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Abstract—First responders and other tactical teams rely on mo-
bile tactical networks to coordinate and accomplish emergent time-
critical tasks. The information exchanged through these networks is
vulnerable to various strategic cyber network attacks. Detecting and
mitigating them is a challenging problem due to the volatile and
mobile nature of an ad hoc environment. This paper proposes
MalCAD, a graph machine learning-based framework for detecting
cyber attacks in mobile tactical software-defined networks. Mal-
CAD operates based on observing connectivity features among
various nodes obtained using graph theory, instead of collecting
information at each node. The MalCAD framework is based on the
XGBOOST classification algorithm and is evaluated for lost versus
wasted connectivity and random versus targeted cyber attacks.
Results show that, while the initial cyber attacks create a loss of
30%—-60% throughput, MalCAD results in a gain of average
throughput by 25%-50%, demonstrating successful attack
mitigation.

Index Terms—machine learning, cyber attacks, graph machine
learning, intelligence, software-defined networking

1. INTRODUCTION

Tactical mobile networks play an important role in providing
communication capabilities for real-time situational awareness in
emergency response scenarios for first responders. Emergency
Medical Technicians (EMTs), paramedics, firefighters, police
officers, remotely located soldiers, explorers, and other ad hoc
communication teams, rely on tactical networks to provide a
reliable communications architecture [1]. These networks are
often made up of low-powered, battery-operated devices with ad
hoc network connections, which bring several major challenges.
First, tactical teams often move at a variety of speeds and
directions, with continuous disruption and reestablishment of
connections between the network’s nodes or devices. Second, the
condition of limited radio bandwidth and energy resources are
amplified by the dynamically changing topology and the
resulting changes in connectivity. Furthermore, due to their
autonomous nature, ad-hoc networks are vulnerable to malicious
cyber-attacks [2].

Characterization and detection of cyber threats in tactical
mobile networks are crucial for secure real-time communication.
Existing work on cyber attack detection relies on techniques that
monitor performance data from network packets at each network
node. These are computation and energy-intensive, reducing the
network’s lifetime. It is vital to have a cyber attack detection
framework that has both a global view of the network and a low-
energy approach. Network management functions in the mobile
tactical network are provided by software-defined
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Fig. 1: (a) Example SDN Controller Architecture [3] (b) Software-
Defined Wireless Network

wireless networking (SDWN). As shown in Figure 1(a), the goal
of software-defined networking (SDN) is to separate the data
plane of the network from the control plane to allow for improved
control, visibility, and security in network topology formation
and routing [4]. The emergence of SDN has altered the wireless
networking paradigm, creating distributed control in SDWNss as
shown in Figure 1(b). Although an analysis of SDWN is out of
the scope of this paper, we assume SDWN capability in our
mobile tactical network to accomplish the network management
tasks [5], [6].

In this work, we propose a graph learning and SDN-based cy-
ber attack detection and mitigation framework called Machine-
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Learning based Cyber Attack Detection (MalCAD). MalCAD
leverages SDN’s global visibility, and network topology in-
formation to extract connectivity features. Then, supervised
machine learning models are trained to identify cyber threats, and
SDN approaches are employed to restructure the network
connections to circumvent compromised links and prevent data
loss. Thus, this paper makes the following contributions:

« A new approach is proposed to integrate supervised ma-
chine learning and mobility modeling.

« An experimental analysis is provided that distinguishes
targeted attacks from random cyber attacks.

o The proposed MalCAD framework provides a technique
that is effective against jamming, black hole attacks, energy
drain attacks, and denial of service attacks.

o The MalCAD framework detects the listed attacks with high
accuracy (> 95%) and can maintain system throughput in the
presence of attacks.

This paper is organized as follows. Section II describes the
related work. In Section III, we describe the MalCAD system
framework and introduce the types of cyber attacks under
consideration in this paper. In Section IV, we provide details of
the MalCAD methodology, which includes the data collection
process, the network connectivity features, and the application of
the learning algorithm. Section V provides the simulation details,
including the mobility model and dataset information, as well as
the numerical results that show the impact of our framework on
network performance. Finally, Section VI concludes the paper.

II. RELATED WORK

Using machine learning techniques for mobile tactical net-
works is still in its infancy stage. The published cyber attack
detection frameworks focus on several categories, including
highly-dynamic mobility [7], [8], and node behavior that can
be attributed to successful cyber attacks, such as black holes, gray
holes, and selfish greedy behaviors [9]. Authors of [10], [11],
[12] attempt to reduce the spread of malware by reducing the
contact between machines with similar vulnerabilities [10] or by
monitoring large deviations in network performance statistics
[11], [12]. The authors in [13] use packet arrival rates to detect
intrusions using a support vector machine learning algorithm.
This scheme does not apply to highly dynamic networks. Other
works follow more unique paths in detecting and mitigating cyber
attacks within the network. [14] provides a multi-stage anomaly
detection method that uses external sources of information,
beyond the conventional signatures and moni- tored network
data, provides expert knowledge and contextual information, and
demonstrates improved efficiency in intrusion detection. Authors
of [15] propose a novel cross-stack sensor framework for attacker
disinformation, misdirection, monitoring, and analysis. The
network is protected by introducing “booby- traps” at network
endpoints, operating systems, and application layers.

While the related work currently relies on monitoring and
collecting data about each node as a key part of the dataset, the
MalCAD approach does not need to do this intense monitoring

of every node. Node-by-node monitoring can be difficult to ob-
tain, may incur a large amount of processing, and may not give a
clear picture of how the node is currently impacting the network.
MalCAD monitors the connectivity characteristics, gains a more
accurate picture of the impact, and thereby preserves energy,
bandwidth, and privacy.

III. CYBER ATTACK CHARACTERIZATION

Mobile ad hoc networks are vulnerable to a range of cyber
attacks [16], [17]. The attacks considered in this study and the
expected impacts are as follows:

« Jamming: The attacker intentionally disrupts the reception
of data to/from a node by interrupting the data transmission.
Impact. Network traffic is reduced due to lost connections
at the attacked node(s).

« Blackhole: The compromised, or corrupted, node receives
packets that it discards instead of routing to the next node.
Impact: Reduced network traffic, disrupted packet forward-
ing, network isolation, and changes in the topology of the
network.

« Energy drain attack: The attacker sends connection es-
tablishment requests continuously to the attacked node.
Impact: The incoming requests cause repeated receiving
and processing of messages unnecessarily, resulting in
depleted battery power and the loss of connections to the
surrounding nodes. It also decreases network traffic and
changes the width.

« Denial of Service: Attackers use excessive service requests

to use up the resources of attacked nodes.
Impact: Could significantly increase or decrease network
traffic, and change the network topology. Distributed Denial
of Service (DDoS) has a larger impact since it comes from
different nodes.

We define two groups of cyber attacks based on the following

criteria:

1) Group 1 (Lost Connectivity): This group consists of at-
tacks that reduce network traffic and cause attacked nodes
to lose communication with their neighbors. Jamming and
Blackhole are examples of this type of attack.

2) Group 2 (Wasteful Connectivity): This group consists of
attacks that increase network traffic and cause attacked
nodes to communicate with a large number of nodes,
resulting in a waste of network resources. Energy drain and
Denial of Service are examples of this type of attack.

Group 1 (Lost Connectivity) and Group 2 (Wasteful Connec-
tivity) attacks are both characterized by their impact on changes
in connectivity among nodes and network topology. Hence, to
detect these attacks, our methodology focuses on the features that
capture the network connectivity and topology information. In
the next section, we will describe the methodology of the
proposed framework.

IV. MALCAD METHODOLOGY

The proposed MalCAD framework is shown in Fig. 2. The
system uses SDN-based network management to collect infor-
mation on link status. This information is modeled using a graph
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Fig. 2: MalCAD system diagram with individual components

to collect graph-based feature values (articulation points, clus-
tering coefficients, bridge edges, and connected components).
For the classifier, we use XGBoost to understand the variation

of feature values that correspond to normal and attacked net-
work behavior. XGBoost is a scalable end-to-end tree boosting
system, which is used widely by data scientists [18]. Detection
events will trigger the SDN network controller to update the
network topology by isolating attacked nodes. We predict the
topology change will increase network performance (restore the
throughput) or reduce the waste of network resources. We also
anticipate that this approach will be effective against jamming,
black holes, energy drains, denial of service, and a variety of
other cyber attacks.

The proposed MalCAD framework consists of three com-
ponents: 1) data generation, 2) feature extraction, and 3) the
machine learning algorithm used to develop the cyber attack
detector models. As mentioned previously, the implementation
of the mitigation steps will be conducted through the network
control provided in the SDWN architecture.

A. Data generation

First, the position of the nodes in the tactical network is
initialized. After initializing the node positions, the nodes are
moved according to a selected mobility model that is represen-
tative of the behavior of nodes in a mobile tactical network. Then,
we simulate the tactical network behavior for one day to extract
feature values. Samples are collected, where each sample
corresponds to a set of feature values extracted at a particular time
instance.

The data collection process used in our analysis is shown
in Procedure 1, where ¢ refers to the sample number and T
is the total number of samples. If there is an attack, we first
determine if it is a Group 1 attack (Lost Connectivity) or a Group
2 attack (Wasted Connectivity). Next, we determine if the attack
is targeted, i.e., a purposeful attack on the influential nodes in the
network, or random, i.e., randomly selected nodes are attacked.
Targeted and Random attacks are designed based on the analysis
provided in [19]. The value 'm’ is the number of nodes that are
attacked in the network for a given sample. Finally, the network
response to the attack is to either remove the links of selected
nodes to indicate a loss of connectivity or to increase the range
of selected nodes to indicate an abrupt increase in network
connectivity.

We collected datasets for different combinations of attack
groups and attack types and generated cyber attack detection
models using each combination.

Procedure 1 Data Collection
1: Initialize network simulation parameters.

Input: Initial node positions, Mobility model, Attack Type (AT),
Attack Group (AG), Number of nodes to attack (m), Total
samples in simulation (7).

2: for sample number 1 = 1: T do
3 Update node positions based on the mobility model
4 if AG == Group 1 & AT == targeted then

5: Remove links from m most influential nodes

6

7

else if AG == Group 1 & AT == random then
: Remove links from m randomly selected nodes
8: else if AG == Group 2 & AT == targeted then

9: Increase range of m most influential nodes

10: else if AG == Group 2 & AT == random then
11: Increase range of m most randomly selected nodes
12: else
13: No changes to network topology

14: Extract graph-based features described in Section [V.B
for current network topology

Output: Graph-based feature datasets for attack detection

B. Feature Extraction: Network connectivity and graph-based
topology features

Selecting the right machine learning features is key to im-
plementing an effective detection strategy. To detect the various
Group 1 (Lost Connectivity) and Group 2 (Wasted Connectivity)
attacks, we require features that capture the network node
connectivity and topology status. We employ graph-theoretic
properties such as articulation points, bridge edges, strongly
connected components, and clustering coefficients to model and
measure the characteristics, calculating the graph theory metrics
from each node’s neighbor list. This reduces the need to mon-
itor performance data at each node, which is computationally
intensive.

o Number of articulation points: A given node is con-
sidered as an articulation point [20] if its removal splits
the network into two or more disconnected components.
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The higher the number of articulation points, the more
vulnerable the network is to any targeted attacks.

o Number of bridge edges: A given edge is considered a
bridge edge if its removal splits the network into two or
more disconnected components. Similar to articulation
points, the higher the number of bridge edges, the more
vulnerable the network is to any targeted attacks.

« Average Clustering Coefficient (ACC): The ACC is the
ratio of closed triplets to all triplets (open and closed), where
a triplet is a collection of three nodes. Any three nodes
connected by two undirected ties form an open triplet, and
any three nodes connected by three undirected ties form a
closed triplet. A high ACC [21] indicates the network’s
ability to form strong and large communities within the
network, helping to manage topology changes.

+ Strongly Connected Components: A strongly connected
component is a part of the network where every node can
contact every other node through single or multiple hops.
The size of the strongly connected components impacts the
network performance to a great extent because of the large
number of connections.

C. Machine Learning model

The final component of the MalCAD framework is a classifi-
cation model, suited for classifying the state of the network, i.e.,
whether it was attacked or not. In our study, we chose a decision
tree classifier [22] as a simple, yet efficient, machine learning
technique. The decision tree classifier has hyper-parameters,
such as the maximum length of the tree (depth), function to
measure the quality of the split, and strategy to choose the split
at each node (the options being to choose either the best split
or random split). Extreme Gradient Boosting (XGBoost) [23],
[18] with decision trees is an example boosting technique that
uses decision trees as the base estimator. XGBoost has a fewer
number of hyper-parameters than other data and computation-
intense machine learning algorithms such as the Multi-Layer
Perceptron Neural Networks (MLPNN). Boosting techniques
give more importance to samples that have bad predictions
and try to change model parameters to address them over several
iterations. The iterations improve the overall model performance.

V. SIMULATION
A. Simulation Setup

A network simulation testbed was developed using Python
in the Anaconda platform. We used Stanford Network Analysis
Platform (SNAP) [24], a large-scale network analysis tool, and
other popular Python library packages such as Pandas [25],
Scikit-learn [26], and PyMobility [27] to carry out the analysis.
We initialized the network with N = 100 nodes, with the nodes
placed randomly in an area with dimensions 100 meters x
100 meters. Each node represents a device in the network.
All the nodes have the same communication range, R = 10
meters, and only devices within range of each other are allowed
to communicate. The simulator visualization of the network

Fig. 3: A snapshot of the network from the simulation showing
connections between different nodes and their range

topology with the aforementioned parameters is shown in Fig 3,
which shows 100 nodes and transmission ranges.

Once the position and range of the nodes are initialized, the
simulator sets up a mobility model for each node. This study
considers the Reference Point Group Mobility (

06+ 8) model [28]. In the RPGM model, each collection
of nodes has a logical center whose mobility follows a ran- dom
way-point model. The non-logical-center nodes follow the
logical-center node with some variance. The RPGM paradigm is
a model that has been applied for emergency medical technician
(EMT) teams, teams of soldiers on the battlefield, and groups in
expeditions. As mentioned before, we begin with the initial node
positions and then use the RPGM mobility model to move the
nodes and extract feature values every 5 seconds. Each dataset
has 17, 280 samples, where each sample contains feature values
from a specific period. Each sample of the dataset corresponds to
the feature values measured at a given time instance. We have two
different kinds of time instances: 1) attacked time instances
(’attacked’) and 2) normal time instances ("'normal’), which form
the two classes for classification models. We will continue to use
the phrases ‘normal’ for the cases when the network was not
attacked and ’attacked’ for the cases when the network was
attacked, respectively. We first randomized the samples and then
used 70% of the samples (12, 096) to train, and 30% of the
samples (5, 184) to test the effectiveness of the attack detection
models. A pre-processing phase normalized all the features to
avoid any one factor unjustly influencing model training.

Once the dataset is generated and features are extracted, the
XGBOOST model is used to classify the state of the mode. Using
the parameter set mentioned in Section IV-C, we use Grid search
K-fold cross-validation to select the set of optimal hyper-
parameters from a range of possible values for each. In K-fold
cross-validation, data is initially split into ‘K’ parts. In each step,
‘K-1’ parts are used for training the model and the remaining
samples are used for testing the model performance. We then
train models for all combinations of a set of hyper-parameter
values and choose the model that performs the best during K- fold
cross-validation. This K-fold process results in models that can
generalize well with unseen data. In our experiments, we
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found the optimal number of estimators parameter to be 50 and
the maximum tree depth parameter to be 10. Other parameter
values were left as their default values as set in XGBoost library
(23], [18].

B. Numerical Results

Our proposed framework’s cyber attack detection perfor-
mance is evaluated utilizing Accuracy, Precision, Recall, and F1-
score [29].

Tables I- IV show the performance results for the cyber attack
detection models developed using the proposed MalCAD
framework. Table I and Table II show the performance of
MalCAD for Group 1 attacks (Lost Connectivity). Table I shows
results for Random cyber attacks and Table II shows targeted
Group 1 attacks. Table I1I and Table IV show the performance of
the MalCAD framework for Group 2 (Wasted Connectivity).
Table III shows results for Random cyber attacks and Table IV
shows targeted Group 2 attacks.

TABLE I: Attack group - Group 1, Attack type - Random

attacked nodes (%) | Accuracy Precision Recall Fl-score
5 99.70 100.0 96.60 98.27
10 99.20 98.39 9245 95.33
15 99.76 100.0 9735 98.66
20 99.50 98.44 95.84 97.13

TABLE II: Attack group - Group 1, Attack type - Targeted

attacked nodes (%) | Accuracy Precision Recall Fl-score
5 99.93 100.0 99.24 99.62
10 100.0 100.0 100.0 100.0
15 99.93 100.0 99.24 99.62
20 99.80 98.50 99.24 98.87

TABLE III: Attack group - Group 2, Attack type - Random

attacked nodes (%) Accuracy Precision Recall Fl-score ‘
5 94.43 77.84 51.69 62.13
10 97.66 88.53 84.52 86.48
15 98.86 95.29 91.69 93.46
20 99.66 98.85 97.35 98.09

From Tables I-IV, we can observe that it is easier to detect
targeted attacks in the network than random attacks, which is
a favorable outcome as the targeted cyber attacks are more
dangerous for network performance. Targeted attacks resultin a
better-performing model since the targeted nodes result in a
higher impact on the node connectivity and topology, which can
be captured more effectively using the features employed in the
proposed framework. We can also observe that, as the number of
attacked nodes increases, the attack detection model performs
better due to the same reason.

TABLE 1V: Attack group - Group 2, Attack type - Targeted

attacked nodes (%) | Accuracy Precision Recall fl-score
5 94.23 7233 56.22 63.26
10 97.86 90.03 85.28 87.59
15 98.56 95.12 88.30 91.58
20 99.60 98.84 96.60 97.70

C. Impact of cyber attack detection framework

In this section, we analyze the impact of MalCAD on network
performance, using Mininet-WiFi, an open-source software-
defined wireless network (SDWN) emulator. In this simulation,
the controller (1) monitors the nodes and flows within the
network; (2) extracts the features needed by MalCad to detect the
attacks; (3) generates the mitigation routing solution, and
(4) enforces the mitigation mechanism by refreshing the flow
tables in the wireless access points or routers. The simulation
environment consists of N = 100 nodes randomly placed in an
area of 100 X 100 meters with each node having a range of
R = 10 meters.

B Normal
B Attacked
B Mitigated

Average Throughput (Mbps)

Number of attacked nodes

Fig. 4: Variation in average throughput for different numbers of
attacked nodes

To perform attacks and gather the performance result, iPerf
3 (3.1.3) and hping3 (3.0.0-alpha-2) are used to benchmark and
initiate attacks, respectively. Network throughput was monitored
starting at the beginning of the simulation when the network only
contains normal traffic. We then initiated a targeted cyber attack
on m nodes in the network by sending a large number of TCP
SYN packets to the attacked wireless and mobile nodes to drain
their resources. We then examined the link behavior, extracted
the features, and processed the results using the MalCAD model
to see if it successfully detected and classified our TCP cyber
attack. I[f MalCAD indicates an attack, a request is initiated at the
SDWN controller to begin mitigation, which for this class of
attack was to limit the flow of TCP SYN packets to the attacked
nodes, thereby improving the network performance considerably.

In fig. 4, we show the variation of average throughput, i.e., the
throughput of all the attacked nodes averaged over the entire
simulation. The average throughput is shown for cases of 5, 10,
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15, and 20 attacked nodes. For each case, we show the average
throughput during normal traffic, attacked traffic, and mitigated
traffic. When 5 nodes were attacked, the average throughput
of the network initially dropped by as much as 32%, but after the
MalCAD-initiated response, the throughput was restored and
increased by 24%. For the case when 10 nodes were attacked, the
average throughput initially decreased by 42% but MalCAD
increased throughput by 32%. Similarly, for the cases when 15
and 20 were attacked, the initial average throughput decreased by
61% and 58% respectively, but due to the attack detection
capability of MalCAD with the attack mitigation scheme, the
average throughput increased by 50% and 48% respectively.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a graph machine learning-based
cyber attack detection framework, called MalCAD. MalCAD
exhibited the ability to identify cyber threats in mobile tacti-
cal networks. Our suggested strategy uses globalized network
connectivity to avoid monitoring networking-related metrics at
each node. MalCAD was evaluated for lost connectivity, wasted
connectivity, and random, and targeted cyber attacks. Our
platform detects targeted cyber attacks, which are more
damaging to network performance. We showed that detecting
a cyber attack prompts the network controller to act quickly,
preventing additional network degradation. Due to MalCAD’s
attack detection capability, network throughput rose by 25-50%,
compared to 30-60% caused by cyber attacks. In future work, we
intend to incorporate additional realistic mobility models for
tactical situations, novel types of cyber attacks, and the impact of
other attack mitigation strategies into this framework.
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