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Abstract—In order to effectively provide INaaS (Inference-as- 
a-Service) in resource-limited cloud environments, two major 
challenges must be overcome: achieving low latency and pro- 
viding multi-tenancy. This paper presents EIF (Efficient INaaS 
Framework), which uses a heterogeneous CPU-FPGA architec- 
ture to address these challenges via (1) temporal multiplexing that 
exploits the sparsity of neural-net models, (2) spatial multiplexing 
via software-hardware co-design virtualization techniques, and 

(3) streaming-mode inference which overlaps data transfer and 
computation. The prototype EIF is implemented on an Intel PAC 
(shared-memory CPU-FPGA) platform. For evaluation, 12 types 
of DNN models were used as benchmarks, with different size and 
sparsity. Based on these experiments, we show that in EIF, the 
temporal multiplexing technique can improve the user density of 

an AI accelerator from 2× to 6×, with marginal performance 
degradation. In the prototype system, the spatial multiplexing 

technique supports eight physical accelerators on one FPGA. 
By using a streaming mode based on a mediated pass-through 
architecture, EIF can overcome the FPGA on-chip memory 
limitation to improve multi-tenancy and optimize the latency of 
INaaS. To further enhance INaaS, EIF utilizes the MapReduce 
function to provide a more flexible QoS. Together with the 
temporal/spatial multiplexing techniques, EIF can support 48 
users simultaneously on a single FPGA board in our prototype 
system. In all tested benchmarks, cold-start latency requires only 
approximately 5% of the total response time. 

Index Terms—Inference-as-a-Service, Mediated Pass-Through, 
CPU-FPGA platform 

 

I. INTRODUCTION 

INaaS (Inference as a Service) [17] has received a great deal 

of attention from cloud providers due to the ability to 

abstract away low-level hardware details, while providing 

isolation between services, improved scalability, simplified 

management, and reduced costs. 

Existing CPU [1], [6] and GPU [3], [12] INaaS solutions 

have significant latency limitations, largely due to cold starts 

(necessary loading of both the model and library processes 

before inference) that take 73% and 91% of the total response 

time [1], respectively. Using FPGAs is an attractive alternative 

due to the elimination of library loading times, while also 

providing high performance and low power. For instance, 

Amazon AWS EC2 F1 [9] provides the AI cloud service using 

FPGAs in the computing infrastructure. However, used in 

resource-limited cloud environments, existing FPGA solutions 

suffer from limited multi-tenancy in sharing an FPGA board 

[7], while still have the high cold start latency resulting from 

model loading. 

In order to effectively provide INaaS (Inference-as-a- 

Service) in resource-limited cloud environments using FPGAs, 

two major challenges must be overcome: achieving low latency 

and multi-tenancy. This paper presents EIF (Efficient INaaS 

Framework), which uses a heterogeneous CPU-FPGA archi- 

tecture to address these challenges via (1) spatial multiplexing 

via software-hardware co-design virtualization techniques. (2) 

temporal multiplexing that exploits the sparsity of neural-net 

models. (3) streaming-mode inference which overlaps data 

transfer and computation. One of the key contributions of 

EIF is the use of a combination of both temporal and spatial 

multiplexing to improve multi-tenancy. In Section IV, we 

describe how we support an efficient temporal multiplexing 

method, where threads are scheduled onto shared resources. 

This temporal multiplexing method leverages the concept of 

Sparsity-Driven Multi-Thread Co-Execution (SDMC), which 

allows multiple hardware threads to execute on the same 

resource simultaneously by exploiting the inherent sparsity 

inside a DNN model. Also in Section IV, we present a hard- 

ware/software co-design virtualization technique to support an 

efficient spatial multiplexing method, which are customized in 

EIF specifically for inference. 

In addition to the multiplexing techniques, EIF uses a 

streaming mode based on a mediated pass-through architecture 

(detailed in Section IV). By doing so, EIF can overlap the data 

transfer and computation to overcome the on-chip memory 

limitation to improve multi-tenancy and optimize the model- 

loading latency suffered by existing FPGA-based INaaS. Also 

based on mediated pass-through architecture, EIF is equipped 

with the MapReduce function to support a more flexible QoS. 

A prototype EIF has been implemented on an intel PAC 

card, which is a CPU-FPGA shared memory platform. With 

the spatial multiplexing technique, the EIF can support mul- 

tiple DNN accelerators on one FPGA board. To perform 

DNN inference, the implemented EIF enhances the commonly 

used systolic array as DNN accelerator with the customized 

temporal multiplexing mechanism. Due to the temporal mul- 

tiplexing technique, a single DNN accelerator can simultane- 

ously support from two to six DNN user requests. Compared 

with a dedicated systolic array for one user, the performance 

degradation is only from 0.5% to 19.5%. And the throughput 

on one accelerator board can be improved from 15.7× to 

40.8×. Using the streaming technique, the prototype EIF 

greatly reduced the on-chip memory limitation to improve 

multi-tenancy, supporting up to 48 users simultaneously on one 

FPGA board. Compared with the traditional INaaS platform, 

on which cold-start occupies a non-trivial part of total response 

time, the cold start in EIF only occupies around 5% of the 

overall latency. 

The remainder of this paper is organized as follows. Section 



II provides background for this study. An overview of the 

EIF architecture is given in Section III. EIF adopts a host- 

device architecture, with the CPU being the host and the FPGA 

accelerator being the device (accelerator). Section IV presents 

the design details of the key modules of EIF: Container and 

Hypervisor modules in the CPU and the accelerator modules 

(Data Gathering Unit (DGU) and Computing Unit (CU)) in the 

FPGA. In Section V, the experimental setup is given, followed 

by detailed experimental results and evaluation. Related works 

are discussed in Section ??, followed by the conclusions in 

Section VI. 

II. BACKGROUND 

A. FPGA Virtualization 

Through virtualization techniques, an FPGA can be mul- 

tiplexed spatially [10], [23] and temporally [5], [13]. Spatial 

multiplexing allows different accelerators to simultaneously 

occupy the same FPGA. Temporal multiplexing allows a hard- 

ware infrastructure to be shared by multiple virtual machines 

(VMs) at different time slices. 

However, the current virtualization techniques do not solve 

the major challenges faced by INaaS, mainly because these 

techniques are not customized for inference tasks. 

First, a very limited number of inference tasks can be 

supported on one FPGA board because of the on-chip memory 

limitation. For example some large DNNs such as DCGAN 

[15] and ZFNet [22], even cannot fit fully in on-chip memory. 

The limitation of FPGA on-chip memory precludes the use 

of existing techniques in multi-tenancy-oriented services for 

datacenter applications. 

Furthermore, for INaaS, previous virtualization works have 

too many redundant operations, such as the memory segmenta- 

tion in Optimus [10], which adds unnecessary overhead to the 

entire INaaS system. One of EIF’s important contribution is to 

provide customized, efficient hardware-software co-design 

virtualization techniques for INaaS, while with the marginal 

overhead. 

Finally, although the above techniques achieve high effi- 

ciency and low overhead in spatial multiplexing, temporal mul- 

tiplexing techniques such as preemptive temporal multiplexing 

are not suitable for inference. The reason is most temporal 

multiplexing techniques [16] have a detrimental effect on the 

performance of an individual INaaS request, which is highly 

latency sensitive. In EIF, we will introduce a new customized 

temporal multiplexing technique which will cause marginal 

overhead with increase of user number. 

B. Mediated Pass-through Architecture 

An mediated pass-through architecture [10], [21] provides 

two methods of communication between devices: performance 

critical operations are passed through and directly access 

hardware resources, while privileged operations are trapped- 

and-emulated to provide isolation between guests and the 

hardware infrastructure. 

Moreover, a mediated pass-through architecture is a good 

solution to solve the inherent problem of INaaS, shortage of 

resources inside an individual container. In such architecture, 

computing-intensive calculations can be off-loaded to a device 

with strong computing capability (accelerators such as a GPU, 

FPGA, or TPU). There are many techniques that use mediated 

pass-through architecture to support VM-based services using 

GPU, such as GPUvm [18]. However, these techniques suffer 

from the cold start issue, when used to support INaaS. Com- 

pared with FPGAs-supporting INaaS, GPU-based INaaS has a 

very high cold start penalty because it requires to load the 

model and the necessary library beforehand, which becomes 

a major part of the total response time. To the best of our 

knowledge, there is currently no work on utilizing FPGA- 

based mediated pass-through architecture to support INaaS 

C. Sparsity in DNN Models 

Sparsity in the DNN model is defined as the fraction of zeros 

in the layer’s weight and input. In practical DNN models, many 

of input and weight data turn out to be zero [11]. The 

corresponding multiplications and additions related these zero 

values do not contribute to the final result and can be regarded 

as ineffective. The reason of the sparsity is from the nature 

and structure of DNN, like the activation function of CNN. 

Figure 1 shows the average total percentage of multiplication 

operands that are ineffective in different DNN models. This 

fraction varies from 37%, to up to 50% and the average 

across all networks is 44%. Many existing sparse NN 

accelerators [2] solve the inefficiency from the sparsity by 

compressing data or eliminating ineffective computation. In 

EIF, we utilize this the sparsity in DNN models to develop a 

temporal multiplexing method to allow multiple inference tasks 

can share one computing hardware. 
 

Fig. 1: Fractions of ineffective multiplication in DNN models. 

 

III. EIF OVERVIEW 

EIF targets a use case in which cloud providers offer INaaS 

based on the CPU-FPGA Shared-Memory platform. To pro- 

vide an unprecedented level of multi-tenancy and low latency 

for FPGA-based INaaS, several goals should be achieved 

through hardware and software co-design: 

Multi-tenancy. EIF targets to achieve the highest level of 

multi-tenancy within one FPGA device. To this end, the EIF 

framework must achieve both temporal and spatial multi- 

plexing for FPGA. For these purposes, we must solve the 

following problems: (1) limited on-chip memory resource, and 

(2) efficient method of temporal and spatial multiplexing. 



Isolation. EIF aims to provide enough security for the system: 

isolation between user-end and infrastructure. Because the user 

is untrusted, in EIF framework, the containers cannot directly 

access any type of infrastructure hardware resource. 

Efficiency. EIF targets to provide INaaS with low latency. For 

achieving this goal, EIF must utilize the high computing ability 

from FPGA accelerator and optimize the high cold start 

problem which is very common in current INaaS platforms. 

To achieve the goals and overcome the challenges we 

mentioned above, our EIF architecture is mainly derived by the 

following three observations: 

First, the FPGA virtualization technique [19] can provide 

isolation between users and infrastructure, and improve the 

multi-tenancy of the FPGA board. FPGA virtualization tech- 

nique [21] usually virtualize the FPGA with spatial multi- 

plexing and temporal multiplexing. The techniques for spatial 

multiplexing have already been proven efficient enough. But 

traditional temporal multiplexing technique from the operating 

system level, like preemptive multitasking, is detrimental to the 

response latency of DNN inference which is a very latency- 

sensitive job. Thus, in EIF, we design a customized and low- 

overhead temporal multiplexing method with the deployment 

of sparsity inside the DNN model with the SDMC mode [8]. 

Second, for a higher level of multi-tenancy for FPGA 

support INaaS, we must overcome the restriction imposed by 

relatively limited on-chip memory compared to the model size 

of an AI inference task. A DNN model can be thought of as 

a series of several sub-model. If we can perform a DNN task 

in a streaming mode, we just need to keep the parameters of 

a sub-model in on-chip memory instead of the entire DNN 

model [4]. 

Third, for an inference task, the time to prepare the op- 

eration and store the result is usually as long as the time to 

compute the required operations. If data transmission/reception 

and computing operation are independently processed in het- 

erogeneous processors, the response time can be optimized by 

overlapping these two processes [4]. 
 

 
Fig. 2: Design overview. 

The overall architecture of the EIF system, as shown in 

Figure 2, is guided by the design principles discussed above. 

It is implemented on a shared-memory platform with a CPU 

and an FPGA. 

There are two major sets of components on the CPU side: the 

containers and Hypervisor. The design follows a mediated 

pass-through [10], [21] architecture in which the containers (of 

CPU) are responsible for instructing the accelerators, and 

managing data transfer between the end-users and the 

underlying accelerators; whereas the Hypervisor of EIF traps 

all control operations (Memory-Mapped IOs, MMIOs) from the 

containers to redirect these operations to the appropriate 

physical accelerator. 

There are also two major sets of components on the FPGA 

side: a Shell and a set of accelerators. The Shell component 

is a reserved portion of the FPGA. The board manufacturer 

(e.g., Intel, Xilinx) provides the Shell, which serves as the 

IO interface for the FPGA. At the beginning of configuring the 

entire framework, the FPGA is configured with a fixed number 

and types of accelerators through the Shell. And the 

infrastructure information of configured FPGA will be kept in 

the Hypervisor. 

IV. DESIGN OF KEY EIF MODULES 

In this section, we will describe the design details of each of 

the key components of the EIF architecture and how they 

achieve the goals described in Section III. In Subsection A, we 

will describe the design details of the EIF components 

implemented in the CPU. In Subsection B, the design details of 

the EIF components implemented in the FPGA will be 

described. 

A. Design of EIF Components in the CPU 

EIF follows a host-device architecture, with the CPU being 

the host. As stated, there are two major sets of components 

on the CPU side: A set of containers and a Hypervisor, the 

design of which follows a Mediated Pass-through Architecture. 

The containers host INaaS services for user requests, and the 

Hypervisor virtualizes the hardware for spatial multiplexing 

FPGA and isolates the containers (user-end) and FPGA in- 

frastructure. 
 

Fig. 3: Designs in container. 

a) Container: Figure 3 shows the designs of a container 

of the EIF framework. The incoming user requests contain the 

following information: required model type, whether it needs 

MapReduce, and if so, the configuration of MapReduce. Note 

that how the upper level of the scheduling system gets this 

information is beyond the scope of this work. The three main 

parts of a container of the EIF system are: Model Selector, Host 

Memory Map, and MapReducer. When a new user request 

arrives, the Model Selector will select the target model that is 

specified in user request by searching all the models 



stored in the memory. Each container includes a Host Memory 

Map, containing information that which data inside the host 

memory is the requested model data of user request from the 

perspective of GVA (Guest Virtual Address). Containers will 

inform these GVAs to the accelerator for further translation 

to HPA (host physical address). The container also contains 

a MapReduce function, through which a user request can 

be mapped into multiple hardware threads for supporting 

flexible QoS. In this way, one user request can be concurrently 

executed by multiple hardware threads. 

b) Hypervisor: After processing the user requests, the 

containers send control operations to the Hypervisor, as shown 

in Figure 4. The Hypervisor traps control operations (MMIOs) 

from containers and redirects these operations to target the 

available threads of an accelerator. The Hypervisor will add an 

offset to this MMIO, and hardware logic will use this offset to 

address the target physical accelerator. As shown in Figure 

4, the major part of the Hypervisor is a Hardware Monitor. The 

Hardware Monitor is used for arbitrating the redirected 

operations to the multiplexed FPGA resources. The offset 

added by the Hypervisor is provided by the Hardware Monitor 

based on the availability of hardware infrastructure. The 

Hardware Monitor keeps track of all the information including 

the total number and availability of infrastructure hardware 

threads and redirects MMIO operations to available hardware 

threads. As shown in Figure 4, in the EIF system, we 

implement the Hardware Monitor as a MUX tree. The root level 

of the MUX tree is the whole FPGA board. The first level of 

the MUX tree represents the accelerators. The second level 

represents the threads. For the scheduling policy of the MUX 

tree, there are two choices: weighted scheduling policy and 

unweighted scheduling policy (round-robin). Whether 

deploying weighted or unweighted scheduling policy depends 

on whether the configuration of FPGA is homogeneous or 

heterogeneous, which we will discuss in Section V. 

In summary, based on the mediated pass-through architec- 

ture (CPU (Container, Hypervisor) as the host, FPGA accel- 

erator as the device), the computing workload are offloaded 

from containers into the FPGA side. And through this, we 

improve the response time by leveraging the high computing 

ability of accelerators. And through hypervisor design, spatial 

multiplexing can be achieved to improve multi-tenancy on the 

FPGA board. 

 

Fig. 4: Details of Hypervisor. 

B. Design Principle of Temporal Multiplexing 

As we mentioned in Section II, the common software 

temporal multiplexing methods have detrimental overhead to 

individual user request. In this subsection, we will introduce the 

design principle of EIF to support an efficient temporal 

multiplexing method from hardware perspective. Based on that, 

one DNN accelerator can simultaneously support multiple DNN 

requests as hardware threads. 

We exploit DNN’s sparsity feature to deploy an Sparsity- 

Driven Multi-Thread Co-Execution Mode (SDMC) [8] to 

achieve an efficient temporal multiplexing method inside the 

accelerator. The basic idea is that if one zero exists in either 

operand of a multiplication, this multiplication can be discarded 

and directly set the output as zero. So when two threads share 

the same computation unit (multiplier), only the effective 

(non-zero) thread will need to be calculated. The hardware 

thread in EIF is akin to the thread concept in software operating 

system, where multiple threads share the same hardware unit. 

If two threads both need to be calculated, the unexecuted one 

will be kept in the FIFO buffer. When two threads are both 

ineffective (both have zero-operand in other words), the first 

entry on the FIFO buffer will be issued and executed. At a 

certain point in time, only multiplication of one thread will be 

selected by the multiplexer and processed by the hardware unit. 

Through this hardware method, close-to- zero overhead 

temporal multiplexing can be achieved between multiple 

hardware threads. 
 

Fig. 5: Dataflow of PEs based on SDMC mode. 

Figure 5 shows how two threads, one multiplier, and four 

processing units pipeline (PU) works, based on the Sparsity- 

Driven Multi-Thread Co-Execution mode. The four stages of 

the PE are as follows: 

• Load: Each thread (thread 1, red; thread 2, blue) loads the 

weight and corresponding input from the corresponding 

part of on-chip memory. 

• Branch: This stage determines the effective thread(s), 

there are four combinations, that are 00, 01, 10, and 11. 

When two threads are both ineffective (00), the first entry 

from the FIFO buffer will be loaded and executed. When 

there are two threads competing for the multiplier (11), the 

first thread will be executed, and the second thread will be 

kept into FIFO. Either 01 or 10 implies there is only one 

effective thread within the two threads and the effective 

one will be executed while the ineffective one will be 

ignored and directly outputs zero. 



• Calculate and Track: The operands of effectual thread 

issued in BRANCH stage will enter the multiplier for 

calculating, while tracking the thread tag. 

• Add and Writeback: Add the partial sums of each thread 

together and write the result back to buffer. This is the 

result of one stride move in MAC (multiply–accumulate) 

operation. 

Unlike traditional methods of temporal multiplexing from 

software operating level, hardware temporal multiplexing with 

SDMC does not support traditional preemption. Fairness be- 

tween threads is ensured by the computation effectiveness of 

threads. 

In summary, based on the SDMC mode, EIF achieves the 

temporal multiplexing inside the DNN accelerator. Traditional 

DNN accelerator only support one user request. With the 

enhancement of SDMC mode, one DNN accelerator can 

support multiple hardware threads as figure 4 shows. 

C. Design of Accelerator Components in the FPGA 

The FPGA accelerator plays the role of device in the EIF 

host-device architecture, accelerating the computation 

offloaded by the CPU. Figure 6 shows the overall structure of 

the accelerator. The proposed architecture of the accelerator 

consists of two heterogeneous processors: Data Gathering Unit 

(DGU) and Computing Unit (CU). The DGU of the accelerator 

is mainly responsible for receiving model data and for 

controlling the CU. The CU performs computation tasks and 

reports the results to the DGU. DGU and CU can work 

independently and overlap in parallel the processes of model 

loading and inference to perform the inference in a streaming 

mode. With the streaming mode, the CU can start performing 

inference with the first slice of model data, without waiting the 

whole model loaded into the on-chip memory (weight buffer). 

The cold start from model loading is also mitigated from 

loading whole model to loading the first model slice. And 

during the processing of performing inference, only the current-

performed slice of model data is needed to be kept inside the 

weight buffer. As shown in Figure 6, the major parts of DGU 

are Shadow Page Table (SPT), DMA Engine, and Data Control 

Unit. The CU is comprised of a systolic array of PE’s, along 

with the Weight and Activation Buffers. 

a) Shadow Page Table: EIF deploys SPTs (Shadow Page 

Tables) in the hardware side for translating the GVA (guest 

virtual address) into HPA (host physical address). This HPA is 

necessary for the DMA Engine to retrieve the target DNN 

model. Each accelerator is equipped with an individual SPT for 

an effective translation from GVA to HPA once it receives 

GVAs of the target model through MMIO from the CPU. 

b) DMA Engine: To efficiently retrieve models from the 

host memory, each accelerator needs the ability to issue DMA 

individually. To this end, we equip each accelerator with an 

individual DMA Engine. The accelerators will use the SPTs 

(Shadow Page Tables) to translate GVA (guest virtual address) 

into HPA (host physical address). With these HPAs, the DMA 

Engine can issue DMA requests and retrieve the target model 

via a streaming mode. In this way, the number of accelerators 

 
Fig. 6: Overall structure of an accelerator. 

 

that can be built on an FPGA is only limited by PCI-E 

resources. 

c) Data Control Unit: The Data Control Unit (DCU) is 

responsible for requesting the input data through the DMA 

engine, filling the input buffer of the activation buffer, draining 

out the output buffer of the activation buffer, and generating the 

output signal for containers. 

d) Weight Buffers: We deploy the double buffering tech- 

nique for executing the entire inference task in a streaming 

mode. There are two levels of buffers for processing a model. 

When the first-level buffer is almost drained out, the data kept 

in the second-level buffer will be loaded into the first-level 

buffer for the next calculation in advance. And next sub-model 

kept in memory will be loaded into the second-level buffer 

during the timing of calculation and be ready for fill into the 

first-level buffer. 

e) Architecture of Computing Unit (CU): We deploy a 

systolic array (SA) based GEMM (general matrix-matrix 

multiplications) accelerator as the Computing Unit of EIF’s 

accelerators. For state-of-the-art DNN models, fully-connected 

(FC) layers, multilayer perceptron (MLPs), and Convolutional 

Layer can be mapped into GEMM operations naturally, and be 

executed in parallel. The PE (Processing Element) of the 

systolic array design follows the SDMC mode as we described. 

With that, the systolic array (as the DNN accelerator) can 

simultaneously perform the GEMM operations from multiple 

threads. The total number of co-executed threads in one systolic 

array should be preconfigured by cloud provider. The provider 

can implement different configurations of systolic arrays, e.g., 

SA with four threads or six threads, to adapt different types of 

inference tasks, which we will discuss in Section V. 

Figure 7 shows an example of the Computing Unit, which 

contains 32 PEs and performs two threads concurrently. In our 

implemented Systolic Arrays, there are four rows of PEs, and 

each row contains eight PEs. A Multicast bus connects PEs on 

the same row for sharing filter weights among PEs inside the 

same row (green lines in Figure 7). Since each row of 



 
Fig. 7: Overall structure of an example Computing Unit Architecture. The CU has an architecture of systolic array. Each PE 

processes tensor computing instead of a single MAC. Our PE design improves the usage efficiency of accumulator 

PEs calculates partial sums for the same output channel, a bus 

connecting inter-PE in the same row is added (red lines). 

In summary, with the streaming technique by overlapping 

operations in DGU and CU, the FPGA accelerators of EIF 

optimize the problem of high cold start and solve the on-chip 

memory limitation to support more DNN requests on one-chip 

board. And with the temporal multiplexing technique based on 

the SDMC mode, EIF furtherly improves the level of multi- 

tenancy on the FPGA board. 

V. EVALUATION 

We evaluate EIF mainly regarding the following metrics: 

• Efficiency: What is the overhead of temporal multiplexing 

and spatial multiplexing. Are multiplexing techniques 

deployed by EIF framework efficient enough? 

• Multi-tenancy: Through the streaming-mode inference, 

EIF framework successfully overcomes the on-chip mem- 

ory limitation. Then how many user requests can be 

simultaneously supported on a single FPGA? 

• Cold Start and response time: One of the major contri- 

butions of EIF framework is mitigating the ”cold start” of 

INaaS. Compared with other frameworks of INaaS, what 

are the advantages of EIF in terms of ”cold start”? 

Regarding overall response time, what kind of speeding- 

up can the EIF framework provide compared with other 

INaaS frameworks. 

A. Experimental Setup 

• Hardware: We implemented the prototyped EIF on the 

Intel PAC with Intel Arria 10 GX FPGA. Unlike CPU or 

GPU, the EIF implementation deploys 16-bit fixed-point 

arithmetic. For the computing logic inside the accelerator, 

the clock frequency is 100 MHZ. And system clock for 

AXI protocol and reading/writing data from or to DRAM 

is 250 MHZ. 

• Software: We implemented the hypervisor based on KVM 

(Kernel-based Virtual Machine). And we add the function 

of Hardware Monitor into the hypervisor. 

• Baseline: We compared the performance of the EIF-based 

INaaS with CPU-based INaaS and GPU-based INaaS. 

Existing GPU and CPU based INaaS usually overlook the 

problem of cold start and have not include the streaming 

(pre-fetching) technique to overlap the model loading and 

computing. For fair comparison, based on existing 

CPU/GPU methods [17], we upgrade our CPU and GPU 

INaaS baseline with the streamming techinque. And 

because EIF causes no library loading time, our baseline 

CPU, GPU baseline also are based on the assumption that 

the library (e.g., Pytorch, Tensorflow) is container- 

resident. For GPU-based INaaS, the model will load from 

host memory to GPU local memory. For CPU- based 

INaaS, the model will be directly used by data in the 

host memory. We chose NVIDIA GeForce TITAN RTX 

as our GPU platform and Intel(R) Xeon(R) W-2255 CPU 

as the CPU platform. The baseline of CPU-based INaaS 

was evaluated on the Docker container [14]; and the 

baseline of GPU-based supporting INaaS was through the 

NVIDIA-Docker [20]. 

• Benchmarks: We deployed 12 different AI inference tasks 

on EIF, in Table I, as benchmarks. We tested overhead for 

both temporal multiplexing and spatial multiplexing. In 

Table I, the ”Weight Size” of a model is the model size for 

GPU-based and CPU-based INaaS. The ”.bin file” is the 

.bin input file for EIF. The .bin file is created under a 

certain order specified by EIF. Since we are targeting 

INaaS, our experiments use a batch size of one. 

TABLE I. Parameters of benchmarks 
 

Model Weight Size bin file Sparsity Net size 

DCGAN 1-3 248 MB 262.6 MB 70%, 60%, 50% large 

DARKNET 1-3 459 MB 486.2 MB 70%, 60%, 50% large 

LeNet 1-3 19.1 KB 19.9 KB 70%, 60%, 50% small 

ZFNET 1-3 75.5 MB 28.4 MB 70%, 60%, 50% middle 

B. Evaluation of Temporal Multiplexing 

The overhead of temporal multiplexing is mainly stemmed 

from inter-threads waiting time caused by preemptions of 

hardware resources between threads. In order to test the 

overhead of temporal multiplexing at different accelerator 

configurations under the different task types, we select AI 

models with different sparsity levels, as listed in Table I, as our 

benchmarks. 

The results in Figure 8 show the comparison of 12 models, 

in Table I, to the dedicated execution of one thread (response 

time is normalized as one, no inter-threads waiting time). 



For each model, there are three bar graphs, illustrating two, 

four, six threads and their normalized response time overhead 

(percentage of slowing down). With two-threads accelerator, 

all types of tasks exhibited close-to-zero overhead. Even with 

a six-threads accelerator, no tasks will exceed 20% overhead. 

Through the overall results shown in Figure 8 and model 

information in Table I, we found that response time overhead 

is highly correlated with the sparsity of inference task models 

and the amount of co-executed hardware threads. For lower 

overhead, matching tasks with adequate accelerator configura- 

tion is non-trivial. In order to adapt various levels of tasks with 

different sparsity, for the provider, it is highly recommended 

to deploy a heterogeneous configuration of FPGA. That is, 

configure an FPGA board as a set of accelerators with different 

numbers of threads. In addition, for the scheduling policy 

in hypervisor, instead of deploying round-robin policy, a 

weighted scheduling policy should be deployed. The weight 

for scheduling is according to sparsity. Depending on this 

sparsity, the scheduling policy should schedule the task to an 

adequate accelerator. 

task that has a batch size one, latency-optimized CPU outper- 

forms throughput-optimized GPU. For EIF, the response time 

is the speedup of tasks running on a dedicated accelerator, 

without temporal multiplexing. LENET is too small and will 

not be the benchmark for speedup evaluation. At 100MHZ 

computing clock rate, EIF outperforms CPU-based INaaS and 

GPU-based INaaS from 3.1× to 6.7×, and from 13.1× to 25×, 

respectively. 

For the cold start (from model loading), GPU and CPU 

require loading at least model data of one layer to start the 

computation, while the EIF can start computing by loading 

model data of the first slice. Figure 9(b) shows the cold-start 

percentage of the total response time over these benchmarks. 

For EIF, it can be concluded that the problem of high cold start 

is largely optimized. The percentage of cold start only takes 

around 5% of total response time. And the values of cold start 

are stable between different DNN models. 
 

 
 

(a) Speedups of EIF under dedicated (b) Percentage of cold start in overall 
accelerator, no temporal multiplexing response time 

 

 

 

 

 

 

Fig. 8: Response time overhead compared with normalized 

response time under accelerators with different co-executing 

threads configuration. All these benchmarks are executed 

without mapreduce acceleration. 

C. Evaluation of Spatial Multiplexing 

For the overhead of spatial multiplexing, we evaluated 

the overhead of virtualization technique from software and 

hardware, our experiment shows the overhead of redirecting 

MMIOs at software the side is close-to-zero. Regarding the 

scalability of the EIF framework, we tested the range of the 

number of users that can be supported on one board. To avoid 

DMA congestion, we have not tested the maximum number of 

accelerators. For our implemented EIF framework, we built 

eight accelerators, and each accelerator can support up to 

six hardware threads. In this way, 48 guest requests can be 

supported on a single FPGA board. 

D. Evaluation of Latency Breakdown 

We evaluate the latency benefit of EIF from the FPGA- 

accelerator-based INaaS, include the overall response time and 

optimization of cold start. We compared the response time of 

inference tasks respectively on GPU-based INaaS, CPU-based 

INaaS, and EIF-based INaaS. The response time comprises 

model loading time, computing time. Figure 9(a) shows the 

normalized speedup performance among GPU-based INaaS, 

CPU-based INaaS, and EIF. Since we conducted an inference 

Fig. 9: Performance evaluation of EIF 

E. Evaluation of Resource Utilization 

Table II summarizes resource utilization by total 48 threads 

EIF (Eight homogeneous, six-threads accelerators, 16 bits data) 

from Quartus synthesis. In EIF, each thread has a double- buffer 

for model data and an activation buffer for reading input and 

writing output data. The activation buffer is actually 

constructed using two buffers: one for input and one for output 

to avoid overwriting. The activation layer is built by a lookup 

table IP core. And our implemented EIF utilizes the existing IP 

core for PCI-E DMA transmission. Each accelerator has a 

DMA channel as the individual DMA engine. 
TABLE II. Resource utilization of 48-threads EIF 

 

Resource type Utilization Available 

Logic utilization 148,800 251,680 

Total LABs 18,032 25,168 

Block RAM 13,762,560 43,642,880 

DSP Blocks 640 1,687 

F. Compared with modern FPGA virtualization techniques. 

Recently, Optimus [10] is the first work to virtualize the 

Shared-Memory FPGA platform. This work targets virtu- 

alizing a CPU-FPGA Shared-Memory platform to support 

multiple uncertain accelerators. Unlike Optimus, EIF targets 

provide virtualization for a certain type of FPGA accelerator. 

In INaaS task, EIF mainly outperforms Optimus because 

EIF is fully customized for INaaS. Assuming that basing on 

same structure of systolic array as the accelerator, EIF can 

shows advantages in temporal multiplexing. EIF achieve the 

temporal multiplexing by developing the sparsity of DNN 

models. The overhead of temporal multiplexing, as shown 

in figure 8 is marginal. But in Optimus, which deploy the 



temporal multiplexing mechanism from software operating 

system level, e.g., Round-Robin Scheduling, the overhead of 

temporal multiplexing will approximately linearly increase 

with more users on one accelerator. 

VI. CONCLUSION 

This paper presents EIF, a mediated pass-through architec- 

ture for FPGA-based INaaS. EIF provides both spatial and 

temporal multiplexing to achieve high tenant density on a 

single CPU-FPGA device. EIF further optimizes INaaS by 

overlapping data transmission with computation to decrease the 

latency. Our experiments show that (1) up to 48 user requests 

can be simultaneously supported on one FPGA board. 

(2) The overhead of spatial multiplexing is close to zero, 

and temporal multiplexing is very effective. (3) Compared with 

GPU-based INaaS, EIF can achieve from 13.1× to 25× 
speeding up in response time. And compared with CPU-based 

INaaS, EIF can achieve from 3.1× to 6.7× speeding up in 

response time. (4) EIF optimizes the cold start only occupy 

around 5% of total response time. 
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