
EIF: A Mediated Pass-Through Framework for

Inference as a Service

Abstract—In order to effectively provide INaaS (Inference-as-
a-Service) in resource-limited cloud environments, two major
challenges must be overcome: achieving low latency and pro-
viding multi-tenancy. This paper presents EIF (Efficient INaaS
Framework), which uses a heterogeneous CPU-FPGA architec-
ture to address these challenges via (1) temporal multiplexing that
exploits the sparsity of neural-net models, (2) spatial multiplexing
via software-hardware co-design virtualization techniques, and

(3) streaming-mode inference which overlaps data transfer and
computation. The prototype EIF is implemented on an Intel PAC
(shared-memory CPU-FPGA) platform. For evaluation, 12 types
of DNN models were used as benchmarks, with different size and
sparsity. Based on these experiments, we show that in EIF, the
temporal multiplexing technique can improve the user density of

an AI accelerator from 2× to 6×, with marginal performance
degradation. In the prototype system, the spatial multiplexing

technique supports eight physical accelerators on one FPGA.
By using a streaming mode based on a mediated pass-through
architecture, EIF can overcome the FPGA on-chip memory
limitation to improve multi-tenancy and optimize the latency of
INaaS. To further enhance INaaS, EIF utilizes the MapReduce
function to provide a more flexible QoS. Together with the
temporal/spatial multiplexing techniques, EIF can support 48
users simultaneously on a single FPGA board in our prototype
system. In all tested benchmarks, cold-start latency requires only
approximately 5% of the total response time.

Index Terms—Inference-as-a-Service, Mediated Pass-Through,
CPU-FPGA platform

I. INTRODUCTION

INaaS (Inference as a Service) [17] has received a great deal

of attention from cloud providers due to the ability to

abstract away low-level hardware details, while providing

isolation between services, improved scalability, simplified

management, and reduced costs.

Existing CPU [1], [6] and GPU [3], [12] INaaS solutions

have significant latency limitations, largely due to cold starts

(necessary loading of both the model and library processes

before inference) that take 73% and 91% of the total response

time [1], respectively. Using FPGAs is an attractive alternative

due to the elimination of library loading times, while also

providing high performance and low power. For instance,

Amazon AWS EC2 F1 [9] provides the AI cloud service using

FPGAs in the computing infrastructure. However, used in

resource-limited cloud environments, existing FPGA solutions

suffer from limited multi-tenancy in sharing an FPGA board

[7], while still have the high cold start latency resulting from

model loading.

In order to effectively provide INaaS (Inference-as-a-

Service) in resource-limited cloud environments using FPGAs,

two major challenges must be overcome: achieving low latency

and multi-tenancy. This paper presents EIF (Efficient INaaS

Framework), which uses a heterogeneous CPU-FPGA archi-

tecture to address these challenges via (1) spatial multiplexing

via software-hardware co-design virtualization techniques. (2)

temporal multiplexing that exploits the sparsity of neural-net

models. (3) streaming-mode inference which overlaps data

transfer and computation. One of the key contributions of

EIF is the use of a combination of both temporal and spatial

multiplexing to improve multi-tenancy. In Section IV, we

describe how we support an efficient temporal multiplexing

method, where threads are scheduled onto shared resources.

This temporal multiplexing method leverages the concept of

Sparsity-Driven Multi-Thread Co-Execution (SDMC), which

allows multiple hardware threads to execute on the same

resource simultaneously by exploiting the inherent sparsity

inside a DNN model. Also in Section IV, we present a hard-

ware/software co-design virtualization technique to support an

efficient spatial multiplexing method, which are customized in

EIF specifically for inference.

In addition to the multiplexing techniques, EIF uses a

streaming mode based on a mediated pass-through architecture

(detailed in Section IV). By doing so, EIF can overlap the data

transfer and computation to overcome the on-chip memory

limitation to improve multi-tenancy and optimize the model-

loading latency suffered by existing FPGA-based INaaS. Also

based on mediated pass-through architecture, EIF is equipped

with the MapReduce function to support a more flexible QoS.

A prototype EIF has been implemented on an intel PAC

card, which is a CPU-FPGA shared memory platform. With

the spatial multiplexing technique, the EIF can support mul-

tiple DNN accelerators on one FPGA board. To perform

DNN inference, the implemented EIF enhances the commonly

used systolic array as DNN accelerator with the customized

temporal multiplexing mechanism. Due to the temporal mul-

tiplexing technique, a single DNN accelerator can simultane-

ously support from two to six DNN user requests. Compared

with a dedicated systolic array for one user, the performance

degradation is only from 0.5% to 19.5%. And the throughput

on one accelerator board can be improved from 15.7× to

40.8×. Using the streaming technique, the prototype EIF

greatly reduced the on-chip memory limitation to improve

multi-tenancy, supporting up to 48 users simultaneously on one

FPGA board. Compared with the traditional INaaS platform,

on which cold-start occupies a non-trivial part of total response

time, the cold start in EIF only occupies around 5% of the

overall latency.

The remainder of this paper is organized as follows. Section

II provides background for this study. An overview of the

EIF architecture is given in Section III. EIF adopts a host-

device architecture, with the CPU being the host and the FPGA

accelerator being the device (accelerator). Section IV presents

the design details of the key modules of EIF: Container and

Hypervisor modules in the CPU and the accelerator modules

(Data Gathering Unit (DGU) and Computing Unit (CU)) in the

FPGA. In Section V, the experimental setup is given, followed

by detailed experimental results and evaluation. Related works

are discussed in Section ??, followed by the conclusions in

Section VI.

II. BACKGROUND

A. FPGA Virtualization

Through virtualization techniques, an FPGA can be mul-

tiplexed spatially [10], [23] and temporally [5], [13]. Spatial

multiplexing allows different accelerators to simultaneously

occupy the same FPGA. Temporal multiplexing allows a hard-

ware infrastructure to be shared by multiple virtual machines

(VMs) at different time slices.

However, the current virtualization techniques do not solve

the major challenges faced by INaaS, mainly because these

techniques are not customized for inference tasks.

First, a very limited number of inference tasks can be

supported on one FPGA board because of the on-chip memory

limitation. For example some large DNNs such as DCGAN

[15] and ZFNet [22], even cannot fit fully in on-chip memory.

The limitation of FPGA on-chip memory precludes the use

of existing techniques in multi-tenancy-oriented services for

datacenter applications.

Furthermore, for INaaS, previous virtualization works have

too many redundant operations, such as the memory segmenta-

tion in Optimus [10], which adds unnecessary overhead to the

entire INaaS system. One of EIF’s important contribution is to

provide customized, efficient hardware-software co-design

virtualization techniques for INaaS, while with the marginal

overhead.

Finally, although the above techniques achieve high effi-

ciency and low overhead in spatial multiplexing, temporal mul-

tiplexing techniques such as preemptive temporal multiplexing

are not suitable for inference. The reason is most temporal

multiplexing techniques [16] have a detrimental effect on the

performance of an individual INaaS request, which is highly

latency sensitive. In EIF, we will introduce a new customized

temporal multiplexing technique which will cause marginal

overhead with increase of user number.

B. Mediated Pass-through Architecture

An mediated pass-through architecture [10], [21] provides

two methods of communication between devices: performance

critical operations are passed through and directly access

hardware resources, while privileged operations are trapped-

and-emulated to provide isolation between guests and the

hardware infrastructure.

Moreover, a mediated pass-through architecture is a good

solution to solve the inherent problem of INaaS, shortage of

resources inside an individual container. In such architecture,

computing-intensive calculations can be off-loaded to a device

with strong computing capability (accelerators such as a GPU,

FPGA, or TPU). There are many techniques that use mediated

pass-through architecture to support VM-based services using

GPU, such as GPUvm [18]. However, these techniques suffer

from the cold start issue, when used to support INaaS. Com-

pared with FPGAs-supporting INaaS, GPU-based INaaS has a

very high cold start penalty because it requires to load the

model and the necessary library beforehand, which becomes

a major part of the total response time. To the best of our

knowledge, there is currently no work on utilizing FPGA-

based mediated pass-through architecture to support INaaS

C. Sparsity in DNN Models

Sparsity in the DNN model is defined as the fraction of zeros

in the layer’s weight and input. In practical DNN models, many

of input and weight data turn out to be zero [11]. The

corresponding multiplications and additions related these zero

values do not contribute to the final result and can be regarded

as ineffective. The reason of the sparsity is from the nature

and structure of DNN, like the activation function of CNN.

Figure 1 shows the average total percentage of multiplication

operands that are ineffective in different DNN models. This

fraction varies from 37%, to up to 50% and the average

across all networks is 44%. Many existing sparse NN

accelerators [2] solve the inefficiency from the sparsity by

compressing data or eliminating ineffective computation. In

EIF, we utilize this the sparsity in DNN models to develop a

temporal multiplexing method to allow multiple inference tasks

can share one computing hardware.

Fig. 1: Fractions of ineffective multiplication in DNN models.

III. EIF OVERVIEW

EIF targets a use case in which cloud providers offer INaaS

based on the CPU-FPGA Shared-Memory platform. To pro-

vide an unprecedented level of multi-tenancy and low latency

for FPGA-based INaaS, several goals should be achieved

through hardware and software co-design:

Multi-tenancy. EIF targets to achieve the highest level of

multi-tenancy within one FPGA device. To this end, the EIF

framework must achieve both temporal and spatial multi-

plexing for FPGA. For these purposes, we must solve the

following problems: (1) limited on-chip memory resource, and

(2) efficient method of temporal and spatial multiplexing.

Isolation. EIF aims to provide enough security for the system:

isolation between user-end and infrastructure. Because the user

is untrusted, in EIF framework, the containers cannot directly

access any type of infrastructure hardware resource.

Efficiency. EIF targets to provide INaaS with low latency. For

achieving this goal, EIF must utilize the high computing ability

from FPGA accelerator and optimize the high cold start

problem which is very common in current INaaS platforms.

To achieve the goals and overcome the challenges we

mentioned above, our EIF architecture is mainly derived by the

following three observations:

First, the FPGA virtualization technique [19] can provide

isolation between users and infrastructure, and improve the

multi-tenancy of the FPGA board. FPGA virtualization tech-

nique [21] usually virtualize the FPGA with spatial multi-

plexing and temporal multiplexing. The techniques for spatial

multiplexing have already been proven efficient enough. But

traditional temporal multiplexing technique from the operating

system level, like preemptive multitasking, is detrimental to the

response latency of DNN inference which is a very latency-

sensitive job. Thus, in EIF, we design a customized and low-

overhead temporal multiplexing method with the deployment

of sparsity inside the DNN model with the SDMC mode [8].

Second, for a higher level of multi-tenancy for FPGA

support INaaS, we must overcome the restriction imposed by

relatively limited on-chip memory compared to the model size

of an AI inference task. A DNN model can be thought of as

a series of several sub-model. If we can perform a DNN task

in a streaming mode, we just need to keep the parameters of

a sub-model in on-chip memory instead of the entire DNN

model [4].

Third, for an inference task, the time to prepare the op-

eration and store the result is usually as long as the time to

compute the required operations. If data transmission/reception

and computing operation are independently processed in het-

erogeneous processors, the response time can be optimized by

overlapping these two processes [4].

Fig. 2: Design overview.

The overall architecture of the EIF system, as shown in

Figure 2, is guided by the design principles discussed above.

It is implemented on a shared-memory platform with a CPU

and an FPGA.

There are two major sets of components on the CPU side: the

containers and Hypervisor. The design follows a mediated

pass-through [10], [21] architecture in which the containers (of

CPU) are responsible for instructing the accelerators, and

managing data transfer between the end-users and the

underlying accelerators; whereas the Hypervisor of EIF traps

all control operations (Memory-Mapped IOs, MMIOs) from the

containers to redirect these operations to the appropriate

physical accelerator.

There are also two major sets of components on the FPGA

side: a Shell and a set of accelerators. The Shell component

is a reserved portion of the FPGA. The board manufacturer

(e.g., Intel, Xilinx) provides the Shell, which serves as the

IO interface for the FPGA. At the beginning of configuring the

entire framework, the FPGA is configured with a fixed number

and types of accelerators through the Shell. And the

infrastructure information of configured FPGA will be kept in

the Hypervisor.

IV. DESIGN OF KEY EIF MODULES

In this section, we will describe the design details of each of

the key components of the EIF architecture and how they

achieve the goals described in Section III. In Subsection A, we

will describe the design details of the EIF components

implemented in the CPU. In Subsection B, the design details of

the EIF components implemented in the FPGA will be

described.

A. Design of EIF Components in the CPU

EIF follows a host-device architecture, with the CPU being

the host. As stated, there are two major sets of components

on the CPU side: A set of containers and a Hypervisor, the

design of which follows a Mediated Pass-through Architecture.

The containers host INaaS services for user requests, and the

Hypervisor virtualizes the hardware for spatial multiplexing

FPGA and isolates the containers (user-end) and FPGA in-

frastructure.

Fig. 3: Designs in container.

a) Container: Figure 3 shows the designs of a container

of the EIF framework. The incoming user requests contain the

following information: required model type, whether it needs

MapReduce, and if so, the configuration of MapReduce. Note

that how the upper level of the scheduling system gets this

information is beyond the scope of this work. The three main

parts of a container of the EIF system are: Model Selector, Host

Memory Map, and MapReducer. When a new user request

arrives, the Model Selector will select the target model that is

specified in user request by searching all the models

stored in the memory. Each container includes a Host Memory

Map, containing information that which data inside the host

memory is the requested model data of user request from the

perspective of GVA (Guest Virtual Address). Containers will

inform these GVAs to the accelerator for further translation

to HPA (host physical address). The container also contains

a MapReduce function, through which a user request can

be mapped into multiple hardware threads for supporting

flexible QoS. In this way, one user request can be concurrently

executed by multiple hardware threads.

b) Hypervisor: After processing the user requests, the

containers send control operations to the Hypervisor, as shown

in Figure 4. The Hypervisor traps control operations (MMIOs)

from containers and redirects these operations to target the

available threads of an accelerator. The Hypervisor will add an

offset to this MMIO, and hardware logic will use this offset to

address the target physical accelerator. As shown in Figure

4, the major part of the Hypervisor is a Hardware Monitor. The

Hardware Monitor is used for arbitrating the redirected

operations to the multiplexed FPGA resources. The offset

added by the Hypervisor is provided by the Hardware Monitor

based on the availability of hardware infrastructure. The

Hardware Monitor keeps track of all the information including

the total number and availability of infrastructure hardware

threads and redirects MMIO operations to available hardware

threads. As shown in Figure 4, in the EIF system, we

implement the Hardware Monitor as a MUX tree. The root level

of the MUX tree is the whole FPGA board. The first level of

the MUX tree represents the accelerators. The second level

represents the threads. For the scheduling policy of the MUX

tree, there are two choices: weighted scheduling policy and

unweighted scheduling policy (round-robin). Whether

deploying weighted or unweighted scheduling policy depends

on whether the configuration of FPGA is homogeneous or

heterogeneous, which we will discuss in Section V.

In summary, based on the mediated pass-through architec-

ture (CPU (Container, Hypervisor) as the host, FPGA accel-

erator as the device), the computing workload are offloaded

from containers into the FPGA side. And through this, we

improve the response time by leveraging the high computing

ability of accelerators. And through hypervisor design, spatial

multiplexing can be achieved to improve multi-tenancy on the

FPGA board.

Fig. 4: Details of Hypervisor.

B. Design Principle of Temporal Multiplexing

As we mentioned in Section II, the common software

temporal multiplexing methods have detrimental overhead to

individual user request. In this subsection, we will introduce the

design principle of EIF to support an efficient temporal

multiplexing method from hardware perspective. Based on that,

one DNN accelerator can simultaneously support multiple DNN

requests as hardware threads.

We exploit DNN’s sparsity feature to deploy an Sparsity-

Driven Multi-Thread Co-Execution Mode (SDMC) [8] to

achieve an efficient temporal multiplexing method inside the

accelerator. The basic idea is that if one zero exists in either

operand of a multiplication, this multiplication can be discarded

and directly set the output as zero. So when two threads share

the same computation unit (multiplier), only the effective

(non-zero) thread will need to be calculated. The hardware

thread in EIF is akin to the thread concept in software operating

system, where multiple threads share the same hardware unit.

If two threads both need to be calculated, the unexecuted one

will be kept in the FIFO buffer. When two threads are both

ineffective (both have zero-operand in other words), the first

entry on the FIFO buffer will be issued and executed. At a

certain point in time, only multiplication of one thread will be

selected by the multiplexer and processed by the hardware unit.

Through this hardware method, close-to- zero overhead

temporal multiplexing can be achieved between multiple

hardware threads.

Fig. 5: Dataflow of PEs based on SDMC mode.

Figure 5 shows how two threads, one multiplier, and four

processing units pipeline (PU) works, based on the Sparsity-

Driven Multi-Thread Co-Execution mode. The four stages of

the PE are as follows:

• Load: Each thread (thread 1, red; thread 2, blue) loads the

weight and corresponding input from the corresponding

part of on-chip memory.

• Branch: This stage determines the effective thread(s),

there are four combinations, that are 00, 01, 10, and 11.

When two threads are both ineffective (00), the first entry

from the FIFO buffer will be loaded and executed. When

there are two threads competing for the multiplier (11), the

first thread will be executed, and the second thread will be

kept into FIFO. Either 01 or 10 implies there is only one

effective thread within the two threads and the effective

one will be executed while the ineffective one will be

ignored and directly outputs zero.

• Calculate and Track: The operands of effectual thread

issued in BRANCH stage will enter the multiplier for

calculating, while tracking the thread tag.

• Add and Writeback: Add the partial sums of each thread

together and write the result back to buffer. This is the

result of one stride move in MAC (multiply–accumulate)

operation.

Unlike traditional methods of temporal multiplexing from

software operating level, hardware temporal multiplexing with

SDMC does not support traditional preemption. Fairness be-

tween threads is ensured by the computation effectiveness of

threads.

In summary, based on the SDMC mode, EIF achieves the

temporal multiplexing inside the DNN accelerator. Traditional

DNN accelerator only support one user request. With the

enhancement of SDMC mode, one DNN accelerator can

support multiple hardware threads as figure 4 shows.

C. Design of Accelerator Components in the FPGA

The FPGA accelerator plays the role of device in the EIF

host-device architecture, accelerating the computation

offloaded by the CPU. Figure 6 shows the overall structure of

the accelerator. The proposed architecture of the accelerator

consists of two heterogeneous processors: Data Gathering Unit

(DGU) and Computing Unit (CU). The DGU of the accelerator

is mainly responsible for receiving model data and for

controlling the CU. The CU performs computation tasks and

reports the results to the DGU. DGU and CU can work

independently and overlap in parallel the processes of model

loading and inference to perform the inference in a streaming

mode. With the streaming mode, the CU can start performing

inference with the first slice of model data, without waiting the

whole model loaded into the on-chip memory (weight buffer).

The cold start from model loading is also mitigated from

loading whole model to loading the first model slice. And

during the processing of performing inference, only the current-

performed slice of model data is needed to be kept inside the

weight buffer. As shown in Figure 6, the major parts of DGU

are Shadow Page Table (SPT), DMA Engine, and Data Control

Unit. The CU is comprised of a systolic array of PE’s, along

with the Weight and Activation Buffers.

a) Shadow Page Table: EIF deploys SPTs (Shadow Page

Tables) in the hardware side for translating the GVA (guest

virtual address) into HPA (host physical address). This HPA is

necessary for the DMA Engine to retrieve the target DNN

model. Each accelerator is equipped with an individual SPT for

an effective translation from GVA to HPA once it receives

GVAs of the target model through MMIO from the CPU.

b) DMA Engine: To efficiently retrieve models from the

host memory, each accelerator needs the ability to issue DMA

individually. To this end, we equip each accelerator with an

individual DMA Engine. The accelerators will use the SPTs

(Shadow Page Tables) to translate GVA (guest virtual address)

into HPA (host physical address). With these HPAs, the DMA

Engine can issue DMA requests and retrieve the target model

via a streaming mode. In this way, the number of accelerators

Fig. 6: Overall structure of an accelerator.

that can be built on an FPGA is only limited by PCI-E

resources.

c) Data Control Unit: The Data Control Unit (DCU) is

responsible for requesting the input data through the DMA

engine, filling the input buffer of the activation buffer, draining

out the output buffer of the activation buffer, and generating the

output signal for containers.

d) Weight Buffers: We deploy the double buffering tech-

nique for executing the entire inference task in a streaming

mode. There are two levels of buffers for processing a model.

When the first-level buffer is almost drained out, the data kept

in the second-level buffer will be loaded into the first-level

buffer for the next calculation in advance. And next sub-model

kept in memory will be loaded into the second-level buffer

during the timing of calculation and be ready for fill into the

first-level buffer.

e) Architecture of Computing Unit (CU): We deploy a

systolic array (SA) based GEMM (general matrix-matrix

multiplications) accelerator as the Computing Unit of EIF’s

accelerators. For state-of-the-art DNN models, fully-connected

(FC) layers, multilayer perceptron (MLPs), and Convolutional

Layer can be mapped into GEMM operations naturally, and be

executed in parallel. The PE (Processing Element) of the

systolic array design follows the SDMC mode as we described.

With that, the systolic array (as the DNN accelerator) can

simultaneously perform the GEMM operations from multiple

threads. The total number of co-executed threads in one systolic

array should be preconfigured by cloud provider. The provider

can implement different configurations of systolic arrays, e.g.,

SA with four threads or six threads, to adapt different types of

inference tasks, which we will discuss in Section V.

Figure 7 shows an example of the Computing Unit, which

contains 32 PEs and performs two threads concurrently. In our

implemented Systolic Arrays, there are four rows of PEs, and

each row contains eight PEs. A Multicast bus connects PEs on

the same row for sharing filter weights among PEs inside the

same row (green lines in Figure 7). Since each row of

Fig. 7: Overall structure of an example Computing Unit Architecture. The CU has an architecture of systolic array. Each PE

processes tensor computing instead of a single MAC. Our PE design improves the usage efficiency of accumulator

PEs calculates partial sums for the same output channel, a bus

connecting inter-PE in the same row is added (red lines).

In summary, with the streaming technique by overlapping

operations in DGU and CU, the FPGA accelerators of EIF

optimize the problem of high cold start and solve the on-chip

memory limitation to support more DNN requests on one-chip

board. And with the temporal multiplexing technique based on

the SDMC mode, EIF furtherly improves the level of multi-

tenancy on the FPGA board.

V. EVALUATION

We evaluate EIF mainly regarding the following metrics:

• Efficiency: What is the overhead of temporal multiplexing

and spatial multiplexing. Are multiplexing techniques

deployed by EIF framework efficient enough?

• Multi-tenancy: Through the streaming-mode inference,

EIF framework successfully overcomes the on-chip mem-

ory limitation. Then how many user requests can be

simultaneously supported on a single FPGA?

• Cold Start and response time: One of the major contri-

butions of EIF framework is mitigating the ”cold start” of

INaaS. Compared with other frameworks of INaaS, what

are the advantages of EIF in terms of ”cold start”?

Regarding overall response time, what kind of speeding-

up can the EIF framework provide compared with other

INaaS frameworks.

A. Experimental Setup

• Hardware: We implemented the prototyped EIF on the

Intel PAC with Intel Arria 10 GX FPGA. Unlike CPU or

GPU, the EIF implementation deploys 16-bit fixed-point

arithmetic. For the computing logic inside the accelerator,

the clock frequency is 100 MHZ. And system clock for

AXI protocol and reading/writing data from or to DRAM

is 250 MHZ.

• Software: We implemented the hypervisor based on KVM

(Kernel-based Virtual Machine). And we add the function

of Hardware Monitor into the hypervisor.

• Baseline: We compared the performance of the EIF-based

INaaS with CPU-based INaaS and GPU-based INaaS.

Existing GPU and CPU based INaaS usually overlook the

problem of cold start and have not include the streaming

(pre-fetching) technique to overlap the model loading and

computing. For fair comparison, based on existing

CPU/GPU methods [17], we upgrade our CPU and GPU

INaaS baseline with the streamming techinque. And

because EIF causes no library loading time, our baseline

CPU, GPU baseline also are based on the assumption that

the library (e.g., Pytorch, Tensorflow) is container-

resident. For GPU-based INaaS, the model will load from

host memory to GPU local memory. For CPU- based

INaaS, the model will be directly used by data in the

host memory. We chose NVIDIA GeForce TITAN RTX

as our GPU platform and Intel(R) Xeon(R) W-2255 CPU

as the CPU platform. The baseline of CPU-based INaaS

was evaluated on the Docker container [14]; and the

baseline of GPU-based supporting INaaS was through the

NVIDIA-Docker [20].

• Benchmarks: We deployed 12 different AI inference tasks

on EIF, in Table I, as benchmarks. We tested overhead for

both temporal multiplexing and spatial multiplexing. In

Table I, the ”Weight Size” of a model is the model size for

GPU-based and CPU-based INaaS. The ”.bin file” is the

.bin input file for EIF. The .bin file is created under a

certain order specified by EIF. Since we are targeting

INaaS, our experiments use a batch size of one.

TABLE I. Parameters of benchmarks

Model Weight Size bin file Sparsity Net size

DCGAN 1-3 248 MB 262.6 MB 70%, 60%, 50% large

DARKNET 1-3 459 MB 486.2 MB 70%, 60%, 50% large

LeNet 1-3 19.1 KB 19.9 KB 70%, 60%, 50% small

ZFNET 1-3 75.5 MB 28.4 MB 70%, 60%, 50% middle

B. Evaluation of Temporal Multiplexing

The overhead of temporal multiplexing is mainly stemmed

from inter-threads waiting time caused by preemptions of

hardware resources between threads. In order to test the

overhead of temporal multiplexing at different accelerator

configurations under the different task types, we select AI

models with different sparsity levels, as listed in Table I, as our

benchmarks.

The results in Figure 8 show the comparison of 12 models,

in Table I, to the dedicated execution of one thread (response

time is normalized as one, no inter-threads waiting time).

For each model, there are three bar graphs, illustrating two,

four, six threads and their normalized response time overhead

(percentage of slowing down). With two-threads accelerator,

all types of tasks exhibited close-to-zero overhead. Even with

a six-threads accelerator, no tasks will exceed 20% overhead.

Through the overall results shown in Figure 8 and model

information in Table I, we found that response time overhead

is highly correlated with the sparsity of inference task models

and the amount of co-executed hardware threads. For lower

overhead, matching tasks with adequate accelerator configura-

tion is non-trivial. In order to adapt various levels of tasks with

different sparsity, for the provider, it is highly recommended

to deploy a heterogeneous configuration of FPGA. That is,

configure an FPGA board as a set of accelerators with different

numbers of threads. In addition, for the scheduling policy

in hypervisor, instead of deploying round-robin policy, a

weighted scheduling policy should be deployed. The weight

for scheduling is according to sparsity. Depending on this

sparsity, the scheduling policy should schedule the task to an

adequate accelerator.

task that has a batch size one, latency-optimized CPU outper-

forms throughput-optimized GPU. For EIF, the response time

is the speedup of tasks running on a dedicated accelerator,

without temporal multiplexing. LENET is too small and will

not be the benchmark for speedup evaluation. At 100MHZ

computing clock rate, EIF outperforms CPU-based INaaS and

GPU-based INaaS from 3.1× to 6.7×, and from 13.1× to 25×,

respectively.

For the cold start (from model loading), GPU and CPU

require loading at least model data of one layer to start the

computation, while the EIF can start computing by loading

model data of the first slice. Figure 9(b) shows the cold-start

percentage of the total response time over these benchmarks.

For EIF, it can be concluded that the problem of high cold start

is largely optimized. The percentage of cold start only takes

around 5% of total response time. And the values of cold start

are stable between different DNN models.

(a) Speedups of EIF under dedicated (b) Percentage of cold start in overall
accelerator, no temporal multiplexing response time

Fig. 8: Response time overhead compared with normalized

response time under accelerators with different co-executing

threads configuration. All these benchmarks are executed

without mapreduce acceleration.

C. Evaluation of Spatial Multiplexing

For the overhead of spatial multiplexing, we evaluated

the overhead of virtualization technique from software and

hardware, our experiment shows the overhead of redirecting

MMIOs at software the side is close-to-zero. Regarding the

scalability of the EIF framework, we tested the range of the

number of users that can be supported on one board. To avoid

DMA congestion, we have not tested the maximum number of

accelerators. For our implemented EIF framework, we built

eight accelerators, and each accelerator can support up to

six hardware threads. In this way, 48 guest requests can be

supported on a single FPGA board.

D. Evaluation of Latency Breakdown

We evaluate the latency benefit of EIF from the FPGA-

accelerator-based INaaS, include the overall response time and

optimization of cold start. We compared the response time of

inference tasks respectively on GPU-based INaaS, CPU-based

INaaS, and EIF-based INaaS. The response time comprises

model loading time, computing time. Figure 9(a) shows the

normalized speedup performance among GPU-based INaaS,

CPU-based INaaS, and EIF. Since we conducted an inference

Fig. 9: Performance evaluation of EIF

E. Evaluation of Resource Utilization

Table II summarizes resource utilization by total 48 threads

EIF (Eight homogeneous, six-threads accelerators, 16 bits data)

from Quartus synthesis. In EIF, each thread has a double- buffer

for model data and an activation buffer for reading input and

writing output data. The activation buffer is actually

constructed using two buffers: one for input and one for output

to avoid overwriting. The activation layer is built by a lookup

table IP core. And our implemented EIF utilizes the existing IP

core for PCI-E DMA transmission. Each accelerator has a

DMA channel as the individual DMA engine.
TABLE II. Resource utilization of 48-threads EIF

Resource type Utilization Available

Logic utilization 148,800 251,680

Total LABs 18,032 25,168

Block RAM 13,762,560 43,642,880

DSP Blocks 640 1,687

F. Compared with modern FPGA virtualization techniques.

Recently, Optimus [10] is the first work to virtualize the

Shared-Memory FPGA platform. This work targets virtu-

alizing a CPU-FPGA Shared-Memory platform to support

multiple uncertain accelerators. Unlike Optimus, EIF targets

provide virtualization for a certain type of FPGA accelerator.

In INaaS task, EIF mainly outperforms Optimus because

EIF is fully customized for INaaS. Assuming that basing on

same structure of systolic array as the accelerator, EIF can

shows advantages in temporal multiplexing. EIF achieve the

temporal multiplexing by developing the sparsity of DNN

models. The overhead of temporal multiplexing, as shown

in figure 8 is marginal. But in Optimus, which deploy the

temporal multiplexing mechanism from software operating

system level, e.g., Round-Robin Scheduling, the overhead of

temporal multiplexing will approximately linearly increase

with more users on one accelerator.

VI. CONCLUSION

This paper presents EIF, a mediated pass-through architec-

ture for FPGA-based INaaS. EIF provides both spatial and

temporal multiplexing to achieve high tenant density on a

single CPU-FPGA device. EIF further optimizes INaaS by

overlapping data transmission with computation to decrease the

latency. Our experiments show that (1) up to 48 user requests

can be simultaneously supported on one FPGA board.

(2) The overhead of spatial multiplexing is close to zero,

and temporal multiplexing is very effective. (3) Compared with

GPU-based INaaS, EIF can achieve from 13.1× to 25×
speeding up in response time. And compared with CPU-based

INaaS, EIF can achieve from 3.1× to 6.7× speeding up in

response time. (4) EIF optimizes the cold start only occupy

around 5% of total response time.

REFERENCES

[1] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and
G. Karsai, “Barista: Efficient and scalable serverless serving system for
deep learning prediction services,” in 2019 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 2019, pp. 23–33.

[2] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and

W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 243–254, 2016.

[3] J. Hu, A. Bruno, B. Ritchken, B. Jackson, M. Espinosa, A. Shah,
and C. Delimitrou, “Hivemind: A scalable and serverless coordination
control platform for uav swarms,” arXiv preprint arXiv:2002.01419,
2020.

[4] J. Jo, S. Cha, D. Rho, and I.-C. Park, “Dsip: A scalable inference
accelerator for convolutional neural networks,” IEEE Journal of Solid-
State Circuits, vol. 53, no. 2, pp. 605–618, 2017.

[5] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J.
Rossbach, “Sharing, protection, and compatibility for reconfigurable
fabric with amorphos,” in 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), 2018, pp. 107–127.

[6] M. R. D. Kodandarama, M. D. Shaikh, and S. Patnaik, “Serfer: Server-
less inference of machine learning models.”

[7] J. Lallet, A. Enrici, and A. Saffar, “Fpga-based system for the acceler-
ation of cloud microservices,” in 2018 IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 2018,
pp. 1–5.

[8] C. Liu, K. Li, M. Song, J. Zhao, K. Li, T. Li, and Z. Zeng, “Coexe: an
efficient co-execution architecture for real-time neural network services,”
in 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE,
2020, pp. 1–6.

[9] M. Lorusso, D. Bonacorsi, D. Salomoni, R. Travaglini, D. Michelotto,

D. C. Duma, and P. Veronesi, “Accelerating machine learning inference
using fpgas: the pynq framework tested on an aws ec2 f1,” 2022.

[10] J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. M. Eneyew, Z. Qi, and
B. Kasikci, “A hypervisor for shared-memory fpga platforms,” in Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2020, pp.
827–844.

[11] X. Ma, F.-M. Guo, W. Niu, X. Lin, J. Tang, K. Ma, B. Ren, and Y. Wang,
“Pconv: The missing but desirable sparsity in dnn weight pruning for
real-time execution on mobile devices,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 34, no. 04, 2020, pp. 5117–
5124.

[12] D. M. Naranjo, S. Risco, C. de Alfonso, A. Pe´rez, I. Blanquer, and
G. Molto´, “Accelerated serverless computing based on gpu virtualiza-
tion,” Journal of Parallel and Distributed Computing, vol. 139, pp. 32–
42, 2020.

[13] M. Paolino, S. Pinneterre, and D. Raho, “Fpga virtualization with accel-
erators overcommitment for network function virtualization,” in 2017
International Conference on ReConFigurable Computing and FPGAs
(ReConFig). IEEE, 2017, pp. 1–6.

[14] A. M. Potdar, D. Narayan, S. Kengond, and M. M. Mulla, “Performance
evaluation of docker container and virtual machine,” Procedia Computer
Science, vol. 171, pp. 1419–1428, 2020.

[15] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[16] R. V. Rasmussen and M. A. Trick, “Round robin scheduling–a survey,”
European Journal of Operational Research, vol. 188, no. 3, pp. 617–636,
2008.

[17] H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless computing: A of
opportunities, challenges and applications,” 2020.

[18] Y. Suzuki, S. Kato, H. Yamada, and K. Kono, “Gpuvm: Gpu virtualiza-
tion at the hypervisor,” IEEE Transactions on Computers, vol. 65, no. 9,
pp. 2752–2766, 2015.

[19] A. Vaishnav, K. D. Pham, and D. Koch, “A survey on fpga virtualiza-
tion,” in 2018 28th International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 2018, pp. 131–1317.

[20] P. Xu, S. Shi, and X. Chu, “Performance evaluation of deep learning tools
in docker containers,” in 2017 3rd International Conference on Big Data
Computing and Communications (BIGCOM). IEEE, 2017,
pp. 395–403.

[21] Y. Xu, J. Yao, Y. Dong, K. Tian, X. Zheng, and H. Guan, “Demon:
An efficient solution for on-device mmu virtualization in mediated pass-
through,” in Proceedings of the 14th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, 2018, pp.
57–70.

[22] M. D. Zeiler and R. Fergus, “Visualizing and understanding convo-
lutional networks,” in Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part I 13. Springer, 2014, pp. 818–833.

[23] J. Zhang, Y. Xiong, N. Xu, R. Shu, B. Li, P. Cheng, G. Chen, and

T. Moscibroda, “The feniks fpga operating system for cloud computing,”
in Proceedings of the 8th Asia-Pacific Workshop on Systems, 2017, pp.
1–7.

