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ABSTRACT SATCOM is crucial for tactical networks, particularly submarines with sporadic communi-
cation requirements. Emerging SATCOM technologies, such as low-earth-orbit (LEO) satellite networks,
provide lower latency, greater data reliability, and higher throughput than long-distance geostationary (GEO)
satellites. Software-defined networking (SDN) has been introduced to SATCOM networks due to its
ability to enhance management while strengthening network control and security. In our previous work, we
proposed a SD-LEO constellation for naval submarine communication networks, as well as an extreme
gradient boosting (XGBoost) machine-learning (ML) approach for classifying denial-of-service attacks
against the constellation. Nevertheless, zero-day attacks have the potential to cause major damage to the
SATCOM network, particularly the controller architecture, due to the scarcity of data for training and testing
ML models due to their novelty. This study tackles this challenge by employing a predictive queuing analysis
of the SD-SATCOM controller design to rapidly generate ML training data for zero- day attack detection.
In addition, we redesign our singular controller architecture to a decentralized controller architecture to
eliminate singular points of failure. To our knowledge, no prior research has investigated using queuing
analysis to predict SD-SATCOM controller architecture network performance for ML training to prevent
zero-day attacks. Our queuing analysis accelerates the training of ML models and enhances data adaptability,
enabling network operators to defend against zero-day attacks without precollected data. We utilized the
CatBoost algorithm to train a multi-output regression model to predict network performance statistics. Our
method successfully identified and classified normal, non-attack samples and zero-day cyberattacks with
over 94% accuracy, precision, recall, and f1-scores.

INDEX TERMS Software-defined networking (SDN), cybersecurity, LEOs, GEOs, machine learning.

I. INTRODUCTION
ATELLITE communication (SATCOM) is vital for
S tactical military networks, with satellites often acting as
relay stations in space. They receive signals, amplify them,
and then retransmit them to ground entry points (GEPs).
With the recent development of software-defined networking
(SDN), researchers are investigating creative techniques to
connect SDN with tactical SATCOM networks [1]. SDN is a
networking paradigm that decouples the control plane from
the data plane of network forwarding devices. This separation

enables the consolidation of control responsibilities under one
or more controllers, resulting in improved administration,
visibility, and security of the network [2], [3].

In recent years, the private sector has engaged in initiatives
for LEO SATCOM networks, including SpaceX’s Starlink
and Amazon’s Kuiper. The Army [4] and the Department
of Defense (DoD) [5] have collaborated closely with Starlink
and other suppliers to develop Low Earth Orbit (LEO)
constellations for military applications. The military forces in
Ukraine have utilized Starlink as their primary
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FIGURE 1. Example SD-LEO Constellation for Submarines.

communication infrastructure, with backing from both the
U.S. government and Ukraine [6]. LEO constellations offer
superior data transfer rates and reduced communication delay
compared to conventional geostationary (GEO) satellites [2].
The infrastructure depicted in Figure 1 can be utilized for
tactical SD-LEO constellations, serving military entities like
submarines. Submarine crews conduct covert operations in
hostile environments via discreet information transmission.
Therefore, they rarely contact GEPs during long submersion
and patrol. In order to establish communication with GEPs,
submarines are required to emerge from the depths of the
oceans to breach the surface. In order to evade detection
by enemy troops, submarines must possess the capability
to promptly transmit and receive information, enabling
them to swiftly submerge again. Presently, submarine crews
commonly communicate by use of GEO satellites positioned
at a distance of approximately 36,000km, resulting in a
propagation delay of around 250 milliseconds. Future tac-
tical networks might potentially employ LEO constellations
positioned at distances of 1500km or less, resulting in a
propagation delay of around 30 milliseconds or less [2].
Submarine communication links necessitate increased
security measures, in addition to reduced latency. Messages
are classified with a high level of security and are frequently
time-sensitive, making them attractive targets for malicious
entities. A common strategy employed by malicious entities,
such as hostile unmanned aerial vehicles (UAVs), involves
launching denial-of-service (DoS) attacks [7], [8]. These
attacks aim to overwhelm a target by flooding it with
excessive network traffic, with the intention of either reducing
the available data transfer rate or causing a complete system
failure. UAVs offer a risk to SATCOM networks, requiring
further investigation, as demonstrated in this study, to tackle
this crucial aspect of communication [9]. There is a
requirement for network defense models that are capable of
identifying and reducing the impact of these attacks. Prior
studies [1], [10] have explored the creation of shipboard
networks using SDN or proposed SDN-based SATCOM
networks for various tactical settings. Additional studies [11]
have devised methods to mitigate DoS attacks on ground
stations. Nevertheless, these prior studies fail to consider the
use of an SD-LEO constellation network for submarines, nor
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a way for detecting cyber threats in these networks such as
DoS attacks.

To address this issue, our prior work [12] presented a relay
SATCOM network for submarines on patrol, as well as
detection and identification of attack strength framework for
DoS attacks. By employing the extreme boosting (XGBoost)
machine learning algorithm, our model attained > 97%
accuracy, precision, recall, and Fl-scores in detecting and
classifying different levels of DoS attack intensity. In our
study [12], we examined the SD-LEO forwarding plane as
a network consisting of multiple-server forwarding queues,
specifically following the M/M/C model, where C represents
the number of queues. We utilized Simcomponnet, a network
traffic simulation program based on the SimPY process-
based discrete-event simulation framework, to simulate the
network traffic of both normal and varying DoS attack
strength classes [13]. During the simulation, we measured
queuing theory-based metrics [14] such as the average
interarrival time (I4T), transmission delay (7D), and packet
count of packets (PC). Using these measurements, we applied
the XGBoost ML model to distinguish between regular traffic
and DoS attacks. The outcome was an average accuracy of
97% in recognizing and categorizing both regular (non-attack)
and attack traffic. The DoS traffic was classified into distinct
levels of severity such as 0%, 10%, 50%, and 90% loss of
traffic.

One limitation of our prior model is that it requires pre-
labeled data for IAT, TD, and PC in order to train the
XGBoost algorithm and does not consider controller or
GEP security. Since SDN controllers and GEP manage the
entire framework, they are prime targets for attackers;
nevertheless, ML techniques can be utilized to guard against
cyberattacks [15], [16], [17], [18]. Obtaining labeled training
data may not always be possible in tactical deployments.
Submarine communication is often limited by their commu-
nication patterns. Zero-day cyberattacks [19], [20] are new
and unknown, therefore pre-trained machine-learning models
cannot detect and protect against them.

Past research [19], [21], [22], [23], [24], [25] has con-
ducted queuing analysis on M/M/1 or M/M/1 (single server)
models, which do not adequately account for interconnected
multi-server satellite constellations (M/M/C). Furthermore,
the intrusion detection systems (IDSs) developed in these
studies have utilized unsupervised learning and deep learning
models that assume the availability of training data and are
susceptible to false positives. Our proposed solution is to
rapidly and dynamically generate predictive training data
to discover future controller architecture cyberattacks. We
utilize predictive queuing analysis to calculate the mean inter-
arrival time (I47T), mean transmission delay (7D), and mean
packet count (PC) for each controller in the network. By
employing our queuing analysis, the network operator can
predict the normal functioning of the controller and GEP
architecture.

In this study, we employed a Jackson network open (JNO)
queueing model [26] to depict the interconnected queues,

VOLUME 5, 2024



CIEEE EEF O wurnal of the
OmI0C  communications Society

where the output of one queue serves as the input for another
in a linked manner, symbolizing the cooperative back-and-
forth communication between the controllers and GEPs. The
JNO model provides a product-form solution for analyzing
and evaluating network performance [27]. In order to
showcase the precision and efficiency of our queuing analysis
in identifying zero-day attacks, we provide a case study with
a one-hour simulation of controller and GEP architecture
traffic. This simulation includes randomized zero-day
cyberattacks within the framework. By employing our
advanced predictive queuing analysis, we can accurately
identify the occurrence of zero-day cyberattacks with accu-
racy, precision, recall, and fl-scores over > 94%.

To our knowledge, no prior research has suggested utiliz-
ing queuing analysis to predict network performance metrics
for an SD-SATCOM controller architecture to improve
security against zero-day attacks. Furthermore, there has been
no previous research that has shown the efficacy of utilizing
queuing analysis predictions in conjunction with a ML model
to detect zero-day cyberattacks. Thus, this work presents the
following contributions:

A study is done to examine the queuing behavior of
an M/M/C Jackson open queuing SD-LEO management
layer for submarines on patrol.

A novel predictive queuing analysis is proposed for
accurately predicting the network performance metrics
of average inter-arrival time (I4T), average transmission
delay (TD), and average packet loss probability (PC) for
the SD-LEO management layer.

A case study shows the prediction’s precision, swiftness,
and ability to detect zero-day threats. The study suc-
cessfully detects zero-day cyberattacks with over 94%
accuracy, precision, recall, and f1-scores.

A list of acronyms and meanings that are used in the paper
is provided in Table 1. The rest of this paper is organized
as follows. Section II presents an analysis and examination of
previous research and studies. Section III presents an
overview of SATCOM in tactical networks, queuing modeling
for satellites, and SATCOM cyberattacks. Section IV describes
the SD-LEO and management architecture that serves as the
foundation for the queuing analysis. Section V describes the
methodology of this work. Section VI details our simulation
study using MATLAB with the aerospace, mapping, and
satellite communications toolboxes. The results of our case
study are shown in Section VII. Finally, Section VIII provides
the concluding remarks of the study.

Il. RELATED WORK

SATCOM networks are vulnerable to various cyberat- tacks,
including zero-day attacks that exploit previously unknown
vulnerabilities in the network to carry out novel kinds of
cyberattacks  [19], [20], [28]. ML technologies are
particularly efficient methods for combating these dangers
[29], [30], [31]. Supervised ML methods, while effective in
countering known attacks, are not capable of effectively
countering zero-day attacks due to their reliance
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TABLE 1. List of acronyms and definitions.

Acronyms Definitions
SATCOM Satellite Communications
SDN Software-Defined Networking
SD-SATCOM Software Defined SATCOM
LEO Low Earth Orbit
MEO Medium Earth Orbit
GEO Geostationary Orbit
GEP Ground Entry Point
DoD Department of Defense
UAV Unmanned Aerial Vehicle
QBD Quasi Birth Death
MQL Mean Queue Length
GS Ground Station
DTN Deliay Tolerant Network
ML Muchine Learning
Catboost Categorical Boosting
LightGBM Light Gradient Boosting
XGBoost Extreme Gradient Boosting
MAPE Mean Absolute Percentage Error
DAE Deep Auto-Encoder
VAE Variational Auto-encoder
TS-ANN Two-Stage Artificial Neural Network
A Arrival Rate of Packets
o Service Rate of Packets
TAT Average Interarrival Time of Packets
TD Average Transmission Delay of Packets
PC Average Pucket Count
IDS Intrusion Detection Systems
INO Juckson Network Open Queuing
M/M/1 Single Server Queuing Muodel
M/M/C Multi-server Queuing Model
M/G/1 Single General Distribution server
ARP Address Resolution Protocol
CPU Central Processing Unit
DDoS Distributed Denial-of-Service
AP Application Programming Interface
ONOS Open Network Operating System
SAGIN Space-Air-Ground-Integration Network
FL Federated learning
SQM Signal Quality Monitoring
GNSS Globual Navigation System
HPBW Half-Power Beam Width
FOV Field of View
Lprop Path loss
QT Queuing Theory

on training data that accurately represents the attack [32].
Unsupervised learning models have the ability to identify
abnormalities in network traffic for the purpose of detecting
zero-day attacks. However, it is widely recognized that these
models often produce a significant number of incorrect
identifications, both in terms of false positives and false
negatives [33], [34], [35], [36], [37].
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To address this problem, we have proposed implementing
a predictive queuing analysis to predict the anticipated
network metric values of the SD-SATCOM -constellation
satellites. The values are subsequently utilized to train the
CatBoost-supervised ML model [38] for predicting the
expected theoretical values. An attack sample is categorized
as anomalous (i.e., zero-day cyberattack) if the obtained
values surpass the threshold. To accurately forecast the
values, a queuing analysis is conducted using the M/M/C
Jackson open network queuing theorem. Prior queuing
analysis has employed queuing models that predominantly
utilize simplistic M/M/1 or M/G/1 (single server models)
queuing methodologies, which do not correctly capture the
traffic demands of a dynamic multi-satellite constella- tion
comprising several interconnected satellites. Moreover,
previous research has predominantly employed computa-
tionally demanding combinations of neural networks and
unsupervised learning models to identify abnormal patterns of
activity and classify them as zero-day attacks which may not
be feasible in tactical network deployment due to the
limitation of computing resources.

This section presents an examination of current, contem-
porary techniques that are relevant to this work. To our
knowledge, there has been no previous research that has
developed a predictive queuing analysis for an SD-SATCOM
network to detect zero-day attacks. As a result, we include two
literature review subsections in this related work section that
perform a comparison examination of our proposed framework
and existing methodologies or alternative approaches. Initially,
we analyze the current body of research on queuing analysis for
SD-SATCOM networks and highlight the distinctions between
prior investigations and our own. Next, we analyze prior
research that employs zero-day cyberattack defense tactics for
satellite networks and highlight the differences between these
studies and our own. Finally, we outline the similarities and
differences between this study and prior research [19], [21],
[22], [23], [24], [25], emphasizing our unique contribution to
the state-of-the-art.

A. LITERATURE REVIEW OF QUEUING ANALYSIS FOR
SD-LEO

Reference [21] provide an analytical queuing model to assess
the performance of SD-SATCOM. The authors integrate and
consider the combination of Delay Tolerant Network (DTN)
and OpenFlow technologies in their queuing model.
Furthermore, the authors construct their queuing model by
applying Jackson’s theorem to the LEOs, GEOs, and MEOs,
treating them as a network of queues. During their
examination of queueing, a single GEO satellite is desig-
nated as the controller, while the MEO satellite facilitates
communication between the GEO and LEO satellites via
a store-and-forward DTN mechanism. The authors employ
the POX as the controller at the GEO node and utilize
OpenvSwitch as the switches at the MEO nodes. In order to
verify the accuracy of their queueing analysis, they conduct a
simulation using Satellite Tool Kit (STK). The satellite link

6614

parameters were set according to the Tr constellation [39].
Furthermore, they utilize Linux Traffic Control and Netem
to effectively oversee and control network traffic. Their
comparison of their analysis with the simulation results
illustrates the validity and precision of their methodology in
evaluating SD-SATCOM performance. However, in contrast
to our proposed study, their modeling analysis only takes into
account a single controller method and neglects to discuss
a distributed SD-SATCOM controller design. Furthermore,
a solitary GEO controller would consistently be beyond the
reach of all MEOs and LEOs in the system, resulting in
extra communication delays between LEOs and the GEOs.
Having only one controller would create a vulnerability in
the architecture, which might have severe consequences,
particularly for the secure communication of submarines.
Furthermore, the authors of [21] extend their research to
determine the duration of time that a file remains in the
network as it spreads, while we conduct our queuing study
to predict metrics for the detection of zero-day cyberattacks.
Reference [22] presents a model that accounts for time-
varying channels in order to aggregate traffic across networks
in LEO constellation networks. The authors’ queuing model
incorporates the variability of realistic satellite channels,
which may experience times of extremely poor connectivity
due to Land Mobile Satellite (LMS) channels, in both the
ground-to-satellite and satellite-to-ground links. Their model
comprises three LEO satellites and two ground stations
that communicate using time-varying LMS channels. The
model utilizes two-dimensional Markov chains for LMS
links and M/M/1 queuing to ensure reliable inter-satellite
communications. In order to validate their model, the authors
employ event-driven simulation implemented in C++ to
assess the precision of the model and analyze queuing and
end-to-end delays across several scenarios. Furthermore, they
utilize Quasi-Birth-Death (QBD) processes as a theoretical
framework to evaluate the queuing delay in LEO satellite
connections. This framework is then extended to include
communication channels within LEO constellations. The
model is validated through a comparison with system-
level simulations that employ empirical channel statistics.
In addition, they assess the distributions of end-to-end
delay and analyze the impact of background traffic. Their
simulation results confirm the validity of their model and
illustrate their ability to appropriately validate the LMS
channels in a time-varying LEO constellation. However, in
contrast to our suggested framework, their suggested
framework focuses on assessing LMS channels from ground-
to-satellite and satellite-to-ground, but neglects to take into
account a more comprehensive constellation management
architecture and synchronization utilizing the cloud. Their
suggested methodology accurately predicts the number of
packets received at LEO, but it does not take into account
other metrics such as average inter-arrival time (A7) and
transmission delay (7D) values. In contrast to our work, the
focus of the mentioned work is solely on evaluating LMS
channels, rather than predicting queuing metrics to detect
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zero-day cyberattacks. In addition, their approach does not
include the modeling of SDN communication by integrating
a controller(s) within the constellation, as it was not within
the scope of their research.

Reference [23] presents a time-limited M/G/1 model to
account for the intermittent transmission between satellites
caused by the fluctuating nature of satellite communica- tion.
The authors discuss the challenges related to system modeling
and performance analysis in satellite networks, focusing
particularly on the acquire-store-forward process of traffic.
Traditionally, this process is depicted as a queuing system,
with the transmitter serving as the server and the buffer
acting as the queue. However, the intermittent nature of
satellite connections poses a barrier to adopting traditional
vacation laws, as the connection’s activity is not influenced
by the buffer state. Therefore, the authors extend the queueing
model from the usual M/M/1 to M/G/1 to accommodate a
more general server queuing distribution. The authors obtain
steady-state equations and establish lower limits for
performance parameters using transient analysis. The
simulation results clearly demonstrate the efficacy of their
approach. In order to verify the accuracy of their find- ings,
the authors compare the outcomes of their simulations with
the theoretical predictions. They provide evidence for the
soundness of analysis and the precision of estimating the
Mean Queue Length (MQL), Mean Waiting Delay (MWD),
and traffic intensity. The substantial resemblance between the
analytical and simulation outcomes validates the robustness
of their methodology. However, in contrast to our proposed
research, their study does not take into account a satellite
controller architecture for managing a constellation. Instead,
their concentration is on inter-satellite communication.
Although the M/G/1 model generates the server distribution,
it fails to adequately represent the interconnected nature of an
M/M/C Jackson network of satellites. Furthermore, the
authors have the capability to anticipate MQL, MWD, and
traffic intensity. However, they did not take into account /AT,
TD, and PC. Furthermore, the architecture does not consider
the synchronization of SDN controllers or the prediction of
metrics for defending against zero-day cyberattacks, as these
topics were outside the scope of their work.

B. LITERATURE REVIEW OF ZERO-DAY CYBERATTACK

DEFENSE FOR SATCOM NETWORKS

Reference [19] focused on enhancing the security of
SATCOM communication systems against DoS and zero- day
cyberattacks carried out by cyberattackers. A proposed
solution to handle these risks is the implementation of a
comprehensive deep federated learning (DFL)-based threat
detection model. This model aims to proactively identify
intrusions in SATCOM networks by utilizing decentralized
on-device data. Importantly, the privacy of this data is
preserved throughout the process. This approach utilizes a
decentralized data-level preprocessing (DLP) system to
ensure that the original data is hidden while giving
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well-processed, statistically altered data for effective threat
identification. The proposed model performs federated learn-
ing iterations using a novel deep auto-encoder (DAE)
structure. It stores local data in safe repositories and only
shares the learned weights with the central federated learning
server. Federated learning (FL) is a promising solution that
addresses the difficulties of classic centralized IDSs and
provides unique advantages. FL facilitates the collaborative
training of ML models using decentralized data sets. This
allows individual participants, such as satellites, ground
stations (GS), or end-user devices, to train the Intrusion
Detection System (IDS) model locally without compromising
the privacy of their sensitive data by sharing it with a central
server or data collectors. The main objective is to improve the
security and efficiency of a traditional IDS model in a
distributed way by utilizing FL, while also addressing issues
such as data leakage and the effectiveness of model training.

The DAE model is a neural network that is trained
to compress and then reconstruct its inputs, enabling the
network to acquire important ideas and correlations among
the input data. By exclusively training the DAE model using
normal data, it acquires expertise in accurately recreating
normal data but faces difficulties in reconstructing atypical
data, such as zero-day attacks. The performance of the
proposed DFL-IDS model is assessed by conducting evalua-
tions on the UNSW-NBI15 and Bot-IoT datasets. The results
are then compared to those obtained using the centralized
DAE approach. Their DFL-IDS achieves similar detection
performance as the centralized DAE, while ensuring data
confidentiality and delivering optimal accuracy rates for
detecting attacks. However, in contrast to our suggested
framework, one limitation of this work is the utilization
of the DAE unsupervised learning method to identify the
existence of zero-day cyberattacks by assigning anomalous
(zero-day attack) labels to data that it finds difficult to
reconstruct. As previously stated, unsupervised methods have
demonstrated an inclination for generating false positives,
which in turn leads to increased investigation and delays
for network operators whenever a false positive is detected. In
addition, the author’s suggested methodology relies on the
availability of “normal”, nonattack traffic data to train the
DAE. However, when it comes to submarine SATCOM
communication, the availability of training data for routine
occurrences may be scarce due to the uncommon use of the
infrastructure. By employing the suggested queuing analysis
outlined in this paper, the network operator can generate
normal training data for identifying zero-day cyberattacks
without making any assumptions about the availability of
training data in advance.

Reference [24] investigates the composition of space-
air-ground integration networks (SAGIN) and suggests a
dedicated collaborative federated learning (FL) framework
for SAGIN to identify abnormal traffic caused by cyberat-
tacks, such as zero-day cyberattacks. A specialized traffic
detection system is proposed that is specifically designed
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to satisfy the unique requirements and characteristics of
SAGIN. This approach addresses issues such as the need
for manual labeling and feature extraction by enhancing deep
learning algorithms and utilizing semi-supervised learn- ing
approaches. The developers utilize the Hierarchical
Spatiotemporal Feature Learning Network (HAST-NAD) to
build their ML model. This model has achieved detection
accuracy of over 99% in various public datasets. They further
enhance the model by incorporating a one-dimensional
convolutional neural network in the input layer. This addition
helps extract the spatial features of the data packet sequence.
This approach has greater physical significance and requires
less computational effort. A one-dimensional convolutional
neural network automatic codec is constructed by utilizing the
skip connection method within the ladder network. This stage
transforms a portion of the initial network space feature
extraction into a semi-supervised approach. Auto-encoders
facilitate independent training while minimizing cognitive
load. Ultimately, the various data packet characteristics are
transferred in a certain order to the LSTM neural network
following the process of extracting the features. As a result
of modifying the HAST-NAD dataset, the authors achieved a
detection accuracy, precision, and recall of over 98% for
anomalous traffic on the ISCX2012 dataset. However, in
contrast to our work, the authors assume that training data is
accessible for first labeling certain samples required for their
semi-supervised model. The data accessibility of submarine
SATCOM networks may be restricted due to the swift
deployment and scarce communication. Moreover, the
utilization of deep learning techniques requires significant
computational resources [40]. Consequently, implementing
the authors’ proposed model may not be practical for
constrained computational devices utilized in tactical
communication.

Reference [25] provide a new training feature set that
integrates power and Signal Quality Monitoring (SQM)
metrics from a single-antenna Global Navigation Satellite
System (GNSS) receiver. This feature set is designed to
identify spoofing and zero-day cyberattacks. The researchers
have created a unique collection of attributes that integrate
power and Signal Quality Monitoring (SQM) measurements
from a GNSS receiver with a single antenna. The authors
provide a Two-Stage Artificial Neural Network (TS-ANN)
that utilizes this feature set in combination with multi-
correlator finger values to achieve efficient spoof detection.
In order to identify zero-day cyberattacks, the authors propose
a zero-day attack detector that relies on unsupervised
representation learning. This is achieved by utilizing a
Variational Autoencoder (VAE) that is trained solely on gen-
uine (nonattack) datasets. By doing so, the detector becomes
more proficient in detecting new and previously unseen attack
patterns. The authors demonstrate the effectiveness of their
proposed approaches by comprehensive experiments on
various attack scenarios using publicly available datasets,
such as the TEXBAT dataset. Their suggested model yields
results on the TEXBAT datasets, showcasing that their
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TSANN achieves a detection probability (PD) beyond 99%
for comparable test datasets. During more complex attack
situations, such as the DS-7 attack dataset, the performance
may decline to 50.68%. The zero-day detector consistently
maintains a detection probability of over 92.5% for zero-day
cyberattacks, demonstrating its capacity to effectively detect
previously unknown attacks. However, in contrast to our
proposed approach, their strategy necessitates and assumes
pre-existing training samples to train the unsupervised model,
VAE. As previously stated, the availability of this training
data may not be practical in situations where submarines on
patrol have limited communication capabilities. In addition,
the authors intentionally omit any discussion of leveraging
SDN for mitigation as it falls outside the paper’s scope.

Reference [41] presents the STOP framework to mitigate
location spoofing attacks on delivery vehicles employing
global positioning system (GPS) satellite networks. Current
vehicle inspections, essential for safety, are infrequent and
protracted, frequently necessitating extended durations to
obtain necessary data when a vehicle is chosen for inspection.
The article presents STOP, an advanced vehicle inspection
assistance system aimed at enhancing efficiency by providing
inspectors with location tracking of cars. Although exten-
sively utilized, GPS is not regarded as entirely secure [42]. A
GPS spoofing attack seeks to mislead GPS receivers by
transmitting false signals. These are designed to mimic
standard GPS signals and can be altered to enable the receiver
to determine its location as intended by the attacker.
Affordable GPS spoofing devices are readily accessible in the
market, enabling an attacker to procure them with ease. STOP
is the first system of its kind, incorporating tamper- resistant
records that thwart location spoofing assaults. It functions
through mobile devices and a central computer, allowing
authorities to pre-select vehicles for inspection and obtain
requisite data beforehand. The solution enables inspectors to
authenticate and endorse the location history of each vehicle,
thereby ensuring transparency and security. A prototype was
developed on the Android platform and assessed under real-
world situations, emphasizing location accuracy, response
times, and Bluetooth connection during inspections. The
system utilizes the location data from onboard mobile devices
to monitor incoming vehicles at inspection sites and employs
location verification to digitally authenticate the location
chain and inspection data. The evaluation discussion of this
prototype yielded insights into the viability of this system
and the location retrieval capabilities of Android devices.
However, in contrast to our work, the authors’ work focuses
on protection against GPS spoofing attacks and neglects
discussion of their technique’s ability to defend against novel,
zero-day cyberattacks that aim to spoof GPS systems, since
this concern falls outside of the scope of their work. This
research describes a GPS spoofing attack security prototype,
concentrating mostly on ground tracking devices and
minimally on satellite networking security, as the latter falls
outside the scope of this study as well.
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C. SUMMARY

To our knowledge, there has been no prior research sug-
gesting the use of queueing analysis for predicting the
network performance metrics of an SD-SATCOM network in
order to improve security against zero-day cyberattacks.
Additionally, no previous studies have provided case study
data to demonstrate the practicality and precision of detecting
these attacks. This section provided a thorough overview
of the most recent research in queueing analysis for SATCOM
networks and protection methods against zero-day
cyberattacks. The majority of the queuing studies primarily
focus on the utilization of a common M/M/1 or M/G/1 model
or a single controller model. These studies do not take
into account the potential application of the analysis to
enhance ML-based zero-day cybersecurity detection or the
queuing characteristics of a distributed controller architec-
ture. Prior work use queuing analysis to primarily analyze the
SD-SATCOM network, LMS time-varying channels, or inter-
satellite communication.

Furthermore, we presented a comprehensive summary of
the current field of research about safeguarding SATCOM
networks against zero-day intrusions. Current research pri-
marily concentrates on the utilization of IDSs through the
implementation of distributed federated learning and/or deep
learning models. Prior research primarily concentrates on
unsupervised or semi-supervised ML algorithms for
identifying anomalies in network traffic or ground devices
spoofing attack defenses. Nevertheless, unsupervised ML
models tend to generate a significant number of incorrect
positive results, as evidenced by several studies [33], [34],
[35], [36], [37]. Semi-supervised ML models aim to
address this issue by selectively labeling a subset of data
for training, hence minimizing the occurrence of false
positives and enhancing overall performance. Nevertheless,
both unsupervised and semi-supervised ML models rely on
the presence of training data consisting of regular, non- attack
samples to effectively identify anomalies. It is worth noting
that deep learning methods are notorious for their high
resource requirements [40] which may pose challenges in the
context of tactical networks due to resource constraints. In the
context of submarine tactical SATCOM communications, the
availability of this resource may not be easily accessible and
could be restricted. Our study improves upon the current state-
of-the-art by developing a predictive queueing analysis that
can quickly generate training data for the detection of zero-
day cyberattacks in SD-SATCOM networks. This is
achieved by dynamically producing nonattack samples.
Additionally, we showcase a case study that demonstrates the
efficiency and precision of our machine-learning approach in
identifying these threats.

lll. BACKGROUND

A. SOFTWARE DEFINED NETWORKING FOR LEO
CONSTELLATIONS

SDN lets users directly manage data forwarding in network
nodes. The networking industry favors SDN because it
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FIGURE 2. General SDN Architecture [54].

facilitates network device programming. Stanford University
coined the term “SDN” to describe a software protocol
that allows servers to direct network switches on packet
transmission destinations [43]. The initial SDN standard was
OpenFlow. OpenFlow in SDN systems provides a communi-
cation protocol for the SDN controller to communicate with
network devices like switches and routers, both physical and
virtual (hypervisor-based). As depicted in figure 2, SDN can
be characterized by three planes:

1) Application Plane: 1t encompasses SDN applications
for the purpose of network management, policy
enforcement, and provision of security services.

2) Control Plane: This is a centralized control framework
that operates the network operating system and offers
hardware abstractions to SDN applications in a logical
manner. A flow in SDN refers to a sequence of
instructions that govern the transmission of packets
between a source and a destination. Controllers (SD-
GEOs) populate the flow tables of forwarding devices
(SD-LEOs) with the flow entries.

3) Data Plane: A set of forwarding components employed
to transport traffic flows based on instructions received
from the control plane.

The infrastructure layer consists of routers, switches, and
access points, as depicted in the diagram. The data plane is
formed by this layer, which represents the physical network
equipment in the network (e.g., relay/forwarding SD-LEOS).
Application programming interfaces (APIs) facilitate the
transmission of information across different layers of SDN
architecture. The controller (e.g., SD- GEO) utilizes
southbound APIs such as OpenFlow [43], ForCES [44],
PCEP [45], NetConf [46], or IRS [47] to
establish communication with the data plane and provide
oversight. This capability allows SDN controllers to manage
and monitor networks globally, improving cybersecurity by
gathering data for ML models to detect attacks. When
available, several controllers communicate with each other
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via Westbound and Eastbound APIs, such as ALTO [48]
or Hyperflow [49]. The highest layer is the application plane.
At this level, the network operator can employ functional
applications to enhance energy efficiency, con- trol access,
manage mobility, and/or ensure security (e.g., ML
algorithms). The application layer utilizes northbound APIs,
including FML [50], Procera [51], Frenetic [52], and
RESTful [53], to establish communication with the control
layer. The network operator can utilize these APIs to
efficiently communicate the necessary changes to the control
layer, thereby empowering the controller to implement the
required adjustments to the infrastructure layer.

In contrast to SDN, conventional networks feature
forwarding logic managed by forwarding agents. Each
forwarding device must be changed to adjust the network.
These limits limit network management rules in traditional
networks and provide scalability concerns for SD-LEO
networks. SDN lets network operators instantly change SD-
LEOS forwarding data flows. This makes adapting to traffic
and security changes easier.

B. SATCOM CYBERATTACKS

The main goal of attackers is to maliciously disrupt SATCOM
networks in order to gain personal advantages. Studies on
SATCOM have investigated various risks asso- ciated with
cyberattacks aimed at SATCOM networks. Network
operators must be cautious in order to reduce the possible
impact of various attacks on their SD-SATCOM network.
Guo et al. [55] define threats to SATCOM network security
as follows:

. Jamming Attack: Jamming attacks are classified as
active attacks that are designed to interfere with a
network node’s communication channel. This is accom-
plished by releasing strong signals or packets, which
leads to a decrease in the signal-to-noise ratio (SINR).
As a result, it disrupts regular communication with
external nodes and causes a loss of availability.

- Eavesdropping Attack: Eavesdropping refers to the act
of silently intercepting and accessing the self-
established information exchange among nodes without
disrupting the network. Eavesdroppers have the abil- ity
to utilize the gathered data to deduce sensitive
information.

- Spoofing Attack: Spoofing is an attack that impersonates
identity and acquires confidence through authentication.
To communicate with the target, the attacker imper-
sonates a reputable satellite, exploiting authentication
system flaws. Attacker obtains sensitive information or
commits other offenses. Spoofing signals are made to
look real, so the recipient tracks them inadvertently. Due
to imprecise pseudo-distances and satellite coor- dinates,
they mislocate the receiver and increase signal
propagation delay.

- Denial of Service (DoS) Attack: DoS attacks aim to
render network services inaccessible by obstructing
legitimate users’ access to certain network resources,
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thereby causing system overloads and hindering the
fulfillment of legitimate requests. This is frequently
accomplished by flooding a target satellite with false
packets in an attempt to exhaust the limited resources on
board.

IV. SD-LEO NETWORK ARCHITECTURE

Figure 1 illustrates the utilization of the SD-LEO constel-
lation by a submarine to communicate with a GEP. The
submarine will ascend from the depths of the water and
establish a connection with a nearby SD-LEO satellite. The
SD-LEOs route traffic through each other to the destination
GEP by using the routing logic from the SD-GEO controller
within range. The GEP will establish a two-way contact with
the submarine until the communication is completed, after
which the submarine will submerge again. To achieve nearly
worldwide oceanic communication coverage and enhance
controller visibility for optimal routing, we have enlarged and
enhanced our existing framework based on our past work
[12].

Our proposed approach utilizes controllers that operate in a
flatly distributed manner, as depicted in Figure 3. Every SD-
GEO controller is responsible for overseeing a certain region
of the forwarding SD-LEOs. These controllers collaborate to
manage the overall network effectively. Every controller
transmits information regarding the forwarding SD-LEOs
it oversees to the other controller. Section IV-A outlines
the procedure for synchronizing modifications through the
application of cloud technology, the enhanced SD-GEO
controller design, queuing architecture, and cloud integration.
Based on our MATLAB simulation, we have found that
the ideal number of controllers is four SD-GEO controllers
positioned at a distance of 35,768km with each SD-GEO
paired to a matching GEP. We discuss these parameters
further in Section VI. Each GEP can communicate with each
other with the use of a defense-integrated cloud [56].

We note that one potential concern is the network’s
scalability constraints. While four GEO controllers would
enhance the management of the SD-LEO forwarding layer,
there may be vendor-specific limitations on the process-
ing power regarding the number of forwarding SD-LEOs that
each SD-GEO controller can oversee. To generalize our
findings, we simulate our architecture and approach, enabling
us to abstract the controller processing rate from
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previously published literature, and to test topologies with
varying numbers of GEPs connected to varying numbers of
controllers. We show that we can temporarily increase the
system’s overall u if network demand arriving at a controller,
A, surpasses its processing capabilities

Additionally, we recommend placing 64 SD-LEOS for-
warding satellites at a distance of 78 1km, following a Walker
Delta orbital path [57] which will allow for near worldwide
communication coverage. This will allow submarines to
surface from any major body of water (i.e., oceans, seas, etc)
and connect with SD-LEO to communicate with a GEP.
Furthermore, depicted in Figure 1 is a hostile UAV that may
potentially launch a cyber attack on the SD-GEO controller to
disrupt the network’s routing and obstruct communication.
The malicious UAV could potentially gain unauthorized entry
into the system and attempt to initiate cyber attacks such
as jamming, eavesdropping, spoofing, DoS, and zero-day
attacks. To safeguard against these intrusions, the GEP will
systematically gather performance metrics from the SD-GEO
satellites and feed them into the cloud architecture that hosts
our ML model. The CatBoost ML model will build the
normal, nonattack dataset through our analysis and then train
on the values to acquire knowledge of the proper values.
Subsequently, the model will utilize the gathered information
to forecast the anticipated values and subsequently evaluate
the collected expected values to identify any abnormal mea-
surement, thereby detecting a zero-day attack. Subsequently,
the model will notify the network operator at the GEP to
implement countermeasures, such as disconnecting the
malicious node from the constellation, in order to safeguard
the SD-GEO.

A. CLOUD FUNCTIONALITY

The Department of Defense (DoD) and military organiza-
tions have utilized cloud infrastructure for their networking
systems [58], [59]. Similarly, under our proposed archi-
tecture, the defense-integrated cloud will be a rigorously
protected server situated in a military-operated or contracted
facility. In the context of SDN, it is referred to as the
application plane. The following sums up its primary jobs:

- Data Aggregation: Once the data is gathered from the
SD-LEOs and SD-GEOs, it will be sent to the GEP.
From there, the GEP will transport the data to the cloud
infrastructure where it will be stored and also utilized for
training and testing the ML model.

- Cyberattack Detection: The ML model (CatBoost algo-
rithm), will utilize the data collected from satellites to
generate predicted data for our queuing analysis. Its
purpose is to determine whether a zero-day attack has
taken place. The cloud platform will establish commu-
nication with the GEP responsible for the SD-GEO and
inform the network operator about the attack.

- SD-GEO Controllers Synchronization: Our concept uti-
lizes a flatly distributed design, where each SD-GEO has
an equal level of control in the system as shown in
Figure 3. They collaborate to ensure the SD-LEOs
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constellation remains operational. To ensure efficient
traffic routing, an SD-GEO must have knowledge of the
status of SD-LEOs that are outside of its jurisdiction.
Consequently, every SD-GEO is required to exchange
status updates with one another. Given the limitations of
distance and communication ranges, accomplishing this
task in space will be challenging. To facilitate this
process, we suggested that the SD-GEOs regularly
provide updates on the SD-LEOs they control to each
other. To accomplish this, these updates will be uploaded
to the cloud using the GEPs. The cloud will store a
database of SD-LEO status information received from
the SD-GEOs and will only transmit updates to the other
SD-GEOs via the GEP if there are any updates available.
This will enable the most efficient utilization of network
bandwidth by transmitting only updates from the Cloud
to SD-GEOs.

V. METHODS

Historically, network monitoring has been used to detect
cyberattacks occurring in a network. However, the task of
gathering data, categorizing it, and training ML models can
be time-consuming because network traffic is unpredictable
in nature [60], [61], [62]. In this study, we employ queuing
theory (QT) as an alternative approach to minimize the
time taken for data collection and training of ML (ML)
models. QT facilitates the mathematical analysis and creation
of models for SD-SATCOM networks [21], [63]. QT is a
mathematical discipline that specifically addresses examining
and modeling waiting lines or queues. From a SATCOM
networking standpoint, the application of abstraction allows
us to categorize forwarding devices (e.g., satellites) as
servers, and packets as customers. By abstracting the network
and analyzing the server’s packet service, the network
operator can obtain various performance measures, including
the interarrival time (IAT), transmission delay (TD), and
packet count (PC) of packets received at a server. These
measures are derived by evaluating the queuing of packets
at the forwarding device. The metrics described above are
influenced by the arrival rate of packets (A) and the servers’
service rate (). By employing these measures, a ML model
may be trained to identify both normal (non-attack) and
attack samples from the network.

A. QUEUEING THEORY MODEL OF DOS CYBERATTACK
Figure 4 illustrates the aftermath of a DoS attack on a server.
The victim node is subjected to a significant surge of packets,
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FIGURE 5. JNO M/M/C Queuing Model of SD-LEO Network.

which leads to a cascading effect on the system. As a result,
the victim node experiences a higher arrival rate (A;), while
both the service rate (u;) at the victim node and the arrival
rate (Ay) at the destination node decrease. The LEO satellite
responsible for relaying data can collect the measurements
and transmit them to the GEO controller for analysis by
the network operator. Using the acquired measurements, the
network operator can deduce the specific type of attack
that has taken place and evaluate the magnitude of its impacts
on the network. Exclusively available with SDN, the operator
can employ the SDN controller to reroute network traffic
away from a compromised LEO. This enables the
preservation of network connectivity and data transfer speed
within the network. To ensure appropriate actions are taken,
it is vital to maximize the accuracy of QT measurements when
making educated judgments based on QT analysis. Therefore,
it is crucial to consider the design of the QT modeling. QT
uses Markovian queues. Markovian queues are characterized
by their adherence to the Poisson process for arrival rates and
exponential distribution for service rates, which enables the
property of memorylessness in both arrival

and service rates. There are other types of Markovian models,
such as M/M/1, M/M/c, M/M/c/K, M/G/1, and M/M/oo [14].
Therefore, the network operator must take into account the
queuing dynamics of SD-Satellites in their network, as it
directly impacts the metrics they gather and utilize to detect
cyberattacks.

B. QUEUEING THEORY MODEL OF SD-LEO
ARCHITECTURE

The controller structure for the SD-LEO model, depicted in
Figure 5, consists of a set of Jackson open network M/M/c
queues. Jackson networks were chosen because they fit the
characteristics and behaviors of the SD-LEO architecture
well. Jackson networks are defined by interlinked queues,
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wherein the output of one queue is transmitted into another
queue with equivalent priority. One distinctive advantage of
employing the Jackson network model compared to other
queuing models is that the employed Jackson networks can be
resolved using a product-form solution [26]. The arrival rate
of packets at satellite @ (A,) from satellite b is the
product of the sending rate of satellite » and the probability of
it transmitting packets to satellite a, expressed as A, = A+ ga.
This approach provides more tractable solutions for the more
complex network interconnections, and better approx-

imates realistic network behavior compared to alternative
models [26]. The Jackson model analysis is characterized as
“open,” where packets exit the queuing system and transition
between queues, capturing the interconnected dynamics of
SD-SATCOM networks and the corresponding inter-satellite
links that are essential for the effective deployment of
SDN within the network [65], [66]. Furthermore, statistics
from previous military publications and publicly available
military standards have been used when available as relevant
parameters.

However, it is crucial to recognize the disadvantages and
constraints of Jackson open networks, as the analysis fails
to accurately predict’s the system’s network metrics when
it is not in a steady state (0 < u < A) and is overloaded.

Furthermore, Jackson’s open network analysis presumes
uniform packet priority; hence, priority-based traffic routing
would modify the system’s behavior and contradict the
analysis’ network metric predictions. Consequently, these
drawbacks impact our assumptions detailed in Section V-B2.

Additionally, our concept assumes that the GEPs will be
interconnected via a cloud/server infrastructure. The cloud
will only notify the GEPs about changes in topologies or
forwarding LEO statuses, if any, in order to restrict the flow
of redundant data. If a GEP does not receive any updates
from the cloud infrastructure, then both the GEP and the
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paired GEO controller can infer that the other aspects of
the SD-LEO forwarding plane topologies and statuses are
consistent with their current knowledge.

1) CATEGORIZATION OF ARCHITECTURE COMPONENTS

To our knowledge, there has been no previous research
that has proposed using queuing analysis to forecast network
performance metrics for an SD-LEO controller architecture in
order to enhance security against zero-day attacks. The
proposed SD-SATCOM network comprises four SD-
satellites, each consisting of four SD-GEO controllers, four
GEPs, a cloud server, and forwarding SD-LEOs. Since the
cloud manages and forwards each controller’s global to
each other via the GEPs, each controller has a global view of
the forwarding SD-LEOs. Due to this global view and control
of the networks, cyberattackers target SDN controllers to gain
control of the network. Therefore, the objective of this study
is to enhance the cyber defense of the controller architecture
by employing queueing analysis to minimize the time
required for ML training in a scenario of zero-day attacks.
Figure 5 illustrates the queuing model of the controller
architecture which can be generalized in the following
manner:

. SD-GEO: The SDN controller is virtualized and located
within an SD-GEO as a virtual network function (VNF).
The SD-GEO controller is tasked with managing the

routing decisions of the forwarding SD-LEO satellites.

- GEP: Each SD-GEO is coupled with a ground GEP,
which has a corresponding network operator. The GEP
is responsible for overseeing the SD-GEO from the
ground, collecting network performance statistics, and
uploading updates from other SD-GEOs that are
received from the cloud to its paired SD-GEO.

. Cloud: The data collection, ML model, and global
perspective and status of the SD-SATCOM network will
be stored in a defense-integrated cloud server. The
system will utilize the gathered data to identify
cyberattacks and detect previously unknown zero-day
cyberattacks by analyzing the regular, non-attack data
created through queuing analysis as described in this
work. Moreover, it would regularly transmit updates
regarding the overall network status of SD-LEOs to each
SD-GEO through their paired GEPs, based on any
changes that occurred in the network.

- SD-LEO: SD-LEO satellites are employed to relay

signals between each other and deliver them to the
intended recipient. They are the forwarding plane of the

network.

2) STATISTICAL ANALYSIS
In this section, we describe our statistical analysis of the SD-
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- All packets received within the constellation are
regarded as having equal priority.

- Given that the network is in a steady state, the input rate
(Ai) is equal to the output rate (A..) of any component
in the architecture, as stated by Burke’s theorem [67].

Our equations will have a product form solution since we
are utilizing the Jackson network open (JNO) queuing model
for our queuing analysis [26]. Figure 5 depicts the queuing
model of the controller architecture. In our analysis, we focus
on the essential components of the controller architecture one
SD-GEO controller, one GEP, and the cloud platform. Let
GO; denote a SD-GEO, EP; denote a GEP, C denote the
cloud, and LO denote the SD-LEO forwarding plane.

The rate at which packets enter an SD-GEO from the
SD-LEO forwarding plane is represented as ggoyALo, where
gcoy denotes the probability that a packet will be sent to
the SD-GEOW controller as a packet-in packet (a packet with
an uncertain route path) from the SD-LEO forwarding plane.
Thus, the A; for each component of the controller architecture
can be represented as:

Acoi = q60iAep; + 4G0AL0 1)

Aep; = qerAc + Aco; 2
!

Ac = gc Aep; 3)

where in equations (1) and (2), SD-GEOy receives reply
traffic from the SD-LEOs, and the GEP receives updates from
the cloud platform. The probability of reply traffic is
denoted by ¢;. The probability density function for A; is
defined for ¢ = 0:

f@) = ret “4)
The average interarrival time, IAT of packets experienced

at each control architecture element is defined:
1
IAT, = —
Ai

The service time follows an exponential distribution with
parameter u;. The probability density function is:

®)

g(s) = e H5, ¥V = 0 (6)
where the average service time, 7; "+ can be denoted:
. 1
Ty =— 7
i

Using Little’s theorem [68], average total waiting time
is defined as transmission delays (TD) and represented as

follows:
1
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LEO architecture. The queuing analysis presented is based TD; = ®)
on and limited by the following assumptions: i —Ai
We assume the SD-LEO constellation is in a steady state The normal distribution of network packet arrivals (i.e.,
and not overloaded. Therefore, the arrival rate of packets non-attacked packets) into each system was decided by the
A<p, and 0 <A< probability of witnessing a number of packet arrivals in a
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period from [0, T]. This equation is used to model the traffic
volume of the bus:

(AT)ie=T
0 €
where T is the IAT, and » represents the number of packets.

The average packet count (PC) can be modeled as the
following:

P(n arrivals in interval T) =

PCi = AT; (10)
VI. SD-LEO COVERAGE SIMULATION

To determine the optimal number of SD-GEO controllers and
parameters required to ensure the SD-LEO constellation’s
operation, we conducted a simulation study using MATLAB
with the aerospace, mapping, and satellite communications
toolboxes. This section outlines the process by which we
obtained the parameters required for our constellation and

also documents the viability and efficacy of our con-

stellation architecture in providing almost global maritime
communication coverage.

A. KEY SATELLITE CONSTELLATION PARAMETERS

1) ANGLE OF INCLINATION

The angle of inclination of a satellite is the tilt of the satellite’s
orbit plane relative to the Earth’s equatorial plane.
Inclinations vary based on the mission’s requirements and
include equatorial orbits (0°), polar orbits (90°), and many
other configurations [69].

Inclinations close to 90° are typical for LEO satellites to
ensure coverage over the poles and increase Earth coverage.
However, inclinations exactly at 90° require additional fuel
consumption and correctional maneuvers to correct for orbital
perturbations. For this reason, many constellations use
inclinations just below 90° like the 86.4 degrees used by the
Iridium constellation [70].

2) NUMBER OF PLANES AND SATELLITES PER PLANE

An orbital plane is a 2D plane that contains a satellite orbit
path, which may be followed by one or more satellites. In
satellite constellations, multiple orbital planes are often used
to enhance global coverage and provide redundancy [2].
These planes are separated in such a way that each plane
intersects the Earth’s equator at a different point, resulting in
different values of the right ascension of the ascending node
(RAAN). This separation between the planes, combined with
the distribution of satellites within each plane, helps to create
more complete coverage and minimize the possibility of
satellites intersecting.

3) ALTITUDE

Satellite altitude is the height of the satellite’s orbit above the
Earth’s surface. The two levels focused on in this paper are:

- Low Earth Orbit (LEO): Typically between 500 km and
2,000 km [2]. These satellites have closer proximity,
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resulting in higher communications quality, but requir-
ing more satellites for complete coverage.

- Geostationary Orbit (GEO): Positioned at approxi-
mately 35,786 km above the equator [71]. Satellites in
GEO rotate with the Earth, remaining stationary relative
to the ground.

4) ANTENNA CHARACTERISTICS

Given that this application is focused on creating a constel-
lation specifically for communication purposes, the antenna
characteristics and their effects on the coverage are relevant.
While there are many different antenna configurations that
can be used onboard satellites, this analysis uses a Gaussian
antenna, known for its clear beam pattern and the ability to
focus power efficiently within a specified half-power beam
width (HPBW). The field response of this Gaussian antenna
is given by [72]:

az 2
5 l = J—
flaz,el) = exp —2logy( HPBW,, )

1
exp —2 logz(ei)2

11
HPBW¢ (1

where az is the azimuth angle in degrees, e/ is the elevation
angle in degrees, az is the azimuth half-power beamwidth,
HPBW,, is the azimuth half-power beamwidth, and HPBW,
is the elevation half-power beamwidth.

The HPBW plays a critical role in determining the

coverage and signal quality of the antenna. A narrower
HPBW increases signal strength but narrows the coverage
area. In contrast, a wider HPBW broadens coverage while
reducing signal strength. Later analysis examines how this
relationship affects both the FOV area and the received signal
strength, as well as how its importance changes with altitude.

Other configurations, like phased arrays, are often used
in practice to improve application-specific performance [73].

Transmitter and receiver power also significantly impact
coverage [73]. Higher transmitter power extends the signal
reach and reduces the impact of path loss. In some cases,
higher receiver sensitivity - which comes with an increase
in receiver power - can compensate for lower transmitter
power.

These parameters — antenna configuration, HPBW, and
transmitter/receiver power levels — are all important in
determining the coverage of a given satellite. In this analysis,
only the HPBW is examined closely, but others could be
modified for future tuning of the constellation parameters.

B. FIELD OF VIEW

For a communications application like this one, a satellite’s
field of view (FOV) describes the area that a satellite can
observe or cover with its antenna [73]. For the LEO satellites
in the constellation, their FOV of Earth is of importance,
whereas for the GEO satellites, the FOV of the LEO shell
is of importance. These relative FOVs are illustrated in Figure
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FIGURE 6. LEO and GEO Field of Views.

1) CALCULATION

The key parameters influencing the satellite’s field of view
include:

. Satellite Altitude: The height of the satellite above
Earth’s surface.

. Antenna HPBW: The angular spread of the antenna’s
beam, measured from its central axis to the half-power
points, which defines the edge of the primary coverage
region.

. Sphere Radius: The radius of the spherical model
representing the Earth or LEO shell.

Since the curvature of the reference sphere limits the FOV,
the central angle [73] - defined as the angle between the nadir
and the edge of the beam coverage - is the first step of the
calculation and can be obtained from the parameters above.
The calculation is derived using trigonometric relationships
involving the geometry of the sphere and the satellite’s
viewing cone and is given as follows [74]:

h+r

7

6 = 90° — arccos sin(a) - —a

(12)

where: 0 is the Earth’s central angle, defining the outermost
boundary of the satellite’s FOV, a is the antenna’s half- power
beam-width, % is the satellite altitude above the Earth’s
surface, and r is the Earth’s radius.

This relationship may be adjusted if the beam-width angle
is large enough that the entire sphere’s visible region is
encompassed by the antenna. This calculated central angle is
used to obtain the field of view centered on the satellite’s
location and is obtained by expanding outward by the central
angle.

2) LEO SATELLITES’ FIELD OF VIEW OF EARTH

As mentioned previously, the LEO satellite shell is respon-
sible for communications coverage of the submarines in the
Earth’s oceans. As such, the FOV of LEO satellites with
respect to the Earth’s surface is considered.

Since the FOV calculation depends on both the altitude
and the HPBW of the antenna, these values affect the
LEO shell’s ability to cover the oceans. The altitude range

VOLUME 5, 2024

«107 LEO Field of View Area of Earth vs. HPBW at Different LEO Altitudes

Altitude 500 km

Altitude 750 km

Altitude 1000 km
Altitude 1250 km
Altitude 1500 km|
Altitude 1750 km
Altitude 2000 km |

=

Field of View Area (km~)
Y w

] 10 20 30 40 50 60 70
Half-Power Beam Width (degrees)
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FIGURE 8. GEO Field of View of LEO Shell vs. Half-Power Beam Width and LEO
Shell Altitude.

generally requires a higher HPBW, which can range from
25° to greater than 100° depending on the antenna used.
In general, a higher altitude results in a larger FOV area, as
does a larger HPBW. This relationship is shown in Figure 7.
It should be noted that an increased FOV area does not

necessarily mean that the signal strength is high enough for
the communications needed, as will be explored in the next
section. Thus, values that maximize the FOV area may or

may not maximize the actual coverage area.

3) GEO SATELLITES’ FIELD OF VIEW OF LEO SHELL

Since the GEO shell serves as a controller for the LEO shell,
the FOV for the GEO constellation is calculated concerning
the LEO shell.
Once again, the altitude and the HPBW affect the
calculation. However, since the GEO altitude is fixed, the
altitude of interest is that of the LEO shell, which will alter
the relative distance between the LEO shell (taken as the
reference sphere for the FOV calculation) and the GEO shell.
Since this distance is significantly larger than the one
between the LEO shell and the Earth’s surface, a smaller
HPBW is appropriate. Thus, only values up to 20° are tested.
The relationship between the LEO shell altitude and HPBW
values and the FOV area are shown in Figure 8.
The minimum HPBW that will allow for coverage over the
full range of LEO elevation angles - including the polar
regions - is given by the following equation:

r + hceo Ja 6625
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for LEO is generally considered to be between 500 km

_ o1 I'thpo 180 (13)
and 2000 km above Earth’s surface [2]. This lower altitude Onppw = tan '
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where higo is the LEO satellite altitude above the Earth’s
surface, /gro is the GEO satellite altitude above the Earth’s
surface, and 7 is the Earth’s radius.

C. SIGNAL STRENGTH

The FOV area calculated in the previous section does not
encompass any analysis of the communication quality itself,
just whether line-of-sight can be established between the
transmitting antenna onboard the satellite and the antenna on
the receiving satellite or ground station. The received signal
strength is one metric used to evaluate the quality of a
communications link.

1) SIGNAL STRENGTH CALCULATION
The signal strength is calculated as [75]:

SS =P+ G — Lprop + Grx — Lgys (14)

where Py, is the power of the transmitted signal in dBm, Gy
is the gain of the satellite transmitter antenna in dBi, G
is the gain of the receiver antenna in dBi, Ly represents
the total system losses in dB, including the inherent losses in
the transmitter and receiver circuits, and L, is the path loss,
which is dependent on the propagation model used and
environmental factors.

Path loss (L) in satellite communications typically
accounts for the free-space path loss [75], but may also
include atmospheric absorption, and other factors such as rain
or gas attenuation depending on the application. In this case,
only the free-space path loss is accounted for, given by:

Lyrop = 2010go(d) + 20 log,o(f) + 92.45 (15)

where d is the distance between the satellite and the receiver
in kilometers and f is the frequency of the transmitted signal
in GHz.

2) MAXIMUM RECEIVED SIGNAL STRENGTH

While the signal strength within a satellite’s field of view can
be assessed in a variety of ways, the maximum signal strength
is useful in representing a “best-case” scenario, when a
receiver is aligned along the boresight of the satellite’s
antenna [73].

The maximum signal strength is similarly plotted against
the LEO shell altitude and the HPBW. The results are shown
in Figure 9, where maximum signal strength is calculated for
a receiver aligned along the boresight on Earth’s surface.

3) DISTRIBUTION OF SIGNAL STRENGTH
THROUGHOUT FOV

As discussed in the sections above, the HPBW affects the
coverage shape and the distribution of signal strength through

that shape. A larger HPBW generally results in a wider spread
of the coverage and a lower maximum signal strength, as
shown in the previous section.

This distribution is illustrated in Figure 10, where the signal
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The max values in the figure are the same as the ones shown
in Figure 9, but the rest of the distribution is a relatively sharp
decrease for the low HPBW distributions. For higher HPBW
distributions, the max signal strength remains lower but more
stable through the center of the distribution.

D. ORBITAL PERIOD

The orbital period is defined as the time it takes for an object
to complete one full orbit around another body. For satellites
orbiting Earth, the period depends on the altitude and
gravitational pull of Earth [76]. In LEO orbits the orbital
period is relatively short. Orbits at higher altitudes, however,
have longer orbital periods. In GEO, for example, the period
matches Earth’s rotation (approximately 24 hours), allowing
satellites to remain fixed over one location [71].

1) CALCULATION
The equation for the orbital period is given as [76]:

T=2n

R3
— (16)
u

strength distribution is compared for different HPBW values at
the 750km altitude.
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where T is the orbital period in seconds, R is the semi-
major axis, which represents the average orbital radius of
the satellite from the center of the planet, and u is Earth’s
gravitational parameter. u is given as follows:

g = 398 x 105 kmd/s?
(17
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FIGURE 11. Orbital Period vs. LEO Altitude.

R is calculated as the sum of the radius of the Earth R.um
and the altitude of the satellite above the surface A:

R = Rerun + h (18)

2) ORBITAL PERIOD SIMULATIONS

Using these equations, the orbital period for the GEO con-
stellation (with & = 35768km), as expected, is 23.93 hours
[71]. This is an approximate match to the rotational period of
the Earth, allowing it to stay stationary in relation to points
on the surface, like ground stations. The orbital period of the
LEO altitude range of 500 km to 2000 km was also tested and
is shown in Figure 11.

For this application, it was imperative that each point in the
orbit received coverage at least hourly. The number of
satellites N needed to achieve this can be calculated as:

T

N= —-
3600

where + - e denotes the ceiling function, rounding up to the
nearest integer to ensure complete coverage.

Based on the results shown in Figure 11, all LEO
altitudes require at least two satellites per plane to meet this
requirement and altitudes over 1750 km require 3 satellites
per plane.

E. SELECTED CONSTELLATION
Based on the above simulations, a constellation was selected
with a LEO shell altitude of 750 km. At this altitude, based on
the orbital period analysis above, only two satellites are
needed per plane. Using the results of the signal strength and
FOV analyses, the coverage diameter can be estimated as
2300 km. The circumference of the Earth is 40,075 km at
the equator [77]. Thus, a minimum of 17 planes are needed
to cover all points at the equator. To include the very edge of
the coverage area limits, 34 planes were chosen to provide
sufficient overlap. A 3D rendering and 2D rendering of this
configuration are shown in Figure 12 and Figure 13,
respectively.

It can be noted in both the 2D and 3D renderings that, in
the polar regions, some areas receive better coverage than
others. This is because the inclination angle is not quite 90°,
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FIGURE 14. GEO Coverage Visualization.

resulting in non-uniformity in the polar coverage but avoid-
ing the perturbations of a perfectly 90° inclination orbit. The
GEO shell above it was chosen to have 4 satellites, spaced
equidistantly apart along the equator. These provide nearly
complete, overlapping coverage of the LEO constellation.
This configuration is shown in Figure 14.

This configuration of GEO satellites provides only partial
coverage to ground stations on the surface of Earth itself,
as shown in Figure 15. A GEO satellite has an absolute
maximum coverage area of + 81 degrees latitude due to the
limitations of Earth’s horizon line [78] though the functional
maximum coverage area is generally below this maximum
and was conservatively limited to +75 degrees latitude for
this work. While only 3 GEO satellites are capable of
covering much of the Earth’s surface, 4 are used in the
implementation shown in Figure 15 to provide more
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@ GEO Satellites

FIGURE 15. GEO Coverage of Earth.

complete coverage of the populated land masses and allow for
a range of potential ground stations.

When considering the GEO coverage of the LEO shell,
however, it no longer has the same horizon limitation due
to the LEO shell’s altitude relative to the planetary body.
Instead, coverage of the entire range of LEO shell elevation
angles - including the polar region - can be achieved by
utilizing a large enough HPBW, as given in Equation (13).
For the LEO satellite altitude of 750 km used in this
constellation, a minimum HPBW of 10.7 degrees would
provide complete coverage of all elevation angles. With the
combined coverage of the 4 equatorial GEO satellites, GEO
shell will have complete coverage of the LEO shell, with only
a brief loss of coverage over the poles as the LEO satellites
undergo the handover from one GEO to another. Therefore,
while only partial coverage is provided from the GEO shell to
terrestrial ground stations, the LEO shell is able to ensure that
each point on Earth receives service during its 100-minute
orbital period and the GEO shell is able to provide complete
coverage of the LEO shell, aside from the polar handoff.

F. SCALABILITY
The implementation chosen for this paper aims to minimize
the quantity of LEOs required to provide coverage to
submarines on patrol, choosing to use only 2 satellites per
orbital plane, for a total of 64 satellites. This LEO shell
provides service to each point on Earth at least once in its 100
minute orbital period, as shown in Figure 16 (1).(a), but if
more frequent coverage or a longer coverage duration is
desired, additional satellites can be used. Since the 34 orbital
planes already provide complete coverage around the Earth
longitudinally, scalability is tested by increasing the number
of satellites in each of those orbital planes. Three metrics are
examined for these conditions: average connectivity, average
reconnection time, and average coverage duration.
Connectivity is the measure of whether a point is covered
by one of the LEO satellites at a given point in time. This
metric is averaged over the orbital period of the constellation
for each point in a grid that spans the surface of the Earth to
form the connectivity heat maps shown in Figure 16 (2).(a)-
(b). The average across all of the points in the Earth grid is
shown in Figure 16 (2).(d). As shown in

6630

the heat maps, connectivity is highest at the poles, where
the orbital paths come closer as they cross, and lowest at
the equator where the paths are the greatest distance apart.
There are also two regions of lower connectivity caused by
the <90 degrees inclination angle of the constellation. At
2 satellites per orbital plane, average connectivity across all
points is still greater than 50%. At 10 satellites, it becomes
greater than 99%, becoming 100% at 12 satellites or more per
orbital plane.

The average reconnection time — how long a point on the
Earth grid has to wait before receiving connection again — was
also measured for values of satellites per orbital plane ranging
from 2 to 30. A similar geometry to that seen in the
connectivity simulations was seen, as shown in Figure 16
(3).(a) - (b), with extremes of latitude having the shortest
reconnection times whereas the equatorial regions had the
longest. The overall distributions of these reconnection times
for each number of satellites is shown in Figure 16 (3).(d). At
the minimum number of satellites per plane of 2, the mean
reconnection time was only 5 minutes, with the highestbeing
15 minutes. This, too, improved with additional satellites in
each orbital plane, decreasing until beginning to plateau at
8 satellites per orbital plane and needing no reconnection time
at 12 satellites per orbital plane, signifying uninterrupted
coverage.

Finally, the coverage duration was examined to determine
how long of a window a submarine (modeled as a grid point
on the surface) would have to send a message before losing
connectivity. This, too, was better in the polar regions than in
the equatorial regions due to the density of coverage, as shown
in Figure 16 (1).(a) — (b). Figure 16 (1).(d) shows the overall
average of all the points on the Earth grid for each of the
satellite numbers, starting at an average of approximately
17 minutes for the minimum 2 satellites per plane and
increasing to over 95 minutes of a 100 minute orbital period
for 10 satellites. At 12 satellites per orbital period, again, full
coverage is achieved.

While values up to 30 satellites per orbital plane are tested,
near-perfect coverage can be obtained with 10 satellites per
orbital plane with full coverage obtained for 12 satellites
per orbital plane. Thus, scaling the LEO constellation size
beyond this point is likely unnecessary. Since GEO coverage
is already complete over the LEO constellation with the
exception of the brief loss of coverage due to the handoff time
while crossing the poles, the number of satellites in the
GEO shell would not need to be adjusted to provide
continuous coverage.

VIl. CASE STUDY RESULTS

In this section, we present a case study in which we examine
a scenario where a network operator possesses a dataset
containing one hour of communication between the SD-GEO
controller and GEP. The objective of the network operator is
to determine whether a zero-day cyberattack has taken place
and to assess the accuracy of the prediction analysis in
relation to the collected results. In the subsections that
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follow, we will present the outcomes of the queuing analysis A. QUEUING ANALYSIS SIMULATIONS
simulation and the detection of zero-day cyberattacks using This research aims to showcase the efficiency, precision,
the CatBoost ML algorithm. and speed of our predictive queuing analysis in order
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Algorithm 1 SD-SA”IEOM Oueuﬁing Network Simulation

: Create arrays for the /4T, TD, and PC

: Initialize starting Azp and Ac

: Initialize y for SD-GEO and GEP

: for Azp and Ac < 550 packets/sec do
Initialize SD-GEO and GEP queuing

SimComponent and SimPy
Initialize SD-LEO (Arp) and the Cloud (Ac) generators

7 Utilize SimComponent’s Randombrancher class function to establish
a connection between the SD-GEO and GEO queuing components

8: Connect SD-LEO and Cloud instances to SD-GEO and GEP,
respectively, using the Randombrancher class function

9: Assign the probability of connecting branches between components
to the simulation parameters specified in Table 2

10: Assign the value of i to every SD-GEO and GEP service module

11: Perform a 60-second communication simulation using the current
values of Ao and Ac, as well as the specified parameters

12: Record IAT, TD, and PC over duration of simulation for each SD-
GEO and GEP o

13: Calculate and Append 4T, TD, and PC for each SD-GEO and
GEP for each Ao and Ac and parameters in the created arrays

14: Increase Ao and Ac values by +50 packets/sec each then repeat
the loop until ALp and Ac < 550 packets/sec

15: end for

DA WN —

components  using

a

to minimize the time required for data collection and training
in the network security of the controller architecture for SD-
SATCOM network for submarines on patrol. As mentioned in
Section VII-A2, we consider a subset of the controller
architecture that contains all components: one SD-GEO
controller, GEP, and cloud instance. The network traffic of
the SD-SATCOM controller architecture was evaluated by
utilizing SimComponents [13]. We modified
SimComponents to collect average packet inter-arrival times
(TAT), transmission delay (7D), and packet count (PC) from
the SD-GEO and GEP instances. We modeled the controller
architecture as a network of Jackson theorem M/M/C queues
as described in Section VII-A2. We modeled our simulation
based on the UHF/VHF radio communication commonly
utilized in military and SATCOM operations. Algorithm 1
provides the pseudo-code of the simulation. The adjustment
of port rate and queue size parameters of the servers, as
presented in Table 2, allowed for the attainment of A7,
TD, and PC of received packets. These simulation parameter
values were modeled from the military SATCOM wireless
communication standards DoD Instruction 8420.02, MIL-
STD-188 [79], [80], [81].

For instance, we created models to calculate the prob-
ability of a packet successfully reaching the controller, and
we also considered the ratio of A and u values from related
studies [21], [22], [23]. The mean packet size of 1400 bytes
for UDP packets used in SATCOM communi- cation has been
determined based on prior research [82]. The SD-SATCOM
network system design includes unique characteristics such as
the number of SD-GEO, GEP, and cloud instances. For the
purpose of simulation, specific parameters are selected
arbitrarily, including the simulation time and the chance of
bidirectional communication. We assigned a probability of
0.50 to the transmission of packets between the different
components, which represents the
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TABLE 2. Simulation parameters.

Parameter Value
Probability packet will be sent:
to controller SD-GEQ

from forwarding SD-LEOSs, ¢ 4.,

back o forwarding SD-LEOs Trom controller SD-GEQ gy 0 0.50
from controller SD-GLEOy w the GEP Ly p,
back from GEPy to contraller SD-GEO +, 0,
from GEPy 1o Clowd.
back trom Cloud to GLP vy, ¢ p.
Average packel size 1400 Byies
Average SD-Satellite; service rate, 1, 1200 packets/sec
1l 100 packets/sec
Average arrival rate at SD-GEQ y and GEP tyey = iy b 0 packets/sec
= 35l packets/sec
Number of SD-GEQ 1
Number of GEP 1
Cloud instamee (packet sink) 1
Simulation time for each Ay oand A 60 seconds

bidirectional connection between these devices. All of these
numbers are computed based on the information supplied in
the military SATCOM standards DoD Instruction 8420.02
and MIL-STD-188. Despite the constraints on vendor and
government SATCOM information sharing due to proprietary
and security concerns [83], we employed parameters from
existing literature and publicly accessible military standards
to mimic real-world applications and generalized our results
to the best of our knowledge.

To compare our theoretical results with the simulated
results, we performed simulations of the SD-Satellite
network’s communication for 60 seconds. We varied the
combinations of Ao and Ac¢ in increasing increments, as
indicated in Table 2. Next, we computed the mean values
of IAT, TD, and PC using the simulation data for every
combination of Azo and Ac. Subsequently, we computed
the projected values using the findings from our analysis in
Section V and graphically depicted both the theoretical and
projected values in Figures 17, 18, and 19 to showcase the
precision of our analysis in forecasting the real values. The
simulation was conducted on a desktop computer equipped
with Microsoft Windows 11 operating system, powered by an
Intel 12th Gen Core i17-12700K CPU running at a clock speed
of 3.6GHz, and with a total of 16GB RAM. The prediction
simulation for a dataset with a duration of one hour has an
average CPU utilization of 3.9%. It takes 105 ms to run
and make predictions in order to forecast the average inter-
arrival time (IAT), average time delay (7D), and average
packet count (PC) for SD-GEOy and GEPy. The following
subsections will present the results of the simulation for each
statistic and provide an analysis of the findings.

1) AVERAGE INTER-ARRIVAL TIME (IAT)

The performance of a network is significantly influenced
by the arrival rate of received packets, denoted as A. If the
arrival rate (A) is more than or equal to the service rate (i),
the network is not in a steady state. In this case, the service
module is unable to process packets fast enough to empty
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FIGURE 17. Average interarrival times over increasing qgo1ALo and gepiAc.

the queues of arriving packets, leading to packet drop due
to limited queue space. Attackers may intentionally induce
this behavior by introducing malicious packets at a high
frequency, denoted as Aguack. Therefore, it is crucial for the
network operator to have knowledge of the rate at which
packets are arriving at an SD-Satellite. Measuring the AT
packets by the network operator is an appropriate method,
as these values demonstrate an inverse correlation with the
parameter A. The magnitude of the IAT values represents
the speed at which packets are being received by an SD-
Satellite. Fluctuations in the average inter-arrival time (IAT)
values may suggest the occurrence of a potential cyberattack,
as packets are being received at a higher rate than expected
by the SD-Satellite. The average inter-arrival time /47 of an
SD-Satellite or GEP can be determined using equation (5).
In order to determine the anticipated ZAT at an SD-Satellite
in the proposed design, the network operator can utilize the
derived expected arrival rate (A) at each SD-Satellite and
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FIGURE 18. Average transmission delay over increasing qgo1AL0 and qepiAc.

GEP, as shown in equations (1) and (2). In order to verify the
accuracy of our analysis, we conducted the simulation
described earlier and then compared the theoretical findings
obtained from our analysis in Section V with the simulation
results, which are presented in Figure 17. We present the AT
results for SD-GEOy and GEPy in Figures 17(a)(b),
respectively. As the packet rate (A) grows, the average
inter-arrival time (IAT) drops because packets flow more
rapidly into the SD-GEO and GEP. The simulation accurately
aligns with the theoretical values, confirming our equations’
validity.

2) AVERAGE TRANSMISSION DELAY (TD)

Transmission delay (TD) refers to the duration required for a
packet to be processed by the service module of the packet
and forwarded to the next logical destination or hop. The TD
can be significantly influenced by the pace at which packets
arrive, which is constrained by the limited queue size
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and processing rate of a server, as shown in equation (8).
The magnitude or variation of the 7D values of a device
may suggest the occurrence of a cyberattack, as illustrated
in Figure 4. Attackers may attempt to artificially augment
the number of packets within a communication node (i.e.,
SD-GEO and GEP) by injecting supplementary packets into a
node’s queue, denoted as Auuacr. By applying Little’s law, the
average total waiting time of a packet can be determined as
the transmission delay (7D), as represented by equation (8).
As Ao and Ac¢ increase, the number of packets in the
system, denoted as L, also increases. Consequently, the
processing time for the packets within the service model
and their exit time are prolonged. In order to verify our
analysis, we conduct the queuing simulation discussed earlier
and measure the 7D as packets exit the SD-GEO and GEP
for different values of A. Figure 18 confirms the accuracy
of our analysis, particularly in calculating the correct A and

anticipated TD experienced for each SD-GEO and GEP.
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3) AVERAGE PACKET COUNT (PC)

The mean number of packets received at SD-GEO or GEP can
be represented as PC. Anomalous PC may indicate the
presence of malicious activities within the network. Malicious
entities have the ability to flood an SD-GEO or cause its
neighboring nodes to discard packets, consequently
influencing the functioning of a node in the controller
architecture. Hence, the network operator must determine the
anticipated average PC values that are predicted to be
received at each SD-GEO and GEP. The equations (10)
illustrate the anticipated number of received packets based on
our analysis. As we increased the values of Ao and Ac,
we anticipate a non-exponential increase, in contrast to the
other data, because of the linear correlation depicted in
equation (10). The simulation values in Figures 19(a)(b)
closely align with the theoretical values, confirming the
accuracy of our analysis.

B. ML DETECTION RESULTS

We conducted a 1-hour simulation of network traffic for
a minimum subset of the satellite controller architecture
(consisting of one SD-GEO, GEP, and controller instance) as
described in Section VII-A. The traffic consisted of both
attack/zero-day and normal traffic, with attack traffic
representing 25% of the entire dataset. In order to mimic the
unpredictable nature of a zero-day cyberattack, we randomly
modify the values of A, i, and queue sizes for the SD-GEO
and GEO by a range of 50% to 90% during attack scenarios.
To conduct testing and verification for the case study, we
generated a “key” CSV file including 3600 rows x 6 columns.
Each cell in the file was filled with either a 0 or a 1,
representing different types of traffic for the SD-GEO and
GEP. Specifically, a 0 indicated a normal sample, while a
1 indicated an attack sample. Next, we have produced a CSV
file of 3600 rows x 1 column, which includes the A values
for Ao and Ac. The initial three columns and

final three columns of the key CSV file corresponded to the

average inter-arrival time (IAT), average time duration (7D),
and average processing capacity (PC) for the SD-GEO and
GEP, respectively. Each row corresponds to the performance
measurements for a duration of one minute. We used the
key to create a dataset with 3600 rows x 6 columns. This
dataset includes simulated values for both attack and normal
(non-attack) samples, resulting in a total of 21,600 samples.
Next, we utilize our predictive queuing analysis to gener-
ate the expected nonattack samples by employing the key and
Avalue CSV files in Python. The data sets are analyzed using
the CatBoost algorithm, which is a gradient-boosting algo-
rithm specifically designed for decision trees. In our previous
study [12], we utilized the XGBoost algorithm [84] to detect
DOS attacks. Nevertheless, this study employs Catboost due
to its superior performance, quicker training time, and lower
overhead in comparison to other gradient-boosting methods
when dealing with datasets including categorical data [85]. In
a pragmatic, real-world implementation, the network operator
would extract network performance metrics from packet
VOLUME 5, 2024
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TABLE 3. Performance of CatBoost ML algorithm for detection of zero-day cyberattacks and average mean absolute percentage error (MAPE) for k-folds (k =5)

cross-validation.

Model’s Total Training
Method Accuracy | Precision | Recall | Fl-score CPU Usage MAPE (%)
and Testing Speed
CatBoost 97.87 96.89 94.52 95.69 8.755 334% 0.002028 + 0.000059

TABLE 4. Performance of CatBoost ML algorithm for classification of normal traffic
vs zero-day cyberattacks.

Class Traffic | Accuracy | Precision | Recall | Fl-score
Normal 98.99 98.19 98.99 98.59
Zero-Day 04.52 90.89 04.52 95.69

capture (pcap) files containing categorical data such as packet
type, source/destination IP, and port number. Therefore,
we improve our previous work by utilizing catboost for
this study in anticipation of the requirement for better
performance for SATCOM pcap captures.

The CatBoost ML algorithm is combined with the scikit-
learn multi-output regressor model and trained asa multi-
output regression model using a CSV matrix of lambda
values and the corresponding projected values. The
CatBoost model essentially learns to predict accurate network
performance statistics values based on the lambda values it
receives. Next, the predicted values from the
CatBoost model are compared to the simulated values. If the

absolute difference (|xpred — xsim|) between the predicted and
simulated values exceeds the threshold of greater than 10%,
the simulated values are classified as zero-day cyberattacks.
To evaluate our model in a cloud-based setting,
we implement the CatBoost ML method using Google
Colaboratory [86]. This platform is designed for experiment-
ing with ML models on high-performance hardware like
GPUs and TPUs. We provide the outcomes of the CatBoost
ML model in Figure 20, Table 3, and Table 4. We employ the
Optuna program [87] to optimize the hyperparameters of
our CatBoost model. The optimal hyperparameters are set
as follows: a learning rate of 0.0489, an optimal tree depth of
7, a subsample rate of 0.749, a colsample rate by level of
0.999, and a minimum number of data points in each leaf
of 34. Table 3 presents the overall accuracy, precision, recall,
and Fl-score of our model, all of which are above > 94%.
This indicates the high effectiveness of our machine-learning
model. The CatBoost output was tested with K-fold cross-
validation, with k=5, and the average mean absolute
percentage error (MAPE) was computed. The low MAPE
indicates that the CatBoost ML model can accurately learn the
predicted values from our lambda and predicted output, with
an average margin of error of 0.002%. This
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suggests that it can reliably predict the network performance
statistics accurately from our provided generated training data
from the predictive queuing analysis. We measure the CPU
usage (33.4%) and the entire time taken for model training
and testing (8.75s), which showcases the system’s efficient
performance with minimal CPU usage.

The average and standard deviation of the accuracy,
precision, recall, and Fl-score were calculated for the five
folds. The performance of the model in distinguishing normal
traffic from zero-day attack samples is seen in Table 4 and
Figure 20. The model’s performance metrics exceed > 94%
for every class, indicating its effectiveness in detecting zero-
day cyberattacks. Figure 20 shows that 460 samples out of
21,600 total samples were misclassified (2.13% computed
incorrectly). The threshold for the case study was
established arbitrarily at a value greater than 10%. However,
network operators have the flexibility to determine the most
appropriate threshold based on the significance of the
communication. They may choose a more sensitive threshold
to minimize the occurrence of false negatives, even if it
means accepting a higher number of false positives. The
effectiveness of our detection method is attributed to the
well-documented performance of CatBoost, as well as the
predictive queuing analysis and retrieved features from the
simulation.

VIIl. CONCLUSION AND FUTURE WORK

To our knowledge, no research has investigated using queuing
analysis to anticipate SD-SATCOM controller architecture
network performance indicators in order to
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prevent zero-day attacks. To our knowledge, no prior studies
have utilized queueing analysis predictions and a machine-
learning model to detect zero-day cyberattacks. Because of
its worldwide scope and network control, the SD-GEO
controller architecture is vulnerable to attacks, including zero-
day attacks. We propose a predictive queuing analysis to
assist network operators in swiftly creating ML training for
the SD-SATCOM controller architecture by predicting
network performance data. To test our findings, we simulated
the SD-GEO controller architecture with a modified version
of SimComponent, a Python toolkit based on the open-source
SimPy framework. We employed MATLAB’s aerospace,
mapping, and satellite communications toolboxes to analyze
SATCOM traffic and develop our queuing architecture.
During a one-hour data simulation case study, our Catboost
ML model identified and classified attack samples with over
94% accuracy, precision, recall, and fl-scores.

Our future work will focus on integrating our analysis with
an intrusion detection system (IDS) and mitigation
framework. This integration will enable real-time training on
data and allow for swift mitigation utilizing the GEP. In
addition, we will enhance the framework to categorize zero-
day attacks that may resemble or be similar to recognized
cyberattack types. This will provide the network operator with
improved guidance on potential strategies to neutralize the
attack. We may confront obstacles with real-time data
collection, particularly dealing with space projection delays
and synchronization issues while using the cloud.

REFERENCES

[1] Q. Zhao, A. J. Brown, J. H. Kim, and M. Gerla, “An integrated
software-defined battlefield network testbed for tactical scenario
emulation,” in Proc. IEEE Mil. Commun. Conf. (MILCOM), 2019,
pp. 373-378.

[2] Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi, “Broadband LEO
satellite communications: Architectures and key technologies,” /EEE
Wireless Commun., vol. 26, no. 2, pp. 55-61, Apr. 2019.

[3] Z. Jia, M. Sheng, J. Li, D. Zhou, and Z. Han, “VNF-based service
provision in software defined LEO satellite networks,” /IEEE Trans.
Wireless Commun., vol. 20, no. 9, pp. 6139-6153, Sep. 2021.

[4] A. Walker. “Army’s eyes on resilient multi-orbit SATCOM.” Nowv.
2020. [Online]. Available: https://www.army.mil/article/240491/
armys_eyes_on_resilient multi_orbit satcom

[5] V. Machi (Space Develop. Agency, Washington, DC, USA). U.S.
Military Places a Bet on LEO for Space Security. Jun. 2021.
[Online]. Available: https://www.sda.mil/us-military-places-a-bet-on-
leo-for-space-security/

[6] M. Wall. “1,300 SpaceX Starlink terminals with ukraine’s mili-
tary went offline due to funding shortfall: Report.” Nov. 2022.
[Online]. Available: https://www.space.com/ukraine-spacex-starlink-
terminals-offline-funding-shortfall

[7] J.-P. Yaacoub, H. Noura, O. Salman, and A. Chehab, “Security analysis
of drones systems: Attacks, limitations, and recommenda- tions,”
Internet Things, vol. 11, Sep. 2020, Art. no. 100218.

[8] P.-Y. Kong, “A survey of cyberattack countermeasures for unmanned
aerial vehicles,” IEEE Access, vol. 9, pp. 148244-148263, 2021.

[9] P. Tedeschi, S. Sciancalepore, and R. Di Pietro, “Satellite-based

communications security: A survey of threats, solutions, and research

challenges,” Comput. Netw., vol. 216, Oct. 2022, Art. no. 109246.

S. Nazari, P. Du, M. Gerla, C. Hoffmann, J. H. Kim, and A. Capone,

“Software defined naval network for satellite communications (SDN-

SAT),” in Proc. IEEE Mil. Commun. Conf., 2016, pp. 360-366.

(10]

6636

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

M. Usman, M. Qaraqe, M. R. Asghar, and 1. Shafique Ansari,
“Mitigating distributed denial of service attacks in satellite
networks,” Trans. Emerg. Telecommun. Technol., vol. 31, no. 6, 2020,
Art. no. €3936.

D. Agnew and J. McNair, “Detection of denial-of-service attacks
in a software-defined LEO constellation network,” in Proc. Gov.
Microcircuit Appl. Crit. Technol. Conf. (GOMAC Tech), 2023, pp. 1-6.
G. Bernstein. “Basic network simulations and beyond in python intro-
duction.” 2017. [Online]. Available: https://www.grotto-networking.
com/DiscreteEventPython.html

D. Gross, Fundamentals of Queueing Theory. Hoboken, NJ, USA:
Wiley, 2008.

A. Shoeb and T. Chithralekha, “Resource management of switches and
controller during saturation time to avoid DDoS in SDN,” in Proc.
IEEE Int. Conf. Eng. Technol. (ICETECH), 2016, pp. 152-157.

Y. Maleh, Y. Qasmaoui, K. El Gholami, Y. Sadqi, and S. Mounir,
“A comprehensive survey on SDN security: Threats, mitigations, and
future directions,” J. Reliab. Intell. Environ., vol. 9, no. 2, pp. 201-239,
2023.

A. Ahmad, E. Harjula, M. Ylianttila, and 1. Ahmad, “Evaluation of
machine learning techniques for security in SDN,” in Proc. IEEE
Globecom Workshops (GC Wkshps, 2020, pp. 1-6.

J. C. C. Chica, J. C. Imbachi, and J. F. B. Vega, “Security in SDN: A
comprehensive survey,” J. Netw. Comput. Appl., vol. 159, pp. 1-23,
Jun. 2020.

S. Salim, N. Moustafa, M. Hassanian, D. Ormod, and J. Slay,
“Deep federated learning-based threat detection model for extreme
satellite communications,” IEEE Internet Things J., vol. 11, no. 3,
pp. 3853-3867, Feb. 2024.

N. Koroniotis, N. Moustafa, and J. Slay, “A new intelligent satel-
lite deep learning network forensic framework for smart satellite
networks,” Comput. Elect. Eng., vol. 99, Apr. 2022, Art. no. 107745.
T. Li, H. Zhou, H. Luo, W. Quan, and S. Yu, “Modeling software
defined satellite networks using queueing theory,” in Proc. IEEE Int.
Conf. Commun. (ICC), 2017, pp. 1-6.

N. J. H. Marcano, L. Diez, R. A. Calvo, and R. H. Jacobsen, “On
the queuing delay of time-varying channels in low earth orbit satellite
constellations,” IEEE Access, vol. 9, pp. 87378-87390, 2021.

Y. Zhu, M. Sheng, J. Li, and R. Liu, “Performance analysis of
intermittent satellite links with time-limited queuing model,” IEEE
Commun. Lett., vol. 22, no. 11, pp. 2282-2285, Nov. 2018.

H. Xu, S. Han, X. Li, and Z. Han, “Anomaly traffic detection based on
communication-efficient federated learning in space-air-ground
integration network,” IEEE Trans. Wireless Commun., vol. 22, no. 12,
pp. 9346-9360, Dec. 2023.

A. Igbal, M. N. Aman, and B. Sikdar, “Machine and representation
learning based GNSS spoofing detectors utilizing feature set from
generic GNSS receivers,” IEEE Trans. Consum. Electron.,vol. 70, no.
1, pp. 574-583, Feb. 2024.

H. Chen and D. D. Yao, Fundamentals of Queueing Networks:
Performance, Asymptotics, and Optimization, vol. 4. New York, NY,
USA: Springer, 2001.

S. P. Meyn and D. Down, “Stability of generalized jackson networks,”
Ann. Appl. Probab., vol. 4, no. 1, pp. 124148, 1994.

L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel, “k-zero day
safety: A network security metric for measuring the risk of unknown
vulnerabilities,” IEEE Trans. Dependable Secure Comput., vol. 11, no.
1, pp. 3044, Jan./Feb. 2014.

F. Deldar and M. Abadi, “Deep learning for zero-day malware
detection and classification: A survey,” ACM Comput. Surv., vol. 56,
no. 2, pp. 1-37, 2023.

Y. Guo, “A review of machine learning-based zero-day attack detec-
tion: Challenges and future directions,” Comput. Commun., vol. 198,
pp. 175-185, Jan. 2023.

R. Ahmad, 1. Alsmadi, W. Alhamdani, and L. Tawalbeh, “Zero-day
attack detection: A systematic literature review,” Artif. Intell. Rev., vol.
56, no. 10, pp. 10733-10811, 2023.

E. E. Abdallah, W. Eleisah, and A. F. Otoom, “Intrusion detec-
tion systems using supervised machine learning techniques: A survey,”
Procedia Comput. Sci., vol. 201, pp. 205-212, Apr. 2022.

T. Zoppi, A. Ceccarelli, and A. Bondavalli, “Unsupervised algorithms
to detect zero-day attacks: Strategy and application,” [EEE Access, vol.
9, pp. 90603-90615, 2021.

VOLUME 5, 2024


http://www.army.mil/article/240491/
http://www.sda.mil/us-military-places-a-bet-on-
http://www.space.com/ukraine-spacex-starlink-

~IEEE

Comdoc

ee I of the
Communications Society

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

(43]

(44]

[45]

[46]
[47]
[48]

(49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

N. S. Arunraj, R. Hable, M. Fernandes, K. Leidl, and M. Heigl,
“Comparison of supervised, semi-supervised and unsupervised
learning methods in network intrusion detection system (NIDS)
application,” Anwendungen und Konzepte der Wirtschaftsinformatik,
vol. 20, no. 6, pp. 10-19, 2017.

X. Niu, L. Wang, and X. Yang, “A comparison study of
credit card fraud detection: Supervised versus unsupervised,” 2019,
arXiv:1904.10604.

K. Lee, D. Booth, and P. Alam, “A comparison of supervised and
unsupervised neural networks in predicting bankruptcy of Korean
firms,” Expert Syst. Appl., vol. 29, no. 1, pp. 1-16, 2005.

S. Oluwadare and Z. ElSayed, “A survey of unsupervised learning
algorithms for zero-day attacks in intrusion detection systems,” in
Proc. Int. FLAIRS Conf. Proc., vol. 36,2023, pp. 1-3.

L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and

A. Gulin, “CatBoost: Unbiased boosting with categorical fea-
tures,” in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018,

pp. 6639-6649.

F. Long, Satellite Network Robust QoS-Aware Routing. Berlin,
Germany: Springer, 2014.

Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An efficient
dynamic resource scheduler for deep learning clusters,” in Proc. 13th
EuroSys Conf., 2018, pp. 1-14.

H. F. Santos, R. L. Claro, L. S. Rocha, and M. L. Pardal, “Stop: A
location spoofing resistant vehicle inspection system,” in Proc. Int.
Conf. Ad-Hoc Netw. Wireless, 2020, pp. 100-113.

S. Narain, A. Ranganathan, and G. Noubir, “Security of GPS/INS
based on-road location tracking systems,” in Proc. [EEE Symp.
Security Privacy (SP), 2019, pp. 587-601.

D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg,

S. Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14-76,
Jan. 2015.

E. Haleplidis et al., “Network programmability with ForCES,” IEEE
Commun. Surveys Tuts., vol. 17, no. 3, pp. 1423-1440, 3rd Quart.,
2015.

J. P. Vasseur and J. L. Le Roux, “Path computation element (PCE)
communication protocol (PCEP),” Internet Eng. Task Force, RFC
5440, 20009.

R. Enns, “NETCONF configuration protocol,” Internet Eng. Task
Force, RFC 4741, 2006.

G. Huston, “Analyzing the Internet’s BGP routing table,” Internet
Protoc. J., vol. 4, no. 1, pp. 2-15, 2001.

R. Alimi et al., “Application-layer traffic optimization (ALTO)
protocol,” Internet Eng. Task Force, RFC 7285, 2014.

A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control
plane for OpenFlow,” in Proc. Internet Netw. Manage. Conf. Res.
Enterp. Netw., vol. 3, 2010, pp. 10-5555.

T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and

S. Shenker, “Practical declarative network management,” in Proc. Ist
ACM Workshop Res. Enterp. Netw., 2009, pp. 1-10.

A. Voellmy, H. Kim, and N. Feamster, “Procera: A language for high-
level reactive network control,” in Proc. 1st Workshop Hot Top. Softw.
Defin. Netw., 2012, pp. 43-48.

N. Foster et al., “Frenetic: A network programming language,” ACM
SIGPLAN Not., vol. 46, no. 9, pp. 279-291, 2011.

W. Zhou, L. Li, M. Luo, and W. Chou, “REST API design patterns for
SDN northbound APL,” in Proc. 28th Int. Conf. Adv. Inf- Netw. Appl.
Workshops. IEEE, 2014, pp. 358-365.

D. Agnew, A. Del Aguila, and J. McNair, “Enhanced network metric
prediction for machine learning-based cyber security of a software-
defined UAV relay network,” IEEE Access, vol. 12, pp. 54202-5421,
2024.

H. Guo, J. Li, J. Liu, N. Tian, and N. Kato, “A survey on space-
air-ground-sea integrated network security in 6G,” IEEE Commun.
Surveys Tuts., vol. 24, no. 1, pp. 53-87, 1st Quart., 2021.

S. Cho, S. Hwang, W. Shin, N. Kim, and H. P. In, “Design of
military service framework for enabling migration to military SaaS
cloud environment,” Electronics, vol. 10, no. 5, p. 572, 2021.

C.-J. Wang, “Structural properties of a low earth orbit satel-
lite constellation—The walker delta network,” in Proc. IEEE Mil.
Commun. Conf.,vol. 3, 1993, pp. 968-972.

VOLUME 5, 2024

[58]

[59]

[60]

[o1]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

D. A. Powell Jr. and S. Class, “The military applications of cloud
computing technologies,” M.S. thesis, School Adv. Mil. Stud., United
States Army Command Gen. Staff College, Fort Leavenworth, KS,
USA, 2013.

F. J. Lebeda, J. J. Zalatoris, and J. B. Scheerer, “Government cloud
computing policies: Potential opportunities for advancing military
biomedical research,” Mil. Med., vol. 183, nos. 11-12, pp. e438—e447,
2018.

Z. Hu et al., “Statistical techniques for detecting cyberattacks
on computer networks based on an analysis of abnormal traffic
behavior,” Int. J. Comput. Netw. Inf. Secur., vol. 12, no. 6, pp. 1-13,
2020.

K. Shaukat et al., “Performance comparison and current challenges of
using machine learning techniques in cybersecurity,” Energies, vol. 13,
no. 10, p. 2509, 2020.

D. Beil and A. Theissler, “Cluster-clean-label: An interactive machine
learning approach for labeling high-dimensional data,” in Proc. 13th
Int. Symp. Vis. Inf. Commun. Interact., 2020, pp. 1-8.

S. Sthapit, S. Lakshminarayana, L. He, G. Epiphaniou, and C. Maple,
“Reinforcement learning for security-aware computation offloading in
satellite networks,” [IEEE Internet Things J., vol. 9, no. 14,

pp. 12351-12363, Jul. 2021.

A. Starke et al., “Cross-layered distributed data-driven framework for
enhanced smart grid cyber-physical security,” IET Smart Grid, vol. 5,
no. 6, pp. 398-416, 2022. [Online]. Available: https:/ietresearch.
onlinelibrary.wiley.com/doi/pdf/10.1049/stg2.12070

Z. Tang, B. Zhao, W. Yu, Z. Feng, and C. Wu, “Software defined
satellite networks: Benefits and challenges,” in Proc. IEEE Comput.,
Commun. IT Appl. Conf., 2014, pp. 127-132.

P. Kumar, S. Bhushan, D. Halder, and A. M. Baswade, “Fybrrlink:
Efficient QoS-aware routing in SDN enabled future satellite networks,”
IEEE Trans. Netw. Service Manag., vol. 19, no. 3,

pp- 2107-2118, Sep. 2022.

P. J. Burke, “The output process of a stationary M/M/s queueing
system,” Ann. Math. Statist., vol. 39, no. 4, pp. 1144-1152, 1968.

J. D. Little and S. C. Graves, “Little’s law,” Building intuition: Insights
from Basic Operations Management Models and Principles. Boston,
MA, USA: Springer, 2008, pp. 81-100.

P. Misra and P. Enge, “Inclination effects on global navigation satellite
system (GNSS) performance,” GPS Solut. J., vol. 4, no. 4, pp. 49-57,
2001.

C. Fossa, R. Raines, G. Gunsch, and M. Temple, “An overview of
the IRIDIUM (R) low earth or-bit (LEO) satellite system,” in Proc.
IEEE Nat. Aerosp. Electron. Conf-, 1998, pp. 152—159.

S. Breiter, I. Wytrzyszczak, and B. Melendo, “Long-term predictability
of orbits around the geosynchronous altitude,” Adv. Space Res., vol. 35,
no. 7, pp. 1313—1317, 2005.

“Phased.GaussianAntennaElement.” Accessed: Mar. 10, 2024.
[Online].  Available: https://www.mathworks.com/help/phased/ref/
phased.gaussianantennaelement-system-object.html#mw_9650afeS-
1133-46fa-840a-458ba5624197

W. A. Imbriale, S. S. Gao, and L. Boccia, Space Antenna Handbook.
Hoboken, NJ, USA: Wiley, 2012.

“Coverage maps for satellite constellation.” Accessed: Feb. 24, 2024.
[Online]. Available: https://www.mathworks.com/help/map/coverage-
maps-for-satellite-constellation.html

X. Dong, Z. Yuan, F. Sun, Q. Zhu, M. Sun, and P. Zhu, “Comparison
of simulated and measured power of the earth-space link for satellite-
based AIS signals,” Sensors, vol. 23, no. 15, p. 6740, Jul. 2023.

H. D. Curtis, Orbital Mechanics for Engineering Students, 4th ed.
Amsterdam, The Netherlands: Elsevier.

N. K. Pavlis, S. A. Holmes, S. C. Kenyon, and J. K. Factor, “The
development and evaluation of the earth gravitational model 2008
(EGM2008),” J. Geophys. Res., Solid Earth, vol. 117, no. B4, 2012,
Art. no. B04406.

D.-H. Jung, H. Nam, J. Choi, and D. J. Love, “Modeling and analysis
of Geo satellite networks,” IEEE Trans. Wireless Commun., early
access, Aug. 28, 2024, doi: 10.1109/TWC.2024.3447229.

DoD Instruction 8420.02 DoD Satellite Communications, U.S. Dept.
Def., Washington, DC, USA, Nov. 2020.

D. A. Fritz et al.,, “Military satellite communications: Space-based
communications for the global information grid,” Johns Hopkins APL
Tech. Dig., vol. 27, no. 1, pp. 32—40, 2006.

6637


http://www.mathworks.com/help/phased/ref/
http://www.mathworks.com/help/map/coverage-
http://dx.doi.org/10.1109/TWC.2024.3447229

AGNEW et al.: DETECTION OF ZERO-DAY ATTACKS IN A SOFTWARE-DEFINED LEO CONSTELLATION NETWORK

[81]

(82]

(83]

(84]

[85]

(86]

[87]

T. Dzol and M. McMahon, “MIL-STD-188-220A evolution: A model
for technical architecture standards development,” in Proc. MILCOM,
vol. 2, 1997, pp. 704-709.

Y.-W. Chong and T.-C. Wan, “Comparative study on hybrid header
compression over satellite-wireless networks,” IETE Tech. Rev.,
vol. 30, no. 6, pp. 461-472, 2013.

C. Fleming, M. Reith, and W. Henry, “Securing commercial
satellites for military operations: A cybersecurity supply chain
framework,” in Proc. Int. Conf. Cyber Warfare Secur., vol. 18, no. 1,
2023, pp. 85-92.

T. Chen and C. Guestrin, “XGboost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.,
2016, pp. 785-794.

A. V. Dorogush, V. Ershov, and A. Gulin, “CatBoost: Gradient
boosting with categorical features support,” 2018, arXiv:1810.11363.
E. Bisong and E. Bisong, “Google colaboratory,” Building Machine
Learning and Deep Learning Models on Google Cloud Platform.
Berkeley, CA, USA: Apress, 2019, pp. 59—64.

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna:
A next-generation hyperparameter optimization framework,” in Proc.
25th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2019,
pp. 2623-2631.

DENNIS AGNEW (Graduate Student Member,
IEEE) received the B.S. degree in computer engi-
neering from Jackson State University in 2020, and
the M.S. degree in electrical and computer engi-
neering from the University of Florida in 2021,
where he is currently pursuing the Ph.D. degree in
electrical and computer engineering. He has been
awarded the Graduate School Preeminence and
L3Harris Fellowships with the University of
Florida. He is currently a graduate student
researcher with the NSF Center for Space, High-

Performance, and Resilient Computing. His research interests include smart
grids, tactical networks, machine learning, cybersecurity, and software-
defined networks.

6638

ASHLEE RICE-BLADYKAS (Graduate Student
Member, IEEE) received the first B.S. degree in
electrical engineering and the second B.S. degree
in psychology from the University of Florida in
2023, where she is currently pursuing the M.S.
degree in electrical and computer engineering. She
is also a graduate student researcher with the NSF
Center for Space, High-Performance, and Resilient
Computing. Her research interests include satel-
lite communications, machine learning, tactical
networks, and satellite astrodynamics.

JANISE MCNAIR (Senior Member, IEEE) received
the B.S. and M.S. degrees in electrical and
computer engineering from the University of Texas
at Austin and the Ph.D. degree in electrical and
computer engineering from the Georgia Institute of
Technology. She is currently a Professor with
the Department of Electrical and Computer
Engineering, University of Florida, where she
leads the Wireless and Mobile Systems Laboratory.
She is a Faculty Board Member of the Nelms
Institute for the Connected World and the NSF
Center for Space, High-Performance, and Resilient Computing. Her research
is funded by NSF, DoD, government agencies, and industry. Her current
research interests include wireless and mobile networking, software- defined
networks, network security, the Internet of Things, and smart grid
communications security.

VOLUME 5, 2024



