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ABSTRACT

Aims. The Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) will revolutionize time-domain astronomy by
detecting millions of di↵erent transients. In particular, it is expected to increase the number of known type Ia supernovae (SN Ia) by
a factor of 100 compared to existing samples up to redshift ⇠1.2. Such a high number of events will dramatically reduce statistical
uncertainties in the analysis of the properties and rates of these objects. However, the impact of all other sources of uncertainty on the
measurement of the SN Ia rate must still be evaluated. The comprehension and reduction of such uncertainties will be fundamental
both for cosmology and stellar evolution studies, as measuring the SN Ia rate can put constraints on the evolutionary scenarios of
di↵erent SN Ia progenitors.
Methods. We used simulated data from the Dark Energy Science Collaboration (DESC) Data Challenge 2 (DC2) and LSST Data
Preview 0 to measure the SN Ia rate on a 15 deg2 region of the “wide-fast-deep” area. We selected a sample of SN candidates detected
in di↵erence images, associated them to the host galaxy with a specially developed algorithm, and retrieved their photometric redshifts.
We then tested di↵erent light-curve classification methods, with and without redshift priors (albeit ignoring contamination from other
transients, as DC2 contains only SN Ia). We discuss how the distribution in redshift measured for the SN candidates changes according
to the selected host galaxy and redshift estimate.
Results. We measured the SN Ia rate, analyzing the impact of uncertainties due to photometric redshift, host-galaxy association and
classification on the distribution in redshift of the starting sample. We find that we are missing 17% of the SN Ia, on average, with
respect to the simulated sample. As 10% of the mismatch is due to the uncertainty on the photometric redshift alone (which also
a↵ects classification when used as a prior), we conclude that this parameter is the major source of uncertainty. We discuss possible
reduction of the errors in the measurement of the SN Ia rate, including synergies with other surveys, which may help us to use the rate
to discriminate di↵erent progenitor models.

Key words. surveys – supernovae: general – galaxies: stellar content

1. Introduction

Type Ia supernovae (SN Ia) are violent explosions characterized
by a peak in luminosity correlated with the duration of the
event, which makes them standardizable candles (Phillips 1993;
Tripp & Branch 1999) and fundamental cosmological probes
(Riess et al. 1998; Perlmutter et al. 1999). There is general con-
sensus that SN Ia are the result of a thermonuclear explosion of
a carbon-oxygen white dwarf (WD) with two possible progen-
itor channels: a WD accreting mass from a nondegenerate star
(single degenerate (SD) scenario; Whelan & Iben 1973) or two
WDs spiraling together and eventually merging (double degener-
ate (DD) scenario; Webbink 1984; Iben & Tutukov 1984). How-
ever, the exact nature of their progenitors and the details of
the explosion mechanism are not yet clear (see Livio & Mazzali
2018, for a recent review). Direct observations of both pre-

and post-explosion images do not provide unambiguous evi-
dence for either SN Ia progenitor systems (e.g., Kelly et al.
2014; Graur & Woods 2019) or surviving companions (e.g.,
Schaefer & Pagnotta 2012; Kerzendorf et al. 2019). Similarly,
detailed spectral analyses of SN Ia and their remnants are not
able to clearly identify the companion star in the binary sys-
tem (e.g., Badenes et al. 2007; Foley et al. 2012; Dhawan et al.
2016). The diversity of the SN Ia light curves and their corre-
lation with host-galaxy properties are also not able to exclude
either progenitor scenario, and therefore both could be at play.

An alternative way of putting constraints on the SN Ia
progenitor system is the analysis of the delay time distribu-
tion (DTD), which is the time between the formation of the
binary system and the SN Ia explosion. Di↵erent progenitor
scenarios imply a di↵erent DTD from population synthesis
models (Wang & Han 2012). As the SN Ia rate results from
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Fig. 1. Observed SN Ia rate as a function of redshift for di↵erent sur-
veys, along with rate predictions for progenitor models from Greggio
(2005): single degenerate, double degenerate close, double degenerate
wide.

the convolution of the host galaxy star formation rate (SFR)
and the DTD (Greggio 2005, 2010), measuring the SN Ia rate
and the SFR for a sample of galaxies is therefore an empiri-
cal way of testing the DTD from di↵erent progenitor models
(Maoz et al. 2012; Greggio & Cappellaro 2019; Strolger et al.
2020; Wiseman et al. 2021). More specifically, the SN Ia rate at
a time t, rSN Ia(t) can be expressed as:

rSN Ia(t) = kIa

Z
t

0
 (t � tD) fIa(tD)dtD, (1)

where kIa is the total number of SN Ia provided by a stellar popu-
lation of unitary mass,  is the SFR, fIa is the DTD, and tD is the
delay time. Knowing the average cosmic star formation history
(SFH) and the DTD for each progenitor system model, it is also
possible to calculate the expected volumetric rate of SN Ia as a
function of redshift and compare it with the observed rate.

Figure 1 shows the measurements of the SN Ia rate as a func-
tion of redshift from di↵erent surveys, along with rate predic-
tions for DTD progenitor models from Greggio (2005), adopt-
ing the estimates of cosmic SFH from Madau & Fragos (2017).
We normalized the theoretical rates using the same kIa = 0.8 ⇥
10�3

M
�1
� for all the models. The significant scatter between rate

measurements from di↵erent surveys, as well as present-day sta-
tistical and systematic uncertainties on each single measurement,
do not allow us to distinguish between di↵erent progenitor mod-
els. Moreover, the theoretical predictions run quite close in the
intermediate range 0.2 / z / 1.0, making it di�cult to discrim-
inate among the di↵erent options. Greggio & Cappellaro (2019)
show that measuring the SN Ia rate as a function of host galaxy
intrinsic color or specific SFR leads to a more e�cient separa-
tion of the predictions of di↵erent models, but data are limited
to the local Universe. Upcoming surveys, such as the Vera C.

Rubin Observatory’s Legacy Survey of Space and Time (LSST1;
Ivezić et al. 2019), may completely change the scenario. Indeed
LSST will detect an enormous number of events in galaxies
with a large range of di↵erent properties, strongly improving on
both statistical and systematic uncertainties. In addition, having
data from the same survey with known and homogeneous prop-
erties will also reduce the scatter between rate measurements
1 lsst.org

in di↵erent redshift and intrinsic color bins compared to those
coming from the combination of multiple surveys. While a dra-
matic reduction in statistical uncertainty will be easily attained
by LSST, the actual e↵ect of all other possible sources of uncer-
tainty merits a detailed analysis. Some of the uncertainties are
not directly related to the survey and depend on the adopted soft-
ware or criteria for the analysis (e.g., photometric redshift, tran-
sient classification) and the wealth of ancillary data (e.g., spec-
troscopic information).

Here, we present an assessment of the impact of uncertain-
ties on the SN Ia rate using a simulation of the first 5 yr of LSST.
As the simulation does not include other SN types, nor any cor-
relation between the transients and the host galaxy properties,
we only focus on our evaluation of the impact of uncertainties
on the SN Ia rate as a function of redshift due to (i) host-galaxy
association, (ii) photometric redshift, and (iii) light-curve classi-
fication, using a sample of SN Ia detected in di↵erence images
(see Sect. 3). These sources of uncertainty, a↵ecting the choice
of the SN Ia sample and their host galaxies, also a↵ect rate mea-
surements as a function of specific SFR or intrinsic galaxy colors
from spectral energy distribution (SED) fitting. Furthermore, the
sources of error studied in this work are common in all tran-
sients studies, and understanding how they propagate in a final
statistical analysis would be important for most time-domain
science with LSST. Measuring the SN rate and shedding light
on the evolutionary channels for SNe are also goals outlined in
both Dark Energy Science Collaboration2 (DESC) and Transient
and Variable Stars Science Collaboration3 (TVSSC) roadmaps4

(Hambleton et al. 2023). Identifying and understanding all pos-
sible biases a↵ecting the final measurement is therefore a crucial
point before the beginning of the survey. A more thorough inves-
tigation of the SN Ia rate from LSST as a tool to discriminate
between progenitor models is left to subsequent analyses.

This paper is organized as follows. Section 2 provides a short
summary of the LSST strategy and design. In Sect. 3, we briefly
describe the simulation and the SN sample used in our analy-
sis. In Sect. 4, we describe the procedure of association of tran-
sients to the host galaxies, and in Sect. 5 we discuss photomet-
ric redshifts obtained from the hosts. Section 6 is dedicated to
the classification of light curves and the comparison of di↵er-
ent approaches. Finally, we present the final measurement of the
SN Ia rate in Sect. 7, comparing the results with the input of
the simulation and providing quantitative estimates of di↵erent
sources of uncertainty. In Sect. 8, we summarize our results and
discuss future perspectives.

2. LSST at the Rubin Observatory

The LSST, expected to start in 20255, will revolutionize time-
domain astronomy by imaging the entire southern sky every
few nights for 10 yr (Ivezić et al. 2019). The survey will be exe-
cuted with the 8.4 m (6.7 m e↵ective) Simonyi Telescope and
a 3.2 gigapixel camera yielding a 9.6 deg2 field of view. The
instrument is equipped with six filters, ugrizy, and is expected
to have a 5� g-band magnitude depth of ⇠24.5 in a sin-
gle 30 s visit and ⇠26.9 in the full stacked data6. The sur-
vey design will enable to cover a wide range of science goals
(LSST Science Collaboration 2009), the main ones being (i)

2 lsstdesc.org
3 lsst-tvssc.github.io
4 DESC roadmap: lsstdesc.org/assets/pdf/docs/DESC_SRM_
latest.pdf
5 lsst.org/about/project-status
6 lsst.org/scientists/keynumbers
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exploration of the transient and variable sky, (ii) a study of the
dynamics of Solar System objects, (iii) probing dark energy and
dark matter, and (iv) a map the Milky Way. Meeting most of
these science goals requires scanning wide sky areas with deep
images and a fast cadence. Although the exact survey strategy is
not yet defined, about 90% of the observing time will be devoted
to the baseline wide-fast-deep (WFD) survey mode. The remain-
ing 10% will be used to obtain improved coverage and cadence
for specific regions, called deep drilling fields (DDFs).

This exploration of the changing Universe will be boosted
by the implementation of di↵erence image analysis (DIA;
Alard & Lupton 1998) on the entire dataset. DIA consists of
producing deep co-added images (templates) to be subtracted
from each science observation in the same region of sky. Before
the subtraction, the template is resampled to the pixel coordi-
nate system of the new image and is convolved with a kernel
matching their point spread functions (PSFs). Variable sources
are considered to be detected if they have a signal-to-noise ratio
(S/N) greater than a threshold value (i.e., five for Rubin data
products) on the resulting di↵erence image. For each detected
transient, LSST will issue an alert within 60 s of the end of the
visit (defined as the end-of-image readout from the camera) to
enable immediate follow-up observations with other facilities.

LSST is expected to process ⇠105 transient detections per
night (Ivezić et al. 2019; Graham et al. 2020a). This includes
SN Ia for which we expect an increment of a factor of 100
compared to existing samples up to redshift z ⇠ 1.2 (e.g.,
Betoule et al. 2014; Sako et al. 2018; Jones et al. 2019). Such a
high number of events will dramatically reduce statistical uncer-
tainties in the analysis of SN Ia properties and rates, which will
be important both for cosmology and stellar evolution studies.
The analysis of SNe is then expected to be only limited by
the adopted observing strategy (a↵ecting the sampling of light
curves and the resulting classification of transients) and di↵erent
sources of uncertainty, namely detection e�ciency on di↵erence
images, photometric calibrations, artifact contamination levels,
the reliability of the photometric redshifts of the host galaxies
(e.g., precision, accuracy and fraction of catastrophic errors),
and the e�ciency of host-galaxy association and photometric
classification algorithms. Many of these aspects have been thor-
oughly looked into by recent works: Sánchez et al. (2022) mea-
sured detection e�ciency, magnitude limits, and photometric
biases; Alves et al. (2022) and Graham et al. (2018) focused on
the impact of di↵erent observing cadences on the classification
of SNe and the reliability of photometric redshifts; Schmidt et al.
(2020) compared di↵erent algorithms for photometric redshifts;
the Photometric LSST Astronomical Time-series Classifica-
tion Challenge (PLAsTiCC; The PLAsTiCC team et al. 2018;
Kessler et al. 2019) and its extension ELAsTiCC7 allow di↵er-
ent light-curve classification methods to be tested. However, all
these works are oriented toward obtaining a pure sample of SN Ia
for cosmology, while a study of the combination of multiple
selection e↵ects and sources of uncertainty in the specific sci-
ence case of SN rate measurement (which requires a complete
sample of SNe, albeit with lower purity) is still lacking. Our
work complements of the previous analyses and we aim to deter-
mine the impact of host galaxy association, photometric redshift,
and transient classification on the measurement of the SN Ia vol-
umetric rate using a simulation of the first 5 yr of LSST. We dis-
cuss all of these e↵ects one by one, in order to where improve-
ments are needed to obtain an accurate evaluation of the SN Ia
rate up to z ⇠ 1 with LSST.

7 portal.nersc.gov/cfs/lsst/DESC_TD_PUBLIC/ELASTICC

3. The LSST DESC DC2 Universe

To build software pipelines ready to analyze the LSST
data products, DESC produced a 300 deg2 simulation of the
first 5 yr of the survey as part of the Data Challenge 2
(DC2; LSST Dark Energy Science Collaboration (LSST DESC)
2021). The simulation includes LSST-like images in all six opti-
cal bands ugrizy, processed with the LSST Science Pipelines8

(v.19.0.0), and is based on the Outer Rim N-body simulation
(Heitmann et al. 2019). The observing cadence is determined by
the minion_10169 strategy for the WFD survey with an average
cadence of ⇠3 days in any filter. A smaller 1 deg2 DDF with more
frequent observations (up to one per day) is also included.

Simulated sources comprise stars, galaxies, variable stars
and SN Ia (but no other SN types). SN Ia light curves are sim-
ulated starting from the rest-frame spectral energy distribu-
tion (SED) of the SALT2-Extended model (Guy et al. 2010;
Pierel et al. 2018), which uses five parameters: redshift (z), time
at peak brightness (t0), amplitude (x0), stretch (x1), and color
(c). The redshift distribution of SN Ia follows the volumetric rate
rv(z) = 2.5 ⇥ 10�5(1 + z)1.5 Mpc�3 yr�1 (Dilday et al. 2008) up to
z = 1.4. SNe were assigned to galaxies with an occupation prob-
ability that scales with the galaxy mass. The SN position within
the host traces the light in the galaxy sampled by the surface
brightness profile of the disk and the bulge. SNe at z > 1.0 are
not associated to galaxies while at lower redshift, 10% of SNe
were randomly injected as host-less. Correlations between the
SN type and the host-galaxy properties are not included in the
simulation.

The DC2 WFD region is also included in the LSST Data
Preview 0 (DP010), the first of three data previews serving as
an early integration test of the LSST Science Pipelines and the
Rubin Science Platform (RSP). A limited number of data-rights
holders have been granted access to the RSP in order to begin
familiarizing themselves with the Rubin Data Products11 using a
series of publicly available tutorials12. DP0 has been released in
three parts:

– DP0.1 (released on June 30, 2021) is the DESC processing
of the data, focusing on static sky;

– DP0.2 (released on June 30, 2022) is the DC2 simulation
reprocessed by the Rubin sta↵ using version 23 of the LSST
Science Pipelines, and includes DIA data products;

– DP0.3 (released on August 2, 2023) contains LSST-like cat-
alogs of Solar System objects generated by the Solar System
Science Collaboration13.

For more o�cial references for DP0, see O’Mullane (2021),
Community Engagement Team & Operations Executive Team
(2022), and O’Mullane et al. (2023). All the galaxy catalogs
used in this paper are extracted from DP0.2 and the codes
used for the analysis have been successfully tested on the RSP,
although the majority of the heavy tasks have been executed on
DESC allocated space at NERSC14, which already contained all
the necessary tables when this work started.

The sample of SNe Ia analyzed in this paper comes from the
work by Sánchez et al. (2022), which measured magnitude lim-
its, detection e�ciency, artifact contamination levels, and biases
in the selection and photometry on a subset of ⇠15 deg2 of the

8 pipelines.lsst.io
9 https://docushare.lsst.org/docushare/dsweb/View/
Collection-4604
10 dp0-2.lsst.io
11 Data Products Definitions Document (DPDD; ls.st/dpdd).
12 github.com/rubin-dp0
13 dp0-3.lsst.io
14 National Energy Research Scientific Computing Center; nersc.gov
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DC2 WFD region. To perform the analysis, these authors tested
the LSST DIA pipeline on the selected region, using the first
year to produce their own templates and the remaining four years
for detection. The smaller region of sky and the shorter survey
length (5 yr instead of the planned 10) do not a↵ect the final
results.

There is a total of 5884 simulated SN Ia with z  1.0 in
the processed area. This number already takes into account all
the objects not detectable because of gaps between the observ-
ing seasons and objects located in sky regions with subtrac-
tion artifacts from template overlapping issues. The number of
SNe with at least one detection in one filter is 2186. Never-
theless, for our analysis, we selected only sources detected on
more than five distinct nights in order to sample ⇠20 days on
the light curve and have a more reliable classification. In cases
where there were multiple visits on the same night, we took the
average magnitude over all detections on that night. An exam-
ple of the recovered SN Ia light curve at z = 0.16 is shown
in Fig. 2. The condition on the minimum number of detections
returned 600 SNe. The large drop in the number of SNe after
the cut on the minimum number of detections is mainly due to
the suboptimal observing cadence of the adopted survey strat-
egy. The minion_1016 strategy adopted by DC2 is indeed rela-
tively old, but it was most recent at the time of the simulation.
Further analyses to improve the observing strategy are still ongo-
ing, and the final cadence may improve the number of recovered
SNe. Lochner et al. (2022) presented various metrics developed
by DESC to analyze the cadences, highlighting the importance
of low internight gaps in the redder filters for the selection of
SNe. Possible improvements might also derive from a rolling
cadence (Alves et al. 2023) or the higher coverage of the DDFs
(Gris et al. 2023).

The final sample of SN Ia analyzed in this work therefore
consists of 600 sources (hereafter, SN Ia sample) for which we
know the true host galaxy and the true simulated redshift (zspec).
Throughout the paper, we treat them as a sample of candidate
SN Ia, ignoring all known parameters from the simulation and
using only the recovered photometric information. We first asso-
ciate each SN to the host galaxy with a procedure described
in Sect. 4. We then retrieve photometric redshifts for both the
true (i.e., the simulation input) and the recovered host galax-
ies. Finally, we proceed with classification of light curves using
the recovered redshifts as priors. Samples of SN Ia coming from
each of these steps will produce a di↵erent distribution in red-
shift (see Sect. 5), thus a↵ecting the SN Ia volumetric rate. The
real case scenario consists of a sample of SNe classified as SN Ia
using the photometric redshift of the associated host galaxy as a
prior. Such a scenario includes a combination of all the e↵ects
analyzed in this work. We compute the SN Ia rate for di↵erent
samples, alternatively analyzing each specific source of uncer-
tainty in order to analyze the contribution of each e↵ect sepa-
rately and determine which one has the greatest impact on the
final uncertainty.

4. Host-galaxy association

The association of SNe to their host galaxy is a key ingredient
for the SN rate, but also for the SN photometric classification,
as it provides an estimate of the SN redshift that can be used
as prior in the classification (see Sect. 6). Indeed, as spectro-
scopic resources are limited, photometric redshifts of the host
galaxies are an e�cient way to obtain information on SN red-
shift. Moreover, knowledge of the host galaxy and its properties
enables the measurement of the SN rate as a function of SFR,

Fig. 2. Example multiband light curve of a SN Ia with redshift z = 0.16.
Di↵erent shapes and colors refer to di↵erent filters, as reported in the
legend.

color, or the stellar mass of the galaxy (e.g., Sullivan et al. 2006;
Botticella et al. 2017), and provides constraints on the SN pro-
genitors (Wiseman et al. 2021).

We associate transients to galaxies using only information
about the galaxy light profile and the angular separation from
SNe. More complicated approaches could include any correla-
tions between SN type and the host-galaxy properties, which are
not included in this simulation. Recent reviews of host asso-
ciation algorithms, also using postage stamps of a field sur-
rounding the transient, are reported in Gagliano et al. (2021) and
Förster et al. (2022), the latter implementing a novel deep learn-
ing approach. We developed our own code which adapts the cal-
culation of the directional light radius (DLR; Gupta et al. 2016)
to the Rubin Data Products and produces cutouts through the
RSP to evaluate the results. The DLR is the elliptical radius of
a galaxy in the direction of the SN in units of arcseconds. This
metric also takes the extension and the orientation of the galax-
ies into account, and produces more reliable physical associa-
tions than using the plain angular separation. The DLR method,
using only catalog information, is fast and scalable to all kinds
of extragalactic transients, as it makes no assumptions as to their
nature. Our code is publicly available and ready to work with
Rubin Data Products on the RSP15.

For each SN, we select host galaxy candidates in a region of
3000 radius around the SN coordinates from the catalog of static
sources detected on stacked images (i.e., the LSST Object table).
Such a radius is typically used in the literature and is big enough
to include the hosts of extragalactic transients. The full catalog
resulting from the query includes 277 852 galaxies (hereafter,
candidates). Such a sample is also used in Sect. 5 to assess the
quality of photometric redshifts, as it is big enough to include all
typical DP0 galaxies.

We assume the isophotes of the galaxy are self-similar
ellipses and get the Stokes parameters Q and U from the adaptive
second moments of source intensity Ixx, Iyy, Ixy:

Q = Ixx � Iyy (2)
U = Ixy (3)

15 github.com/vpetrecca/Rubin-DP0-host-association
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The position angle (east of north) � and the axis ratio A/B of the
galaxy are then

� =
1
2

arctan
 

U

Q

!
(4)

A/B =
1 + k + 2

p
k

1 � k
(5)

where k is derived from the Stokes parameters as

k ⌘ Q
2 + U

2 =
✓

A � B

A + B

◆2
. (6)

We then measure the position angle ↵ of the SN relative to the
candidate host galaxy and we combine it with the angle � to
get the angle ✓ that the SN makes with the semi-major axis of
the galaxy. Using the equation of an ellipse in polar coordinates
with the origin at the center of the galaxy, we get the elliptical
radius of a galaxy in the direction ✓, which is the definition of
the DLR:

r(✓) =
A

p
(A/B sin ✓)2 + (cos ✓)2

⌘ DLR. (7)

As an estimate of the semi-major axis A, we use a value of 2.5
times the Kron radius, which includes >96% of the total flux of a
galaxy (Kron 1980). Finally, we define a dimensionless quantity
by normalizing the angular separation dsep between the SN and
the candidate host by DLR:

dDLR ⌘
dsep

DLR
=

dsep

A
C (8)

where C is the denominator of Eq. (7). In this way, we define
a quantity that weights the SN radial distance by taking into
account both the extension (the Kron radius, A) and the orien-
tation (the C parameter) of the galaxy.

For each SN, we rank all candidate galaxies by increasing
dDLR and pick the one with the minimum dDLR as the best host.
If minimum dDLR > 4, we define the SN as host-less (SNe orig-
inally simulated as host-less in DC2 had been removed from
the sample). As a further cut, we rejected candidate galaxies
with i-band magnitudes mag

i
� 24.5 and with poor-quality fit-

ting flags. These cuts reduce misassociations due to poorly esti-
mated galaxy parameters, which is mostly the case for low-S/N
sources. By looking at the distributions of candidates parame-
ters, we also reject galaxies with Kron radii �7.500 or Kron radii
1.400 to reduce misassociations due to catastrophic estimates of
the galaxy extension (see Fig. 3). All these cuts have an impact
of only 1% on the true host galaxy sample. We point out that
the DLR method is strongly dependent on the quality of galaxy
fitting. The Kron radii used in this work are computed using
version 23 of the LSST Science Pipelines. Newer versions may
improve the quality of galaxy parameters and require di↵erent
cuts.

By comparing the results of our algorithm with the simu-
lation input, we find that 89% of SNe are correctly associated
to the true host. Among the misassociations, 8 (i.e., ⇠1% of
the total, 12% of the erroneous cases) are recovered as host-
less, and 35 (55% of the erroneous cases) are faint galaxies with
mag

i
> 22. The remaining 33% are the result of projection issues

(i.e., a bright galaxy along the line of sight of a SN actually
injected into a faint host), or two similar galaxies in terms of
morphology and angular separation from the SN, producing a
similar dDLR. Cutouts with examples of associations are reported

Fig. 3. Kron radii and i-band magnitudes for the entire sample of host
candidate (blue dots) and true (red stars) SN host galaxies. The black
square determines the region actually used for the host association,
avoiding faint galaxies and catastrophic estimates of the Kron radii.

in Fig. 4 for a correct case and two misassociations from the
cases described above.

Misassociations may also alter the distribution of the par-
ent galaxy properties, a↵ecting the final measurement of the SN
rate. Figure 5 shows how the magnitude distribution of the SN
hosts changes moving from the true to the associated host galax-
ies (hereafter denoted with “_best”). While there is an overall
agreement for bright sources, it is worth noting the excess of
galaxies with mag

i
> 22.5 for those associated with the DLR

method. This will also have an e↵ect on the accuracy of photo-
metric redshifts, which tends to be lower with fainter sources as
explained in Sect. 5.

The association using only the minimum angular separation
has a lower e�ciency of 81%. This highlights the importance
of using more complex approaches, such as the DLR, to asso-
ciate transients to their host galaxies. Even better results could
be obtained by considering correlations between the SN type and
the galaxy properties, which are not included in this simulation.

5. Photometric redshifts

We cross-matched both the catalogs of true and associated host
galaxies with a catalog of photometric redshifts (zphot) for DC2
galaxies produced by Schmidt et al. (2020) with the BPZPipe
code16, which employs a training set that is complete up to
mag

i
 25.0. We used the weighted mean value of the poste-

rior probability density function (PDF) for each galaxy as a point
estimate of the photometric redshift.

To assess their quality, we used the subsample of all can-
didates host galaxies with mag

i
 25 and zspec  1.0,

which comprises 43 161 objects. By following the approach of
Graham et al. (2018), we define a zphot error as �z = (zspec �
zphot)/(1 + zphot), where zspec is the true simulated redshift. The
robust standard deviation of the zphot error is evaluated in the
interquartile range (IQR) containing 50% of the catalog galaxies.
The value is then divided by 1.349 to convert it to the standard
deviation of a Gaussian distribution (�IQR). This returns a value

16 github.com/LSSTDESC/BPZpipe
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Fig. 4. Cutouts around SNe (blue star) extracted with the RSP. The magenta numbers identify possible host galaxies (ranked according to the
lowest dDLR), the blue x represents the best host candidate (the zeroth galaxy in the ranked list), while the red cross + is the true host galaxy of the
simulation. From left to right: (i) example of a correctly associated SN, and two possible misassociation cases: (ii) very similar galaxies in terms
of morphology and angular separation from the SN; (iii) example where the true host galaxy is extremely faint and not among the possible list of
candidates.

Fig. 5. Distribution of i-band magnitude for the SN Ia host candidates.
The black solid line is the magnitude of the true host galaxy (i.e., simu-
lation input), while the red dotted line denotes the hosts associated with
the DLR method.

of �IQR = 0.05 on the catalog of all galaxies, and �IQR = 0.03
on the true host galaxies of the SN Ia. The fraction of outliers
(i.e., with �z > 3�IQR) is 7% for the catalog of all galaxy can-
didates and 5% for the SN Ia hosts. The comparison between
the simulated and photometric redshift for both the sample of all
candidate hosts and the true hosts is shown in Fig. 6, where the
better agreement for the true hosts is clearly evident as they are
generally more massive and brighter (see Fig. 3). The horizon-
tal line at the bottom of the plot identifies catastrophic outliers
zphot  10�5, and 15 of them refer to true SN Ia hosts. Through-
out this work, we adopt a fixed value of uncertainty of 0.05 on
each photometric redshift estimate, which comes from our anal-
ysis of �IQR in the galaxy catalog. This value is also consistent
with our analysis of the median FWHM of the peak in the zphot
PDFs.

Figure 7 shows the combined impact of photometric redshift
and host galaxy association on the retrieved SN sample red-
shift distribution. As expected, the redshift distribution of the

SN hosts appears wider when using the photometric redshift of
the associate host (z_phot_best). This is especially true for faint
galaxies whose uncertainty on photometric redshift is higher. We
notice a peak at zphot ⇠ 0 due to catastrophic outliers or SNe
incorrectly associated to nearby galaxies, and a peak at zphot ⇠
0.45 mainly due to the known degeneracy between the Lyman
break of galaxies at higher redshift and the Balmer break of
galaxies at lower redshift (Massarotti et al. 2001; Salvato et al.
2019). These peaks, together with an excess of sources at higher
redshifts, result in a decrease in the number of SNe in all the
other redshift bins.

In Sect. 7, we quantitatively discuss the e↵ect of the chang-
ing distribution on the volumetric rate by considering redshift
bins of 0.05 in width (which is the nominal error on photo-
metric redshifts). The analysis is restricted to the redshift range
0.1  z  0.7 in order to avoid a catastrophic drop in the num-
ber of simulated SNe at the edges of the distribution. As shown
in Fig. 7, we expect a loss of SNe in all the redshift bins with
an excess at zphot ⇠ 0.45. We also point out that, in principle,
all the e↵ects of bin migration arising from this work could be
taken into account with a Monte Carlo analysis leading to cor-
rection coe�cients (see e.g., Lasker 2020). However, estimating
the proper corrections taking into account all sources of uncer-
tainty (including those related to the detection) would require
the production of more DP0-like simulations. The present work
focuses on what is provided in DP0.2, as a single realisation of
the Universe processed with the LSST science pipelines. The
production of more complete simulations is under investigation
for future works.

6. Classification

For large surveys, such as LSST, the photometric classifica-
tion of transients is an essential task. Although the brokers will
instantly process the nightly alert streams17, this will mainly
serve as a preclassification to enable follow up of specific
sources of interest with other facilities. More thorough analy-
ses may require a posteriori classification using all the available
information.

In this section, we present the results of the classifica-
tion with three di↵erent approaches, which are all based on

17 lsst.org/scientists/alert-brokers
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Fig. 6. Distribution of the true simulated redshift (zspec) and photomet-
ric redshifts (zphot) for a sample of galaxies with mag

i
 25. Black dots

are for all host candidates and red open circles are the true SN Ia hosts.

Fig. 7. Distribution of redshift for the SN Ia host candidates. The black
one uses the true simulated redshift (zspec), the green dashed line rep-
resents the photometric redshift of the true host galaxy (zphot_true),
while the red continuous distribution refers to the photometric redshift
of the associated host galaxy (zphot_best). The two vertical lines define
the range where we evaluate the volumetric rate and the plot is cut to
z = 1.0 for visual clarity.

the light curves of the SN Ia sample. The first two methods
involve template fitting and are part of the publicly available
SuperNova ANAlysis software package (SNANA18; Kessler et al.
2009), while the last one uses a recurrent neural network (RNN)
trained on light curves. For all the methods, we obtain a classifi-
cation: (i) using only light curves, (ii) providing the photometric
redshift of the associated host galaxy as a prior (if available19),
and (iii) providing the true simulated redshift as a prior, which is
the case when we have the spectroscopic redshift of the true host
galaxy from other surveys.
18 https://github.com/RickKessler/SNANA
19 SN Ia identified as host-less or having catastrophic photometric red-
shifts (i.e., zphot  10�5) are classified with a flat prior on redshift.

Table 1. Fraction of correctly classified SNe from the SN Ia sample
using di↵erent methods.

Method No z prior (%) zphot_best prior (%) zspec prior (%)

PSNID 44 95 99
Salt2 fit 69 75 80
SuperNNova 80 96 97

The final results of the classification using all the methods
are summarized in Table 1. Although our classification models
have been trained on multiple classes, the presence of SN Ia only
in the DC2 simulation prevents us from measuring the actual
e↵ect of contamination from other transients (especially from
SN Ib/c). The misclassification e↵ect will then only be a reduc-
tion in the total number of SN Ia from the original sample. We
refer to upcoming works analyzing the ELAsTiCC light curves
for a more through review of photometric classification.

6.1. PSNID

Photometric SuperNova IDentification (PSNID; Sako et al. 2011)
is a template-fitting algorithm that calculates the reduced �2

against a grid of SN Ia light-curve models and core-collapse SN
templates in order to identify the best-matching SN type. It was
first used for prioritizing spectroscopic follow-up observations
for the SDSS-II SN Survey (Sako et al. 2008), and it has also
been tested with SNANA simulations from the Supernova Photo-
metric Classification Challenge (Kessler et al. 2010).

The version used here is integrated in SNANA and also com-
putes Bayesian probabilities for di↵erent SN types. More specif-
ically, the Bayesian evidence E for each SN type is calculated
by marginalizing the product of the likelihood function and prior
probabilities over the model parameter space:

Etype =
X

template

Z

pars. range
P(z)e��

2/2dzdAVdTmaxdµ. (9)

The fitting parameters are redshift z, with probability distribu-
tion P(z), extinction AV , time of maximum Tmax and distance
modulus µ. In this work, priors in AV , Tmax and µ are flat, while
for redshift we tested both a flat prior with P(z) = 1, and a
Gaussian prior by providing the mean and sigma as described
in Sect. 5 when using the photometric redshifts, and a sigma
of 0.0001 when using the spectroscopic prior. For the SN Ia
light curves we used the SALT2-Extended model (Pierel et al.
2018), which is the model used in the simulation, while tem-
plates for SNe core-collapse come from Vincenzi et al. (2019).
SN template light curves are K-corrected using tables produced
for LSST by DESC.

The Bayesian probability for each SN type is then defined as

Ptype =
Etype

EIa + EIb/c + EII
(10)

where

PIa + PIb/c + PII = 1. (11)

With both Bayesian probability and �2 available, there are many
ways to select a sample of SN Ia. PSNID comes with a default
criterion that takes both of them into account and defines the SN
as of “unknown” type if the di↵erence between the �2 of two SN
types is smaller than a certain threshold. However, as discussed
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Fig. 8. Example of template fitting with PSNID for a SN Ia and a SN Ib/c model on the same light curve. Di↵erent colors and lines refer to di↵erent
photometric bands. The left panel shows the fitting with the best Ia template, while the right panel shows the best-fitting SN Ib/c template. Although
both fits seem reasonable, not allowing a straightforward classification, the type Ia has a Bayesian probability PIa = 1.0 with the redshift prior.

in Kuznetsova & Connolly (2007), the minimum �2 alone is not
always a good indicator of the best SN type, and is a particularly
poor indicator when small photometric errors lead to unreason-
ably high values of �2. While the issue is often mitigated by
artificially increasing the errors on light curves, we preferred
to rely only on the Bayesian probability and selected all SNe
with PIa > 0.5. With this conservative approach, we maximize
the completeness of the sample, which is very important for the
evaluation of the SN rate. Figure 8 shows an example of template
fitting resulting in a SN Ia according to the Bayesian probability,
but a SN of unknown type when using the �2.

The fractions of SNe correctly classified as SN Ia are very
high when the redshift prior is used (95% with the associated
zphot and 99% with the true simulated redshift). However, with-
out a prior on redshift, only 44% of SNe are correctly classified,
and the resulting redshift distribution is peaked towards lower
values. This occurs because of a degeneracy between extinc-
tion and redshift in the light-curve reddening and highlights the
importance of using priors, when available.

6.2. SALT2 fitting

Another approach often used in SN Ia cosmology consists of
fitting a selected model to the light curves and taking only
those candidates providing good fits (e.g., Sánchez et al. 2022;
Mitra et al. 2023). The resulting sample will have high purity,
which is essential for cosmological analysis, but the proce-
dure only allows to select sources conforming to the predefined
model.

As our sample contains only SN Ia, we tested this method
using the software snlc_fit.exe distributed by SNANA and assum-
ing again the SALT2-Extended model. The best fit is deter-
mined through a minimization procedure based on the CERN-
LIB MINUIT program20 and two iterations on each light curve.
The fitting requirements are very similar to those adopted in
Sánchez et al. (2022) on the same dataset:

– stretch parameter |x1| < 3;
– color parameter |c| < 0.3;
– fit probability (Pfit) computed from �2 and number of degrees

of freedom satisfying Pfit > 0.05.
Similarly to what we did with PSNID, we tested the SALT2 fit
both with a Gaussian prior on redshift and with no redshift prior.

20 root.cern.ch/doc/master/classTMinuit.html

The fitting procedure results in a selection e�ciency of 75%
when the photometric redshift of the associated galaxy is used
as a prior, and 69% with no redshift information. The success
fraction for the no-zphot prior scenario when using SALT2 fit-
ting is higher than that of PSNID. The main reason for this is that
PSNID is performing a more complicated classification between
di↵erent classes, while here we are just fitting a single model to
all our sources.

6.3. SuperNNova

Recent advantages in deep neural networks make them
extremely promising for photometric classification of vari-
able sources for large surveys such as LSST. Indeed, they
can be trained on both simulated and archival data, enabling
a fast multi-class analysis not limited by either costly fea-
ture extraction or template matching biases. SuperNNova21

(SNN; Möller & de Boissière 2020) is an open-source frame-
work requiring only photometric time-series as input, with
additional information (e.g., host galaxy redshift) that can
be provided to improve performances. SNN includes di↵er-
ent classification methods, such as long short-term memory
(LSTM; Hochreiter & Schmidhuber 1997) recurrent neural net-
works (RNNs) and two Bayesian neural networks (BNNs).

As with the previous approaches, we tested SNN on our
SN Ia sample both with and without redshift information using
the default configuration RNN. We trained our models using a
sample of synthetic light curves of all SN types with LSST-like
photometric performances from ELAsTiCC. The simulation also
includes spectroscopic and photometric host-galaxy redshifts for
⇠5 million objects, allowing us to build a training sample with
di↵erent redshift priors. We trained three di↵erent models for a
binary SN Ia versus non-Ia classification: (i) light curves only,
(ii) with host galaxy photometric redshift, and (iii) with spectro-
scopic redshift. The SNN output is a probability of being SN Ia,
PIa, for each SN event. We considered as correctly classified
all SN with PIa > 0.5. This resulted in 96% or 97% accuracy
when the photometric or spectroscopic redshift information is
used (compatible with PSNID). However, without redshift prior,
only 80% of SNe are correctly classified as SN Ia.

The lower e�ciencies for all the methods in the absence of
redshift information show how fundamental it is to have reliable

21 github.com/supernnova/SuperNNova
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Fig. 9. Numbers of SN Ia simulated (blue) and detected (red, the SN Ia
sample) in the redshift bins used for the measurement of the rate.

estimates of photometric redshifts and a good host association
procedure. This is especially true if the number of detections and
their distribution around the light-curve peak are not su�ciently
sampled to enable a proper classification (see e.g., Alves et al.
2022).

7. SN Ia rate

Measurement of the SN rate requires accurate information on
the survey strategy and design, both for what concerns the detec-
tion e�ciency and the observing cadence. The former is usually
determined with simulations and injection of point-like sources
onto images, exploring a wide range of magnitudes and posi-
tions on the sky (Cappellaro et al. 2015). The impact of the latter
is traditionally measured with the control time (Zwicky 1942),
which is defined as the interval of time during which a SN occur-
ring at a given redshift is expected to remain above the detection
limit of the image.

However, the DC2 observing strategy is not the definitive
version that will be adopted for LSST. Moreover, the main aim
of this work is to analyze the impact of the sources of uncertainty
that are not directly related to the survey strategy on the SN rate.
For these reasons, we adopted a simplistic approach consisting
in evaluating a single recovery e�ciency term which takes into
account both control time and detection e�ciency from the sim-
ulated rate. We refer to other works for a thorough analysis of
detection e�ciency and magnitude limits on the DC2 simulation
(Sánchez et al. 2022) and the impact of observing cadence on the
classification of SNe (Alves et al. 2022).

We considered the SN Ia sample in the range 0.1  zspec 
0.7 (as explained in Sect. 5), and divided it in redshift bins of
0.05 in width, which is the typical error of a photometric red-
shift measurement. The selected range of redshift contains 570
of the 600 SN Ia in the SN Ia sample. We define the recovery
e�ciency as the ratio of the number of detected sources in the
SN Ia sample to the total number of simulated SN Ia in each red-
shift bin over an observing window of T = 3.5 yr, which is the
e↵ective observing time removing gaps between seasons. The
distributions of the number of simulated and detected SN Ia in
the redshift bins is shown in Fig. 9, while the ratios leading to
the recovery e�ciency ✏ are reported in Table 2.

Table 2. SN Ia recovery e�ciency ✏ in di↵erent redshift bins.

Simulated Detected Bin ✏ (%)

23 8 0.10  z < 0.15 34.8
44 34 0.15  z < 0.20 77.3
71 36 0.20  z < 0.25 50.1
102 48 0.25  z < 0.30 47.1
138 51 0.30  z < 0.35 37.0
177 66 0.35  z < 0.40 37.3
219 81 0.40  z < 0.45 37.1
263 54 0.45  z < 0.50 20.6
309 63 0.50  z < 0.55 20.4
356 54 0.55  z < 0.60 15.2
403 43 0.60  z < 0.65 10.1
451 32 0.65  z  0.70 7.1

Depending on the adopted estimate of redshift, the distribu-
tion of SNe is di↵erent, as shown in Fig. 7. The total number of
recovered SN Ia when looking at photo-z is lower than that in the
simulated sample because of sources being assigned a redshift
outside the selected range. Moreover, additional SN Ia are lost
because of misclassifications and the absence of non-Ia contam-
inants. In this section, we evaluate (separately) the uncertainty
contribution of photometric redshifts, host galaxy association
and photometric classification on the measurement of the SN Ia
rate. As a reference classification tool, we use PSNID adopting
the zphot_best prior of the associated galaxy. The reasons for
this choice are the flexibility of the algorithm in dealing with
di↵erent SN types, the possibility to customize the output by
defining an “unknown” class, and the fast execution (intrinsi-
cally parallelizable) with no requirement to build new training
sets. The classification accuracy of the other multiclass algo-
rithm (SuperNNova) is similar, and therefore the choice of the
classification method does not a↵ect the final result.

The samples used in our analysis are the following:
– zphot_true: SN Ia sample adopting the photometric redshift

of the true host galaxy instead of the true simulated redshift
(this allows us to test the e↵ect of photometric redshift).

– zphot_best: SN Ia sample adopting the photometric redshift
of the associated host galaxy (e↵ect of photometric red-
shift+ host galaxy association).

– psnid_zphot_best: Sample of SNe correctly classified as
SN Ia adopting the photometric redshift of the associated
host galaxy as a prior (e↵ect of photometric redshift+ host
galaxy association+ classification uncertainties).

A first measurement of the contribution of the di↵erent e↵ects
comes from the lost fraction of SNe for the various samples
�sample, which provides an indication of the number of SN Ia lost
because of incorrect photometric redshift, host association and
classification. We define this value in each redshift bin as:

�sample = (Ndetected � Nrecovered)/Ndetected, (12)

where Ndetected refers to the original SN Ia sample (not a↵ected
by the uncertainties analyzed in this work) and Nrecovered is the
number of SN Ia in each one of the samples defined above. The
resulting values as a function of redshift are shown in Fig. 10
with di↵erent colors for the di↵erent subsets. As already noted
when looking at the redshift distribution in Fig. 7, there is
an overall depletion of SNe with the exception of the bins at
z ⇠ 0.45 and z > 0.6. The sample_psnid_zphot_best, which
includes all the e↵ects together, has an average lost fraction of
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Fig. 10. Lost fraction of SNe in each redshift bin for the di↵erent sam-
ples, highlighting the impact of photometric redshift (zphot_true), host-
galaxy association (zphot_best), and classification (psnid_zphot_best).
The numbers in parentheses refer to the total number of SNe in each
subset for the selected redshift range. Negative values of �sample denote
an increase in the number of sources in that redshift bin (see Eq. (12)).

17%. However, photometric redshift alone, measured with the
sample_zphot_true, has an impact of 10% and is found to be the
major source of uncertainty (also a↵ecting classification when
used as prior). It is also worth noting how the di↵erent e↵ects
depend on redshift: at z > 0.4 most of the mismatch comes from
the error on the photometric redshift, while lower redshifts are
more a↵ected by incorrect host-galaxy associations and incor-
rect photometric classification.

We now show how we measured the e↵ect of the di↵erent
biases on the derived SN rates. To this aim, we computed the
SN Ia volumetric rate for each sample as:

rSN Ia(z) =
(1 + z)
V(z)

NSN(z)
T ✏(z)

, (13)

where NSN(z) is the number of SNe in each redshift bin for the
selected sample, T is the observing window, (1 + z) corrects
for time dilation, ✏(z) is the SN Ia recovery e�ciency defined in
Table 2, and V(z) is the comoving volume for the given redshift
bin:

V(z) =
4⇡
3
⇥

41 253


c

H0

Z
z2

z1

dz
0

p
⌦M(1 + z0)3 +⌦⇤

�3
Mpc3. (14)

In the previous equation, ⇥ is the search area of 15 deg2, z is the
midpoint of the redshift interval [z1, z2], and we assumed a flat
⇤CDM universe with H0 = 70 and ⌦M = 0.3.

The resulting SN Ia rates for the di↵erent samples are shown
in Fig. 11, along with power-law fits with the same functional
form as the simulated rate from Dilday et al. (2008):

rv(z) = ↵ ⇥ 10�5(1 + z)� Mpc�3 yr�1. (15)

The fit results are summarized in Table 3. The di↵erences
between the fit parameters and the input rate (↵ = 2.5 and
� = 1.5) show that the uncertainties not only reduce the number
of SN Ia in each redshift bin, but also change the evolutionary
trend of the recovered rate. The combination of the two e↵ects
hampers the use of the volumetric rate to discriminate between

Fig. 11. SN Ia rate for the di↵erent samples, as in Fig. 10. Continuous
lines are power-law fits of the rate points. Error bars due to statistical
uncertainty are omitted for visual clarity.

Table 3. Fit coe�cients for all the samples.

Sample ↵ � ↵err �err

zphot_true 1.9 1.9 0.3 0.4
zphot_best 1.4 2.6 0.3 0.4
psnid_zphot_best 1.3 2.8 0.3 0.5

Notes. The input rate has ↵ = 2.5 and � = 1.5.

SN Ia progenitor models, unless the impact of these sources of
uncertainty can be reduced.

To quantitatively address the problem, we focused on the
sample_psnid_zphot_best, which represents a real case scenario
combining all the uncertainties (i.e., a study of SN Ia rate with
photometric data only). Figure 12 shows the recovered rate along
with predictions from the progenitor models described in Sect. 1
(where the kIa factor in Eq. (1) has been fixed to 0.8 ⇥ 10�3

M
�1
�

for all scenarios). It is clearly evident how LSST will reduce
the scatter between the rate estimates obtained comparing mul-
tiple surveys up to z ⇠ 1.0. However, biases introduced by
other sources of uncertainty, such as those analyzed in this work,
should still be reduced to attain optimal results. Despite Fig. 1
showing that di↵erent progenitor models have similar outcomes
in the intermediate redshift range probed by LSST, the combina-
tion of LSST and higher-redshift surveys (e.g., the Nancy Grace

Roman Space Telescope; Rose et al. 2021; Wang et al. 2023)
could indeed allow the di↵erent scenarios to be distinguished
from one another. Moreover, Greggio & Cappellaro (2019) show
that the SN Ia rate as a function of host galaxy color or specific
SFR leads to an even more e�cient separation of the predictions
of di↵erent models, once all the uncertainties have been reduced.

8. Summary and conclusions

The LSST is expected to increase the number of detected SN Ia
by a factor of 100 compared to samples from previous sur-
veys (Jones et al. 2019). This will dramatically reduce statistical
uncertainties on the SN Ia rate measurement, possibly allowing
us to put constraints on the SN Ia progenitors by comparing the
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Fig. 12. Recovered SN Ia rate for the sample_psnid_zphot_best (the
real observing case) with rate predictions of progenitor models from
Greggio (2005). Error bars on the blue point are due to statistical uncer-
tainties scaled to 10 yr over the simulated ⇠15 deg2 (although we expect
higher statistics with the real survey, with statistical errors reduced by
more than one order of magnitude). The gray points represent rate mea-
surement from the literature, as shown in Fig. 1.

observed rate with predictions from theoretical models. However
the actual impact of all the possible sources of uncertainty on
the measurement of the rate merits further analysis. While many
observational biases in the selection of a good sample of SN Ia
for cosmology have already been inspected in other works, here
we studied the e↵ect of uncertainties due to estimation of photo-
metric redshift, host galaxy association and classification on the
measurement of the SN Ia rate using simulated LSST images.

Data come from Sánchez et al. (2022), who executed DIA on
a subset of ⇠15 deg2 of the DC2 simulation. There are a total of
5884 simulated SNe with z  1.0, with 2186 of them detected in
di↵erence images. We selected only sources with more than five
distinct detections in order to have a su�ciently sampled light
curve for the transient classification. The analyzed SN Ia sample
then consists of only 600 sources, which is an order of magni-
tude lower than the number of simulated SNe. The large loss
of sources is mainly due to the suboptimal observing cadence of
the simulated WFD region and demonstrates the need for heavily
cadenced observations on smaller regions of the sky for signifi-
cant statistical studies. Indeed, the definition of the best cadence
is still an open issue and there are many works using simulations
to provide quantitative metrics (e.g., Lochner et al. 2022).

We associate each SN Ia to its host galaxy using the DLR.
Our algorithm has an association accuracy of 89% using only
morphological information extracted from a single-band deep
coadd image. Among the misassociations, 12% are recovered
as host-less, 55% are associated to a faint galaxy with mag

i
>

22, and the remaining 33% are a combination of projection
issues or are attributable to two similar and close galaxies pro-
ducing a similar dDLR. The host association could be further
improved with a better estimate of the photometric parame-
ters for faint galaxies and by also considering the correlation
between SN type and host-galaxy properties (not included in the
simulation).

We recovered estimates of the SN photometric redshifts from
both the true and the associated host galaxy. The quality of the

photometric redshift has been studied with a sample of galaxies
with mag

i
 25 and zspec  1.0. The analysis returns a robust

standard deviation of �IQR = 0.05 and the fraction of outliers
is 7%. The combined impact of photometric redshift and host-
galaxy association results in a broadening of the SN Ia distribu-
tion in redshift. We find an excess of associated host galaxies
with mag

i
> 22.5, along with a peak at zphot ⇠ 0 (due to catas-

trophic outliers or SNe incorrectly associated to nearby galax-
ies), and a peak at zphot ⇠ 0.45 (mainly due to the known degen-
eracy between the Lyman break of galaxies at higher redshift and
the Balmer break of galaxies at lower redshift).

We classified light curves with di↵erent methods, involving
both template-fitting techniques (PSNID and SALT2 model fit
by SNANA) and recurrent neural networks (SuperNNova). All
the algorithms were executed with and without a prior on red-
shift, allowing us to demonstrate the improvement of classifica-
tion accuracy (up to 96%) when redshift information is included.
In our subsequent analysis of the SN Ia rate, we used the results
of PSNIDwith photometric redshift of the associated host galaxy
as a prior. The only e↵ect of misclassified SNe is a decrease in
the number of sources, because no other SN type is included in
the simulation. A real-life scenario would also include contami-
nation from other transients, especially from SNe of type Ib/c.

The SN Ia rate was measured on di↵erent samples in order to
separately evaluate the impact of uncertainties due to photomet-
ric redshift, host-galaxy association and classification. For each
sample, we divided SN Ia in redshift bins of width 0.05 (which is
the typical error of a photometric redshift estimate) in the range
0.1  zspec  0.7 and normalized the rate to the input model of
the DC2 simulation. The di↵erent distribution in redshift of the
various samples led to an average 17% mismatch in the recov-
ered fraction of SN Ia with respect to the original SN Ia sample.
As 10% of this mismatch is due to photometric redshifts alone
(which also a↵ect the classification), we can conclude that pho-
tometric redshift estimates are a major source of limitation in
the measurement of the SN Ia rate. The uncertainties not only
change the number of SN Ia in each redshift bin, but also change
the evolutionary trend of the recovered rate, hampering the dis-
crimination between di↵erent progenitor models.

Despite the fact that our estimate of the uncertainties might
be reduced in the near future (e.g., using better algorithms,
improving the measurement procedure, including additional
information, etc.), we show that they are still relevant and have a
significant impact on the rate measurement; their reduction will
be fundamental for precision SN Ia science, both for cosmology
and stellar evolution studies. As the major source of uncertainty
is due to photometric redshifts, improving their accuracy will
be a priority. Graham et al. (2020b) demonstrated that adding
near-infrared and near-ultraviolet photometry from the Euclid,
Wide-Field InfrarRed Survey Telescope (WFIRST), and/or Cos-
mological Advanced Survey Telescope for Optical and ultra-
violet Research (CASTOR) space telescopes can reduce both
the standard deviation of photometric redshift estimates and the
fraction of catastrophic outliers. The combination of Rubin and
Euclid data would bring significant improvements also for other
transient detection systematics, in particular for the estimate of
the dust extinction bias (Guy et al. 2022). A di↵erent scenario is
expected for the DDF, where improvements in the photometric
redshifts could certainly be derived from the wealth of ancil-
lary multiwavelength data, although this would mean studying a
smaller area and thus a reduction in the SN statistics. Spectro-
scopic follow up with other facilities could also provide a good
sample of galaxy properties for SN rate analysis (albeit limited to
low redshift). Finally, novel deep learning techniques to measure
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photometric redshift have been shown to outperform other
methods and might also be evaluated for LSST (e.g.,
Pasquet et al. 2019).

We used progenitor models from Greggio (2005) as a ref-
erence and adopted the SFH from Madau & Fragos (2017) to
get predicted SN Ia rates for di↵erent progenitors. We find the
combination of the uncertainties analyzed in this work to be
as large as the discrepancy between the rate predictions from
di↵erent progenitors. However, the scatter between the rate
measurements is significantly lower than that between rate mea-
surements obtained comparing multiple surveys, which confirms
the enormous capability of LSST. It is also worth noticing that,
up to z ⇠ 1.0, di↵erent models have similar outcomes and
it would be necessary to go to higher redshift to distinguish
between them. An improvement of the redshift coverage could
possibly be attained through the combination of Rubin data with
Roman, which is expected to detect SN Ia up to z ⇠ 3, fur-
ther increasing both the dimension and the variety of the sample
(Rose et al. 2021; Wang et al. 2023). Moreover, our analysis of
the e↵ect of uncertainties also has implications for the mea-
surement the SN Ia rate as a function of host-galaxy intrin-
sic color or specific SFR (which has been found to o↵er a
promising way to separate the predictions of di↵erent models
as shown in Greggio & Cappellaro 2019). Unfortunately, corre-
lations between SN type and host-galaxy properties were not
included in this simulation, but their investigation will be the
subject of a subsequent analysis.
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