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ABSTRACT SATCOM is crucial for tactical networks, particularly submarines with sporadic communi- 

cation requirements. Emerging SATCOM technologies, such as low-earth-orbit (LEO) satellite networks, 

provide lower latency, greater data reliability, and higher throughput than long-distance geostationary (GEO) 

satellites. Software-defined networking (SDN) has been introduced to SATCOM networks due to its 

ability to enhance management while strengthening network control and security. In our previous work, we 

proposed a SD-LEO constellation for naval submarine communication networks, as well as an extreme 

gradient boosting (XGBoost) machine-learning (ML) approach for classifying denial-of-service attacks 

against the constellation. Nevertheless, zero-day attacks have the potential to cause major damage to the 

SATCOM network, particularly the controller architecture, due to the scarcity of data for training and testing 

ML models due to their novelty. This study tackles this challenge by employing a predictive queuing analysis 

of the SD-SATCOM controller design to rapidly generate ML training data for zero- day attack detection. 

In addition, we redesign our singular controller architecture to a decentralized controller architecture to 

eliminate singular points of failure. To our knowledge, no prior research has investigated using queuing 

analysis to predict SD-SATCOM controller architecture network performance for ML training to prevent 

zero-day attacks. Our queuing analysis accelerates the training of ML models and enhances data adaptability, 

enabling network operators to defend against zero-day attacks without precollected data. We utilized the 

CatBoost algorithm to train a multi-output regression model to predict network performance statistics. Our 

method successfully identified and classified normal, non-attack samples and zero-day cyberattacks with 

over 94% accuracy, precision, recall, and f1-scores. 

INDEX TERMS Software-defined networking (SDN), cybersecurity, LEOs, GEOs, machine learning. 

 

 

 

I. INTRODUCTION 

ATELLITE communication (SATCOM) is vital for 

tactical military networks, with satellites often acting as 

relay stations in space. They receive signals, amplify them, 

and then retransmit them to ground entry points (GEPs). 

With the recent development of software-defined networking 

(SDN), researchers are investigating creative techniques to 

connect SDN with tactical SATCOM networks [1]. SDN is a 

networking paradigm that decouples the control plane from 

the data plane of network forwarding devices. This separation 

enables the consolidation of control responsibilities under one 

or more controllers, resulting in improved administration, 

visibility, and security of the network [2], [3]. 

In recent years, the private sector has engaged in initiatives 

for LEO SATCOM networks, including SpaceX’s Starlink 

and Amazon’s Kuiper. The Army [4] and the Department 

of Defense (DoD) [5] have collaborated closely with Starlink 

and other suppliers to develop Low Earth Orbit (LEO) 

constellations for military applications. The military forces in 

Ukraine have utilized Starlink as their primary 
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FIGURE 1. Example SD-LEO Constellation for Submarines. 

 

 

communication infrastructure, with backing from both the 

U.S. government and Ukraine [6]. LEO constellations offer 

superior data transfer rates and reduced communication delay 

compared to conventional geostationary (GEO) satellites [2]. 

The infrastructure depicted in Figure 1 can be utilized for 

tactical SD-LEO constellations, serving military entities like 

submarines. Submarine crews conduct covert operations in 

hostile environments via discreet information transmission. 

Therefore, they rarely contact GEPs during long submersion 

and patrol. In order to establish communication with GEPs, 

submarines are required to emerge from the depths of the 

oceans to breach the surface. In order to evade detection 

by enemy troops, submarines must possess the capability 

to promptly transmit and receive information, enabling 

them to swiftly submerge again. Presently, submarine crews 

commonly communicate by use of GEO satellites positioned 

at a distance of approximately 36,000km, resulting in a 

propagation delay of around 250 milliseconds. Future tac- 

tical networks might potentially employ LEO constellations 

positioned at distances of 1500km or less, resulting in a 

propagation delay of around 30 milliseconds or less [2]. 

Submarine communication links necessitate increased 

security measures, in addition to reduced latency. Messages 

are classified with a high level of security and are frequently 

time-sensitive, making them attractive targets for malicious 

entities. A common strategy employed by malicious entities, 

such as hostile unmanned aerial vehicles (UAVs), involves 

launching denial-of-service (DoS) attacks [7], [8]. These 

attacks aim to overwhelm a target by flooding it with 

excessive network traffic, with the intention of either reducing 

the available data transfer rate or causing a complete system 

failure. UAVs offer a risk to SATCOM networks, requiring 

further investigation, as demonstrated in this study, to tackle 

this crucial aspect of communication [9]. There is a 

requirement for network defense models that are capable of 

identifying and reducing the impact of these attacks. Prior 

studies [1], [10] have explored the creation of shipboard 

networks using SDN or proposed SDN-based SATCOM 

networks for various tactical settings. Additional studies [11] 

have devised methods to mitigate DoS attacks on ground 

stations. Nevertheless, these prior studies fail to consider the 

use of an SD-LEO constellation network for submarines, nor 

a way for detecting cyber threats in these networks such as 

DoS attacks. 

To address this issue, our prior work [12] presented a relay 

SATCOM network for submarines on patrol, as well as 

detection and identification of attack strength framework for 

DoS attacks. By employing the extreme boosting (XGBoost) 

machine learning algorithm, our model attained > 97% 

accuracy, precision, recall, and F1-scores in detecting and 

classifying different levels of DoS attack intensity. In our 

study [12], we examined the SD-LEO forwarding plane as 

a network consisting of multiple-server forwarding queues, 

specifically following the M/M/C model, where C represents 

the number of queues. We utilized Simcomponnet, a network 

traffic simulation program based on the SimPY process- 

based discrete-event simulation framework, to simulate the 

network traffic of both normal and varying DoS attack 

strength classes [13]. During the simulation, we measured 

queuing theory-based metrics [14] such as the average 

interarrival time (IAT), transmission delay (TD), and packet 

count of packets (PC). Using these measurements, we applied 

the XGBoost ML model to distinguish between regular traffic 

and DoS attacks. The outcome was an average accuracy of 

97% in recognizing and categorizing both regular (non-attack) 

and attack traffic. The DoS traffic was classified into distinct 

levels of severity such as 0%, 10%, 50%, and 90% loss of 

traffic. 

One limitation of our prior model is that it requires pre-

labeled data for IAT, TD, and PC in order to train the 

XGBoost algorithm and does not consider controller or 

GEP security. Since SDN controllers and GEP manage the 

entire framework, they are prime targets for attackers; 

nevertheless, ML techniques can be utilized to guard against 

cyberattacks [15], [16], [17], [18]. Obtaining labeled training 

data may not always be possible in tactical deployments. 

Submarine communication is often limited by their commu- 

nication patterns. Zero-day cyberattacks [19], [20] are new 

and unknown, therefore pre-trained machine-learning models 

cannot detect and protect against them. 

Past research [19], [21], [22], [23], [24], [25] has con- 

ducted queuing analysis on M/M/1 or M/M/1 (single server) 

models, which do not adequately account for interconnected 

multi-server satellite constellations (M/M/C). Furthermore, 

the intrusion detection systems (IDSs) developed in these 

studies have utilized unsupervised learning and deep learning 

models that assume the availability of training data and are 

susceptible to false positives. Our proposed solution is to 

rapidly and dynamically generate predictive training data 

to discover future controller architecture cyberattacks. We 

utilize predictive queuing analysis to calculate the mean inter-

arrival time (IAT), mean transmission delay (TD), and mean 

packet count (PC) for each controller in the network. By 

employing our queuing analysis, the network operator can 

predict the normal functioning of the controller and GEP 

architecture. 

In this study, we employed a Jackson network open (JNO) 

queueing model [26] to depict the interconnected queues, 
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where the output of one queue serves as the input for another 

in a linked manner, symbolizing the cooperative back-and-

forth communication between the controllers and GEPs. The 

JNO model provides a product-form solution for analyzing 

and evaluating network performance [27]. In order to 

showcase the precision and efficiency of our queuing analysis 

in identifying zero-day attacks, we provide a case study with 

a one-hour simulation of controller and GEP architecture 

traffic. This simulation includes randomized zero-day 

cyberattacks within the framework. By employing our 

advanced predictive queuing analysis, we can accurately 

identify the occurrence of zero-day cyberattacks with accu- 

racy, precision, recall, and f1-scores over > 94%. 

To our knowledge, no prior research has suggested utiliz- 

ing queuing analysis to predict network performance metrics 

for an SD-SATCOM controller architecture to improve 

security against zero-day attacks. Furthermore, there has been 

no previous research that has shown the efficacy of utilizing 

queuing analysis predictions in conjunction with a ML model 

to detect zero-day cyberattacks. Thus, this work presents the 

following contributions: 

• A study is done to examine the queuing behavior of 
an M/M/C Jackson open queuing SD-LEO management 

layer for submarines on patrol. 

• A novel predictive queuing analysis is proposed for 

accurately predicting the network performance metrics 

of average inter-arrival time (IAT), average transmission 

delay (TD), and average packet loss probability (PC) for 

the SD-LEO management layer. 

• A case study shows the prediction’s precision, swiftness, 

and ability to detect zero-day threats. The study suc- 

cessfully detects zero-day cyberattacks with over 94% 

accuracy, precision, recall, and f1-scores. 

A list of acronyms and meanings that are used in the paper 

is provided in Table 1. The rest of this paper is organized 

as follows. Section II presents an analysis and examination of 

previous research and studies. Section III presents an 

overview of SATCOM in tactical networks, queuing modeling 

for satellites, and SATCOM cyberattacks. Section IV describes 

the SD-LEO and management architecture that serves as the 

foundation for the queuing analysis. Section V describes the 

methodology of this work. Section VI details our simulation 

study using MATLAB with the aerospace, mapping, and 

satellite communications toolboxes. The results of our case 

study are shown in Section VII. Finally, Section VIII provides 

the concluding remarks of the study. 

II. RELATED WORK 

SATCOM networks are vulnerable to various cyberat- tacks, 

including zero-day attacks that exploit previously unknown 

vulnerabilities in the network to carry out novel kinds of 

cyberattacks [19], [20], [28]. ML technologies are 

particularly efficient methods for combating these dangers 

[29], [30], [31]. Supervised ML methods, while effective in 

countering known attacks, are not capable of effectively 

countering zero-day attacks due to their reliance 

TABLE 1. List of acronyms and definitions. 
 

 

 
 

 

 

 
 

 

 

 
 

 
 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

on training data that accurately represents the attack [32]. 

Unsupervised learning models have the ability to identify 

abnormalities in network traffic for the purpose of detecting 

zero-day attacks. However, it is widely recognized that these 

models often produce a significant number of incorrect 

identifications, both in terms of false positives and false 

negatives [33], [34], [35], [36], [37]. 



6614 VOLUME 5, 2024 

AGNEW et al.: DETECTION OF ZERO-DAY ATTACKS IN A SOFTWARE-DEFINED LEO CONSTELLATION NETWORK 
 

 

To address this problem, we have proposed implementing 

a predictive queuing analysis to predict the anticipated 

network metric values of the SD-SATCOM constellation 

satellites. The values are subsequently utilized to train the 

CatBoost-supervised ML model [38] for predicting the 

expected theoretical values. An attack sample is categorized 

as anomalous (i.e., zero-day cyberattack) if the obtained 

values surpass the threshold. To accurately forecast the 

values, a queuing analysis is conducted using the M/M/C 

Jackson open network queuing theorem. Prior queuing 

analysis has employed queuing models that predominantly 

utilize simplistic M/M/1 or M/G/1 (single server models) 

queuing methodologies, which do not correctly capture the 

traffic demands of a dynamic multi-satellite constella- tion 

comprising several interconnected satellites. Moreover, 

previous research has predominantly employed computa- 

tionally demanding combinations of neural networks and 

unsupervised learning models to identify abnormal patterns of 

activity and classify them as zero-day attacks which may not 

be feasible in tactical network deployment due to the 

limitation of computing resources. 

This section presents an examination of current, contem- 

porary techniques that are relevant to this work. To our 

knowledge, there has been no previous research that has 

developed a predictive queuing analysis for an SD-SATCOM 

network to detect zero-day attacks. As a result, we include two 

literature review subsections in this related work section that 

perform a comparison examination of our proposed framework 

and existing methodologies or alternative approaches. Initially, 

we analyze the current body of research on queuing analysis for 

SD-SATCOM networks and highlight the distinctions between 

prior investigations and our own. Next, we analyze prior 

research that employs zero-day cyberattack defense tactics for 

satellite networks and highlight the differences between these 

studies and our own. Finally, we outline the similarities and 

differences between this study and prior research [19], [21], 

[22], [23], [24], [25], emphasizing our unique contribution to 

the state-of-the-art. 

 
A. LITERATURE REVIEW OF QUEUING ANALYSIS FOR 

SD-LEO 

Reference [21] provide an analytical queuing model to assess 

the performance of SD-SATCOM. The authors integrate and 

consider the combination of Delay Tolerant Network (DTN) 

and OpenFlow technologies in their queuing model. 

Furthermore, the authors construct their queuing model by 

applying Jackson’s theorem to the LEOs, GEOs, and MEOs, 

treating them as a network of queues. During their 

examination of queueing, a single GEO satellite is desig- 

nated as the controller, while the MEO satellite facilitates 

communication between the GEO and LEO satellites via 

a store-and-forward DTN mechanism. The authors employ 

the POX as the controller at the GEO node and utilize 

OpenvSwitch as the switches at the MEO nodes. In order to 

verify the accuracy of their queueing analysis, they conduct a 

simulation using Satellite Tool Kit (STK). The satellite link 

parameters were set according to the Tr constellation [39]. 

Furthermore, they utilize Linux Traffic Control and Netem 

to effectively oversee and control network traffic. Their 

comparison of their analysis with the simulation results 

illustrates the validity and precision of their methodology in 

evaluating SD-SATCOM performance. However, in contrast 

to our proposed study, their modeling analysis only takes into 

account a single controller method and neglects to discuss 

a distributed SD-SATCOM controller design. Furthermore, 

a solitary GEO controller would consistently be beyond the 

reach of all MEOs and LEOs in the system, resulting in 

extra communication delays between LEOs and the GEOs. 

Having only one controller would create a vulnerability in 

the architecture, which might have severe consequences, 

particularly for the secure communication of submarines. 

Furthermore, the authors of [21] extend their research to 

determine the duration of time that a file remains in the 

network as it spreads, while we conduct our queuing study 

to predict metrics for the detection of zero-day cyberattacks. 

Reference [22] presents a model that accounts for time- 

varying channels in order to aggregate traffic across networks 

in LEO constellation networks. The authors’ queuing model 

incorporates the variability of realistic satellite channels, 

which may experience times of extremely poor connectivity 

due to Land Mobile Satellite (LMS) channels, in both the 

ground-to-satellite and satellite-to-ground links. Their model 

comprises three LEO satellites and two ground stations 

that communicate using time-varying LMS channels. The 

model utilizes two-dimensional Markov chains for LMS 

links and M/M/1 queuing to ensure reliable inter-satellite 

communications. In order to validate their model, the authors 

employ event-driven simulation implemented in C++ to 

assess the precision of the model and analyze queuing and 

end-to-end delays across several scenarios. Furthermore, they 

utilize Quasi-Birth-Death (QBD) processes as a theoretical 

framework to evaluate the queuing delay in LEO satellite 

connections. This framework is then extended to include 

communication channels within LEO constellations. The 

model is validated through a comparison with system- 

level simulations that employ empirical channel statistics. 

In addition, they assess the distributions of end-to-end 

delay and analyze the impact of background traffic. Their 

simulation results confirm the validity of their model and 

illustrate their ability to appropriately validate the LMS 

channels in a time-varying LEO constellation. However, in 

contrast to our suggested framework, their suggested 

framework focuses on assessing LMS channels from ground- 

to-satellite and satellite-to-ground, but neglects to take into 

account a more comprehensive constellation management 

architecture and synchronization utilizing the cloud. Their 

suggested methodology accurately predicts the number of 

packets received at LEO, but it does not take into account 

other metrics such as average inter-arrival time (IAT) and 

transmission delay (TD) values. In contrast to our work, the 

focus of the mentioned work is solely on evaluating LMS 

channels, rather than predicting queuing metrics to detect 
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zero-day cyberattacks. In addition, their approach does not 

include the modeling of SDN communication by integrating 

a controller(s) within the constellation, as it was not within 

the scope of their research. 

Reference [23] presents a time-limited M/G/1 model to 

account for the intermittent transmission between satellites 

caused by the fluctuating nature of satellite communica- tion. 

The authors discuss the challenges related to system modeling 

and performance analysis in satellite networks, focusing 

particularly on the acquire-store-forward process of traffic. 

Traditionally, this process is depicted as a queuing system, 

with the transmitter serving as the server and the buffer 

acting as the queue. However, the intermittent nature of 

satellite connections poses a barrier to adopting traditional 

vacation laws, as the connection’s activity is not influenced 

by the buffer state. Therefore, the authors extend the queueing 

model from the usual M/M/1 to M/G/1 to accommodate a 

more general server queuing distribution. The authors obtain 

steady-state equations and establish lower limits for 

performance parameters using transient analysis. The 

simulation results clearly demonstrate the efficacy of their 

approach. In order to verify the accuracy of their find- ings, 

the authors compare the outcomes of their simulations with 

the theoretical predictions. They provide evidence for the 

soundness of analysis and the precision of estimating the 

Mean Queue Length (MQL), Mean Waiting Delay (MWD), 

and traffic intensity. The substantial resemblance between the 

analytical and simulation outcomes validates the robustness 

of their methodology. However, in contrast to our proposed 

research, their study does not take into account a satellite 

controller architecture for managing a constellation. Instead, 

their concentration is on inter-satellite communication. 

Although the M/G/1 model generates the server distribution, 

it fails to adequately represent the interconnected nature of an 

M/M/C Jackson network of satellites. Furthermore, the 

authors have the capability to anticipate MQL, MWD, and 

traffic intensity. However, they did not take into account IAT, 

TD, and PC. Furthermore, the architecture does not consider 

the synchronization of SDN controllers or the prediction of 

metrics for defending against zero-day cyberattacks, as these 

topics were outside the scope of their work. 

 
B. LITERATURE REVIEW OF ZERO-DAY CYBERATTACK 

DEFENSE FOR SATCOM NETWORKS 

Reference [19] focused on enhancing the security of 

SATCOM communication systems against DoS and zero- day 

cyberattacks carried out by cyberattackers. A proposed 

solution to handle these risks is the implementation of a 

comprehensive deep federated learning (DFL)–based threat 

detection model. This model aims to proactively identify 

intrusions in SATCOM networks by utilizing decentralized 

on-device data. Importantly, the privacy of this data is 

preserved throughout the process. This approach utilizes a 

decentralized data-level preprocessing (DLP) system to 

ensure that the original data is hidden while giving 

well-processed, statistically altered data for effective threat 

identification. The proposed model performs federated learn- 

ing iterations using a novel deep auto-encoder (DAE) 

structure. It stores local data in safe repositories and only 

shares the learned weights with the central federated learning 

server. Federated learning (FL) is a promising solution that 

addresses the difficulties of classic centralized IDSs and 

provides unique advantages. FL facilitates the collaborative 

training of ML models using decentralized data sets. This 

allows individual participants, such as satellites, ground 

stations (GS), or end-user devices, to train the Intrusion 

Detection System (IDS) model locally without compromising 

the privacy of their sensitive data by sharing it with a central 

server or data collectors. The main objective is to improve the 

security and efficiency of a traditional IDS model in a 

distributed way by utilizing FL, while also addressing issues 

such as data leakage and the effectiveness of model training. 

The DAE model is a neural network that is trained 

to compress and then reconstruct its inputs, enabling the 

network to acquire important ideas and correlations among 

the input data. By exclusively training the DAE model using 

normal data, it acquires expertise in accurately recreating 

normal data but faces difficulties in reconstructing atypical 

data, such as zero-day attacks. The performance of the 

proposed DFL-IDS model is assessed by conducting evalua- 

tions on the UNSW-NB15 and Bot-IoT datasets. The results 

are then compared to those obtained using the centralized 

DAE approach. Their DFL-IDS achieves similar detection 

performance as the centralized DAE, while ensuring data 

confidentiality and delivering optimal accuracy rates for 

detecting attacks. However, in contrast to our suggested 

framework, one limitation of this work is the utilization 

of the DAE unsupervised learning method to identify the 

existence of zero-day cyberattacks by assigning anomalous 

(zero-day attack) labels to data that it finds difficult to 

reconstruct. As previously stated, unsupervised methods have 

demonstrated an inclination for generating false positives, 

which in turn leads to increased investigation and delays 

for network operators whenever a false positive is detected. In 

addition, the author’s suggested methodology relies on the 

availability of “normal”, nonattack traffic data to train the 

DAE. However, when it comes to submarine SATCOM 

communication, the availability of training data for routine 

occurrences may be scarce due to the uncommon use of the 

infrastructure. By employing the suggested queuing analysis 

outlined in this paper, the network operator can generate 

normal training data for identifying zero-day cyberattacks 

without making any assumptions about the availability of 

training data in advance. 

Reference [24] investigates the composition of space- 

air-ground integration networks (SAGIN) and suggests a 

dedicated collaborative federated learning (FL) framework 

for SAGIN to identify abnormal traffic caused by cyberat- 

tacks, such as zero-day cyberattacks. A specialized traffic 

detection system is proposed that is specifically designed 
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to satisfy the unique requirements and characteristics of 

SAGIN. This approach addresses issues such as the need 

for manual labeling and feature extraction by enhancing deep 

learning algorithms and utilizing semi-supervised learn- ing 

approaches. The developers utilize the Hierarchical 

Spatiotemporal Feature Learning Network (HAST-NAD) to 

build their ML model. This model has achieved detection 

accuracy of over 99% in various public datasets. They further 

enhance the model by incorporating a one-dimensional 

convolutional neural network in the input layer. This addition 

helps extract the spatial features of the data packet sequence. 

This approach has greater physical significance and requires 

less computational effort. A one-dimensional convolutional 

neural network automatic codec is constructed by utilizing the 

skip connection method within the ladder network. This stage 

transforms a portion of the initial network space feature 

extraction into a semi-supervised approach. Auto-encoders 

facilitate independent training while minimizing cognitive 

load. Ultimately, the various data packet characteristics are 

transferred in a certain order to the LSTM neural network 

following the process of extracting the features. As a result 

of modifying the HAST-NAD dataset, the authors achieved a 

detection accuracy, precision, and recall of over 98% for 

anomalous traffic on the ISCX2012 dataset. However, in 

contrast to our work, the authors assume that training data is 

accessible for first labeling certain samples required for their 

semi-supervised model. The data accessibility of submarine 

SATCOM networks may be restricted due to the swift 

deployment and scarce communication. Moreover, the 

utilization of deep learning techniques requires significant 

computational resources [40]. Consequently, implementing 

the authors’ proposed model may not be practical for 

constrained computational devices utilized in tactical 

communication. 

Reference [25] provide a new training feature set that 

integrates power and Signal Quality Monitoring (SQM) 

metrics from a single-antenna Global Navigation Satellite 

System (GNSS) receiver. This feature set is designed to 

identify spoofing and zero-day cyberattacks. The researchers 

have created a unique collection of attributes that integrate 

power and Signal Quality Monitoring (SQM) measurements 

from a GNSS receiver with a single antenna. The authors 

provide a Two-Stage Artificial Neural Network (TS-ANN) 

that utilizes this feature set in combination with multi- 

correlator finger values to achieve efficient spoof detection. 

In order to identify zero-day cyberattacks, the authors propose 

a zero-day attack detector that relies on unsupervised 

representation learning. This is achieved by utilizing a 

Variational Autoencoder (VAE) that is trained solely on gen- 

uine (nonattack) datasets. By doing so, the detector becomes 

more proficient in detecting new and previously unseen attack 

patterns. The authors demonstrate the effectiveness of their 

proposed approaches by comprehensive experiments on 

various attack scenarios using publicly available datasets, 

such as the TEXBAT dataset. Their suggested model yields 

results on the TEXBAT datasets, showcasing that their 

TSANN achieves a detection probability (PD) beyond 99% 

for comparable test datasets. During more complex attack 

situations, such as the DS-7 attack dataset, the performance 

may decline to 50.68%. The zero-day detector consistently 

maintains a detection probability of over 92.5% for zero-day 

cyberattacks, demonstrating its capacity to effectively detect 

previously unknown attacks. However, in contrast to our 

proposed approach, their strategy necessitates and assumes 

pre-existing training samples to train the unsupervised model, 

VAE. As previously stated, the availability of this training 

data may not be practical in situations where submarines on 

patrol have limited communication capabilities. In addition, 

the authors intentionally omit any discussion of leveraging 

SDN for mitigation as it falls outside the paper’s scope. 

Reference [41] presents the STOP framework to mitigate 

location spoofing attacks on delivery vehicles employing 

global positioning system (GPS) satellite networks. Current 

vehicle inspections, essential for safety, are infrequent and 

protracted, frequently necessitating extended durations to 

obtain necessary data when a vehicle is chosen for inspection. 

The article presents STOP, an advanced vehicle inspection 

assistance system aimed at enhancing efficiency by providing 

inspectors with location tracking of cars. Although exten- 

sively utilized, GPS is not regarded as entirely secure [42]. A 

GPS spoofing attack seeks to mislead GPS receivers by 

transmitting false signals. These are designed to mimic 

standard GPS signals and can be altered to enable the receiver 

to determine its location as intended by the attacker. 

Affordable GPS spoofing devices are readily accessible in the 

market, enabling an attacker to procure them with ease. STOP 

is the first system of its kind, incorporating tamper- resistant 

records that thwart location spoofing assaults. It functions 

through mobile devices and a central computer, allowing 

authorities to pre-select vehicles for inspection and obtain 

requisite data beforehand. The solution enables inspectors to 

authenticate and endorse the location history of each vehicle, 

thereby ensuring transparency and security. A prototype was 

developed on the Android platform and assessed under real-

world situations, emphasizing location accuracy, response 

times, and Bluetooth connection during inspections. The 

system utilizes the location data from onboard mobile devices 

to monitor incoming vehicles at inspection sites and employs 

location verification to digitally authenticate the location 

chain and inspection data. The evaluation discussion of this 

prototype yielded insights into the viability of this system 

and the location retrieval capabilities of Android devices. 

However, in contrast to our work, the authors’ work focuses 

on protection against GPS spoofing attacks and neglects 

discussion of their technique’s ability to defend against novel, 

zero-day cyberattacks that aim to spoof GPS systems, since 

this concern falls outside of the scope of their work. This 

research describes a GPS spoofing attack security prototype, 

concentrating mostly on ground tracking devices and 

minimally on satellite networking security, as the latter falls 

outside the scope of this study as well. 
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C. SUMMARY 

To our knowledge, there has been no prior research sug- 

gesting the use of queueing analysis for predicting the 

network performance metrics of an SD-SATCOM network in 

order to improve security against zero-day cyberattacks. 

Additionally, no previous studies have provided case study 

data to demonstrate the practicality and precision of detecting 

these attacks. This section provided a thorough overview 

of the most recent research in queueing analysis for SATCOM 

networks and protection methods against zero-day 

cyberattacks. The majority of the queuing studies primarily 

focus on the utilization of a common M/M/1 or M/G/1 model 

or a single controller model. These studies do not take 

into account the potential application of the analysis to 

enhance ML-based zero-day cybersecurity detection or the 

queuing characteristics of a distributed controller architec- 

ture. Prior work use queuing analysis to primarily analyze the 

SD-SATCOM network, LMS time-varying channels, or inter-

satellite communication. 

Furthermore, we presented a comprehensive summary of 

the current field of research about safeguarding SATCOM 

networks against zero-day intrusions. Current research pri- 

marily concentrates on the utilization of IDSs through the 

implementation of distributed federated learning and/or deep 

learning models. Prior research primarily concentrates on 

unsupervised or semi-supervised ML algorithms for 

identifying anomalies in network traffic or ground devices 

spoofing attack defenses. Nevertheless, unsupervised ML 

models tend to generate a significant number of incorrect 

positive results, as evidenced by several studies [33], [34], 

[35], [36], [37]. Semi-supervised ML models aim to 

address this issue by selectively labeling a subset of data 

for training, hence minimizing the occurrence of false 

positives and enhancing overall performance. Nevertheless, 

both unsupervised and semi-supervised ML models rely on 

the presence of training data consisting of regular, non- attack 

samples to effectively identify anomalies. It is worth noting 

that deep learning methods are notorious for their high 

resource requirements [40] which may pose challenges in the 

context of tactical networks due to resource constraints. In the 

context of submarine tactical SATCOM communications, the 

availability of this resource may not be easily accessible and 

could be restricted. Our study improves upon the current state-

of-the-art by developing a predictive queueing analysis that 

can quickly generate training data for the detection of zero-

day cyberattacks in SD-SATCOM networks. This is 

achieved by dynamically producing nonattack samples. 

Additionally, we showcase a case study that demonstrates the 

efficiency and precision of our machine-learning approach in 

identifying these threats. 

 
III. BACKGROUND 

A. SOFTWARE DEFINED NETWORKING FOR LEO 

CONSTELLATIONS 

SDN lets users directly manage data forwarding in network 

nodes. The networking industry favors SDN because it 

 

 
 

FIGURE 2. General SDN Architecture [54]. 

 
 

 

facilitates network device programming. Stanford University 

coined the term “SDN” to describe a software protocol 

that allows servers to direct network switches on packet 

transmission destinations [43]. The initial SDN standard was 

OpenFlow. OpenFlow in SDN systems provides a communi- 

cation protocol for the SDN controller to communicate with 

network devices like switches and routers, both physical and 

virtual (hypervisor-based). As depicted in figure 2, SDN can 

be characterized by three planes: 

1) Application Plane: It encompasses SDN applications 

for the purpose of network management, policy 

enforcement, and provision of security services. 

2) Control Plane: This is a centralized control framework 

that operates the network operating system and offers 

hardware abstractions to SDN applications in a logical 

manner. A flow in SDN refers to a sequence of 

instructions that govern the transmission of packets 

between a source and a destination. Controllers (SD- 

GEOs) populate the flow tables of forwarding devices 

(SD-LEOs) with the flow entries. 

3) Data Plane: A set of forwarding components employed 

to transport traffic flows based on instructions received 

from the control plane. 

The infrastructure layer consists of routers, switches, and 

access points, as depicted in the diagram. The data plane is 

formed by this layer, which represents the physical network 

equipment in the network (e.g., relay/forwarding SD-LEOS). 

Application programming interfaces (APIs) facilitate the 

transmission of information across different layers of SDN 

architecture. The controller (e.g., SD- GEO) utilizes 

southbound APIs such as OpenFlow [43], ForCES [44], 

PCEP [45], NetConf [46], or IRS [47] to 

establish communication with the data plane and provide 

oversight. This capability allows SDN controllers to manage 

and monitor networks globally, improving cybersecurity by 

gathering data for ML models to detect attacks. When 

available, several controllers communicate with each other 
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via Westbound and Eastbound APIs, such as ALTO [48] 

or Hyperflow [49]. The highest layer is the application plane. 

At this level, the network operator can employ functional 

applications to enhance energy efficiency, con- trol access, 

manage mobility, and/or ensure security (e.g., ML 

algorithms). The application layer utilizes northbound APIs, 

including FML [50], Procera [51], Frenetic [52], and 

RESTful [53], to establish communication with the control 

layer. The network operator can utilize these APIs to 

efficiently communicate the necessary changes to the control 

layer, thereby empowering the controller to implement the 

required adjustments to the infrastructure layer. 

In contrast to SDN, conventional networks feature 

forwarding logic managed by forwarding agents. Each 

forwarding device must be changed to adjust the network. 

These limits limit network management rules in traditional 

networks and provide scalability concerns for SD-LEO 

networks. SDN lets network operators instantly change SD- 

LEOS forwarding data flows. This makes adapting to traffic 

and security changes easier. 

B. SATCOM CYBERATTACKS 

The main goal of attackers is to maliciously disrupt SATCOM 

networks in order to gain personal advantages. Studies on 

SATCOM have investigated various risks asso- ciated with 

cyberattacks aimed at SATCOM networks. Network 

operators must be cautious in order to reduce the possible 

impact of various attacks on their SD-SATCOM network. 

Guo et al. [55] define threats to SATCOM network security 

as follows: 

• Jamming Attack: Jamming attacks are classified as 

active attacks that are designed to interfere with a 

network node’s communication channel. This is accom- 

plished by releasing strong signals or packets, which 

leads to a decrease in the signal-to-noise ratio (SINR). 

As a result, it disrupts regular communication with 

external nodes and causes a loss of availability. 

• Eavesdropping Attack: Eavesdropping refers to the act 

of silently intercepting and accessing the self- 

established information exchange among nodes without 

disrupting the network. Eavesdroppers have the abil- ity 

to utilize the gathered data to deduce sensitive 

information. 

• Spoofing Attack: Spoofing is an attack that impersonates 

identity and acquires confidence through authentication. 

To communicate with the target, the attacker imper- 

sonates a reputable satellite, exploiting authentication 

system flaws. Attacker obtains sensitive information or 

commits other offenses. Spoofing signals are made to 

look real, so the recipient tracks them inadvertently. Due 

to imprecise pseudo-distances and satellite coor- dinates, 

they mislocate the receiver and increase signal 

propagation delay. 

• Denial of Service (DoS) Attack: DoS attacks aim to 

render network services inaccessible by obstructing 

legitimate users’ access to certain network resources, 

 

 
 

FIGURE 3. Flatly Distributed SDN Controller Architecture. 

 
 

 

thereby causing system overloads and hindering the 

fulfillment of legitimate requests. This is frequently 

accomplished by flooding a target satellite with false 

packets in an attempt to exhaust the limited resources on 

board. 

 
IV. SD-LEO NETWORK ARCHITECTURE 

Figure 1 illustrates the utilization of the SD-LEO constel- 

lation by a submarine to communicate with a GEP. The 

submarine will ascend from the depths of the water and 

establish a connection with a nearby SD-LEO satellite. The 

SD-LEOs route traffic through each other to the destination 

GEP by using the routing logic from the SD-GEO controller 

within range. The GEP will establish a two-way contact with 

the submarine until the communication is completed, after 

which the submarine will submerge again. To achieve nearly 

worldwide oceanic communication coverage and enhance 

controller visibility for optimal routing, we have enlarged and 

enhanced our existing framework based on our past work 

[12]. 

Our proposed approach utilizes controllers that operate in a 

flatly distributed manner, as depicted in Figure 3. Every SD- 

GEO controller is responsible for overseeing a certain region 

of the forwarding SD-LEOs. These controllers collaborate to 

manage the overall network effectively. Every controller 

transmits information regarding the forwarding SD-LEOs 

it oversees to the other controller. Section IV-A outlines 

the procedure for synchronizing modifications through the 

application of cloud technology, the enhanced SD-GEO 

controller design, queuing architecture, and cloud integration. 

Based on our MATLAB simulation, we have found that 

the ideal number of controllers is four SD-GEO controllers 

positioned at a distance of 35,768km with each SD-GEO 

paired to a matching GEP. We discuss these parameters 

further in Section VI. Each GEP can communicate with each 

other with the use of a defense-integrated cloud [56]. 

We note that one potential concern is the network’s 

scalability constraints. While four GEO controllers would 

enhance the management of the SD-LEO forwarding layer, 

there may be vendor-specific limitations on the process- 

ing power regarding the number of forwarding SD-LEOs that 

each SD-GEO controller can oversee. To generalize our 

findings, we simulate our architecture and approach, enabling 

us to abstract the controller processing rate from 
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previously published literature, and to test topologies with 

varying numbers of GEPs connected to varying numbers of 

controllers. We show that we can temporarily increase the 

system’s overall μ if network demand arriving at a controller, 

λ, surpasses its processing capabilities 

Additionally, we recommend placing 64 SD-LEOS for- 

warding satellites at a distance of 781km, following a Walker 

Delta orbital path [57] which will allow for near worldwide 

communication coverage. This will allow submarines to 

surface from any major body of water (i.e., oceans, seas, etc) 

and connect with SD-LEO to communicate with a GEP. 

Furthermore, depicted in Figure 1 is a hostile UAV that may 

potentially launch a cyber attack on the SD-GEO controller to 

disrupt the network’s routing and obstruct communication. 

The malicious UAV could potentially gain unauthorized entry 

into the system and attempt to initiate cyber attacks such 

as jamming, eavesdropping, spoofing, DoS, and zero-day 

attacks. To safeguard against these intrusions, the GEP will 

systematically gather performance metrics from the SD-GEO 

satellites and feed them into the cloud architecture that hosts 

our ML model. The CatBoost ML model will build the 

normal, nonattack dataset through our analysis and then train 

on the values to acquire knowledge of the proper values. 

Subsequently, the model will utilize the gathered information 

to forecast the anticipated values and subsequently evaluate 

the collected expected values to identify any abnormal mea- 

surement, thereby detecting a zero-day attack. Subsequently, 

the model will notify the network operator at the GEP to 

implement countermeasures, such as disconnecting the 

malicious node from the constellation, in order to safeguard 

the SD-GEO. 

A. CLOUD FUNCTIONALITY 

The Department of Defense (DoD) and military organiza- 

tions have utilized cloud infrastructure for their networking 

systems [58], [59]. Similarly, under our proposed archi- 

tecture, the defense-integrated cloud will be a rigorously 

protected server situated in a military-operated or contracted 

facility. In the context of SDN, it is referred to as the 

application plane. The following sums up its primary jobs: 

• Data Aggregation: Once the data is gathered from the 

SD-LEOs and SD-GEOs, it will be sent to the GEP. 

From there, the GEP will transport the data to the cloud 

infrastructure where it will be stored and also utilized for 

training and testing the ML model. 

• Cyberattack Detection: The ML model (CatBoost algo- 

rithm), will utilize the data collected from satellites to 

generate predicted data for our queuing analysis. Its 

purpose is to determine whether a zero-day attack has 

taken place. The cloud platform will establish commu- 

nication with the GEP responsible for the SD-GEO and 

inform the network operator about the attack. 

• SD-GEO Controllers Synchronization: Our concept uti- 

lizes a flatly distributed design, where each SD-GEO has 

an equal level of control in the system as shown in 

Figure 3. They collaborate to ensure the SD-LEOs 

 

 
 

FIGURE 4. Victim Representation of a Cyberattack [64]. 

 
 

 

constellation remains operational. To ensure efficient 

traffic routing, an SD-GEO must have knowledge of the 

status of SD-LEOs that are outside of its jurisdiction. 

Consequently, every SD-GEO is required to exchange 

status updates with one another. Given the limitations of 

distance and communication ranges, accomplishing this 

task in space will be challenging. To facilitate this 

process, we suggested that the SD-GEOs regularly 

provide updates on the SD-LEOs they control to each 

other. To accomplish this, these updates will be uploaded 

to the cloud using the GEPs. The cloud will store a 

database of SD-LEO status information received from 

the SD-GEOs and will only transmit updates to the other 

SD-GEOs via the GEP if there are any updates available. 

This will enable the most efficient utilization of network 

bandwidth by transmitting only updates from the Cloud 

to SD-GEOs. 

 
V. METHODS 

Historically, network monitoring has been used to detect 

cyberattacks occurring in a network. However, the task of 

gathering data, categorizing it, and training ML models can 

be time-consuming because network traffic is unpredictable 

in nature [60], [61], [62]. In this study, we employ queuing 

theory (QT) as an alternative approach to minimize the 

time taken for data collection and training of ML (ML) 

models. QT facilitates the mathematical analysis and creation 

of models for SD-SATCOM networks [21], [63]. QT is a 

mathematical discipline that specifically addresses examining 

and modeling waiting lines or queues. From a SATCOM 

networking standpoint, the application of abstraction allows 

us to categorize forwarding devices (e.g., satellites) as 

servers, and packets as customers. By abstracting the network 

and analyzing the server’s packet service, the network 

operator can obtain various performance measures, including 

the interarrival time (IAT), transmission delay (TD), and 

packet count (PC) of packets received at a server. These 

measures are derived by evaluating the queuing of packets 

at the forwarding device. The metrics described above are 

influenced by the arrival rate of packets (λ) and the servers’ 

service rate (μ). By employing these measures, a ML model 

may be trained to identify both normal (non-attack) and 

attack samples from the network. 

 
A. QUEUEING THEORY MODEL OF DOS CYBERATTACK 

Figure 4 illustrates the aftermath of a DoS attack on a server. 

The victim node is subjected to a significant surge of packets, 
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FIGURE 5. JNO M/M/C Queuing Model of SD-LEO Network. 

 

which leads to a cascading effect on the system. As a result, 

the victim node experiences a higher arrival rate (λ1), while 

both the service rate (μ1) at the victim node and the arrival 

rate (λ2) at the destination node decrease. The LEO satellite 

responsible for relaying data can collect the measurements 

and transmit them to the GEO controller for analysis by 

the network operator. Using the acquired measurements, the 

network operator can deduce the specific type of attack 

that has taken place and evaluate the magnitude of its impacts 

on the network. Exclusively available with SDN, the operator 

can employ the SDN controller to reroute network traffic 

away from a compromised LEO. This enables the 

preservation of network connectivity and data transfer speed 

within the network. To ensure appropriate actions are taken, 

it is vital to maximize the accuracy of QT measurements when 

making educated judgments based on QT analysis. Therefore, 

it is crucial to consider the design of the QT modeling. QT 

uses Markovian queues. Markovian queues are characterized 

by their adherence to the Poisson process for arrival rates and 

exponential distribution for service rates, which enables the 

property of memorylessness in both arrival 

and service rates. There are other types of Markovian models, 

such as M/M/1, M/M/c, M/M/c/K, M/G/1, and M/M/∞ [14]. 

Therefore, the network operator must take into account the 
queuing dynamics of SD-Satellites in their network, as it 
directly impacts the metrics they gather and utilize to detect 

cyberattacks. 

 
B. QUEUEING THEORY MODEL OF SD-LEO 

ARCHITECTURE 

The controller structure for the SD-LEO model, depicted in 

Figure 5, consists of a set of Jackson open network M/M/c 

queues. Jackson networks were chosen because they fit the 

characteristics and behaviors of the SD-LEO architecture 

well. Jackson networks are defined by interlinked queues, 

wherein the output of one queue is transmitted into another 

queue with equivalent priority. One distinctive advantage of 

employing the Jackson network model compared to other 

queuing models is that the employed Jackson networks can be 

resolved using a product-form solution [26]. The arrival rate 

of packets at satellite a (λa) from satellite b is the 

product of the sending rate of satellite b and the probability of 

it transmitting packets to satellite a, expressed as λa = λb· qa. 

This approach provides more tractable solutions for the more 
complex network interconnections, and better approx- 

imates realistic network behavior compared to alternative 

models [26]. The Jackson model analysis is characterized as 

“open,” where packets exit the queuing system and transition 

between queues, capturing the interconnected dynamics of 

SD-SATCOM networks and the corresponding inter-satellite 

links that are essential for the effective deployment of 

SDN within the network [65], [66]. Furthermore, statistics 

from previous military publications and publicly available 

military standards have been used when available as relevant 

parameters. 

However, it is crucial to recognize the disadvantages and 

constraints of Jackson open networks, as the analysis fails 

to accurately predict’s the system’s network metrics when 

it is not in a steady state (0 < μ  < λ) and is overloaded. 

Furthermore, Jackson’s open network analysis presumes 

uniform packet priority; hence, priority-based traffic routing 

would modify the system’s behavior and contradict the 

analysis’ network metric predictions. Consequently, these 

drawbacks impact our assumptions detailed in Section V-B2. 

Additionally, our concept assumes that the GEPs will be 

interconnected via a cloud/server infrastructure. The cloud 

will only notify the GEPs about changes in topologies or 

forwarding LEO statuses, if any, in order to restrict the flow 

of redundant data. If a GEP does not receive any updates 

from the cloud infrastructure, then both the GEP and the 
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paired GEO controller can infer that the other aspects of 

the SD-LEO forwarding plane topologies and statuses are 

consistent with their current knowledge. 

1) CATEGORIZATION OF ARCHITECTURE COMPONENTS 

To our knowledge, there has been no previous research 

that has proposed using queuing analysis to forecast network 

performance metrics for an SD-LEO controller architecture in 

order to enhance security against zero-day attacks. The 

proposed SD-SATCOM network comprises four SD-

satellites, each consisting of four SD-GEO controllers, four 

GEPs, a cloud server, and forwarding SD-LEOs. Since the 

cloud manages and forwards each controller’s global to 

each other via the GEPs, each controller has a global view of 

the forwarding SD-LEOs. Due to this global view and control 

of the networks, cyberattackers target SDN controllers to gain 

control of the network. Therefore, the objective of this study 

is to enhance the cyber defense of the controller architecture 

by employing queueing analysis to minimize the time 

required for ML training in a scenario of zero-day attacks. 

Figure 5 illustrates the queuing model of the controller 

architecture which can be generalized in the following 

manner: 

• All packets received within the constellation are 
regarded as having equal priority. 

• Given that the network is in a steady state, the input rate 

(λin) is equal to the output rate (λout) of any component 

in the architecture, as stated by Burke’s theorem [67]. 

Our equations will have a product form solution since we 

are utilizing the Jackson network open (JNO) queuing model 

for our queuing analysis [26]. Figure 5 depicts the queuing 

model of the controller architecture. In our analysis, we focus 

on the essential components of the controller architecture one 

SD-GEO controller, one GEP, and the cloud platform. Let 

GOi denote a SD-GEO, EPi denote a GEP, C denote the 

cloud, and LO denote the SD-LEO forwarding plane. 

The rate at which packets enter an SD-GEO from the 

SD-LEO forwarding plane is represented as qGON λLO, where 

qGON denotes the probability that a packet will be sent to 

the SD-GEON controller as a packet-in packet (a packet with 

an uncertain route path) from the SD-LEO forwarding plane. 

Thus, the λi for each component of the controller architecture 

can be represented as: 

λGOi = qGOi λEPi + qGOi λLO (1) 

λEPi = qEPi λC + λGOi (2) 

• SD-GEO: The SDN controller is virtualized and located 
within an SD-GEO as a virtual network function (VNF). 

The SD-GEO controller is tasked with managing the 

 

λC = qC 

n 

 

i=1 

λEPi 

! 
 

(3) 

routing decisions of the forwarding SD-LEO satellites. 

• GEP: Each SD-GEO is coupled with a ground GEP, 

which has a corresponding network operator. The GEP 

is responsible for overseeing the SD-GEO from the 

ground, collecting network performance statistics, and 

uploading updates from other SD-GEOs that are 

received from the cloud to its paired SD-GEO. 

• Cloud: The data collection, ML model, and global 

perspective and status of the SD-SATCOM network will 

be stored in a defense-integrated cloud server. The 

system will utilize the gathered data to identify 

cyberattacks and detect previously unknown zero-day 

cyberattacks by analyzing the regular, non-attack data 

created through queuing analysis as described in this 

work. Moreover, it would regularly transmit updates 

regarding the overall network status of SD-LEOs to each 

SD-GEO through their paired GEPs, based on any 

changes that occurred in the network. 

• SD-LEO: SD-LEO satellites are employed to relay 

where in equations (1) and (2), SD-GEON receives reply 

traffic from the SD-LEOs, and the GEP receives updates from 

the cloud platform. The probability of reply traffic is 

denoted by qi. The probability density function for λi is 

defined for t ≥ 0: 

f (t) = λieλit (4) 
 

The average interarrival time, IAT of packets experienced 

at each control architecture element is defined: 
  1 
IATi =  (5) 

λi 

The service time follows an exponential distribution with 

parameter μi. The probability density function is: 

g(s) = μie−μis, ∀≥ 0 (6) 

where the average service time, Tst can be denoted: 

  1 

signals between each other and deliver them to the 

intended recipient. They are the forwarding plane of the 

Tst =  
μi 

(7) 

network. 

2) STATISTICAL ANALYSIS 

In this section, we describe our statistical analysis of the SD- 

Using Little’s theorem [68], average total waiting time 

is defined as transmission delays (TD) and represented as 

follows: 
1 
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LEO architecture. The queuing analysis presented is based 

on and limited by the following assumptions: 
TDi = 

 
 

μi − λi 
(8) 

• We assume the SD-LEO constellation is in a steady state 

and not overloaded. Therefore, the arrival rate of packets 
λ < μ, and 0 < λ < μ. 

The normal distribution of network packet arrivals (i.e., 

non-attacked packets) into each system was decided by the 

probability of witnessing a number of packet arrivals in a 
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HPBWaz 
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HPBWel 

period from [0, T]. This equation is used to model the traffic 

volume of the bus: 

(λT)ne−λT 
P(n arrivals in interval T) = 

n! 
(9) 

where T is the IAT, and n represents the number of packets. 

The average packet count (PC) can be modeled as the 

following: 

PCi = λiTi (10) 

 
VI. SD-LEO COVERAGE SIMULATION 

To determine the optimal number of SD-GEO controllers and 

parameters required to ensure the SD-LEO constellation’s 

operation, we conducted a simulation study using MATLAB 

with the aerospace, mapping, and satellite communications 

toolboxes. This section outlines the process by which we 

obtained the parameters required for our constellation and 

resulting in higher communications quality, but requir- 

ing more satellites for complete coverage. 

• Geostationary Orbit (GEO): Positioned at approxi- 

mately 35,786 km above the equator [71]. Satellites in 

GEO rotate with the Earth, remaining stationary relative 

to the ground. 

 
4) ANTENNA CHARACTERISTICS 

Given that this application is focused on creating a constel- 

lation specifically for communication purposes, the antenna 

characteristics and their effects on the coverage are relevant. 

While there are many different antenna configurations that 

can be used onboard satellites, this analysis uses a Gaussian 

antenna, known for its clear beam pattern and the ability to 

focus power efficiently within a specified half-power beam 

width (HPBW). The field response of this Gaussian antenna 

is given by [72]: 

also documents the viability and efficacy of our con- 
 az  2

  

 

exp

 

−2 log ( 
 el  

)2

 

(11) 
 

1) ANGLE OF INCLINATION 

The angle of inclination of a satellite is the tilt of the satellite’s 

orbit plane relative to the Earth’s equatorial plane. 

Inclinations vary based on the mission’s requirements and 

include equatorial orbits (0°), polar orbits (90°), and many 

other configurations [69]. 

Inclinations close to 90° are typical for LEO satellites to 

ensure coverage over the poles and increase Earth coverage. 

However, inclinations exactly at 90° require additional fuel 

consumption and correctional maneuvers to correct for orbital 

perturbations. For this reason, many constellations use 

inclinations just below 90° like the 86.4 degrees used by the 

Iridium constellation [70]. 

2) NUMBER OF PLANES AND SATELLITES PER PLANE 

An orbital plane is a 2D plane that contains a satellite orbit 

path, which may be followed by one or more satellites. In 

satellite constellations, multiple orbital planes are often used 

to enhance global coverage and provide redundancy [2]. 

These planes are separated in such a way that each plane 

intersects the Earth’s equator at a different point, resulting in 

different values of the right ascension of the ascending node 

(RAAN). This separation between the planes, combined with 

the distribution of satellites within each plane, helps to create 

more complete coverage and minimize the possibility of 

satellites intersecting. 

3) ALTITUDE 

Satellite altitude is the height of the satellite’s orbit above the 

Earth’s surface. The two levels focused on in this paper are: 

• Low Earth Orbit (LEO): Typically between 500 km and 
2,000 km [2]. These satellites have closer proximity, 

where az is the azimuth angle in degrees, el is the elevation 

angle in degrees, az is the azimuth half-power beamwidth, 

HPBWaz is the azimuth half-power beamwidth, and HPBWel 

is the elevation half-power beamwidth. 

The HPBW plays a critical role in determining the 

coverage and signal quality of the antenna. A narrower 

HPBW increases signal strength but narrows the coverage 

area. In contrast, a wider HPBW broadens coverage while 

reducing signal strength. Later analysis examines how this 

relationship affects both the FOV area and the received signal 

strength, as well as how its importance changes with altitude. 

Other configurations, like phased arrays, are often used 

in practice to improve application-specific performance [73]. 

Transmitter and receiver power also significantly impact 

coverage [73]. Higher transmitter power extends the signal 

reach and reduces the impact of path loss. In some cases, 

higher receiver sensitivity - which comes with an increase 

in receiver power - can compensate for lower transmitter 

power. 

These parameters – antenna configuration, HPBW, and 

transmitter/receiver power levels – are all important in 

determining the coverage of a given satellite. In this analysis, 

only the HPBW is examined closely, but others could be 

modified for future tuning of the constellation parameters. 

 
B. FIELD OF VIEW 

For a communications application like this one, a satellite’s 

field of view (FOV) describes the area that a satellite can 

observe or cover with its antenna [73]. For the LEO satellites 

in the constellation, their FOV of Earth is of importance, 

whereas for the GEO satellites, the FOV of the LEO shell 

is of importance. These relative FOVs are illustrated in Figure 

stellation architecture in providing almost global maritime 

communication coverage. 

f (az, el) = exp 

A. KEY SATELLITE CONSTELLATION PARAMETERS 
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FIGURE 6. LEO and GEO Field of Views. 

 
 

 

1) CALCULATION 

The key parameters influencing the satellite’s field of view 

include: 

• Satellite Altitude: The height of the satellite above 
Earth’s surface. 

• Antenna HPBW: The angular spread of the antenna’s 

beam, measured from its central axis to the half-power 

points, which defines the edge of the primary coverage 

region. 

• Sphere Radius: The radius of the spherical model 
representing the Earth or LEO shell. 

Since the curvature of the reference sphere limits the FOV, 

the central angle [73] - defined as the angle between the nadir 

and the edge of the beam coverage - is the first step of the 

calculation and can be obtained from the parameters above. 

The calculation is derived using trigonometric relationships 

involving the geometry of the sphere and the satellite’s 

viewing cone and is given as follows [74]: 

 

FIGURE 7. LEO Field of View of Earth vs. Half-Power Beam Width and LEO Shell 

Altitude. 

 

 

FIGURE 8. GEO Field of View of LEO Shell vs. Half-Power Beam Width and LEO 

Shell Altitude. 

 

 

generally requires a higher HPBW, which can range from 

25° to greater than 100° depending on the antenna used. 

In general, a higher altitude results in a larger FOV area, as 

does a larger HPBW. This relationship is shown in Figure 7. 

It should be noted that an increased FOV area does not 

θ = 90◦ — arccos sin(α) · 
h + r 

r 
— α (12) 

necessarily mean that the signal strength is high enough for 

the communications needed, as will be explored in the next 

section. Thus, values that maximize the FOV area may or 

where: θ is the Earth’s central angle, defining the outermost 

boundary of the satellite’s FOV, α is the antenna’s half- power 

beam-width, h is the satellite altitude above the Earth’s 

surface, and r is the Earth’s radius. 

This relationship may be adjusted if the beam-width angle 

is large enough that the entire sphere’s visible region is 

encompassed by the antenna. This calculated central angle is 

used to obtain the field of view centered on the satellite’s 

location and is obtained by expanding outward by the central 

angle. 

 
2) LEO SATELLITES’ FIELD OF VIEW OF EARTH 

As mentioned previously, the LEO satellite shell is respon- 

sible for communications coverage of the submarines in the 

Earth’s oceans. As such, the FOV of LEO satellites with 

respect to the Earth’s surface is considered. 

Since the FOV calculation depends on both the altitude 

and the HPBW of the antenna, these values affect the 

LEO shell’s ability to cover the oceans. The altitude range 

may not maximize the actual coverage area. 

3) GEO SATELLITES’ FIELD OF VIEW OF LEO SHELL 

Since the GEO shell serves as a controller for the LEO shell, 

the FOV for the GEO constellation is calculated concerning 

the LEO shell. 

Once again, the altitude and the HPBW affect the 

calculation. However, since the GEO altitude is fixed, the 

altitude of interest is that of the LEO shell, which will alter 

the relative distance between the LEO shell (taken as the 

reference sphere for the FOV calculation) and the GEO shell. 

Since this distance is significantly larger than the one 

between the LEO shell and the Earth’s surface, a smaller 

HPBW is appropriate. Thus, only values up to 20° are tested. 

The relationship between the LEO shell altitude and HPBW 

values and the FOV area are shown in Figure 8. 

The minimum HPBW that will allow for coverage over the 

full range of LEO elevation angles - including the polar 

regions - is given by the following equation: 

  



6626 VOLUME 5, 2024 

AGNEW et al.: DETECTION OF ZERO-DAY ATTACKS IN A SOFTWARE-DEFINED LEO CONSTELLATION NETWORK 
 

 

for LEO is generally considered to be between 500 km 

 
θHPBW = tan−1

 
 r + hLEO

  

· 
180 (13) 

and 2000 km above Earth’s surface [2]. This lower altitude 
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, 

where hLEO is the LEO satellite altitude above the Earth’s 

surface, hGEO is the GEO satellite altitude above the Earth’s 

surface, and r is the Earth’s radius. 

 
C. SIGNAL STRENGTH 

The FOV area calculated in the previous section does not 

encompass any analysis of the communication quality itself, 

just whether line-of-sight can be established between the 

transmitting antenna onboard the satellite and the antenna on 

the receiving satellite or ground station. The received signal 

strength is one metric used to evaluate the quality of a 

communications link. 

1) SIGNAL STRENGTH CALCULATION 

The signal strength is calculated as [75]: 

SS = Ptx + Gtx − Lprop + Grx − Lsys (14) 

where Ptx is the power of the transmitted signal in dBm, Gtx 

is the gain of the satellite transmitter antenna in dBi, Grx 

is the gain of the receiver antenna in dBi, Lsys represents 

the total system losses in dB, including the inherent losses in 

the transmitter and receiver circuits, and Lprop is the path loss, 

which is dependent on the propagation model used and 

environmental factors. 

Path loss (Lprop) in satellite communications typically 

accounts for the free-space path loss [75], but may also 

include atmospheric absorption, and other factors such as rain 

or gas attenuation depending on the application. In this case, 

only the free-space path loss is accounted for, given by: 

Lprop = 20 log10(d) + 20 log10(f ) + 92.45    (15) 

where d is the distance between the satellite and the receiver 

in kilometers and f is the frequency of the transmitted signal 

in GHz. 

2) MAXIMUM RECEIVED SIGNAL STRENGTH 

While the signal strength within a satellite’s field of view can 

be assessed in a variety of ways, the maximum signal strength 

is useful in representing a “best-case” scenario, when a 

receiver is aligned along the boresight of the satellite’s 

antenna [73]. 

The maximum signal strength is similarly plotted against 

the LEO shell altitude and the HPBW. The results are shown 

in Figure 9, where maximum signal strength is calculated for 

a receiver aligned along the boresight on Earth’s surface. 

3) DISTRIBUTION OF SIGNAL STRENGTH 

THROUGHOUT FOV 

 

 
 

FIGURE 9. Maximum Received Signal Strength at Ground Station vs. Half-Power 

Beam Width and LEO Shell Altitude. 

 

 

FIGURE 10. Signal Strength Distribution in dBm for Different HPBW values at 

750 km Altitude. 

 
 
 

The max values in the figure are the same as the ones shown 

in Figure 9, but the rest of the distribution is a relatively sharp 

decrease for the low HPBW distributions. For higher HPBW 

distributions, the max signal strength remains lower but more 

stable through the center of the distribution. 

 
D. ORBITAL PERIOD 

The orbital period is defined as the time it takes for an object 

to complete one full orbit around another body. For satellites 

orbiting Earth, the period depends on the altitude and 

gravitational pull of Earth [76]. In LEO orbits the orbital 

period is relatively short. Orbits at higher altitudes, however, 

have longer orbital periods. In GEO, for example, the period 

matches Earth’s rotation (approximately 24 hours), allowing 

satellites to remain fixed over one location [71]. 

1) CALCULATION 

The equation for the orbital period is given as [76]: 
 

 

As discussed in the sections above, the HPBW affects the 

coverage shape and the distribution of signal strength through 
T = 2π 

R 

μ 
(16) 

that shape. A larger HPBW generally results in a wider spread 

of the coverage and a lower maximum signal strength, as 

shown in the previous section. 

This distribution is illustrated in Figure 10, where the signal 

strength distribution is compared for different HPBW values at 

the 750km altitude. 

3 
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where T is the orbital period in seconds, R is the semi- 

major axis, which represents the average orbital radius of 

the satellite from the center of the planet, and μ is Earth’s 

gravitational parameter. μ is given as follows: 

μ = 3.986 × 105 km3/s2

 (17

) 
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FIGURE 11. Orbital Period vs. LEO Altitude. 

 
 

 

R is calculated as the sum of the radius of the Earth Rearth 

and the altitude of the satellite above the surface h: 

R = Rearth + h (18) 

2) ORBITAL PERIOD SIMULATIONS 

Using these equations, the orbital period for the GEO con- 

stellation (with h = 35768km), as expected, is 23.93 hours 

[71]. This is an approximate match to the rotational period of 
the Earth, allowing it to stay stationary in relation to points 

on the surface, like ground stations. The orbital period of the 

LEO altitude range of 500 km to 2000 km was also tested and 

is shown in Figure 11. 

For this application, it was imperative that each point in the 

orbit received coverage at least hourly. The number of 

satellites N needed to achieve this can be calculated as: 

N = 
 T  

3600 

where ±·e denotes the ceiling function, rounding up to the 

nearest integer to ensure complete coverage. 

Based on the results shown in Figure 11, all LEO 

altitudes require at least two satellites per plane to meet this 

requirement and altitudes over 1750 km require 3 satellites 

per plane. 

 
E. SELECTED CONSTELLATION 

Based on the above simulations, a constellation was selected 

with a LEO shell altitude of 750 km. At this altitude, based on 

the orbital period analysis above, only two satellites are 

needed per plane. Using the results of the signal strength and 

FOV analyses, the coverage diameter can be estimated as 

2300 km. The circumference of the Earth is 40,075 km at 

the equator [77]. Thus, a minimum of 17 planes are needed 

to cover all points at the equator. To include the very edge of 

the coverage area limits, 34 planes were chosen to provide 

sufficient overlap. A 3D rendering and 2D rendering of this 

configuration are shown in Figure 12 and Figure 13, 

respectively. 

It can be noted in both the 2D and 3D renderings that, in 

the polar regions, some areas receive better coverage than 

others. This is because the inclination angle is not quite 90°, 

 

FIGURE 12. 3D Rendering of Simulated Constellation. 

 

 

FIGURE 13. 2D Rendering of Simulated Constellation. 

 

 

FIGURE 14. GEO Coverage Visualization. 

 
 
 

 

resulting in non-uniformity in the polar coverage but avoid- 

ing the perturbations of a perfectly 90° inclination orbit. The 

GEO shell above it was chosen to have 4 satellites, spaced 

equidistantly apart along the equator. These provide nearly 

complete, overlapping coverage of the LEO constellation. 

This configuration is shown in Figure 14. 

This configuration of GEO satellites provides only partial 
coverage to ground stations on the surface of Earth itself, 
as shown in Figure 15. A GEO satellite has an absolute 

maximum coverage area of ± 81 degrees latitude due to the 

limitations of Earth’s horizon line [78] though the functional 

maximum coverage area is generally below this maximum 

and was conservatively limited to ±75 degrees latitude for 

this work. While only 3 GEO satellites are capable of 
covering much of the Earth’s surface, 4 are used in the 
implementation shown in Figure 15 to provide more 
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FIGURE 15. GEO Coverage of Earth. 

 

complete coverage of the populated land masses and allow for 

a range of potential ground stations. 

When considering the GEO coverage of the LEO shell, 

however, it no longer has the same horizon limitation due 

to the LEO shell’s altitude relative to the planetary body. 

Instead, coverage of the entire range of LEO shell elevation 

angles - including the polar region - can be achieved by 

utilizing a large enough HPBW, as given in Equation (13). 

For the LEO satellite altitude of 750 km used in this 

constellation, a minimum HPBW of 10.7 degrees would 

provide complete coverage of all elevation angles. With the 

combined coverage of the 4 equatorial GEO satellites, GEO 

shell will have complete coverage of the LEO shell, with only 

a brief loss of coverage over the poles as the LEO satellites 

undergo the handover from one GEO to another. Therefore, 

while only partial coverage is provided from the GEO shell to 

terrestrial ground stations, the LEO shell is able to ensure that 

each point on Earth receives service during its 100-minute 

orbital period and the GEO shell is able to provide complete 

coverage of the LEO shell, aside from the polar handoff. 

 
F. SCALABILITY 

The implementation chosen for this paper aims to minimize 

the quantity of LEOs required to provide coverage to 

submarines on patrol, choosing to use only 2 satellites per 

orbital plane, for a total of 64 satellites. This LEO shell 

provides service to each point on Earth at least once in its 100 

minute orbital period, as shown in Figure 16 (1).(a), but if 

more frequent coverage or a longer coverage duration is 

desired, additional satellites can be used. Since the 34 orbital 

planes already provide complete coverage around the Earth 

longitudinally, scalability is tested by increasing the number 

of satellites in each of those orbital planes. Three metrics are 

examined for these conditions: average connectivity, average 

reconnection time, and average coverage duration. 

Connectivity is the measure of whether a point is covered 

by one of the LEO satellites at a given point in time. This 

metric is averaged over the orbital period of the constellation 

for each point in a grid that spans the surface of the Earth to 

form the connectivity heat maps shown in Figure 16 (2).(a)-

(b). The average across all of the points in the Earth grid is 

shown in Figure 16 (2).(d). As shown in 

the heat maps, connectivity is highest at the poles, where 

the orbital paths come closer as they cross, and lowest at 

the equator where the paths are the greatest distance apart. 

There are also two regions of lower connectivity caused by 

the <90 degrees inclination angle of the constellation. At 

2 satellites per orbital plane, average connectivity across all 

points is still greater than 50%. At 10 satellites, it becomes 

greater than 99%, becoming 100% at 12 satellites or more per 

orbital plane. 

The average reconnection time – how long a point on the 

Earth grid has to wait before receiving connection again – was 

also measured for values of satellites per orbital plane ranging 

from 2 to 30. A similar geometry to that seen in the 

connectivity simulations was seen, as shown in Figure 16 

(3).(a) - (b), with extremes of latitude having the shortest 

reconnection times whereas the equatorial regions had the 

longest. The overall distributions of these reconnection times 

for each number of satellites is shown in Figure 16 (3).(d). At 

the minimum number of satellites per plane of 2, the mean 

reconnection time was only 5 minutes, with the highest being 

15 minutes. This, too, improved with additional satellites in 

each orbital plane, decreasing until beginning to plateau at 

8 satellites per orbital plane and needing no reconnection time 

at 12 satellites per orbital plane, signifying uninterrupted 

coverage. 

Finally, the coverage duration was examined to determine 

how long of a window a submarine (modeled as a grid point 

on the surface) would have to send a message before losing 

connectivity. This, too, was better in the polar regions than in 

the equatorial regions due to the density of coverage, as shown 

in Figure 16 (1).(a) – (b). Figure 16 (1).(d) shows the overall 

average of all the points on the Earth grid for each of the 

satellite numbers, starting at an average of approximately 

17 minutes for the minimum 2 satellites per plane and 

increasing to over 95 minutes of a 100 minute orbital period 

for 10 satellites. At 12 satellites per orbital period, again, full 

coverage is achieved. 

While values up to 30 satellites per orbital plane are tested, 

near-perfect coverage can be obtained with 10 satellites per 

orbital plane with full coverage obtained for 12 satellites 

per orbital plane. Thus, scaling the LEO constellation size 

beyond this point is likely unnecessary. Since GEO coverage 

is already complete over the LEO constellation with the 

exception of the brief loss of coverage due to the handoff time 

while crossing the poles, the number of satellites in the 

GEO shell would not need to be adjusted to provide 

continuous coverage. 

 
VII. CASE STUDY RESULTS 

In this section, we present a case study in which we examine 

a scenario where a network operator possesses a dataset 

containing one hour of communication between the SD-GEO 

controller and GEP. The objective of the network operator is 

to determine whether a zero-day cyberattack has taken place 

and to assess the accuracy of the prediction analysis in 

relation to the collected results. In the subsections that 
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FIGURE 16. Scalability and Coverage (1) Coverage Duration, (2) Average Connectivity, and (3) Reconnection Time. 
 

follow, we will present the outcomes of the queuing analysis 

simulation and the detection of zero-day cyberattacks using 

the CatBoost ML algorithm. 

A. QUEUING ANALYSIS SIMULATIONS 

This research aims to showcase the efficiency, precision, 

and speed of our predictive queuing analysis in order 
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Algorithm 1 SD-SATCOM Queuing Network Simulation 
 

1: Create arrays for the IAT, TD, and PC 

2: Initialize starting λLO and λC 
3: Initialize μ for SD-GEO and GEP 

4: for λLO and λC ≤ 550 packets/sec do 
5: Initialize  SD-GEO  and  GEP  queuing  components  using 

SimComponent and SimPy 

6: Initialize SD-LEO (λLO) and the Cloud (λC ) generators 
7:  Utilize SimComponent’s Randombrancher class function to establish 

a connection between the SD-GEO and GEO queuing components 
8:  Connect SD-LEO and Cloud instances to SD-GEO and GEP, 

respectively, using the Randombrancher class function 
9:  Assign the probability of connecting branches between components 

to the simulation parameters specified in Table 2 
10: Assign the value of μ to every SD-GEO and GEP service module 
11: Perform a 60-second communication simulation using the current 

values of λLO and λC , as well as the specified parameters 
12:  Record IAT, TD, and PC over duration of simulation for each SD- 

GEO and GEP 
13:  Calculate and Append IAT, TD, and PC for each SD-GEO and 

GEP for each λLO and λC and parameters in the created arrays 
14:  Increase λLO and λC values by +50 packets/sec each then repeat 

the loop until λLO and λC ≤ 550 packets/sec 

15: end for 
 

 

 

to minimize the time required for data collection and training 

in the network security of the controller architecture for SD-

SATCOM network for submarines on patrol. As mentioned in 

Section VII-A2, we consider a subset of the controller 

architecture that contains all components: one SD-GEO 

controller, GEP, and cloud instance. The network traffic of 

the SD-SATCOM controller architecture was evaluated by 

utilizing SimComponents [13]. We modified 

SimComponents to collect average packet inter-arrival times 

(IAT), transmission delay (TD), and packet count (PC) from 

the SD-GEO and GEP instances. We modeled the controller 

architecture as a network of Jackson theorem M/M/C queues 

as described in Section VII-A2. We modeled our simulation 

based on the UHF/VHF radio communication commonly 

utilized in military and SATCOM operations. Algorithm 1 

provides the pseudo-code of the simulation. The adjustment 

of port rate and queue size parameters of the servers, as 

presented in Table 2, allowed for the attainment of IAT, 

TD, and PC of received packets. These simulation parameter 

values were modeled from the military SATCOM wireless 

communication standards DoD Instruction 8420.02, MIL- 

STD-188 [79], [80], [81]. 

For instance, we created models to calculate the prob- 

ability of a packet successfully reaching the controller, and 

we also considered the ratio of λ and μ values from related 

studies [21], [22], [23]. The mean packet size of 1400 bytes 

for UDP packets used in SATCOM communi- cation has been 

determined based on prior research [82]. The SD-SATCOM 

network system design includes unique characteristics such as 

the number of SD-GEO, GEP, and cloud instances. For the 

purpose of simulation, specific parameters are selected 

arbitrarily, including the simulation time and the chance of 

bidirectional communication. We assigned a probability of 

0.50 to the transmission of packets between the different 

components, which represents the 

TABLE 2. Simulation parameters. 
 

 

 
 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 
 
 

 

bidirectional connection between these devices. All of these 

numbers are computed based on the information supplied in 

the military SATCOM standards DoD Instruction 8420.02 

and MIL-STD-188. Despite the constraints on vendor and 

government SATCOM information sharing due to proprietary 

and security concerns [83], we employed parameters from 

existing literature and publicly accessible military standards 

to mimic real-world applications and generalized our results 

to the best of our knowledge. 

To compare our theoretical results with the simulated 

results, we performed simulations of the SD-Satellite 

network’s communication for 60 seconds. We varied the 

combinations of λLO and λC in increasing increments, as 

indicated in Table 2. Next, we computed the mean values 

of IAT, TD, and PC using the simulation data for every 

combination of λLO and λC. Subsequently, we computed 

the projected values using the findings from our analysis in 

Section V and graphically depicted both the theoretical and 

projected values in Figures 17, 18, and 19 to showcase the 

precision of our analysis in forecasting the real values. The 

simulation was conducted on a desktop computer equipped 

with Microsoft Windows 11 operating system, powered by an 

Intel 12th Gen Core i7-12700K CPU running at a clock speed 

of 3.6GHz, and with a total of 16GB RAM. The prediction 

simulation for a dataset with a duration of one hour has an 

average CPU utilization of 3.9%. It takes 105 ms to run 

and make predictions in order to forecast the average inter-

arrival time (IAT), average time delay (TD), and average 

packet count (PC) for SD-GEON and GEPN. The following 

subsections will present the results of the simulation for each 

statistic and provide an analysis of the findings. 

 

1) AVERAGE INTER-ARRIVAL TIME (IAT ) 

The performance of a network is significantly influenced 

by the arrival rate of received packets, denoted as λ. If the 

arrival rate (λ) is more than or equal to the service rate (μ), 

the network is not in a steady state. In this case, the service 

module is unable to process packets fast enough to empty 
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FIGURE 17. Average interarrival times over increasing qGO1 λLO and qEP1 λC . 

 
 

 

the queues of arriving packets, leading to packet drop due 

to limited queue space. Attackers may intentionally induce 

this behavior by introducing malicious packets at a high 

frequency, denoted as λattack. Therefore, it is crucial for the 

network operator to have knowledge of the rate at which 

packets are arriving at an SD-Satellite. Measuring the IAT 

packets by the network operator is an appropriate method, 

as these values demonstrate an inverse correlation with the 

parameter λ. The magnitude of the IAT values represents 

the speed at which packets are being received by an SD- 

Satellite. Fluctuations in the average inter-arrival time (IAT) 
values may suggest the occurrence of a potential cyberattack, 

as packets are being received at a higher rate than expected 

by the SD-Satellite. The average inter-arrival time IAT of an 

SD-Satellite or GEP can be determined using equation (5). 

In order to determine the anticipated IAT at an SD-Satellite 

in the proposed design, the network operator can utilize the 

derived expected arrival rate (λ) at each SD-Satellite and 

 

FIGURE 18. Average transmission delay over increasing qGO1 λLO and qEP1 λC . 

 

 

GEP, as shown in equations (1) and (2). In order to verify the 

accuracy of our analysis, we conducted the simulation 

described earlier and then compared the theoretical findings 

obtained from our analysis in Section V with the simulation 

results, which are presented in Figure 17. We present the IAT 

results for SD-GEON and GEPN in Figures 17(a)(b), 

respectively. As the packet rate (λ) grows, the average 

inter-arrival time (IAT) drops because packets flow more 

rapidly into the SD-GEO and GEP. The simulation accurately 

aligns with the theoretical values, confirming our equations’ 

validity. 
 

2) AVERAGE TRANSMISSION DELAY (TD) 

Transmission delay (TD) refers to the duration required for a 

packet to be processed by the service module of the packet 

and forwarded to the next logical destination or hop. The TD 

can be significantly influenced by the pace at which packets 

arrive, which is constrained by the limited queue size 
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3) AVERAGE PACKET COUNT (PC) 

The mean number of packets received at SD-GEO or GEP can 

be represented as PC. Anomalous PC may indicate the 

presence of malicious activities within the network. Malicious 

entities have the ability to flood an SD-GEO or cause its 

neighboring nodes to discard packets, consequently 

influencing the functioning of a node in the controller 

architecture. Hence, the network operator must determine the 

anticipated average PC values that are predicted to be 

received at each SD-GEO and GEP. The equations (10) 

illustrate the anticipated number of received packets based on 

our analysis. As we increased the values of λLO and λC, 

we anticipate a non-exponential increase, in contrast to the 

other data, because of the linear correlation depicted in 

equation (10). The simulation values in Figures 19(a)(b) 

closely align with the theoretical values, confirming the 

accuracy of our analysis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 19. Average packet count over increasing q  λ  and q  λ . 

B. ML DETECTION RESULTS 

We conducted a 1-hour simulation of network traffic for 

a minimum subset of the satellite controller architecture 

(consisting of one SD-GEO, GEP, and controller instance) as 

described in Section VII-A. The traffic consisted of both 

attack/zero-day and normal traffic, with attack traffic 

representing 25% of the entire dataset. In order to mimic the 

unpredictable nature of a zero-day cyberattack, we randomly 

modify the values of λ, μ, and queue sizes for the SD-GEO 

and GEO by a range of 50% to 90% during attack scenarios. 

To conduct testing and verification for the case study, we 

generated a “key” CSV file including 3600 rows x 6 columns. 

Each cell in the file was filled with either a 0 or a 1, 

representing different types of traffic for the SD-GEO and 

GEP. Specifically, a 0 indicated a normal sample, while a 

1 indicated an attack sample. Next, we have produced a CSV 

file of 3600 rows x 1 column, which includes the λ values 

for λLO and λC. The initial three columns and 

GO1 LO EP1 C 

final three columns of the key CSV file corresponded to the 

average inter-arrival time (IAT), average time duration (TD), 
and processing rate of a server, as shown in equation (8). 

The magnitude or variation of the TD values of a device 

may suggest the occurrence of a cyberattack, as illustrated 

in Figure 4. Attackers may attempt to artificially augment 

the number of packets within a communication node (i.e., 

SD-GEO and GEP) by injecting supplementary packets into a 

node’s queue, denoted as λattack. By applying Little’s law, the 

average total waiting time of a packet can be determined as 

the transmission delay (TD), as represented by equation (8). 

As λLO and λC increase, the number of packets in the 

system, denoted as L, also increases. Consequently, the 

processing time for the packets within the service model 

and their exit time are prolonged. In order to verify our 

analysis, we conduct the queuing simulation discussed earlier 

and measure the TD as packets exit the SD-GEO and GEP 

for different values of λ. Figure 18 confirms the accuracy 

of our analysis, particularly in calculating the correct λ and 

anticipated TD experienced for each SD-GEO and GEP. 

and average processing capacity (PC) for the SD-GEO and 

GEP, respectively. Each row corresponds to the performance 

measurements for a duration of one minute. We used the 

key to create a dataset with 3600 rows x 6 columns. This 

dataset includes simulated values for both attack and normal 

(non-attack) samples, resulting in a total of 21,600 samples. 

Next, we utilize our predictive queuing analysis to gener- 

ate the expected nonattack samples by employing the key and 

λ value CSV files in Python. The data sets are analyzed using 

the CatBoost algorithm, which is a gradient-boosting algo- 

rithm specifically designed for decision trees. In our previous 

study [12], we utilized the XGBoost algorithm [84] to detect 

DOS attacks. Nevertheless, this study employs Catboost due 

to its superior performance, quicker training time, and lower 

overhead in comparison to other gradient-boosting methods 

when dealing with datasets including categorical data [85]. In 

a pragmatic, real-world implementation, the network operator 

would extract network performance metrics from packet 
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TABLE 3. Performance of CatBoost ML algorithm for detection of zero-day cyberattacks and average mean absolute percentage error (MAPE) for k-folds (k = 5) 
cross-validation. 

 

 

TABLE 4. Performance of CatBoost ML algorithm for classification of normal traffic 

vs zero-day cyberattacks. 
 

 

 

capture (pcap) files containing categorical data such as packet 

type, source/destination IP, and port number. Therefore, 

we improve our previous work by utilizing catboost for 

this study in anticipation of the requirement for better 

performance for SATCOM pcap captures. 

The CatBoost ML algorithm is combined with the scikit-

learn multi-output regressor model and trained as a multi-

output regression model using a CSV matrix of lambda 

values and the corresponding projected values. The 

CatBoost model essentially learns to predict accurate network 

performance statistics values based on the lambda values it 

receives. Next, the predicted values from the 

CatBoost model are compared to the simulated values. If the 

absolute difference (|xpred − xsim|) between the predicted and 

simulated values exceeds the threshold of greater than 10%, 
the simulated values are classified as zero-day cyberattacks. 

To evaluate our model in a cloud-based setting, 

we implement the CatBoost ML method using Google 

Colaboratory [86]. This platform is designed for experiment- 

ing with ML models on high-performance hardware like 

GPUs and TPUs. We provide the outcomes of the CatBoost 

ML model in Figure 20, Table 3, and Table 4. We employ the 

Optuna program [87] to optimize the hyperparameters of 

our CatBoost model. The optimal hyperparameters are set 

as follows: a learning rate of 0.0489, an optimal tree depth of 

7, a subsample rate of 0.749, a colsample rate by level of 

0.999, and a minimum number of data points in each leaf 

of 34. Table 3 presents the overall accuracy, precision, recall, 

and F1-score of our model, all of which are above > 94%. 

This indicates the high effectiveness of our machine-learning 

model. The CatBoost output was tested with K-fold cross-

validation, with k=5, and the average mean absolute 

percentage error (MAPE) was computed. The low MAPE 

indicates that the CatBoost ML model can accurately learn the 

predicted values from our lambda and predicted output, with 

an average margin of error of 0.002%. This 

 

 
 

FIGURE 20. Confusion Matrix of CatBoost ML Algorithm for the Different Traffic 

Classes. 

 

suggests that it can reliably predict the network performance 

statistics accurately from our provided generated training data 

from the predictive queuing analysis. We measure the CPU 

usage (33.4%) and the entire time taken for model training 

and testing (8.75s), which showcases the system’s efficient 

performance with minimal CPU usage. 

The average and standard deviation of the accuracy, 

precision, recall, and F1-score were calculated for the five 

folds. The performance of the model in distinguishing normal 

traffic from zero-day attack samples is seen in Table 4 and 

Figure 20. The model’s performance metrics exceed > 94% 

for every class, indicating its effectiveness in detecting zero-

day cyberattacks. Figure 20 shows that 460 samples out of 

21,600 total samples were misclassified (2.13% computed 

incorrectly). The threshold for the case study was 

established arbitrarily at a value greater than 10%. However, 

network operators have the flexibility to determine the most 

appropriate threshold based on the significance of the 

communication. They may choose a more sensitive threshold 

to minimize the occurrence of false negatives, even if it 

means accepting a higher number of false positives. The 

effectiveness of our detection method is attributed to the 

well-documented performance of CatBoost, as well as the 

predictive queuing analysis and retrieved features from the 

simulation. 

 
VIII. CONCLUSION AND FUTURE WORK 

To our knowledge, no research has investigated using queuing 

analysis to anticipate SD-SATCOM controller architecture 

network performance indicators in order to 
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prevent zero-day attacks. To our knowledge, no prior studies 

have utilized queueing analysis predictions and a machine- 

learning model to detect zero-day cyberattacks. Because of 

its worldwide scope and network control, the SD-GEO 

controller architecture is vulnerable to attacks, including zero-

day attacks. We propose a predictive queuing analysis to 

assist network operators in swiftly creating ML training for 

the SD-SATCOM controller architecture by predicting 

network performance data. To test our findings, we simulated 

the SD-GEO controller architecture with a modified version 

of SimComponent, a Python toolkit based on the open-source 

SimPy framework. We employed MATLAB’s aerospace, 

mapping, and satellite communications toolboxes to analyze 

SATCOM traffic and develop our queuing architecture. 

During a one-hour data simulation case study, our Catboost 

ML model identified and classified attack samples with over 

94% accuracy, precision, recall, and f1-scores. 

Our future work will focus on integrating our analysis with 

an intrusion detection system (IDS) and mitigation 

framework. This integration will enable real-time training on 

data and allow for swift mitigation utilizing the GEP. In 

addition, we will enhance the framework to categorize zero- 

day attacks that may resemble or be similar to recognized 

cyberattack types. This will provide the network operator with 

improved guidance on potential strategies to neutralize the 

attack. We may confront obstacles with real-time data 

collection, particularly dealing with space projection delays 

and synchronization issues while using the cloud. 
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