EIF: A Mediated Pass-Through Framework for
Inference as a Service

Abstract—In order to effectively provide INaaS (Inference-as-
a-Service) in resource-limited cloud environments, two major
challenges must be overcome: achieving low latency and pro-
viding multi-tenancy. This paper presents EIF (Efficient INaaS
Framework), which uses a heterogeneous CPU-FPGA architec-
ture to address these challenges via (1) temporal multiplexing that
exploits the sparsity of neural-net models, (2) spatial multiplexing
via software-hardware co-design virtualization techniques, and
(3) streaming-mode inference which overlaps data transfer and
computation. The prototype EIF is implemented on an Intel PAC
(shared-memory CPU-FPGA) platform. For evaluation, 12 types
of DNN models were used as benchmarks, with different size and
sparsity. Based on these experiments, we show that in EIF, the
temporal multiplexing technique can improve the user density of
an Al accelerator from 2X to 6X, with marginal performance
degradation. In the prototype system, the spatial multiplexing
technique supports eight physical accelerators on one FPGA.
By using a streaming mode based on a mediated pass-through
architecture, EIF can overcome the FPGA on-chip memory
limitation to improve multi-tenancy and optimize the latency of
INaaS. To further enhance INaaS, EIF utilizes the MapReduce
function to provide a more flexible QoS. Together with the
temporal/spatial multiplexing techniques, EIF can support 48
users simultaneously on a single FPGA board in our prototype
system. In all tested benchmarks, cold-start latency requires only
approximately 5% of the total response time.

Index Terms—Inference-as-a-Service, Mediated Pass-Through,
CPU-FPGA platform

1. INTRODUCTION

INaaS (Inference as a Service) [17] has received a great deal
of attention from cloud providers due to the ability to
abstract away low-level hardware details, while providing
isolation between services, improved scalability, simplified
management, and reduced costs.

Existing CPU [1], [6] and GPU [3], [12] INaaS solutions
have significant latency limitations, largely due to cold starts
(necessary loading of both the model and library processes
before inference) that take 73% and 91% of the total response
time [1], respectively. Using FPGAs is an attractive alternative
due to the elimination of library loading times, while also
providing high performance and low power. For instance,
Amazon AWS EC2 F1 [9] provides the Al cloud service using
FPGAs in the computing infrastructure. However, used in
resource-limited cloud environments, existing FPGA solutions
suffer from limited multi-tenancy in sharing an FPGA board
[7], while still have the high cold start latency resulting from
model loading.

In order to effectively provide INaaS (Inference-as-a-
Service) in resource-limited cloud environments using FPGAs,
two major challenges must be overcome: achieving low latency

and multi-tenancy. This paper presents EIF (Efficient INaaS
Framework), which uses a heterogeneous CPU-FPGA archi-
tecture to address these challenges via (1) spatial multiplexing
via software-hardware co-design virtualization techniques. (2)
temporal multiplexing that exploits the sparsity of neural-net
models. (3) streaming-mode inference which overlaps data
transfer and computation. One of the key contributions of
EIF is the use of a combination of both temporal and spatial
multiplexing to improve multi-tenancy. In Section IV, we
describe how we support an efficient temporal multiplexing
method, where threads are scheduled onto shared resources.
This temporal multiplexing method leverages the concept of
Sparsity-Driven Multi-Thread Co-Execution (SDMC), which
allows multiple hardware threads to execute on the same
resource simultaneously by exploiting the inherent sparsity
inside a DNN model. Also in Section IV, we present a hard-
ware/software co-design virtualization technique to support an
efficient spatial multiplexing method, which are customized in
EIF specifically for inference.

In addition to the multiplexing techniques, EIF uses a
streaming mode based on a mediated pass-through architecture
(detailed in Section IV). By doing so, EIF can overlap the data
transfer and computation to overcome the on-chip memory

limitation to improve multi-tenancy and optimize the model-
loading latency suffered by existing FPGA-based INaaS. Also
based on mediated pass-through architecture, EIF is equipped
with the MapReduce function to support a more flexible QoS.
A prototype EIF has been implemented on an intel PAC
card, which is a CPU-FPGA shared memory platform. With
the spatial multiplexing technique, the EIF can support mul-
tiple DNN accelerators on one FPGA board. To perform
DNN inference, the implemented EIF enhances the commonly
used systolic array as DNN accelerator with the customized
temporal multiplexing mechanism. Due to the temporal mul-
tiplexing technique, a single DNN accelerator can simultane-
ously support from two to six DNN user requests. Compared
with a dedicated systolic array for one user, the performance
degradation is only from 0.5% to 19.5%. And the throughput
on one accelerator board can be improved from 15.7X to
40.8X. Using the streaming technique, the prototype EIF
greatly reduced the on-chip memory limitation to improve
multi-tenancy, supporting up to 48 users simultaneously on one
FPGA board. Compared with the traditional INaaS platform,
on which cold-start occupies a non-trivial part of total response
time, the cold start in EIF only occupies around 5% of the
overall latency.
The remainder of this paper is organized as follows. Section



IT provides background for this study. An overview of the
EIF architecture is given in Section III. EIF adopts a host-
device architecture, with the CPU being the host and the FPGA
accelerator being the device (accelerator). Section IV presents
the design details of the key modules of EIF: Container and
Hypervisor modules in the CPU and the accelerator modules
(Data Gathering Unit (DGU) and Computing Unit (CU)) in the
FPGA. In Section V, the experimental setup is given, followed
by detailed experimental results and evaluation. Related works
are discussed in Section ??, followed by the conclusions in
Section VI.

II. BACKGROUND
A. FPGA Virtualization

Through virtualization techniques, an FPGA can be mul-
tiplexed spatially [10], [23] and temporally [5], [13]. Spatial
multiplexing allows different accelerators to simultaneously
occupy the same FPGA. Temporal multiplexing allows a hard-
ware infrastructure to be shared by multiple virtual machines
(VM) at different time slices.

However, the current virtualization techniques do not solve
the major challenges faced by INaaS, mainly because these
techniques are not customized for inference tasks.

First, a very limited number of inference tasks can be
supported on one FPGA board because of the on-chip memory
limitation. For example some large DNNs such as DCGAN
[15] and ZFNet [22], even cannot fit fully in on-chip memory.
The limitation of FPGA on-chip memory precludes the use
of existing techniques in multi-tenancy-oriented services for
datacenter applications.

Furthermore, for INaaS, previous virtualization works have
too many redundant operations, such as the memory segmenta-
tion in Optimus [10], which adds unnecessary overhead to the
entire INaaS system. One of EIF’s important contribution is to
provide customized, efficient hardware-software co-design
virtualization techniques for INaaS, while with the marginal
overhead.

Finally, although the above techniques achieve high effi-
ciency and low overhead in spatial multiplexing, temporal mul-
tiplexing techniques such as preemptive temporal multiplexing
are not suitable for inference. The reason is most temporal
multiplexing techniques [16] have a detrimental effect on the
performance of an individual INaaS request, which is highly
latency sensitive. In EIF, we will introduce a new customized
temporal multiplexing technique which will cause marginal
overhead with increase of user number.

B. Mediated Pass-through Architecture

An mediated pass-through architecture [10], [21] provides
two methods of communication between devices: performance
critical operations are passed through and directly access
hardware resources, while privileged operations are trapped-
and-emulated to provide isolation between guests and the
hardware infrastructure.

Moreover, a mediated pass-through architecture is a good
solution to solve the inherent problem of INaaS, shortage of

resources inside an individual container. In such architecture,
computing-intensive calculations can be off-loaded to a device
with strong computing capability (accelerators such as a GPU,
FPGA, or TPU). There are many techniques that use mediated
pass-through architecture to support VM-based services using
GPU, such as GPUvm [18]. However, these techniques suffer
from the cold start issue, when used to support INaaS. Com-
pared with FPGAs-supporting INaaS, GPU-based INaaS has a
very high cold start penalty because it requires to load the
model and the necessary library beforehand, which becomes
a major part of the total response time. To the best of our
knowledge, there is currently no work on utilizing FPGA-
based mediated pass-through architecture to support INaaS

C. Sparsity in DNN Models

Sparsity in the DNN model is defined as the fraction of zeros
in the layer’s weight and input. In practical DNN models, many
of input and weight data turn out to be zero [11]. The
corresponding multiplications and additions related these zero
values do not contribute to the final result and can be regarded
as ineffective. The reason of the sparsity is from the nature
and structure of DNN, like the activation function of CNN.
Figure 1 shows the average total percentage of multiplication
operands that are ineffective in different DNN models. This
fraction varies from 37%, to up to 50% and the average
across all networks is 44%. Many existing sparse NN
accelerators [2] solve the inefficiency from the sparsity by
compressing data or eliminating ineffective computation. In
EIF, we utilize this the sparsity in DNN models to develop a
temporal multiplexing method to allow multiple inference tasks
can share one computing hardware.
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Fig. 1: Fractions of ineffective multiplication in DNN models.

III. EIF OVERVIEW

EIF targets a use case in which cloud providers offer INaaS

based on the CPU-FPGA Shared-Memory platform. To pro-
vide an unprecedented level of multi-tenancy and low latency
for FPGA-based INaaS, several goals should be achieved
through hardware and software co-design:
Multi-tenancy. EIF targets to achieve the highest level of
multi-tenancy within one FPGA device. To this end, the EIF
framework must achieve both temporal and spatial multi-
plexing for FPGA. For these purposes, we must solve the
following problems: (1) limited on-chip memory resource, and
(2) efficient method of temporal and spatial multiplexing.



Isolation. EIF aims to provide enough security for the system:
isolation between user-end and infrastructure. Because the user
is untrusted, in EIF framework, the containers cannot directly
access any type of infrastructure hardware resource.
Efficiency. EIF targets to provide INaaS with low latency. For
achieving this goal, EIF must utilize the high computing ability
from FPGA accelerator and optimize the high cold start
problem which is very common in current INaaS platforms.

To achieve the goals and overcome the challenges we
mentioned above, our EIF architecture is mainly derived by the
following three observations:

First, the FPGA virtualization technique [19] can provide
isolation between users and infrastructure, and improve the

multi-tenancy of the FPGA board. FPGA virtualization tech-
nique [21] usually virtualize the FPGA with spatial multi-

plexing and temporal multiplexing. The techniques for spatial
multiplexing have already been proven efficient enough. But
traditional temporal multiplexing technique from the operating
system level, like preemptive multitasking, is detrimental to the
response latency of DNN inference which is a very latency-

sensitive job. Thus, in EIF, we design a customized and low-
overhead temporal multiplexing method with the deployment

of sparsity inside the DNN model with the SDMC mode [8].

Second, for a higher level of multi-tenancy for FPGA
support INaaS, we must overcome the restriction imposed by
relatively limited on-chip memory compared to the model size
of an Al inference task. A DNN model can be thought of as

a series of several sub-model. If we can perform a DNN task
in a streaming mode, we just need to keep the parameters of
a sub-model in on-chip memory instead of the entire DNN
model [4].

Third, for an inference task, the time to prepare the op-
eration and store the result is usually as long as the time to
compute the required operations. If data transmission/reception
and computing operation are independently processed in het-
erogeneous processors, the response time can be optimized by
overlapping these two processes [4].
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Fig. 2: Design overview.
The overall architecture of the EIF system, as shown in
Figure 2, is guided by the design principles discussed above.

It is implemented on a shared-memory platform with a CPU
and an FPGA.

There are two major sets of components on the CPU side: the
containers and Hypervisor. The design follows a mediated
pass-through [10], [21] architecture in which the containers (of
CPU) are responsible for instructing the accelerators, and
managing data transfer between the end-users and the
underlying accelerators; whereas the Hypervisor of EIF traps
all control operations (Memory-Mapped 10s, MMIOs) from the
containers to redirect these operations to the appropriate
physical accelerator.

There are also two major sets of components on the FPGA
side: a Shell and a set of accelerators. The Shell component
is a reserved portion of the FPGA. The board manufacturer
(e.g., Intel, Xilinx) provides the Shell, which serves as the
10 interface for the FPGA. At the beginning of configuring the
entire framework, the FPGA is configured with a fixed number
and types of accelerators through the Shell. And the
infrastructure information of configured FPGA will be kept in
the Hypervisor.

IV. DESIGN OF KEY EIF MODULES

In this section, we will describe the design details of each of
the key components of the EIF architecture and how they
achieve the goals described in Section III. In Subsection A, we
will describe the design details of the EIF components
implemented in the CPU. In Subsection B, the design details of
the EIF components implemented in the FPGA will be
described.

A. Design of EIF Components in the CPU

EIF follows a host-device architecture, with the CPU being
the host. As stated, there are two major sets of components
on the CPU side: A set of containers and a Hypervisor, the
design of which follows a Mediated Pass-through Architecture.
The containers host INaaS services for user requests, and the
Hypervisor virtualizes the hardware for spatial multiplexing
FPGA and isolates the containers (user-end) and FPGA in-
frastructure.
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Fig. 3: Designs in container.

a) Container: Figure 3 shows the designs of a container
of the EIF framework. The incoming user requests contain the
following information: required model type, whether it needs
MapReduce, and if so, the configuration of MapReduce. Note
that how the upper level of the scheduling system gets this
information is beyond the scope of this work. The three main
parts of a container of the EIF system are: Model Selector, Host
Memory Map, and MapReducer. When a new user request
arrives, the Model Selector will select the target model that is
specified in user request by searching all the models



stored in the memory. Each container includes a Host Memory
Map, containing information that which data inside the host
memory is the requested model data of user request from the
perspective of GVA (Guest Virtual Address). Containers will
inform these GVAs to the accelerator for further translation
to HPA (host physical address). The container also contains
a MapReduce function, through which a user request can
be mapped into multiple hardware threads for supporting
flexible QoS. In this way, one user request can be concurrently
executed by multiple hardware threads.

b) Hypervisor: After processing the user requests, the
containers send control operations to the Hypervisor, as shown
in Figure 4. The Hypervisor traps control operations (MMIOs)
from containers and redirects these operations to target the
available threads of an accelerator. The Hypervisor will add an
offset to this MMIO, and hardware logic will use this offset to
address the target physical accelerator. As shown in Figure
4, the major part of the Hypervisor is a Hardware Monitor. The
Hardware Monitor is used for arbitrating the redirected
operations to the multiplexed FPGA resources. The offset
added by the Hypervisor is provided by the Hardware Monitor
based on the availability of hardware infrastructure. The
Hardware Monitor keeps track of all the information including
the total number and availability of infrastructure hardware
threads and redirects MMIO operations to available hardware
threads. As shown in Figure 4, in the EIF system, we
implement the Hardware Monitor as a MUX tree. The root level
of the MUX tree is the whole FPGA board. The first level of
the MUX tree represents the accelerators. The second level
represents the threads. For the scheduling policy of the MUX
tree, there are two choices: weighted scheduling policy and
unweighted scheduling policy (round-robin). Whether
deploying weighted or unweighted scheduling policy depends
on whether the configuration of FPGA is homogeneous or
heterogeneous, which we will discuss in Section V.

In summary, based on the mediated pass-through architec-
ture (CPU (Container, Hypervisor) as the host, FPGA accel-
erator as the device), the computing workload are offloaded
from containers into the FPGA side. And through this, we
improve the response time by leveraging the high computing
ability of accelerators. And through hypervisor design, spatial
multiplexing can be achieved to improve multi-tenancy on the
FPGA board.
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Fig. 4: Details of Hypervisor.

B. Design Principle of Temporal Multiplexing

As we mentioned in Section II, the common software
temporal multiplexing methods have detrimental overhead to
individual user request. In this subsection, we will introduce the
design principle of EIF to support an efficient temporal
multiplexing method from hardware perspective. Based on that,
one DNN accelerator can simultaneously support multiple DNN
requests as hardware threads.

We exploit DNN’s sparsity feature to deploy an Sparsity-
Driven Multi-Thread Co-Execution Mode (SDMC) [8] to
achieve an efficient temporal multiplexing method inside the
accelerator. The basic idea is that if one zero exists in either
operand of a multiplication, this multiplication can be discarded
and directly set the output as zero. So when two threads share
the same computation unit (multiplier), only the effective
(non-zero) thread will need to be calculated. The hardware
thread in EIF is akin to the thread concept in software operating
system, where multiple threads share the same hardware unit.
If two threads both need to be calculated, the unexecuted one
will be kept in the FIFO buffer. When two threads are both
ineffective (both have zero-operand in other words), the first
entry on the FIFO buffer will be issued and executed. At a
certain point in time, only multiplication of one thread will be
selected by the multiplexer and processed by the hardware unit.
Through this hardware method, close-to- zero overhead
temporal multiplexing can be achieved between multiple
hardware threads.
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Fig. 5: Dataflow of PEs based on SDMC mode.

Figure 5 shows how two threads, one multiplier, and four
processing units pipeline (PU) works, based on the Sparsity-
Driven Multi-Thread Co-Execution mode. The four stages of
the PE are as follows:

- Load: Each thread (thread 1, red; thread 2, blue) loads the
weight and corresponding input from the corresponding
part of on-chip memory.

- Branch: This stage determines the effective thread(s),
there are four combinations, that are 00, 01, 10, and 11.
When two threads are both ineffective (00), the first entry
from the FIFO buffer will be loaded and executed. When
there are two threads competing for the multiplier (11), the
first thread will be executed, and the second thread will be
kept into FIFO. Either 01 or 10 implies there is only one
effective thread within the two threads and the effective
one will be executed while the ineffective one will be
ignored and directly outputs zero.



- Calculate and Track: The operands of effectual thread
issued in BRANCH stage will enter the multiplier for
calculating, while tracking the thread tag.

- Add and Writeback: Add the partial sums of each thread
together and write the result back to buffer. This is the
result of one stride move in MAC (multiply—accumulate)
operation.

Unlike traditional methods of temporal multiplexing from
software operating level, hardware temporal multiplexing with
SDMC does not support traditional preemption. Fairness be-
tween threads is ensured by the computation effectiveness of
threads.

In summary, based on the SDMC mode, EIF achieves the
temporal multiplexing inside the DNN accelerator. Traditional
DNN accelerator only support one user request. With the
enhancement of SDMC mode, one DNN accelerator can
support multiple hardware threads as figure 4 shows.

C. Design of Accelerator Components in the FPGA

The FPGA accelerator plays the role of device in the EIF
host-device architecture, accelerating the computation
offloaded by the CPU. Figure 6 shows the overall structure of
the accelerator. The proposed architecture of the accelerator
consists of two heterogeneous processors: Data Gathering Unit
(DGU) and Computing Unit (CU). The DGU of the accelerator
is mainly responsible for receiving model data and for
controlling the CU. The CU performs computation tasks and
reports the results to the DGU. DGU and CU can work
independently and overlap in parallel the processes of model
loading and inference to perform the inference in a streaming
mode. With the streaming mode, the CU can start performing
inference with the first slice of model data, without waiting the
whole model loaded into the on-chip memory (weight buffer).
The cold start from model loading is also mitigated from
loading whole model to loading the first model slice. And
during the processing of performing inference, only the current-
performed slice of model data is needed to be kept inside the
weight buffer. As shown in Figure 6, the major parts of DGU
are Shadow Page Table (SPT), DMA Engine, and Data Control
Unit. The CU is comprised of a systolic array of PE’s, along
with the Weight and Activation Buffers.

a) Shadow Page Table: EIF deploys SPTs (Shadow Page
Tables) in the hardware side for translating the GVA (guest
virtual address) into HPA (host physical address). This HPA is
necessary for the DMA Engine to retrieve the target DNN
model. Each accelerator is equipped with an individual SPT for
an effective translation from GVA to HPA once it receives
GVAs of the target model through MMIO from the CPU.

b) DMA Engine: To efficiently retrieve models from the
host memory, each accelerator needs the ability to issue DMA
individually. To this end, we equip each accelerator with an
individual DMA Engine. The accelerators will use the SPTs
(Shadow Page Tables) to translate GVA (guest virtual address)
into HPA (host physical address). With these HPAs, the DMA
Engine can issue DMA requests and retrieve the target model
via a streaming mode. In this way, the number of accelerators
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Fig. 6: Overall structure of an accelerator.

that can be built on an FPGA is only limited by PCI-E
resources.

¢) Data Control Unit: The Data Control Unit (DCU) is
responsible for requesting the input data through the DMA
engine, filling the input buffer of the activation buffer, draining
out the output buffer of the activation buffer, and generating the
output signal for containers.

d) Weight Buffers: We deploy the double buffering tech-
nique for executing the entire inference task in a streaming
mode. There are two levels of buffers for processing a model.
When the first-level buffer is almost drained out, the data kept
in the second-level buffer will be loaded into the first-level
buffer for the next calculation in advance. And next sub-model
kept in memory will be loaded into the second-level buffer
during the timing of calculation and be ready for fill into the
first-level buffer.

e) Architecture of Computing Unit (CU): We deploy a
systolic array (SA) based GEMM (general matrix-matrix
multiplications) accelerator as the Computing Unit of EIF’s
accelerators. For state-of-the-art DNN models, fully-connected
(FC) layers, multilayer perceptron (MLPs), and Convolutional
Layer can be mapped into GEMM operations naturally, and be
executed in parallel. The PE (Processing Element) of the
systolic array design follows the SDMC mode as we described.
With that, the systolic array (as the DNN accelerator) can
simultaneously perform the GEMM operations from multiple
threads. The total number of co-executed threads in one systolic
array should be preconfigured by cloud provider. The provider
can implement different configurations of systolic arrays, e.g.,
SA with four threads or six threads, to adapt different types of
inference tasks, which we will discuss in Section V.

Figure 7 shows an example of the Computing Unit, which
contains 32 PEs and performs two threads concurrently. In our
implemented Systolic Arrays, there are four rows of PEs, and
each row contains eight PEs. A Multicast bus connects PEs on
the same row for sharing filter weights among PEs inside the
same row (green lines in Figure 7). Since each row of



p;1,1 P;E1,2 > - =" [PE1,8
Thread1,2,3,4 s
A A
al PEa el PEaa k= - 2 pedl l—
S+—1 ’
= ¥ ¥
£ | [pedd [i{peda - - f{Pedn ]
(e L pe@ L - F{Pedl:
I B

| Activation Buffer

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

product ' | Thread tag

UNIT| - Pl Multiplier ?—‘
- - L
! prosuct & Adder
: = | 7

Fig. 7: Overall structure of an example Computing Unit Architecture. The CU has an architecture of systolic array. Each PE
processes tensor computing instead of a single MAC. Our PE design improves the usage efficiency of accumulator

PEs calculates partial sums for the same output channel, a bus
connecting inter-PE in the same row is added (red lines).

In summary, with the streaming technique by overlapping
operations in DGU and CU, the FPGA accelerators of EIF
optimize the problem of high cold start and solve the on-chip
memory limitation to support more DNN requests on one-chip
board. And with the temporal multiplexing technique based on
the SDMC mode, EIF furtherly improves the level of multi-
tenancy on the FPGA board.

V. EVALUATION

We evaluate EIF mainly regarding the following metrics:

- Efficiency: What is the overhead of temporal multiplexing
and spatial multiplexing. Are multiplexing techniques
deployed by EIF framework efficient enough?

- Multi-tenancy: Through the streaming-mode inference,
EIF framework successfully overcomes the on-chip mem-
ory limitation. Then how many user requests can be
simultaneously supported on a single FPGA?

- Cold Start and response time: One of the major contri-
butions of EIF framework is mitigating the ”cold start” of
INaaS. Compared with other frameworks of INaaS, what
are the advantages of EIF in terms of “cold start”?
Regarding overall response time, what kind of speeding-
up can the EIF framework provide compared with other
INaaS frameworks.

A. Experimental Setup

- Hardware: We implemented the prototyped EIF on the
Intel PAC with Intel Arria 10 GX FPGA. Unlike CPU or
GPU, the EIF implementation deploys 16-bit fixed-point
arithmetic. For the computing logic inside the accelerator,
the clock frequency is 100 MHZ. And system clock for
AXI protocol and reading/writing data from or to DRAM
is 250 MHZ.

- Software: We implemented the hypervisor based on KVM
(Kernel-based Virtual Machine). And we add the function
of Hardware Monitor into the hypervisor.

- Baseline: We compared the performance of the EIF-based
INaaS with CPU-based INaaS and GPU-based INaaS.
Existing GPU and CPU based INaaS usually overlook the

problem of cold start and have not include the streaming
(pre-fetching) technique to overlap the model loading and
computing. For fair comparison, based on existing
CPU/GPU methods [17], we upgrade our CPU and GPU
INaaS baseline with the streamming techinque. And
because EIF causes no library loading time, our baseline
CPU, GPU baseline also are based on the assumption that
the library (e.g., Pytorch, Tensorflow) is container-
resident. For GPU-based INaaS, the model will load from
host memory to GPU local memory. For CPU- based
INaaS, the model will be directly used by data in the
host memory. We chose NVIDIA GeForce TITAN RTX
as our GPU platform and Intel(R) Xeon(R) W-2255 CPU
as the CPU platform. The baseline of CPU-based INaaS
was evaluated on the Docker container [14]; and the
baseline of GPU-based supporting INaaS was through the
NVIDIA-Docker [20].

- Benchmarks: We deployed 12 different Al inference tasks
on EIF, in Table I, as benchmarks. We tested overhead for
both temporal multiplexing and spatial multiplexing. In
Table I, the "Weight Size” of a model is the model size for
GPU-based and CPU-based INaaS. The ”.bin file” is the
.Jbin input file for EIF. The .bin file is created under a
certain order specified by EIF. Since we are targeting
INaaS, our experiments use a batch size of one.

TABLE I. Parameters of benchmarks

Model ‘Weight Size bin file Sparsity Net size
DCGAN 1-3 248 MB 262.6 MB | 70%, 60%, 50% large
DARKNET 1-3 459 MB 486.2 MB [ 70%, 60%, 50% large
LeNet 1-3 19.1 KB 19.9 KB 70%, 60%, 50% small
ZFNET 1-3 75.5 MB 28.4 MB 70%, 60%, 50% middle

B. Evaluation of Temporal Multiplexing

The overhead of temporal multiplexing is mainly stemmed
from inter-threads waiting time caused by preemptions of
hardware resources between threads. In order to test the
overhead of temporal multiplexing at different accelerator
configurations under the different task types, we select Al
models with different sparsity levels, as listed in Table I, as our
benchmarks.

The results in Figure 8 show the comparison of 12 models,
in Table I, to the dedicated execution of one thread (response
time is normalized as one, no inter-threads waiting time).



For each model, there are three bar graphs, illustrating two,
four, six threads and their normalized response time overhead
(percentage of slowing down). With two-threads accelerator,
all types of tasks exhibited close-to-zero overhead. Even with
a six-threads accelerator, no tasks will exceed 20% overhead.
Through the overall results shown in Figure 8 and model
information in Table I, we found that response time overhead
is highly correlated with the sparsity of inference task models
and the amount of co-executed hardware threads. For lower
overhead, matching tasks with adequate accelerator configura-
tion is non-trivial. In order to adapt various levels of tasks with
different sparsity, for the provider, it is highly recommended
to deploy a heterogeneous configuration of FPGA. That is,
configure an FPGA board as a set of accelerators with different
numbers of threads. In addition, for the scheduling policy
in hypervisor, instead of deploying round-robin policy, a
weighted scheduling policy should be deployed. The weight
for scheduling is according to sparsity. Depending on this
sparsity, the scheduling policy should schedule the task to an
adequate accelerator.
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Fig. 8: Response time overhead compared with normalized
response time under accelerators with different co-executing
threads configuration. All these benchmarks are executed
without mapreduce acceleration.
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C. Evaluation of Spatial Multiplexing

For the overhead of spatial multiplexing, we evaluated
the overhead of virtualization technique from software and
hardware, our experiment shows the overhead of redirecting
MMIOs at software the side is close-to-zero. Regarding the
scalability of the EIF framework, we tested the range of the
number of users that can be supported on one board. To avoid
DMA congestion, we have not tested the maximum number of
accelerators. For our implemented EIF framework, we built
eight accelerators, and each accelerator can support up to
six hardware threads. In this way, 48 guest requests can be
supported on a single FPGA board.

D. Evaluation of Latency Breakdown

We evaluate the latency benefit of EIF from the FPGA-
accelerator-based INaaS, include the overall response time and
optimization of cold start. We compared the response time of
inference tasks respectively on GPU-based INaaS, CPU-based
INaaS, and EIF-based INaaS. The response time comprises
model loading time, computing time. Figure 9(a) shows the
normalized speedup performance among GPU-based INaaS,
CPU-based INaaS, and EIF. Since we conducted an inference

task that has a batch size one, latency-optimized CPU outper-
forms throughput-optimized GPU. For EIF, the response time
is the speedup of tasks running on a dedicated accelerator,
without temporal multiplexing. LENET is too small and will
not be the benchmark for speedup evaluation. At 100MHZ
computing clock rate, EIF outperforms CPU-based INaaS and
GPU-based INaaS from 3.1 X to 6.7 X, and from 13.1 X to 25X,
respectively.

For the cold start (from model loading), GPU and CPU
require loading at least model data of one layer to start the
computation, while the EIF can start computing by loading
model data of the first slice. Figure 9(b) shows the cold-start
percentage of the total response time over these benchmarks.
For EIF, it can be concluded that the problem of high cold start
is largely optimized. The percentage of cold start only takes
around 5% of total response time. And the values of cold start
are stable between different DNN models.
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Fig. 9: Performance evaluation of EIF

E. FEvaluation of Resource Utilization

Table IT summarizes resource utilization by total 48 threads
EIF (Eight homogeneous, six-threads accelerators, 16 bits data)
from Quartus synthesis. In EIF, each thread has a double- buffer
for model data and an activation buffer for reading input and
writing output data. The activation buffer is actually
constructed using two buffers: one for input and one for output
to avoid overwriting. The activation layer is built by a lookup
table IP core. And our implemented EIF utilizes the existing IP
core for PCI-E DMA transmission. Each accelerator has a
DMA channel as the individual DMA engine.

TABLE II. Resource utilization of 48-threads EIF

Resource type Utilization Available

Logic utilization 148,800 251,680
Total LABs 18,032 25,168
Block RAM 13,762,560 | 43,642,880
DSP Blocks 640 1,687

F. Compared with modern FPGA virtualization techniques.

Recently, Optimus [10] is the first work to virtualize the
Shared-Memory FPGA platform. This work targets virtu-
alizing a CPU-FPGA Shared-Memory platform to support
multiple uncertain accelerators. Unlike Optimus, EIF targets
provide virtualization for a certain type of FPGA accelerator.
In INaaS task, EIF mainly outperforms Optimus because
EIF is fully customized for INaaS. Assuming that basing on
same structure of systolic array as the accelerator, EIF can
shows advantages in temporal multiplexing. EIF achieve the
temporal multiplexing by developing the sparsity of DNN
models. The overhead of temporal multiplexing, as shown
in figure 8 is marginal. But in Optimus, which deploy the



temporal multiplexing mechanism from software operating
system level, e.g., Round-Robin Scheduling, the overhead of
temporal multiplexing will approximately linearly increase
with more users on one accelerator.

VI. CONCLUSION

This paper presents EIF, a mediated pass-through architec-

ture for FPGA-based INaaS. EIF provides both spatial and
temporal multiplexing to achieve high tenant density on a
single CPU-FPGA device. EIF further optimizes INaaS by
overlapping data transmission with computation to decrease the
latency. Our experiments show that (1) up to 48 user requests
can be simultaneously supported on one FPGA board.
(2) The overhead of spatial multiplexing is close to zero,
and temporal multiplexing is very effective. (3) Compared with
GPU-based INaaS, EIF can achieve from 13.1X to 25X
speeding up in response time. And compared with CPU-based
INaaS, EIF can achieve from 3.1 X to 6.7X speeding up in
response time. (4) EIF optimizes the cold start only occupy
around 5% of total response time.
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