

by algorithms such as k-nearest-neighbors (KNN) or Ball 

query (BQ). Even though the neighbor search operations them- 

selves do not involve complicated computations, it is still time- 

consuming because the neighbor search algorithms operate 

over the entire input point cloud. For the data structuring step 

of a point-subset of PCNs, we need to compute the distance 

from every point to the central point and pick the top k nearest 

points by ranking these distances (using the KNN example). 

And this data structuring step is replicated for every central 

point in the input point cloud. As a result, a large amount of 

computation is required by the data structuring steps for each 

feature computation step. A recent work [16] shows that in 

PointNet++, approximately 50% of total computation of the 

inference phase is consumed by the data structuring step and 

becomes another source of AI tax. 

The feature computation in PCNs (i.e., actual inference) 

shares the same requirements as the traditional DNNs and 

can be directly optimized by using DLAs [13]. But the data 

structuring step is unique for PCNs and are not supported 

by existing commercial accelerators. To take advantage of 

commercial DLAs to accelerating the feature computation 

step, the data structuring bottleneck needs to be addressed. 

IV. HGPCN ARCHITECTURE 

Shown in Figure 4 is an overview of the architecture of 

HgPCN, which is based on a CPU-FPGA shared memory 

platform (e.g., Intel PAC card [12]). The major system compo- 

nents of the architecture are: (1) CPU, (2) Host Memory, and 

(3) FPGA. The major architectural components of HgPCN are 

(1) Pre-processing Engine (Octree-build Unit in the CPU and 

Down-sampling Unit in the FPGA) and (2) Inference Engine 

(Data Structuring Unit and Feature Computation Unit) in the 

FPGA. A key feature of the HgPCN architecture is that both 

the CPU and FPGA can access the data in the shared Host 

Memory. For each frame of the point cloud, we assume the raw 

data from the data sensor (e.g., LiDAR) is collected and stored 

in the Host Memory. Recall from Section I (Figure 1), an end- 

to-end point cloud AI service based on PCNs comprise of two 

major phases after raw data generation: pre-processing of the 

point cloud data and PCN inference. As will be described in 

more detail later, for the HgPCN, the pre-processing phase 

consists of two steps; (1) an Octree construction & memory 

pre-configuration step which is performed using the CPU 

and Host Memory, and (2) a down-sampling step which is 

performed in the Down-sampling Unit in the FPGA. The PCN 

inference phase is performed in the Inference Engine in the 

FPGA. As shown in Figure 4, the Inference Engine consists 

of a Data Structuring Unit and a Feature Computation Unit. 

Pre-processing: Octree construction & memory pre- 

configuration For each frame of the point cloud, an Octree is 

constructed in the CPU according to the raw point cloud data 

and configured into an Octree-Table. The Octree can be built 

 

 

 

Fig. 4. Architecture overview of HgPCN. 

 

by traversing points in the raw point cloud in a single pass of 

the data. Additionally, the point cloud data in the Host Memory 

will be configured (i.e., reorganized) according to the Octree- 

based sequence. The Octree-Table will record the addresses 

of the re-arranged points. More details of this process and 

how it greatly reduces Host Memory access will be given in 

Section V. After the Octree-Table is built, it is transferred to 

the Down-sampling Unit in the FPGA. 

Preprocessing: downsampling. In Section V, we will intro- 

duce an Octree-Indexed-Sampling (OIS) method which will 

make use of the Octree-Table [17] to perform the down- 

sampling process on memory addresses without having to ac- 

cess the Host Memory, greatly reducing the memory-intensive. 

As shown in Figure 4, this down-sampling step is performed 

in the FPGA in the Down-sampling Unit. The output of 

the down-sampling is recorded in the Sampled-Points-Table 

(SPT), which contains the addresses of after-sampled points. 

Using these addresses in the SPT, the Down-sampling Unit 

can read the after-sampled points directly from Host Memory 

and these points provide the input for the inference phase. 

Inference Engine. The Inference Engine consists of two main 

modules, the Data Structuring Unit (DSU) and the Feature 

Computation Unit (FCU), both of which are implemented 

in the FPGA. In our prototype implementation, the FCU is 

a commercially available Deep Learning Accelerator (DLA), 

like the Intel NPU [26]. The DLA will perform inference on 

the point-subset as the “input feature map”, which is the output 

from the DSU. 

The Data Structuring Unit (DSU) performs a preparation 

step to produce an input feature map that can be used by 

existing DLAs. The implementation of the DSU is based 

on a Voxel-Expanded Gathering method and fundamentally 

reduces the workload of the data structuring step as compared 

to current methods. The details of the DSU and the Voxel- 

Expanded Gathering method will be presented in Section VI. 

 

V. PRE-PROCESSING ENGINE 

As we discussed in Section III, the pre-processing of a point 

cloud frame using standard methods is a memory-intensive 



 

Fig. 5. Octree-Indexed-Sampling method overview: (a) A point cloud character “A” (black and color points). Note, for simplicity, that it is a 2D Quadtree 
illustration of our Octree-Index-Sampling (OIS) method. An Octree contains two horizontal levels of Quadtrees, having an extra Z dimension. (b) Corresponding 
Quadtree representation. For simplicity, only node “11” is fully expanded. As shown, the content of a Quad-tree is stored in a Quadtree-Table in the Down- 
sampling Unit; and the raw points corresponding to the Quadtree are pre-configurated in the Host Memory. (c) An example of OIS steps to create the 
Sampled-Point-Table, which contains the corresponding Host Memory addresses of the K picked points, where K is a pre-defined number, e.g., 4096. 

 

task. An extremely large amount of input points and inter- 

mediate data need to be accessed repetitively from memory; 

and as a result, the computational workload for pre-processing 

is also extremely heavy. In this section, we introduce an 

Octree-Indexed-Sampling (OIS) method to greatly reduce the 

memory-intensive bottleneck in the down-sampling process. 

With the OIS method, the HgPCN builds the Octree Table in 

the Octree-build Unit in the CPU and transfer it to the FPGA 

via MMIO. Based on the Octree Table, the down-sampling 

process is performed in the Down-sampling Unit in the FPGA, 

which directly access the desired after-sampled points from 

memory. Also in this section, we present how the Down- 

sampling Unit accelerates the large computational workload 

through hardware parallelism. 

Octree-Index-Sampling (OIS) Our OIS method is based on 

a key observation: down-sampling can be based on the relative 

position of a point in a 3D space. For example, most of 

the down-sampling methods normalize the point cloud data 

(to produce the relative positions) before the actual down- 

sampling process. In the OIS method, we will describe how 

we can obtain the relative position information beforehand by 

using a spatial indexing method. Then we can directly use the 

index to perform the down-sampling without having to access 

the memory to read out the absolute XYZ coordinates. 

A. Octree-build Unit in the CPU 

Octree Construction. The Octree structure is a way to reg- 

ularize the point cloud using voxels. It decomposes the point 

cloud distributed in a 3D space into a 1D-array, where the 

leaf level of the generated Octree is the resulting 1D-array. 

Figure 5(a) illustrates the steps of creating a Quadtree (note 

that a Quadtree, a simplified 2D-version of an Octree, is used 

for illustration). In the beginning, we put the point cloud (e.g., 

point cloud character “A”) into a root-level voxel (the outer 

black bordered “box” in Figure 5(a)). Then we continuously 

divide each non-empty voxel into sub-voxels (4 “blue” sub- 

voxels for the example Quadtree in Figure 5(a); 8 sub-voxels 

in an actual Octree) until it reaches a pre-defined depth (root 

plus three levels in this example). For each division, the level 

of the Octree is increased by one and the m-codes [18] of the 

subdivided nodes add two more bits at the end (three more 

bits in the Octree). In these newly added bits, the first bit 

represents the X-axis, and the second bit represents the Y-axis 

(for an Octree, the third bit represents the Z-axis). 

As shown in Figure 5(a), these new-added bits are based 

on the Space-Filling Curve (SFC) traversal order [24]. For the 

sub-voxels (child-nodes) generated by each subdivision, the 

new-added code of each sub-voxel, when compared with its 

parent voxel, is based on its relative position inside the parent 

voxel: i.e., the bottom-left quadrant is 00; the top-left is 01; 

the bottom-right is 10, and the top-right is 11. 

Shown in Figure 5(b) is a partial representation of the 

resulting Quadtree. The root and three levels are color-coded, 

corresponding to Figure 5(a). Every non-empty voxel from 

Figure 5(a) will be represented by a node in the Quadtree 

in Figure 5(b). In the final generated Quadtree, each non-leaf 

node includes up to four child-nodes (sub-voxels). Each leaf 

node includes the actual points within that node. For example, 

the leaf node 110011 shown in Figure 5(a) includes one point 

(11001100) and the leaf node 001101 contains four points. 

As described in [25], Octree can be used as an indexing 

method in a spatial database to optimize spatial queries. 

In HgPCN, the spatial information of each point is stored 

in Host Memory and can be obtained efficiently through an 

Octree-Table lookup. To do so, the point cloud data has to be 

reorganized as described next. 

Octree-based Organization in Host Memory. The Octree 

construction (as described in the previous section) is a process 

of mapping the voxels (nodes) from a higher dimension (2D in 

Quadtree; 3D in Octree) to 1-D linear ordering. This resulting 

1D linear ordering can be naturally mapped to consecutive 

memory addresses, which is also a 1D array. In Figure 5(b), 

connecting the leaf nodes together from the left-most leaf node 

(110001) to the right-most leaf node (110101) is the 1D linear 

ordering based on SFC traversal. Based on this 1D order, we 

can construct a 1D array comprised of the points inside the leaf 



 

 
 

Fig. 6. Pseudocodes of 1) common method for FPS. 2) OIS method for FPS. 

 

 

nodes. In cases when a leaf node contains multiple points (such 

as Node 110010 or 110100), the intra-node point arrangement 

also follows the SFC traversal. Note again that Figure 5(b) 

is only a partial representation of the example Quadtree from 

Figure 5(a), thus the 1D array [P1, P2, . . . , P8] shown at the 

bottom of Figure 5(b) represents only a part of the complete 

1D array for this example. The key point is that this 1D-array 

represents the same points in the raw point cloud, but are in 

a reorganized sequence. 

Next, the resulting 1D array is used to pre-configure the 

point cloud data in Host Memory by creating a reorganized 

copy in the memory. Using the simplified example in Fig- 

ure 5(b), the points [P1, P2, . . . , P8] are initially distributed 

“irregularly” throughout the million-point dataset in Host 

Memory. After the Octree-based reorganization process, those 

points [P1, P2, . . . , P8] are stored in consecutive addresses in 

the Host Memory. 

In summary, the Octree construction and the point cloud 

data reorganization are performed at the same time by a single 

pass of raw point cloud data. As will be described in the next 

subsection, through an Octree-Table lookup, we can obtain the 

memory address to directly access the spatial information (or 

characteristics) of the desired point. In contrast, the commonly 

used FPS method has to read out every point in the raw point 

cloud in Host Memory and searches for the desired next point 

by a ranking operation. 

B. Down-sampling Unit in the FPGA 

Configuration and use of Octree-Table. As shown in Fig- 

ure 5(b), the generated Octree will be configured into an 

equivalent Octree-Table, to be transferred to and used by 

the Down-sampling Unit in the FPGA. In the Octree, the 

leaf nodes contain the address (or address range) of the 

contained point(s). In the Down-sampling Unit, the Sampling 

Modules perform (in parallel) the down-sampling task by 

performing Octree-Table lookup operations. When a Sampling 

Module reaches a leaf node during an Octree-Table lookup, the 

Down-sampling Unit can determine the address containing the 

desired point and access the Host Memory directly to obtain 

the spatial information (xk, yk, zk) and feature information 

(fk) of that point, as described in the following example. 

Octree-Indexed-Sampling Algorithm and an Example. Fig- 

ure 5(c) shows an example of the steps in using the OIS 

method to achieve the same function as the commonly-used 

FPS method, but without incurring the cost of repetitive 

memory accesses. As illustrated in Algorithm 1 in Figure 6, for 

picking the farthest point as the next picked point, the common 

FPS method searches every point in unpicked point set (C −S) 
and compares distances. The OIS method substitutes the 

operations of Algorithm 1, which work on sparse points, with 

Octree-Table lookup operations. In the OIS method (Algorithm 

2 in Figure 6), the step that picks the farthest point is first 

approximated by picking the farthest voxel. Then within that 

voxel, pick the farthest of the points inside this voxel according 

to the SFC (Space-Filling Curve) traversal order. In Algorithm 

1, the for-loop for finding the next point (Line 4 to Line 6) 

iterates N times (N is the number of points in an up-to-million 

point raw point cloud frame). In contrast, the while-loop in 

the Algorithm 2 for finding the next point (Line 3 to Line 11) 

iterates at most a number equal to the depth of the Octree, 

which is quite limited. 

For example, assume that we pick the red point (left bottom- 

most point in Figure 5(a)) as the seed point. As the first 

picked point, the seed point is written into the first entry of the 

Sampled-Point-Table, as shown in Figure 5(c). Since this seed 

point belongs to voxel 000000, we want to find the farthest 

voxel from 000000. The process is explained as follows. 

In the Octree (Figure 5(c)), the seed voxel 000000 belongs 

to voxel 00 in the first level; 0000 in the second level; and 

000000 in the third (leaf) level. We begin to search for the 

desired farthest voxel of the seed voxel at the first level. 

At the first level, voxel 000000 belongs to voxel 00 and its 

farthest first-level voxel is 11. (Note that the distance between 

two voxels can be determined by the Hamming distance [19] 

between m-code [11]). Voxel 11 has two child-voxels in the 

second level, 1101 and 1100, of which 1101 is the farther voxel 

from the 0000. Continuing, voxel 1101 has two child-voxels, 

110100 and 110101, of which 110101 is the farther voxel from 

000000. Now we reached the leaf and find voxel 110101 as 

our desired farthest voxel from the seed voxel 000000. For 

the points inside voxel 110101, we pick the farthest point 

according to SFC traversal sequence and insert it into the next 

entry of the Sampled-Point-Table, as shown in Figure 5(c). 

Continuing, in the standard FPS method [3], when the 

picked points set S contains more than one point (two points 

in this example thus far), the seed point for the next iteration 

will be the Euclidean norm of S (i.e., a virtual summary point 

to represent S), denoted by ||S||2. The OIS method follows the 

same approach and repeats the steps of picking the subsequent 

farthest points from ||S||2 until the size of the point set N(S) 

reaches the pre-defined number K. 

Hardware Acceleration Figure 7(a) shows the details the 

Sampling Modules of the Down-sampling Unit in HgPCN. 

Each Sampling Module has two inputs: m-codes of the as- 

signed voxel and m-codes of the seed voxel. A Sampling 



 

 

 

Fig. 7. Hardware design of voxel-level parallelism. 
 

 

Module calculates the Hamming distance between the two 

m-codes using an efficient XOR operation [19]. The outputs 

from the Sampling Modules are simultaneously inputted into 

a bitonic sorter (not shown) to select the node with the largest 

Hamming distance as the next searched node. 

To further accelerate the OIS-based down-sampling phase, 

the Down-sampling Unit deploys multiple Sampling Modules 

based on voxel-level parallelism. Figure 7(b) shows the steps 

of OIS-based FPS using voxel-level parallelism. At any given 

time, eight Sampling Modules are each assigned one of these 

child-nodes to find the farthest node in parallel. 

Summary: In summary, to efficiently perform point 

cloud down-sampling, HgPCN employs an Octree-Indexed- 

Sampling (OIS) method by utilizing the Octree-based spatial 

queries to directly access the target points in Host Memory. To 

do so, HgPCN first constructs an Octree-Table and performs a 

pre-configuration step by reorganizing the point cloud data 

in the Host Memory. In our prototype HgPCN, these two 

processes are performed simultaneously in the Octree-build 

Unit (in the CPU) with a single pass of the raw point cloud 

data. After that, the Down-sampling Unit of HgPCN (in the 

FPGA) will perform the down-sampling by directly obtaining 

the memory addresses of the desired after-sampled points 

from the Octree-Table. In this manner, HgPCN greatly reduces 

the memory-intensive bottleneck of the pre-processing phase 

by indexing the 3D relative position of points with the 1D 

memory address. To further accelerate the OIS-based down- 

sampling phase, HgPCN exploits voxel-level parallelism by 

using multiple Sampling Modules in the Down-sampling Unit. 

Finally, the OIS method also provides a significant saving 

of on-chip memory in the FPGA. This is important because it 

allows the FPGA to have enough on-chip memory to support 

the accelerators for the two phases in HgPCN (down-sampling 

and inference) within one device. In Section VII, we will 

evaluate and analyze of the on-chip memory-saving benefit 

provided by the OIS method. 

VI. INFERENCE ENGINE 

As we discussed in Section III, for point cloud inference, 

before the actual feature computation step in the Inference 

Engine, an expensive data structuring step is required to form 

an input feature map; without which the inference cannot be 

supported by current commercially available DLAs. Thus, as 

shown in Figure 8, the HgPCN Inference Engine consists of 

a Data Structuring Unit (DSU) and Feature Computation Unit 

(FCU). The FCU is a commercially available Deep Learning 

Accelerator (DLA) which implements a classic systolic array 

design. The Data Structuring Unit (DSU) is a custom-designed 

module to optimize the expensive data structuring step and will 

be described below. 

Data Structuring Unit Most existing PCN accelerators [6], 

[16] accelerate this step mainly from a hardware perspective, 

e.g., using parallel execution. In this paper, we propose a 

Voxel-Expanded Gathering (VEG) method, in which opti- 

mization is achieved through algorithm and hardware co- 

design. The VEG method utilize the spatial indexing nature of 

Octree to algorithmically minimize the required computational 

workload in the data structuring (DS) step, and then further 

accelerate through parallel execution. Furthermore, the VEG 

method can efficiently support commonly used DS methods, 

e.g., KNN (K-Nearest-Neighbors) and BQ (Ball Query). In 

this section, we will use KNN as the example. 

Traditional Method for Input Feature Map. After the down- 

sampling step, current PCNs typically pick a fixed number 

of central points (e.g., red points in the input point cloud of 

Figure 2) from the down-sampled input point cloud. The data 

structuring step is used to form the subset of points as the 

“input feature map” by gathering nearby points of these central 

points. For the data structuring step of each central point, 

current PCN accelerators search all the points from a (down 

sampled) input point cloud, and then calculate the distance 

from every other point to the center point. Next, they sort 

and pick out the nearest K neighbor points from input point 

cloud. For example, if we assume the down-sampled input 

point cloud (after the processing phase) has 4096 points, and 

KNN needs to gather the K = 32 nearest points from the 

central point. With traditional methods, they need to compute 

4095 distances from the central point to every other point, and 

select the top K = 32 points with shortest distances. In this 

process, most of the 4095 distance calculation (except for the 

32 nearest neighbors) can be regarded as wasted. 

Voxel-Expanded Gathering (VEG) Method. In the VEG 

method, before the actual sorting step, we first narrow the 

range of nearest point search by adjacent-indexing through 

the use of an Octree. The standard Octree neighbor-search 

operation [7] is used to search the voxels adjacent to a central 

point’s voxel. More details of the steps of VEG method 

are discussed below. The HgPCN Data Structure Unit can 

execute multiple Octree neighbor search operations in parallel 

to search all adjacent voxels at the same time. 

Architectural Support In HgPCN. As shown in Figure 8, 

the design of the HgPCN Data Structuring Unit consists of 

six pipeline stages: 

• 1) Fetch Central Points (FP): Fetch a central point and 

the corresponding m-code [18] of this point. 

• 2) Locate Central Voxel (LV): Locate the voxel that 

contains the central point Vseed (yellow voxel shown in 



 

 

Fig. 8. Inference Engine overview. 

 

Figure 8 (2 and 3)). 

• 3) Voxel Expansion (VE): At the first level of voxel 

expansion (V 1), neighboring voxels touching the central 

voxel Vseed are included (the gray voxels in Figure 8 (3)). 

Voxel expansion continues outward and include the next 

level of touching voxels (the green voxels are included 

for the second expansion V2). Voxel expansion continues 

until the total number of points included in the expanded 

voxels is at least K. 

• 4) Gather Points (GP): Let’s assume that there are 

N0 points in the initial voxel Vseed and that we need 

n expansions to collect enough points (>= K). Also, 

assume there are N1 points in gathered voxels by first 

expansion V1; and Nn points in gathered voxels by the 

n-th expansion Vn . Gather the points from Vseed to Vn−1 
(i.e., total of N0 + N1... + Nn−1 points). 

• 5) Sort (ST): Sort the points in last voxel set Vn and pick 

the K - sum(N0 to Nn−1) points with nearest distances 

VII. EVALUATION 

A. Evaluation Setup 

Implementation Method A prototype of HgPCN has 

been implemented on an Intel PAC, a shared memory 

CPU-FPGA (Intel Arria 10 GX) platform. The accelera- 

tors are implemented on the FPGA side with SystemVer- 

ilog and VHDL, and the software implemented on the 

CPU side with C++. 

Benchmark datasets As shown in Table I, four common 

point cloud datasets (for four applications), with different 

raw-dataset frame sizes, were selected as our benchmarks. 

TABLE I 

EVALUATION BENCHMARKS 

from the central point. Together with the N0 + N1... + 
Nn−1 points, the K nearest points are found. 

• 6) Buffering (BF): Output the gathered K points, includ- 

ing the coordinates (pk) and feature information (fk), to 

the input buffer for the feature computation step. 

 

The above steps are repeated for each central point. 

Example: Assume we need to gather the 32 nearest neighbors 

for the central point (red point) in Figure 8. 

 

• The voxel (yellow) that contains the red point is the seed 

voxel Vseed. Let’s assume there are N0 points gathered 

in Vseed and that N0 < 32. 

• The voxel search is expanded outward from Vseed and 

includes first-level neighbor voxels of V1 (grey voxels in 

Figure 8). Assume there are N1 points in the set of grey 

voxels and that N0 + N1 < 32. These N1 points are 

gathered in V1. 

• Since there are still < 32 in the gathered voxels, we 

continue to include the second-level neighbor voxels 

(green voxels). Let’s assume there are N2 points in the 

set of green voxels. These N2 points are gathered in V2. 

• Let’s assume that N0 + N1 + N2 > 32, then pick the top 

nearest (32 − N0 − N1) points in V2 and combine them 

with N0 and N1 to form the 32 nearest neighbors. 

Baseline devices and accelerators for comparison 

General-purpose devices used in our comparison include 

the Intel® Xeon® W-2255, Nvidia Jetson GPU, and 

4060ti GPU. These general-purpose devices are used 

for end-to-end comparison, including the pre-processing 

phase and the inference phase. 

The second type of baseline hardware for comparison 
is against existing PCN accelerators, Mesorasi [6] and 

PointACC [16], with 16 × 16 systolic arrays for the 

feature computation step. Because these PCN accelerators 
do not include the pre-processing phase (i.e., not end-to- 

end), we will perform the comparison only on the PCN 

inference phase. 

Note that it is unnecessary to sort or compute the distances 

of points in N0 (from Vseed) and N1 (from V1), because 

they are definitely among the 32 nearest neighbors. Existing 

methods usually compute the distance from the central point 

to every other point in the 4096 input points, and pick the 

32 nearest points. With the VEG method, the computation 

workload (of sorting and picking the nearest points) is reduced 

from 4095 to N2. 

B. Analysis of the OIS method on CPU 

As stated, for the FPS down-sampling algorithm, the OIS 

method converts original operations (Algorithm 1 in Figure 6) 

Application Dataset input Size PCN Model 

Object Classification ModelNet40 1024 Pointnet++(c) [22] 

Part Segmentation ShapeNet 2048 Pointnet++(ps) [22] 

Indoor Segmentation S3DIS 4096 Pointnet++(s) [22] 

Outdoor Segmentation KITTI 16384 Pointnet++(s) [21] 

 



  
 

Fig. 9. Memory-access saving from OIS-method. 

 

 

on sparse points into efficient Octree lookup operations (Al- 

gorithm 2), optimizing the memory-intensive problem of the 

pre-processing phase. To demonstrate the inherent advantage 

of the OIS method against the common FPS method, we first 

evaluated these algorithms running on the same CPU (for OIS, 

both Octree-build Unit and Down-sampling Unit are on CPU). 

Benefits of the OIS method. Both Algorithm 1 (common 

FPS-method) and Algorithm 2 (OIS method) were run on an 

Intel® Xeon® W-2255 CPU, using point cloud frames with 

different sizes. The results are shown in Figure 9 and 10. In 

both figures, the x-axis shows the different point cloud frames. 

Labels beginning with “MN.” are frames from the ModelNet40 

dataset and the label “kitti.avg” represent a frame from the 

KITTI database of the average size. Note that for Shapenet, 

the raw data size is smaller than 4096 points, so it doesn’t 

include a column for down-sampled to 4096 points. For the 

y-axis, 6000× means the OIS method requires 6000 times less 

memory accesses than FPS method. 

As shown in Figure 9, memory-access saving for these 

benchmarks ranges from 1700× to 7900× for point cloud 

frames of different sizes. This result is consistent with the the- 
oretical analysis of memory-access saving between Algorithm 
1 and Algorithm 2 in Figure 6. 

Figure 10 shows the overall measured latency improvement 
of the OIS-based method, as a result of the memory-access 

savings. The OIS-based sampling outperforms the common 

FPS method with 800× to 7500× speedup. 

Overhead from Octree Build. As discussed in Section V 

(Pre-processing Engine section) and shown in Algorithm 2, the 

Octree-indexed Sampling method requires an initial overhead 

of building the Octree. Figure 11 details the overhead for 

different point cloud datasets and frame sizes. The Octree- 

construction overhead can range from 0.25 to 0.8 of the total 

latency of the OIS method when implemented only on CPU. 

In OIS-based sampling (on CPU), most of the latency and 

memory accesses are from the Octree-construction, because 

the OIS method must go through the entire raw point cloud 

data once to build the Octree. Note also, that the latency of OIS 

is impacted by two factors: the number of points in the point 

cloud and the depth of the Octree. The Octree-construction 

latency is determined by the number of points in a point cloud, 

and the speed of Octree-search is linearly related to the Octree 

depth. The Octree depth is influenced by the non-uniformity 

of a point cloud [14]. In Figure 11, even though MN.piano 

Fig. 10. latency speedup from OIS-method on CPU. 

 

 

and MN.plant contain almost the same number of points, the 

spatial distribution of MN.piano is more non-uniform than 

that of MN.plant, resulting in a deeper Octree for MN.piano. 

Unlike traditional methods, which require repetitive searching 

among the raw point cloud data, OIS can greatly reduce the 

amount of memory access (as demonstrated in Figure 9). 

Furthermore in HgPCN, the VEG method (for DS step) can 

reuse the built Octree to amortize the overhead. 

 

 
Fig. 11. Octree-build overhead of OIS-based sampling. 

 

C. Pre-processing Engine Performance 

In Figure 12, we first compare the OIS-on-CPU (software 

implementation on CPU) vs OIS-on-HgPCN to illustrate the 

speedup resulting from the hardware Down-sampling Unit. As 

seen from the first two columns in Figure 12, compared with 

OIS-on-CPU, the OIS-on-HgPCN can provide a from 1.2× 

to 4.1× speedup. This speedup stems from the reason that 

the hardware Down-sampling Unit (described in Section V-B) 

can achieve a 5.95× to 6.24× speedup compared to the CPU- 

implemented Down-sampling Unit. 

 

Fig. 12. Latency comparison of Pre-processing Engine against the baselines 

 

In the remainder of Figure 12, we compared the runtime 

latency of HgPCN’s Pre-processing Engine with three existing 

sampling methods on the baseline devices where they can 



get the best performance (CPU or GPU). (To our best of 

knowledge, there is no existing DSA for point cloud pre- 

processing). Among these sampling methods, FPS is the most 

commonly used because it results in the least information loss. 

However, it has the highest runtime latency. Random sampling 

(RS) has the lowest runtime latency, but is not generally 

used because it has the highest information loss. In some 

existing methods [10], a reinforcement process uses an encoder 

architecture to enhance RS (as RS+reinforce). But this method 

is not universal. It can only be applied to PCNs with encoder- 

decoder architectures. 

In Figure 12, the total latency of the Octree-indexed- 

sampling (OIS) method on HgPCN (light-blue columns) is 

shown. This latency includes the CPU-end (Octree-build Unit) 

and the FPGA-accelerator-end (Down-sampling Unit). The 

results show that the OIS method on HgPCN possesses the 

best advantages of the tested sampling methods. Although the 

performance of OIS on HgPCN is a little slower than random 

sampling, it can achieve the same accuracy as the FPS method. 

Unlike RS+reinforce, it is universal to all types of point cloud 

networks. Furthermore, compared to the FPS method, HgPCN 

offers a more consistent latency for different sizes of point 

cloud frames, providing better tail latency for edge computing. 

On-chip memory-saving with the OIS method. Reducing 

on-chip memory usage in an FPGA is important: 1) to free 

up resources to implement other parts of the application and 

2) to have the opportunity to keep an entire implementation 

on a single FPGA. Figure 13 shows the memory-consumption 

comparison between the FPS method and the OIS method: 

OIS can provide from 12× to 22× memory-saving. 

 

 
Fig. 13. On-chip memory-saving benefit from the OIS method. 

 

 

In our prototype implementation of HgPCN, the device used 
is the Intel Arria 10 GX 1150 FPGA, which has 65Mb total on- 
chip RAM. From our evaluation, if the raw point cloud frame 

contains more than ∼5 × 105 points and is stored in the FPGA 

memory (as in the case of FPS), the input points and generated 

intermediate data during the pre-processing phase will exceed 

the total capacity (65Mb) of on-chip memory. In this case, 

there will be no space for the Inference Engine. With the OIS 

method, only the Octree-Table needs to be stored in the on- 

chip memory, along with minimum amount of intermediate 

data. Even if raw point cloud frames contain ∼1 × 106 points, 

the OIS method only consumes approximate 10 Mb of memory 
in the pre-processing phase. 

D. Evaluation of Inference Engine 

In this section, we will present the evaluation results of the 

HgPCN Inference Engine against a GPU accelerator and two 

PCN accelerators: PointACC and Mesorasi. Recall that these 

PCN accelerators do not include the pre-processing phase (i.e., 

not end-to-end); thus we can only perform the comparison on 

the PCN inference phase. Also, because the Mesorasi PCN 

accelerator uses a random picking method to generate central 

points for the data structuring step, we will do the same for 

the GPU, PointACC, and HgPCN to ensure a fair comparison. 

The evaluation results are shown in Figure 14, in which the 

x-axis shows the four PCN tasks from Table I and the y-axis 

shows the speedup of HgPCN against the baselines. 

As shown in Figure 14, when compared to Nvidia Jetson 

NX GPU (blue columns), HgPCN achieves from 6.4× to 

21× speedup. When compared to Mesorasi (grey columns), 

based on the same systolic array architecture for the feature 

computation step, HgPCN achieves 2.2× to 16.5× speedup. 

We noted that Mesorasi uses a GPU to perform the data struc- 

turing step, which still occupies a major part of the latency. 

Even though Mesorasi tries to overlap the data structuring and 

feature computation, the inference speed is still largely limited 

by the latency of the data structuring step. 

 

 
Fig. 14. Speedup of HgPCN over baseline hardware. 

 

When compared to PointACC (orange columns), HgPCN 

achieves 1.3× to 10.2× speedup. Like HgPCN, PointACC 

also developed a customized unit (Mapping Unit) for the data 
structuring step. Like HgPCN’s DSU, the Mapping Unit of 
PointACC also uses a bitonic sorter to accelerate the ranking 

process. However, while based on the same bitonic sorter 

approach to select the top K nearest points, the HgPCN can 

outperform PointACC because of the fundamentally reduced 

workload resulting from the VEG method. Through the VEG 

method, HgPCN narrows the range for searching the nearest 

points. In Figure 15, we compare HgPCN against PointACC 

to show the benefits of the VEG method. Like other current 

existing methods, the searched range of PointACC’s bitonic 

sorter is over the entire input point cloud. In contrast, the 

required workload of the bitonic sorter in HgPCN’s Data 

Structuring Unit only sorts the points in Nn (from the last 

expansion Vn in Figure 8). Thus, the required workload of the 

bitonic sorter in HgPCN’s DSU is fundamentally less than that 

of PointACC’s Mapping Unit. Figure 15 shows the workload 

reduction due to the benefits of the VEG method. Note that 

for PCN tasks with larger input sizes, the VEG method can 



achieve an even greater level of workload reduction. Figure 16 

shows the latency breakdown of the VEG method. 

 

Fig. 15. VEG benefit. Fig. 16. VEG breakdown. 

 

E. Evaluation of System-level HgPCN 

In previous subsections, we analyzed separately the de- 

tails of the performance of HgPCN in the pre-processing 

phase (heterogeneously implemented on the CPU side and the 

FPGA-accelerator side) and the inference phase (on FPGA 

side). Here, we combine these two phases to evaluate the E2E 

system-level performance of HgPCN in an edge computing 

scenario. For this evaluation, the KITTI dataset is used as our 

benchmark dataset because each frame of KITTI is associated 

with a time-label of frame generation, from which we can 

determine the maximum generation rate of KITTI data frames. 

Let’s assume the point cloud frames are generated in real- 

time frame by frame. Our definition of meeting real-time re- 

quirement is the end-to-end processing of each frame can keep 

up with the sampling (data generation) rate. For the KITTI 

dataset, it was shown that HgPCN can process 16 average 

frames per second (FPS). For the KITTI dataset, according 

to the time label of frame-generation, we can determine the 

maximum generation rate of KITTI data frames is less than 

16 frames per second. Thus, we can conclude that HgPCN can 

keep up with the data generation rate of KITTI to meet the 

real-time requirement of such an application. 

VIII. CONCLUSIONS AND DISCUSSION 

Latency for end-to-end processing of the point cloud 

workloads stems from two reasons: memory-intensive down- 

sampling in the pre-processing phase and the data structuring 

step for input preparation in the inference phase. In this 

paper, we presented HgPCN, an end-to-end heterogeneous 

architecture for real-time embedded point cloud application. In 

HgPCN, we utilize the space-indexing function of the Octree 

structure to develop two novel methodologies to address the 

two identified bottlenecks and accelerate them by using a het- 

erogeneous CPU-FPGA implementation. In the Pre-processing 

Engine of HgPCN, an OIS method is used to optimize 

the memory-intensive down-sampling bottleneck of the pre- 

processing phase. In the Inference Engine, HgPCN extends 

a commercial DLA with a customized Data Structuring Unit 

which is based on a VEG method to fundamentally reduce the 

workload of the data structuring step in the inference phase. 

Our results from the previous section showed that for 
the inference phase, depending on the dataset size, HgPCN 

achieves speedup from 1.3× to 10.2× vs. PointACC, 2.2× 

to 16.5× vs. Mesorasi, and 6.4× to 21× vs. Jetson Xavier 

NX GPU. Along with optimization of the memory-intensive 

down-sampling bottleneck in pre-processing phase, the overall 

latency shows that HgPCN can provide the capability of 

satisfying real-time requirement by keeping up with the raw 

data generation rate of a benchmark application. 

A. Discussion and Future Directions 

Practical Implications Note that even though both the OIS 

method in the pre-processing phase and the VEG method in 

the inference phase are based on the Octree structure, they 

are independent methods and can be used independently. For 

example, the HgPCN Pre-processing Engine can be a plug- 

in to other PCN inference accelerators (not using the VEG 

method) to perform the end-to-end PCN inference. Similarly, 

the HgPCN Inference Engine (with VEG method) can be used 

as an independent PCN inference accelerator. In addition, the 

OIS and VEG are not only limited to PCN tasks. OIS is appli- 

cable to other non-AI point cloud applications (e.g., AR/VR) 

which require down-sampling of the raw point cloud data. 

VEG can be used for other point cloud applications [29] which 

requires neighbor gathering. Also note that the implementation 

of these two methods for point cloud nets is not limited to a 

CPU-FPGA platform (as in this paper). The proposed methods 

are also can be implemented on other accelerators, such GPU 

and CGRA (Coarse-Grained Reconfigurable Arrays). 

Finally, compared to images, the analysis and processing of 

point cloud data is a relatively unexplored area. The arrange- 

ment methods of image pixels (e.g., row-major or column- 

major) are well-developed, with which a 1D-address can be 

used as the index to a 2D-coordinate of a pixel. However, to 

our best of Knowledge, OIS is the first method that can be used 

to index the 3D-coordinate with 1D-address (by arranging the 

points). In HgPCN, we demonstrated the benefit of the OIS 

method and believe it can inspire future works to propose other 

efficient arranging methods for point cloud. 

Future Direction of OIS: Approximate OIS-based FPS. 

Based on OIS, the current prototyped HgPCN accelerates 

the commonly used down-sampling method, farthest-point 

sampling (FPS). Considering the approximate nature of DNNs, 

an approximate OIS-based FPS method can be explored to 

further enhance the speed while potentially causing only 

marginal information loss. In the current OIS-based FPS 

method, the accurate farthest point is identified and added to 

the sampled point set S by first finding the farthest leaf node 

and then selecting the farthest point within that node. With 

the approximate FPS method, instead of finding the accurate 

farthest point, we can randomly pick a point contained by 

current accessed node once Octree search is near leaf level. 

Because the randomly picked point belongs to the same node 

as the actual farthest point, it is spatially adjacent to the actual 

farthest point and can serve as an approximate substitute being 

added to the sampled points set S. We will explore the tradeoff 

between the enhance performance of OIS (by reducing the 

number of Octree search operations) vs. the lost in accuracy. 

Future Direction of VEG: Semi-approximate Data Struc- 

turing. As we introduced in Section II, unlike the accu- 



rate Data Structuring (DS) method used by HgPCN, some 

PCN accelerators [5], [20] opt for the approximate method 

to accelerate the PCN data structuring step. which requires 

extra adaption in training. Based on the VEG method, a 

semi-approximate VEG method can be explored as a future 

direction, positioned in the middle between accurate and 

approximate data structuring methods. This semi-approximate 

VEG method aims to integrate the benefits of both methods. 

In the current VEG method, the majority of nearest points 

are gathered directly from the points included in voxel ex- 

pansions, except for the final voxel expansion. The points 

collected in the final voxel expansion need to be sorted to 

select the rest of the nearest points. This sorting process 

contributes to most of the computational workload for VEG. 

With a semi-approximate VEG, the rest of nearest points 

gathered in the final voxel expansion can be approximated 

by randomly picking points. Among the results of the semi- 

approximate VEG, most of the gathered points are accurate, 

and the points from the final expansion can serve as substitutes 

for the accurate points because they are spatially adjacent. 

This way, the semi-approximate VEG can further accelerate 

the current VEG and potentially without the need for training 

adaptation. 
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