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Abstract—First responders and other tactical teams rely on mo- 
bile tactical networks to coordinate and accomplish emergent time- 
critical tasks. The information exchanged through these networks is 
vulnerable to various strategic cyber network attacks. Detecting and 
mitigating them is a challenging problem due to the volatile and 
mobile nature of an ad hoc environment. This paper proposes 
MalCAD, a graph machine learning-based framework for detecting 
cyber attacks in mobile tactical software-defined networks. Mal- 
CAD operates based on observing connectivity features among 
various nodes obtained using graph theory, instead of collecting 
information at each node. The MalCAD framework is based on the 
XGBOOST classification algorithm and is evaluated for lost versus 
wasted connectivity and random versus targeted cyber attacks. 
Results show that, while the initial cyber attacks create a loss of 
30%–60% throughput, MalCAD results in a gain of average 
throughput by 25%–50%, demonstrating successful attack 
mitigation. 

Index Terms—machine learning, cyber attacks, graph machine 
learning, intelligence, software-defined networking 

I. INTRODUCTION 

Tactical mobile networks play an important role in providing 

communication capabilities for real-time situational awareness in 

emergency response scenarios for first responders. Emergency 

Medical Technicians (EMTs), paramedics, firefighters, police 

officers, remotely located soldiers, explorers, and other ad hoc 

communication teams, rely on tactical networks to provide a 

reliable communications architecture [1]. These networks are 

often made up of low-powered, battery-operated devices with ad 

hoc network connections, which bring several major challenges. 

First, tactical teams often move at a variety of speeds and 

directions, with continuous disruption and reestablishment of 

connections between the network’s nodes or devices. Second, the 

condition of limited radio bandwidth and energy resources are 

amplified by the dynamically changing topology and the 

resulting changes in connectivity. Furthermore, due to their 

autonomous nature, ad-hoc networks are vulnerable to malicious 

cyber-attacks [2]. 

Characterization and detection of cyber threats in tactical 

mobile networks are crucial for secure real-time communication. 

Existing work on cyber attack detection relies on techniques that 

monitor performance data from network packets at each network 

node. These are computation and energy-intensive, reducing the 

network’s lifetime. It is vital to have a cyber attack detection 

framework that has both a global view of the network and a low-

energy approach. Network management functions in the mobile 

tactical network are provided by software-defined 
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Fig. 1: (a) Example SDN Controller Architecture [3] (b) Software- 
Defined Wireless Network 

wireless networking (SDWN). As shown in Figure 1(a), the goal 

of software-defined networking (SDN) is to separate the data 

plane of the network from the control plane to allow for improved 

control, visibility, and security in network topology formation 

and routing [4]. The emergence of SDN has altered the wireless 

networking paradigm, creating distributed control in SDWNs as 

shown in Figure 1(b). Although an analysis of SDWN is out of 

the scope of this paper, we assume SDWN capability in our 

mobile tactical network to accomplish the network management 

tasks [5], [6]. 

In this work, we propose a graph learning and SDN-based cy- 

ber attack detection and mitigation framework called Machine- 
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Learning based Cyber Attack Detection (MalCAD). MalCAD 

leverages SDN’s global visibility, and network topology in- 

formation to extract connectivity features. Then, supervised 

machine learning models are trained to identify cyber threats, and 

SDN approaches are employed to restructure the network 

connections to circumvent compromised links and prevent data 

loss. Thus, this paper makes the following contributions: 

• A new approach is proposed to integrate supervised ma- 

chine learning and mobility modeling. 

• An experimental analysis is provided that distinguishes 

targeted attacks from random cyber attacks. 

• The proposed MalCAD framework provides a technique 

that is effective against jamming, black hole attacks, energy 

drain attacks, and denial of service attacks. 

• The MalCAD framework detects the listed attacks with high 

accuracy (> 95%) and can maintain system throughput in the 

presence of attacks. 

This paper is organized as follows. Section II describes the 

related work. In Section III, we describe the MalCAD system 

framework and introduce the types of cyber attacks under 

consideration in this paper. In Section IV, we provide details of 

the MalCAD methodology, which includes the data collection 

process, the network connectivity features, and the application of 

the learning algorithm. Section V provides the simulation details, 

including the mobility model and dataset information, as well as 

the numerical results that show the impact of our framework on 

network performance. Finally, Section VI concludes the paper. 

II. RELATED WORK 

Using machine learning techniques for mobile tactical net- 

works is still in its infancy stage. The published cyber attack 

detection frameworks focus on several categories, including 

highly-dynamic mobility [7], [8], and node behavior that can 

be attributed to successful cyber attacks, such as black holes, gray 

holes, and selfish greedy behaviors [9]. Authors of [10], [11], 

[12] attempt to reduce the spread of malware by reducing the 

contact between machines with similar vulnerabilities [10] or by 

monitoring large deviations in network performance statistics 

[11], [12]. The authors in [13] use packet arrival rates to detect 

intrusions using a support vector machine learning algorithm. 

This scheme does not apply to highly dynamic networks. Other 

works follow more unique paths in detecting and mitigating cyber 

attacks within the network. [14] provides a multi-stage anomaly 

detection method that uses external sources of information, 

beyond the conventional signatures and moni- tored network 

data, provides expert knowledge and contextual information, and 

demonstrates improved efficiency in intrusion detection. Authors 

of [15] propose a novel cross-stack sensor framework for attacker 

disinformation, misdirection, monitoring, and analysis. The 

network is protected by introducing ”booby- traps” at network 

endpoints, operating systems, and application layers. 

While the related work currently relies on monitoring and 

collecting data about each node as a key part of the dataset, the 

MalCAD approach does not need to do this intense monitoring 

of every node. Node-by-node monitoring can be difficult to ob- 

tain, may incur a large amount of processing, and may not give a 

clear picture of how the node is currently impacting the network. 

MalCAD monitors the connectivity characteristics, gains a more 

accurate picture of the impact, and thereby preserves energy, 

bandwidth, and privacy. 

III. CYBER ATTACK CHARACTERIZATION 

Mobile ad hoc networks are vulnerable to a range of cyber 

attacks [16], [17]. The attacks considered in this study and the 

expected impacts are as follows: 

• Jamming: The attacker intentionally disrupts the reception 

of data to/from a node by interrupting the data transmission. 

Impact: Network traffic is reduced due to lost connections 

at the attacked node(s). 

• Blackhole: The compromised, or corrupted, node receives 

packets that it discards instead of routing to the next node. 

Impact: Reduced network traffic, disrupted packet forward- 

ing, network isolation, and changes in the topology of the 

network. 

• Energy drain attack: The attacker sends connection es- 

tablishment requests continuously to the attacked node. 

Impact: The incoming requests cause repeated receiving 

and processing of messages unnecessarily, resulting in 

depleted battery power and the loss of connections to the 

surrounding nodes. It also decreases network traffic and 

changes the width. 

• Denial of Service: Attackers use excessive service requests 

to use up the resources of attacked nodes. 

Impact: Could significantly increase or decrease network 

traffic, and change the network topology. Distributed Denial 

of Service (DDoS) has a larger impact since it comes from 

different nodes. 

We define two groups of cyber attacks based on the following 

criteria: 

1) Group 1 (Lost Connectivity): This group consists of at- 

tacks that reduce network traffic and cause attacked nodes 

to lose communication with their neighbors. Jamming and 

Blackhole are examples of this type of attack. 

2) Group 2 (Wasteful Connectivity): This group consists of 

attacks that increase network traffic and cause attacked 

nodes to communicate with a large number of nodes, 

resulting in a waste of network resources. Energy drain and 

Denial of Service are examples of this type of attack. 

Group 1 (Lost Connectivity) and Group 2 (Wasteful Connec- 

tivity) attacks are both characterized by their impact on changes 

in connectivity among nodes and network topology. Hence, to 

detect these attacks, our methodology focuses on the features that 

capture the network connectivity and topology information. In 

the next section, we will describe the methodology of the 

proposed framework. 

IV. MALCAD METHODOLOGY 

The proposed MalCAD framework is shown in Fig. 2. The 

system uses SDN-based network management to collect infor- 

mation on link status. This information is modeled using a graph 
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Fig. 2: MalCAD system diagram with individual components 

 

to collect graph-based feature values (articulation points, clus- 

tering coefficients, bridge edges, and connected components). 

For the classifier, we use XGBoost to understand the variation 

We collected datasets for different combinations of attack 

groups and attack types and generated cyber attack detection 

models using each combination. 

of feature values that correspond to normal and attacked net-   

work behavior. XGBoost is a scalable end-to-end tree boosting 

system, which is used widely by data scientists [18]. Detection 

events will trigger the SDN network controller to update the 

network topology by isolating attacked nodes. We predict the 

topology change will increase network performance (restore the 

throughput) or reduce the waste of network resources. We also 

anticipate that this approach will be effective against jamming, 

black holes, energy drains, denial of service, and a variety of 

other cyber attacks. 

The proposed MalCAD framework consists of three com- 

ponents: 1) data generation, 2) feature extraction, and 3) the 

machine learning algorithm used to develop the cyber attack 

detector models. As mentioned previously, the implementation 

of the mitigation steps will be conducted through the network 

control provided in the SDWN architecture. 

A. Data generation 

First, the position of the nodes in the tactical network is 

initialized. After initializing the node positions, the nodes are 

moved according to a selected mobility model that is represen- 

tative of the behavior of nodes in a mobile tactical network. Then, 

we simulate the tactical network behavior for one day to extract 

feature values. Samples are collected, where each sample 

corresponds to a set of feature values extracted at a particular time 

instance. 

The data collection process used in our analysis is shown 

in Procedure 1, where t refers to the sample number and T 

is the total number of samples. If there is an attack, we first 

determine if it is a Group 1 attack (Lost Connectivity) or a Group 

2 attack (Wasted Connectivity). Next, we determine if the attack 

is targeted, i.e., a purposeful attack on the influential nodes in the 

network, or random, i.e., randomly selected nodes are attacked. 

Targeted and Random attacks are designed based on the analysis 

provided in [19]. The value ’m’ is the number of nodes that are 

attacked in the network for a given sample. Finally, the network 

response to the attack is to either remove the links of selected 

nodes to indicate a loss of connectivity or to increase the range 

of selected nodes to indicate an abrupt increase in network 

connectivity. 

Procedure 1 Data Collection  

1: Initialize network simulation parameters. 

Input: Initial node positions, Mobility model, Attack Type (AT), 

Attack Group (AG), Number of nodes to attack (m), Total 

samples in simulation (T ). 

2: for sample number t = 1 : T do 

3: Update node positions based on the mobility model 

4: if AG == Group 1 & AT == targeted then 

5: Remove links from m most influential nodes 

6: else if AG == Group 1 & AT == random then 

7: Remove links from m randomly selected nodes 

8: else if AG == Group 2 & AT == targeted then 

9:  Increase range of m most influential nodes 

10: else if AG == Group 2 & AT == random then 

11: Increase range of m most randomly selected nodes 

12: else 

13: No changes to network topology 

14:  Extract graph-based features described in Section IV.B 

for current network topology 

Output: Graph-based feature datasets for attack detection 
 

 

B. Feature Extraction: Network connectivity and graph-based 

topology features 

Selecting the right machine learning features is key to im- 

plementing an effective detection strategy. To detect the various 

Group 1 (Lost Connectivity) and Group 2 (Wasted Connectivity) 

attacks, we require features that capture the network node 

connectivity and topology status. We employ graph-theoretic 

properties such as articulation points, bridge edges, strongly 

connected components, and clustering coefficients to model and 

measure the characteristics, calculating the graph theory metrics 

from each node’s neighbor list. This reduces the need to mon- 

itor performance data at each node, which is computationally 

intensive. 

• Number of articulation points: A given node is con- 

sidered as an articulation point [20] if its removal splits 

the network into two or more disconnected components. 
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The higher the number of articulation points, the more 

vulnerable the network is to any targeted attacks. 

• Number of bridge edges: A given edge is considered a 

bridge edge if its removal splits the network into two or 

more disconnected components. Similar to articulation 

points, the higher the number of bridge edges, the more 

vulnerable the network is to any targeted attacks. 

• Average Clustering Coefficient (ACC): The ACC is the 

ratio of closed triplets to all triplets (open and closed), where 

a triplet is a collection of three nodes. Any three nodes 

connected by two undirected ties form an open triplet, and 

any three nodes connected by three undirected ties form a 

closed triplet. A high ACC [21] indicates the network’s 

ability to form strong and large communities within the 

network, helping to manage topology changes. 

•  Strongly Connected Components: A strongly connected 

component is a part of the network where every node can 

contact every other node through single or multiple hops. 

The size of the strongly connected components impacts the 

network performance to a great extent because of the large 

number of connections. 

C. Machine Learning model 

The final component of the MalCAD framework is a classifi- 

cation model, suited for classifying the state of the network, i.e., 

whether it was attacked or not. In our study, we chose a decision 

tree classifier [22] as a simple, yet efficient, machine learning 

technique. The decision tree classifier has hyper-parameters, 

such as the maximum length of the tree (depth), function to 

measure the quality of the split, and strategy to choose the split 

at each node (the options being to choose either the best split 

or random split). Extreme Gradient Boosting (XGBoost) [23], 

[18] with decision trees is an example boosting technique that 

uses decision trees as the base estimator. XGBoost has a fewer 

number of hyper-parameters than other data and computation- 

intense machine learning algorithms such as the Multi-Layer 

Perceptron Neural Networks (MLPNN). Boosting techniques 

give more importance to samples that have bad predictions 

and try to change model parameters to address them over several 

iterations. The iterations improve the overall model performance. 

V. SIMULATION 

A. Simulation Setup 

A network simulation testbed was developed using Python 

in the Anaconda platform. We used Stanford Network Analysis 

Platform (SNAP) [24], a large-scale network analysis tool, and 

other popular Python library packages such as Pandas [25], 

Scikit-learn [26], and PyMobility [27] to carry out the analysis. 

We initialized the network with N = 100 nodes, with the nodes 

placed randomly in an area with dimensions 100 meters x 

100 meters. Each node represents a device in the network. 

All the nodes have the same communication range, R = 10 

meters, and only devices within range of each other are allowed 

to communicate. The simulator visualization of the network 

 

 

Fig. 3: A snapshot of the network from the simulation showing 

connections between different nodes and their range 

 

 

topology with the aforementioned parameters is shown in Fig 3, 

which shows 100 nodes and transmission ranges. 

Once the position and range of the nodes are initialized, the 

simulator sets up a mobility model for each node. This study 

considers the Reference Point Group Mobility ( 

06+ 8) model [28]. In the RPGM model, each collection 

of nodes has a logical center whose mobility follows a ran- dom 

way-point model. The non-logical-center nodes follow the 

logical-center node with some variance. The RPGM paradigm is 

a model that has been applied for emergency medical technician 

(EMT) teams, teams of soldiers on the battlefield, and groups in 

expeditions. As mentioned before, we begin with the initial node 

positions and then use the RPGM mobility model to move the 

nodes and extract feature values every 5 seconds. Each dataset 

has 17, 280 samples, where each sample contains feature values 

from a specific period. Each sample of the dataset corresponds to 

the feature values measured at a given time instance. We have two 

different kinds of time instances: 1) attacked time instances 

(’attacked’) and 2) normal time instances (’normal’), which form 

the two classes for classification models. We will continue to use 

the phrases ’normal’ for the cases when the network was not 

attacked and ’attacked’ for the cases when the network was 

attacked, respectively. We first randomized the samples and then 

used 70% of the samples (12, 096) to train, and 30% of the 

samples (5, 184) to test the effectiveness of the attack detection 

models. A pre-processing phase normalized all the features to 

avoid any one factor unjustly influencing model training. 

Once the dataset is generated and features are extracted, the 

XGBOOST model is used to classify the state of the mode. Using 

the parameter set mentioned in Section IV-C, we use Grid search 

K-fold cross-validation to select the set of optimal hyper- 

parameters from a range of possible values for each. In K-fold 

cross-validation, data is initially split into ‘K’ parts. In each step, 

‘K-1’ parts are used for training the model and the remaining 

samples are used for testing the model performance. We then 

train models for all combinations of a set of hyper-parameter 

values and choose the model that performs the best during K- fold 

cross-validation. This K-fold process results in models that can 

generalize well with unseen data. In our experiments, we 
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found the optimal number of estimators parameter to be 50 and 

the maximum tree depth parameter to be 10. Other parameter 

values were left as their default values as set in XGBoost library 

[23], [18]. 

B. Numerical Results 

Our proposed framework’s cyber attack detection perfor- 

mance is evaluated utilizing Accuracy, Precision, Recall, and F1-

score [29]. 

Tables I- IV show the performance results for the cyber attack 

detection models developed using the proposed MalCAD 

framework. Table I and Table II show the performance of 

MalCAD for Group 1 attacks (Lost Connectivity). Table I shows 

results for Random cyber attacks and Table II shows targeted 

Group 1 attacks. Table III and Table IV show the performance of 

the MalCAD framework for Group 2 (Wasted Connectivity). 

Table III shows results for Random cyber attacks and Table IV 

shows targeted Group 2 attacks. 

TABLE I: Attack group - Group 1, Attack type - Random 
 
 

attacked nodes (%) Accuracy Precision Recall F1-score 
 

5 99.70 100.0 96.60 98.27 

10 99.20 98.39 92.45 95.33 

15 99.76 100.0 97.35 98.66 

20 99.50 98.44 95.84 97.13 

 

TABLE II: Attack group - Group 1, Attack type - Targeted 
 
 

attacked nodes (%) Accuracy Precision Recall F1-score 
 

5 99.93 100.0 99.24 99.62 

10 100.0 100.0 100.0 100.0 

15 99.93 100.0 99.24 99.62 

20 99.80 98.50 99.24 98.87 

 

TABLE III: Attack group - Group 2, Attack type - Random 
 
 

attacked nodes (%) Accuracy Precision Recall F1-score 
 

5 94.43 77.84 51.69 62.13 

10 97.66 88.53 84.52 86.48 

15 98.86 95.29 91.69 93.46 

20 99.66 98.85 97.35 98.09 

 

From Tables I-IV, we can observe that it is easier to detect 

targeted attacks in the network than random attacks, which is 

a favorable outcome as the targeted cyber attacks are more 

dangerous for network performance. Targeted attacks result in a 

better-performing model since the targeted nodes result in a 

higher impact on the node connectivity and topology, which can 

be captured more effectively using the features employed in the 

proposed framework. We can also observe that, as the number of 

attacked nodes increases, the attack detection model performs 

better due to the same reason. 

TABLE IV: Attack group - Group 2, Attack type - Targeted 
 
 

attacked nodes (%) Accuracy Precision Recall f1-score 
 

5 94.23 72.33 56.22 63.26 

10 97.86 90.03 85.28 87.59 

15 98.56 95.12 88.30 91.58 

20 99.60 98.84 96.60 97.70 

 

 

C. Impact of cyber attack detection framework 

In this section, we analyze the impact of MalCAD on network 

performance, using Mininet-WiFi, an open-source software- 

defined wireless network (SDWN) emulator. In this simulation, 

the controller (1) monitors the nodes and flows within the 

network; (2) extracts the features needed by MalCad to detect the 

attacks; (3) generates the mitigation routing solution, and 

(4) enforces the mitigation mechanism by refreshing the flow 

tables in the wireless access points or routers. The simulation 

environment consists of N = 100 nodes randomly placed in an 

area of 100 × 100 meters with each node having a range of 

R = 10 meters. 

 

Fig. 4: Variation in average throughput for different numbers of 

attacked nodes 

 

To perform attacks and gather the performance result, iPerf 

3 (3.1.3) and hping3 (3.0.0-alpha-2) are used to benchmark and 

initiate attacks, respectively. Network throughput was monitored 

starting at the beginning of the simulation when the network only 

contains normal traffic. We then initiated a targeted cyber attack 

on m nodes in the network by sending a large number of TCP 

SYN packets to the attacked wireless and mobile nodes to drain 

their resources. We then examined the link behavior, extracted 

the features, and processed the results using the MalCAD model 

to see if it successfully detected and classified our TCP cyber 

attack. If MalCAD indicates an attack, a request is initiated at the 

SDWN controller to begin mitigation, which for this class of 

attack was to limit the flow of TCP SYN packets to the attacked 

nodes, thereby improving the network performance considerably. 

In fig. 4, we show the variation of average throughput, i.e., the 

throughput of all the attacked nodes averaged over the entire 

simulation. The average throughput is shown for cases of 5, 10, 
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15, and 20 attacked nodes. For each case, we show the average 

throughput during normal traffic, attacked traffic, and mitigated 

traffic. When 5 nodes were attacked, the average throughput 

of the network initially dropped by as much as 32%, but after the 

MalCAD-initiated response, the throughput was restored and 

increased by 24%. For the case when 10 nodes were attacked, the 

average throughput initially decreased by 42% but MalCAD 

increased throughput by 32%. Similarly, for the cases when 15 

and 20 were attacked, the initial average throughput decreased by 

61% and 58% respectively, but due to the attack detection 

capability of MalCAD with the attack mitigation scheme, the 

average throughput increased by 50% and 48% respectively. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a graph machine learning-based 

cyber attack detection framework, called MalCAD. MalCAD 

exhibited the ability to identify cyber threats in mobile tacti- 

cal networks. Our suggested strategy uses globalized network 

connectivity to avoid monitoring networking-related metrics at 

each node. MalCAD was evaluated for lost connectivity, wasted 

connectivity, and random, and targeted cyber attacks. Our 

platform detects targeted cyber attacks, which are more 

damaging to network performance. We showed that detecting 

a cyber attack prompts the network controller to act quickly, 

preventing additional network degradation. Due to MalCAD’s 

attack detection capability, network throughput rose by 25-50%, 

compared to 30-60% caused by cyber attacks. In future work, we 

intend to incorporate additional realistic mobility models for 

tactical situations, novel types of cyber attacks, and the impact of 

other attack mitigation strategies into this framework. 
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