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ABSTRACT

Accurate estimates of depth-integrated Net Primary Production (NPP, mg C m~2 d~!) and the creation of a robust
climate data record of NPP for the global oceans are essential goals of the ocean color remote sensing community.
Here, we take advantage of in situ NPP measurements from three long-term time-series sites, the HOT (Hawaii
Ocean Time-series), BATS (Bermuda Atlantic Time-series Study) and CARIACO (Ocean Time-Series Program from
the Cariaco basin), spanning over 30 years to evaluate three contrasting models in estimating NPP from ocean
color remote sensing. These models for NPP estimation include the Absorption-based Model (AbPM), which relies
on phytoplankton absorption coefficient, the Vertically Generalized Production Model (VGPM), which centers on
chlorophyll-a concentration, and the Carbon-based Productivity Model (CbPM) centering on phytoplankton
carbon. In addition to the accuracy of NPP estimation from these models, we laid great emphasis on evaluating
their skills in capturing the monthly to seasonal variations and interannual trends in NPP at the three sites.
Comparison with in situ NPP at all three long-term sites (~20 years) showed that AbPM yielded the highest
coefficient of determination (R? = 0.67) and the lowest uncertainties (Bias = 0.03 and unbiased root mean
square difference = 0.17). Seasonal and interannual variations apparent in the in situ NPP time-series records
were best captured by AbPM. These results showcase the robust capabilities of AbPM and its superiority for
global carbon cycling and climate change studies, largely because it takes into account optical and photosyn-
thetic parameters of local phytoplankton.

1. Introduction

2019; Keeling et al., 2009; Reid et al., 2009) as well as the oceans’ role in
regulating the earth climate (Boyd et al., 2019).

Phytoplankton Net Primary Production (NPP, mg C m~2 d_l), a
measure of carbon biomass production resulting from photosynthesis, is
responsible for almost half of the global annual NPP (~50 x 10'° g C
yr’l). This process within the base of the marine food web (Field et al.,
1998) plays a critical role in the global carbon cycle, helping to
sequester CO, from the atmosphere to the deep ocean via the “biological
pump” (Eppley and Renger, 1988; Eppley and Peterson, 1979; Falkow-
ski, 1994; Le Quéré et al., 2018). For this reason, estimating the tem-
poral, spatial and long-term variations of NPP in the water column is
central to understanding the impacts of climate and human-induced
changes on the global carbon cycle (Doney et al., 2009; Gruber et al.,
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Conventionally, in situ NPP (NPPj,,) measurements have been
largely from research cruises, which are sporadic and scattered, limiting
their spatial and temporal coverages for global and climate scale studies.
The launch of ocean color satellites since the late 1970s provided multi-
spectral measurements of ocean waters (ocean color) and, subsequently,
satellite products that led to the development of novel approaches for
estimating NPP from space (Brewin et al., 2023; Perry, 1986; Westberry
et al., 2023). Despite much progress, accurate estimates of NPP from
satellite ocean color data are, however, contingent upon the methodo-
logical approach, and the satellite data products being used for scaling
limited shipboard data to regional, basin and global scales (Eppley et al.,
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Table 1
Symbols and abbreviations used in this article.
Symbol Definition Units
AbPM The Absorption-based model -
apn(443) Phytoplankton absorption coefficient at 443 nm m!
BATS Bermuda Atlantic Time series Study -
byp(443)  Particle backscattering coefficients at 443 nm m!
CARIACO  CArbon Retention In A Colored Ocean Time-Series -
CbPM Carbon-based Productivity Model -
Chla Chlorophyll a concentration mgm~>
Cohy Phytoplankton carbon stock mg m~3
HOT Hawaii Ocean Time-series -
In Median mixed layer light level mol photons
m2h!
Kq(0) Attenuation coefficient of downwelling irradiance m!
Ky Irradiance when ¢ corresponds to a half of ¢y, mol photons
m2d7!
MLD Mixed layer depth m
NPP Net Primary Production mgCm2d!
NPPappm  NPP from AbPM using OC-CCI as primary input mgCm2d!
data
NPPchpm NPP from CbPM using OC-CCI as primary input mgCm2d!
data
NPPjsitu NPP from in situ measurements mgCm~2d7!
NPP0del NPP from models mg C m2d!
NPPygpm  NPP from VGPM using OC-CCI as primary input mgCm2d7!
data
0OC-CCI Ocean Color Climate Change Initiative project -
PARgay Photosynthetic available radiation mol photons
m2d!
Pgm Maximum carbon fixation rate within the water mg C mg Chl™!
column normalized by Chla h!
¢ Quantum yield of phytoplankton photosynthesis mol C mol
photons ™!
Pm Maximum quantum yield of phytoplankton mol C mol
photosynthesis photons ™!
Ris(\) Remote sensing reflectance sr!
SST Sea surface temperature °C
H Growth rate of phytoplankton d!
VGPM Vertically Generalized Production Model -
Zeu Euphotic zone depth m
Zno3 Nitracline depths m

1985; Falkowski, 1998; Perry, 1986; Platt, 1986).

There have been many models developed for estimating NPP
(NPPpodel) from satellite measurements (Behrenfeld and Falkowski,
1997; Lee et al., 2011; Morel, 1991; Platt and Sathyendranath, 1988;
Westberry et al., 2008), which in general can be grouped into two cat-
egories based on the satellite product used. The first are the biomass-
based models, which rely on either 1) chlorophyll a concentration
(Chla; please see Table 1 for symbols, definitions, and units for all
relevant parameters) or Chl-based models (Behrenfeld and Falkowski,
1997; Brewin et al., 2021; Platt and Sathyendranath, 1988; Sathyen-
dranath and Platt, 1995) or on, 2) phytoplankton carbon (Cypy) con-
centrations or Cphy-based models (Behrenfeld et al., 2005; Westberry
etal., 2008). The second category is biomass independent models which
instead rely on the absorption coefficient of phytoplankton (aph) or aph-
based models (Barnes et al., 2014; Hirawake et al., 2011; Lee et al.,
2011; Lee et al., 1996; Marra et al., 2003). Over the past decades, the
most commonly used NPP models have relied on Chla estimates from
space (Behrenfeld and Falkowski, 1997; Platt and Sathyendranath,
1988; Sathyendranath and Platt, 1995), with the Vertically Generalized
Production Model (VGPM) (Behrenfeld and Falkowski, 1997) being the
most popular, in part due to its simplicity and ease of use.

In recognition of the uncertainties associated with satellite Chla es-
timates (Behrenfeld et al., 2005; Saba et al., 2011), and the difficulties in
accurately estimating the maximum biomass-normalized phytoplankton
photosynthesis rates, Behrenfeld et al. (2005) developed the Cppy-based
model (referred hereinafter as the CbPM) that utilizes phytoplankton
carbon (Cpry, converted from particle backscattering coefficient, byp) for
the estimation of NPP. As compared to the empirical inversion of Chla
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from ocean color, both by, and ap, can be retrieved analytically or semi-
analytically from ocean color (Lee et al., 2002; Werdell et al., 2013),
thus in theory, the newer models based on by, and apy, (hereinafter
referred to as AbPM) should be capable of providing more accurate es-
timates of oceanic NPP from space.

Over the last several years, NPP models, in particular those that have
relied on satellite Chla, have helped provide estimates of annual global
oceanic NPP that range from ~36.5 to 67 (48.2 + 8) Pg C yr’1 (Carr
et al., 2006), and carbon export rates ranging from ~5 to over 12 Pg C
yr’1 (Boyd and Trull, 2007; Henson et al., 2011). These estimates are
however beset by large uncertainties, which at times can exceed the
annual anthropogenic CO5 emission rates of ~7 to 11 Pg C yr ! (Siegel
etal., 2014), thus precluding their use for assessing the role of the oceans
in the global carbon cycle or for estimating ocean biological carbon
drawdown and its evolution under future climate scenarios (Friedrichs
et al., 2009; Regaudie-de-Gioux et al., 2019; Saba et al., 2011; Saba
et al., 2010). This situation demands that we continue to develop, test
and refine satellite models to obtain more reliable NPP estimates that
can provide more robust assessments of the magnitude and the trends in
NPP over seasonal, annual to multidecadal time periods that are useful
for climate change studies.

Previous attempts at comparing the performances of various NPP
models including individual studies (Lee et al., 2015a; Lee et al., 2011;
Regaudie-de-Gioux et al., 2019) and group efforts such as the commu-
nity Primary Productivity Algorithm Round Robin (PPARR) workshops
organized by NASA (Campbell et al., 2002; Carr et al., 2006; Friedrichs
et al., 2009; Saba et al., 2011; Saba et al., 2010), where NPP;,,, data
from both coastal and open ocean locations were utilized to evaluate the
accuracy of NPPydel. A major revelation from these model comparison
efforts is that most models differed in their skills in accurately repre-
senting NPPjsn, (Kahru, 2017) within optically complex coastal waters
(Saba et al., 2011) and in oligotrophic oceans (Friedrichs et al., 2009;
Regaudie-de-Gioux et al., 2019; Shih et al., 2021). Furthermore, it was
observed that several NPP models appeared incapable of accurately
capturing the seasonal, annual and long-term trends seen in field mea-
surements of NPP, precluding their use as a means for predicting future
NPP variability under different environment and climate scenarios
(Chavez et al., 2011; Dave and Lozier, 2010; Ducklow et al., 2009).

With the development and refinement of CbPM (Westberry et al.,
2008) and AbPM (Barnes et al., 2014; Lee et al., 2011; Lee et al., 1996),
NPP estimates from ocean color data have seen marked improvement
over conventional Chl-based PP models (Kahru, 2017; Lee et al., 2011).
However, we deemed it necessary to evaluate if these two new ap-
proaches could better capture the magnitude as well as the temporal
and/or long-term trends in NPP required for climate change studies than
that possible by Chl-based NPP models. In this study, we relied on a
nearly 30-year time-series of NPPy,,, from two oceanic sites (Hawaii
Ocean Time-series, HOT, in the North Pacific, and Bermuda Atlantic
Time-series Study, BATS, in North Atlantic) and a coastal site (CAR-
IACO, an Ocean Time-Series Program located in upwelling waters of the
Cariaco basin) to evaluate the performance of AbPM and CbPM, against
VGPM - one of the more widely used Chl-based models.

2. NPP models
2.1. Chl-based model: VGPM

The Vertically Generalized Production Model (VGPM) developed by
Behrenfeld and Falkowski (1997) that uses Chla as an input parameter
has been, over the past 20+ years, the most popular model for esti-
mating NPP from ocean color measurements. Despite some of its
inherent limitations recently detailed in Lee and Marra (2022), it has
undoubtedly greatly influenced our understanding of biological and
biogeochemical ocean process studies over the past two decades.

For VGPV, integrated primary production within the euphotic zone
is expressed as,
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PARy,
NPPygry = 0.66125 x P2 x day

__A%y 7., % Chla x DL 1
1 PAR gy + 41 Lo X A M

where P2 (in mg C (mg Chl)_l h’l) is the maximum carbon fixation rate

opt
of the water column normalized by Chla, PARgjy is the daily photosyn-
thetic available radiation (mol photons m~2 d’l), Zey (m) is the euphotic
zone depth, and DL is the day length (in hours). Chla, PARg,y and Z, are
available or derived from ocean color measurements. P5, was originally
modeled as a polynomial function of sea-surface temperature (SST)
(Behrenfeld and Falkowski, 1997), here we used the updated Eppley-
VGPM, where ngl was modeled as an exponential function of tempera-
ture (Morel, 1991), obtained based on the temperature-dependent
growth function presented in Eppley (1972). The rationale behind
selecting Eppley-VGPM is based on its better performance compared to
the original VGPM, as substantiated in previous studies (Friedland et al.,
2012; Zhang et al., 2018). While global NPP products based on Eppley-
VGPM (and CbPM) are available for download at the model developers’
website (http://orca.science.oregonstate.edu/npp_products.php), we
found that the differences between these products and the in situ NPP
measurements at the three time-series sites were large (see Fig. S1 in
Supplementary Materials). Since the NPP estimates obtained with the
code are better than those derived from the online data products, our
estimates of NPP at the three sites are based on our application of the
code to satellite ocean color and other data products as described in
more detail below.

2.2. Cppy-based model: CbPM

Recognizing that phytoplankton respond to changes in light, nutri-
ents, and temperature by adjusting cellular pigment levels and that this
response can be quantified by changes in the ratio of chlorophyll to
carbon biomass (Chla:Cppy), Behrenfeld et al. (2005) developed CbPM
wherein phytoplankton carbon (Cpry) replaced Chla as a key input, and
this model was subsequently refined by Westberry et al. (2008).

For CbPM, NPP is the product of Cyp, and the growth rate of
phytoplankton (u, d™1, with Cphy estimated from particle backscattering
coefficient at 443 nm (bp,(443), m™ 1), and u is estimated using pmax,

Chla:Cypy and the median mixed layer light level (Iy1, mol photons m?
h™1). Conceptually NPP estimated by CbPM can be expressed as:
NPPcypss = Cony X H{ P Chlat = Coy, s } @

where fimay is the maximum daily growth rate taken as 2 d’l, while Iy, is
the light level at half depth of the mixed layer, which is calculated from
PAR at surface (PAR(0)) and the diffuse attenuation coefficient of
downwelling irradiance (K4(490), in m™Y). The required input param-
eters, byp(443), Chla, PAR(0) and K4(490) are available from satellite
ocean color measurements, while the mixed layer depth (MLD, m) and
the nitracline (Zyo3, m) depths are obtained from climatological data or
model outputs. The code for NPP calculation following CbPM was also
downloaded from Oregon State University’s webpage (http://sites.scie
nce.oregonstate.edu/ocean.productivity/cbpm2.code.php).

2.3. app-based model: AbPM

app-based NPP model relies primarily on the absorbed solar radiation
by phytoplankton and its conversion to organic carbon or primary
production, which can be expressed as (Antoine and Morel, 1996; Kiefer
and Mitchell, 1983; Lee et al., 1996):

NPPgppy = Eaps X @ 3

Here E,ps represents absorbed solar radiation by phytoplankton,
while ¢ is the quantum yield of phytoplankton photosynthesis (mol C
(mol photons) 1) or the efficiency with which absorbed energy is con-
verted into organic carbon. For depth-resolved AbPM, E,ps is
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700
Eun(2) = / () X Euy (2, 7). @

400

where apy (1) from 400 to 700 nm can be estimated from a;,,(443) using a
model presented in Lee et al. (1999), and wavelength step (dA) for the
integration is 5 nm, here we assumed a,n()) is constant over the euphotic
zone. Eqay(z,}) is daily irradiance (mol photons m 2 d’l) for wavelength
A (nm) at depth z, which can be calculated from E4,y(07,1) and Kq()) as
follows:

Euuy(2,4) = Egqy (07, 21) @ ¢ Ka(02 5)

Details for obtaining Egay(0~,A) and Egay(z,A) can be found in Zoffoli
et al. (2018) and Wu et al. (2022).

The vertical variation of ¢ is modeled as (Lee et al., 2011; Lee et al.,
1996):

Ky

P& = X e PAR ()

X exp( — U X PAR4y(2) ) (©)

where ¢y, is the maximum quantum yield of photosynthesis, K, is a
model parameter describing the reduction of ¢ under higher radiation,
and v is a parameter for photoinhibition. This model basically combines
the Kiefer and Mitchell (1983) for ¢ under no photoinhibition, and with
photoinhibition as indicated in Platt et al. (1980). Values of ¢, Ky and v
were taken as 0.06 mol C (mol photons)*1 (Lee et al., 2011; Morel,
1991), 10.0 mol photons m~2 d~! and 0.01 mol photons m~2 d~! (Lee
et al., 2011), respectively, and kept constant in this study. Note that apy
required in Eq. (4) can be directly inverted from ocean color measure-
ments (Lee et al., 2002; Werdell et al., 2013), and the integration of Eq.
(3) over the euphotic zone depth then provides the NPP of the water
column.

2.4. Metrics for model performance

In addition to regression analyses, the following metrics were
employed to measure the performance of each model. These include the
model-data fit in logi space (A), the root mean square difference in
log1p (RMSD; (Campbell et al., 2002)), the log normalized bias (Bias)
and the unbiased RMSD (uRMSD), which are defined, respectively, as

A() = 10810(NPPyaa (1)) — 10g10(NPP,y (i) @

with NPPpodqel and NPPjp,, representing modeled and in situ NPP,
respectively.
N 0.5
1 . A2
RMSD = (N > (10g10(NPPyoaen(i) ) ~10810(NPPiy (i) ) ) ) @®

i=1

where N is the total number of paired data.

Bias = 10g10(NPPoget) — 10g10(NPPiy i) )

uRMSD = (RMSD? — Bias®)"’ (10)

The upper bar in Eq. (9) represents the average, while negative or
positive Bias indicates that the model underestimates or overestimates
NPP compared to in situ measurements.

The median ratio value (Median ratio), semi-interquartile range
(SIQR) and the median of the individual absolute percent difference
(MPD) between each satellite and in situ input variable were calculated
for each of the three time-series stations. For time-series analyses, the
climatology of NPP was derived from monthly averages, while the
annual average for the time-series was from the period of available
satellite data (i.e., Sep. 1997 to the last sampled date available for this
study).

Additionally, a Target diagram (Jolliff et al., 2009) is used to illus-
trate model performance more intuitively. This diagram allows
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Table 2
Input variables for the three NPP models evaluated.
Model PAR Zeu SST Kq(490) Chla app(443) Zno3 byp(443) MLD Reference
AbPM v v v v Lee et al. (1996, 2011)
VGPM v v v v Behrenfeld and Falkowski (1997)
CbPM v v v v v v v v Westberry et al. (2008)
bl are the magnitudes (lengths) of the vectors A and B, respectively. The
Table 3

An evaluation of variables at the three time-series sites (HOT, BATS and CAR-
IACO) between satellite products or model estimates and field measurements,
where these variables are required for the NPP models.

Station Statistics Chla PAR SST MLD
Unit mg m~3 mol photons m~2 d~! °C m
N 189 127 301 216

R? 0.07 0.70 091  0.55

HOT Median Ratio 0.94 1.23 1.00 0.93

SIQR 0.18 0.18 0.01 0.18

MPD 19.0 6.2 0.8 19.5

N 107 107 343 212

R? 0.04 0.63 0.96 0.74

BATS Median Ratio 0.90 0.87 1.00 0.83

SIQR 0.42 0.16 0.02 0.16

MPD 43.0 4.8 1.5 22.2

N 202 204 229 201

R? 0.55 0.91 0.85 0.40

CARIACO Median Ratio 1.80 1.00 1.01 1.23

SIQR 0.59 0.01 0.02 0.27

MPD 81.0 1.0 1.9 24.3

N 498 338 462 629

R? 0.57 0.71 0.94 0.74

Total Median Ratio 1.10 1.01 1.00 0.98

SIQR 0.46 0.19 0.01 0.20

MPD 37.2 2.6 1.3 21.3

visualizing Bias, uRMSD and RMSD of all models in a single plot. For this
purpose, the quantities are normalized by the standard deviation (c4) of
log10(NPP;sin), where a new set of metrics is calculated:

(1)

Bias" = Bias/oy

uRMSD" = sign(c,,~04) X uRMSD /6, (12)

Here oy, is the standard deviation of 10og19(NPPyodel)-

A Target diagram provides information on if i) standard deviation
from modeling is less or greater than that from in situ measurements; and
ii) average value from modeling is less or greater than that from in situ
measurements. The distance of each point from the origin is
o4 normalized-total RMSD (RMSD* = RMSD/c4). Any points greater
than RMSD* = 1 are considered as poor performers.

The Target diagram primarily focuses on visualizing accuracy and
precision, but a particular uRMSD value has limited information on
correlations of the datasets or variation of the observations, making it
less informative in that aspect. Unlike the Target diagram, the Taylor
diagram (Taylor, 2001) provides a way of graphically summarizing how
closely derived values (NPPp,o4¢)) match observations (NPPjn). The
similarity between two patterns is quantified in terms of their correla-
tion, the centered root-mean-square difference and the amplitude of
their variations (represented by their standard deviations). Thus Taylor
diagrams complement Target diagrams by illustrating greater details
about the difference in variability between modeled and observed data
(Friedrichs et al., 2009).

Further, cosine similarity - the cosine of the angle between two
vectors - is used to determine the similarity between two sets of data. For

vectors A and B, the cosine similarity between them is calculated as:
Cosine Similarity(A,B) = (A eB)/(|A] " |IBI) 13)

where A o B represents the dot product of the two vectors. ||A|| and ||B||

resulting cosine similarity score will be a value between —1 and 1, with
the score — 1 or 1 indicating perfect dissimilarity/similarity and 0 means
no similarity. In summary, a higher score indicates greater similarity,
while a lower score suggests dissimilarity.

We have also used the empirical cumulative distribution function
(ECDF) to further visualize model performance. Although Bias provides
a succinct measure of the magnitude and sign of model bias, it is not
possible from this statistic alone to determine whether positive biases
result from overestimating high values, low values, or both. ECDF
clearly reveals where in the spectrum of values the biases occur, and is
an excellent method for visualizing median, maximum and minimum
values of datasets.

3. Datasets
3.1. Long-term time-series for in situ NPP measurements

Three decades of continuous in situ NPP measurements from three
locations provide a superior data compilation for capturing temporal
patterns in bio-geochemical properties over climate change scales
compared to traditional short-term ship-based campaigns. As mentioned
earlier, BATS (https://bats.bios.edu/) is located in the North Atlantic
(31°40'N, 64°10'W), while HOT (https://hahana.soest.hawaii.edu
/hot/hot jgofs.html) is located in the subtropical North Pacific
(22°45'N, 158°00'W). CARIACO (https://imars.usf.edu/CAR/index.
html/), on the other hand, is located in the region of coastal upwelling
in the Cariaco basin (10°30'N, 158°00'W). These time-series programs
provide monthly and at times multiple datasets per month at the same
location, where core oceanographic variables such as temperature,
salinity, PAR, Chla and NPP at several depths in the euphotic zone have
been measured. More importantly, these programs also provide remote
sensing reflectance (Ry())) via radiometric measurements of ocean
(water) color.

3.2. NPPjy, for validation

A total of 306 NPP;,;, were obtained for the period 1988 to 2018 at
HOT, 374 stations at BATS for the period from 1988 to 2016, and 231
stations at CARIACO from 1995 to 2015. Estimates of NPP at depth z
(NPP(2), mg C m~3 d 1) at these time-series locations are based on the
14C.-tracer methodology (Steemann Nielsen, 1952), with water samples
taken from several depths in the water column and incubated with the
tracer from dawn to dusk. All estimates of NPP(z) followed the
community-accepted protocols described in the International JGOFS
manual (Knap et al., 1996). Individual NPP measurements were cor-
rected for dark C uptake. Daily water-column integrated NPP (NPP;,.
siy Mg C m~2 d~!) was calculated by the trapezoidal integration of
measured NPP(2) from the surface (sampling depth is 0 to 10 m) to Z¢,
(Church et al., 2013; D’Alelio et al., 2020; Muller-Karger et al., 2019),
which is defined here as the depth of 1% of surface PAR, although a
more representative Z., approximates 0.5% of surface PAR (Wu et al.,
2021). While these long-term in situ NPP at the three stations are used in
the following as the reference to evaluate the three NPP models, it is
necessary to keep in mind that as all field measurements, these in situ
NPP also contains uncertainties (Marra, 2002).
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Fig. 1. Comparison between NPP;p,, (N = 160) from HOT (N = 57), BATS (N = 55) and CARIACO (N = 48) and NPP,,,44e derived using major inputs estimated from

in situ Ry for (a) AbPM, (b) VGPM, and (c) CbPM.

3.2.1. HOT

At HOT, all incubations for NPP(z) from 1990 through mid-2000
were conducted in situ, using water samples drawn from 0 to 175 m
collected at intervals of 20-30 m. Incubations were undertaken from
dawn to dusk (10 to 16 h) using a free-drifting array. Generally, the
average value of NPP in the light bottles (N = 3) was dark bottle cor-
rected to exclude carbon produced by non-photoautotrophic organisms.
Starting in October 2000, the use of dark bottles was discontinued.
Following practices reported in the literature (Chavez et al., 2011;
Church et al., 2013), we thus calculated the mean ratio of carbon uptake
in the dark and light bottles from 1989 to 2000 (5.0% =+ 2%) and then
used this average ratio to calculate the NPP(z) for all light bottle in-
cubations from year 2000 onwards.

3.2.2. BATS

At BATS, samples were collected from 0 to 140 m at 20 m intervals,
light and dark bottles were used throughout the time-series period.
Similar to HOT, the average value of NPP in the light bottles (N = 3) was
dark corrected by subtracting the value of carbon fixed in the dark
bottles. The average dark bottle was found to be ~13.6% (£+8%) of the
light bottle (Lomas et al., 2013; Steinberg et al., 2001).

3.2.3. CARIACO

The tracer carbon uptake protocol at CARIACO is similar to that at
BATS except that the samples were collected from at 1, 7, 15, 25, 35, 55,
75, and 100 m depths. More details can be found in previous studies
(Lorenzoni et al., 2015; Muller-Karger et al., 2019).

3.3. Satellite data used for NPPp,q. calculations

3.3.1. Ocean color CCI datasets

NPPjsir, from the three time-series was further compared to NPPp,o4el
produced using the more recently available, long-term ocean color
product, OC-CCI (v5.0) (Sathyendranath et al., 2019), which blends
several existing major data streams for ocean color (starting with Sea-
WiFS and including MODIS, VIIRS, MERIS and OLCI) into a coherent
record meeting the requirements for climate-quality products (http://
www.oceancolour.org).

The 4-km resolution, 8-day OC-CCI (v5.0) data products used are: 1)
Chla, which was generated using a blended combination of OCI, OCI2,
0C2, OC3, OCx and OCS5 algorithms (https://oceancolor.gsfc.nasa.gov/r
esources/atbd/chlor_a/; Belo Couto et al., 2016; Sathyendranath et al.,
2019); 2) apn(443) and by,p(443), which were derived using the quasi-
analytical algorithm (QAA) (Lee et al., 2002), and 3) K4(490), esti-
mated following Lee et al. (2013). All satellite products were extracted
and averaged within a 3 x 3 pixel box centered at the geophysical co-
ordinates of each NPP;;,, station (Bailey and Werdell, 2006).

3.3.2. PAR and SST data

Presently OC-CCI does not provide PAR and SST, we thus down-
loaded and used the 4-km resolution, 8-day PAR product from the
GlobColour site (https://hermes.acri.fr/index.php), which is a merged
product from SeaWiFS, MODIS, MERIS, OLCI and VIIRS missions. We
obtained 4-km resolution, 8-day SST product of AVHRR Pathfinder
Version 5.3 (PFV53) L3C dataset from NOAA National Centers for
Environmental  Information  (NCEI) (https://doi.org/10.7289
/v52j68xx).


http://www.oceancolour.org
http://www.oceancolour.org
https://oceancolor.gsfc.nasa.gov/resources/atbd/chlor_a/;
https://oceancolor.gsfc.nasa.gov/resources/atbd/chlor_a/;
https://hermes.acri.fr/index.php
https://doi.org/10.7289/v52j68xx
https://doi.org/10.7289/v52j68xx
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Fig. 2. Comparison between NPP;,,, (N = 601) from HOT (N = 188), BATS (N = 226) and CARIACO (N = 187) and NPP,,,4e; from (a) AbPM, (b) VGPM, and (c)

CbPM using major inputs estimated from OC_CCI ocean color data.

Table 4

Statistical measures of comparisons between in situ and modeled NPP (NPPappp, NPPygpy and NPPcppy) using OC-CCI data.

Station Model N R? 64 RMSD Bias uRMSD B* uRMSD* uRMSD* cosine similarity
AbPM 188 0.33 72.4 0.10 0.00 0.10 —0.02 —-0.87 0.87 0.90
HOT VGPM 188 0.22 48.6 0.21 —-0.19 0.10 —-1.64 —0.87 1.86 0.90
CbPM 188 0.23 92.1 0.32 —0.28 0.16 —2.42 1.40 2.80 0.89
AbPM 226 0.25 117.0 0.21 0.07 0.20 0.31 —0.89 0.94 0.87
BATS VGPM 226 0.19 153.4 0.28 —-0.10 0.26 —0.46 -1.14 1.23 0.84
CbPM 226 0.07 105.1 0.71 —0.40 0.58 -1.78 2.57 3.13 0.71
AbPM 187 0.54 761.5 0.19 0.02 0.19 0.08 0.83 0.83 0.87
CARIACO VGPM 187 0.52 845.7 0.20 —0.06 0.19 —0.28 0.86 0.90 0.85
CbPM 187 0.40 611.8 0.21 0.11 0.18 0.48 —-0.81 0.94 0.86
AbPM 601 0.67 546.9 0.18 0.03 0.17 0.13 —0.66 0.67 0.87
Total VGPM 601 0.64 588.5 0.24 —-0.11 0.21 —0.44 0.79 0.90 0.84
CbPM 601 0.59 633.9 0.48 —0.20 0.44 —-0.75 1.68 1.84 0.82

3.3.3. Climatology datasets

All the inputs required for the three models are listed in Table 2. In
addition, mixed layer depths (MLD) and depths of the nitracline (Znos)
data required for CbPM were obtained as follows: MLD was obtained
from the MLD climatology products generated from Hybrid Coordinate
Ocean Model (HYCOM) with a resolution at 1/12° (https://www.
hycom.org). Znos was calculated from monthly climatological nutrient
fields reported in the World Ocean Atlas 2013 (D’Ortenzio et al., 2014;
Garcia-Corral et al., 2014) at 1° resolution and defined as the shallowest
depth at which nitrate + nitrite exceed 0.5 pM (https://www.nodc.noaa.
gov). All MLD and Zyo3 climatology data were resampled to 4-km res-
olution, 8-day products based on multiple interpolation methods from
Software Packages (CDO, Climate Data Operators) to match the spatial
and temporal resolution of the other products.

3.4. Consistency check of input satellite data

As the quality of input data is critical to the performance of the
models, we first evaluated the consistency between the satellite products
and in situ measurements. In general, input data necessary for NPP,o4el,
such as Chla, PAR, and SST showed low bias (see Table 3) compared to in
situ measurements (Median ratio around 1.0).

Overall, for the >300 matched datasets, satellite data products (Chla,
PAR, and SST) showed reasonable agreement with corresponding in situ
data from the three sites (see Table 3 and Fig. S2 in Supplementary
Materials). Notice that the R? values of Chla are low at HOT and BATS
sites due to some outliers and very narrow dynamic range in these
subtropical oligotrophic gyres. Nonetheless, the mean ratio of Chla re-
mains reasonable (0.94— 1.80) for these sites. On the other hand, sat-
ellite SST showed the highest consistency with in situ SST (R? = 0.94,
MPD = 1.3%) and the lowest spread for skewed distributions as


https://www.hycom.org
https://www.hycom.org
https://www.nodc.noaa.gov
https://www.nodc.noaa.gov
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NPP04e1 Were retrieved from OC_CCI datasets. (a) HOT, (b) BATS, (c) CARIACO and (d) data from all 3 sites. The large open blue circle is the normalized standard
deviation of NPPj,,,. The distance from the origin to each model’s symbol is the RMSD* of this model. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

indicated by the low Semi Inter Quartile Range (SIQR = 0.01). Other
input data for NPP;yog4e1, such as PAR and MLD, also showed reasonable
agreement with their corresponding in situ values. Specifically, the R?
values were 0.71 and 0.74, the SIQR values stood at 0.19 and 0.20, and
the MPD values were 2.6% and 21.3% (see Table 3). Overall, Chla from
ocean color satellites shows the highest uncertainty (SIQR = 0.46 and
MPD = 37.2%) with the SST product presenting the lowest uncertainty
(SIQR = 0.01 and MPD = 1.3%).

4. Results and discussion
4.1. Performance of NPP models

4.1.1. NPPpyoq4e1 using in situ data

In ocean color remote sensing, Chla, apn(443) and by,(443) are
derived empirically, or semi-analytically, from the remote sensing
reflectance spectrum (Rys) of the water. Since an Rys spectrum from
ocean color satellites always contains various levels of uncertainties, we
first compared the performance of the three NPP models using inputs
(Chla, apn(443) and byp(443)) calculated from in situ Ry by algorithms
described in Section 3.3.1, with resulting NPPpoge; compared with

NPP;psir, shown in Fig. 1. For this dataset (160 points), in which NPPjyin,
ranged from ~200-4100 mg Cm ~2d ~!, AbPM (Fig. 1a) performed the
best with a high R? value (0.67), lowest RMSD (0.23) and a linear
regression slope closest to unity (slope = 1.12, P < 0.001). This was
followed by VGPM (Fig. 1b, R? = 0.72, RMSD = 0.46, slope = 0.70, P <
0.001) and then CbPM (Fig. 1c, R?=0.55, RMSD = 0.41, slope = 0.68, P
< 0.001). These results are consistent with earlier findings from other
regions (Lee et al., 2011; Pinkerton et al., 2021; Song et al., 2023). All
three models showed the highest correspondence (R%) at CARIACO and
the lowest at BATS. The lowest RMSD was obtained at HOT, while the
highest at BATS.

Unfortunately there were limited in situ measurements of a, and by,
at the three time-series sites, thus not possible to evaluate NPPappy and
NPPcypy using key inputs obtained in situ. However, there are in situ data
of Chla, PAR and Z.,, thus for added information, NPPygpy obtained
with inputs from these in situ data was compared with NPP;,,, and
shown in Fig. S3 of the Supplementary Materials. It was found that, as
Chla from R, does not show systematic bias compared to in situ Chla, the
outcome of NPPygpy with these inputs is similar to that with Chla
estimated from in situ Ry.
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Fig. 4. Taylor diagrams of NPP,,qe from each participating model. (a) HOT, (b) BATS, (c) CARIACO, and (d) data from all 3 sites. Here the datasets are in natural
logarithm format for the convenience of drawing Taylor diagrams. The distance from the origin (black dotted lines) is the standard deviation of NPP 4.1, While the
red dotted line represents the standard deviation of NPP;,,,. The azimuth angle represents the correlation coefficient between the NPP;,5, and NPP o401, and the
distance between each model symbol and NPP;,;,, (red pentagram) is the RMSD. Green dashed lines are isolines of RMSD. Model symbols are the same as in that
Fig. 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.1.2. NPPpyqe with inputs from ocean color satellites

The performance of VGPM, CbPM and AbPM was further evaluated
by running these models with the OC-CCI satellite data products as
primary inputs (Figs. 2a-c). In particular, as mentioned earlier, while all
models used OC-CCI datasets, NPPy,odel from VGPM and CbPM were
obtained using the model code downloaded from the Oregon State
University (OSU) webpage. We characterized the performance of the
three models with the following statistical measures.

A) Regressions: For these in situ and satellite matched-up time-se-
ries measurements, AbPM performed the best with the highest R?
(0.67) and the lowest RMSD (0.18) (Fig. 2a), followed by VGPM
(Fig. 2b, R? = 0.64, RMSD = 0.24) and lastly by CbPM (Fig. 2c, R?
= 0.59, RMSD = 0.48). The better performance of AbPM is also
reflected in the other statistical measures, such as slope (1.03 for
AbPM, 0.89 for VGPM, 0.94 for CbPM), Bias (0.03 for AbPM,
—0.11 for VGPM, —0.20 for CbPM), and uRMSD (0.17 for AbPM,
0.21 for VGPM, 0.44 for CbPM). Breaking down to the three sites,
all three models showed the best performance at CARIACO but
poor skills at BATS (see Table 4). This contrast in performance is
somewhat surprising, as CARIACO is a coastal site where usually
it is more challenging to estimate the bio-optical properties from
satellite ocean color remote sensing. The better R? value at
CARIACO, however, is likely mainly driven by the wide dynamic
range of the data, as compared to the two oceanic sites (HOT and
BATS), which have a very narrow range of Chla and NPP.

B)

9

Target diagrams: In the Target diagrams, RMSD of NPPappy is
the model result that falls inside the large open blue circle of all
sites (Fig. 3d), which represents the normalized standard devia-
tion of NPPy;sir,, while NPPygpy is close to the edge of this open
blue circle and the NPPcppy is outside. This indicates that mean
NPPappy is closest to mean NPPj,,,. Stationwise (Figs. 3a-c),
NPPygpym and NPPpppy underestimated NPPjy, (B* < 0) at HOT
and BATS, but overestimated NPPj,,, (B* > 0) at CARIACO,
however, results of NPPcypy show the opposite. Further,
NPPygpm and NPPcppy underestimated NPPigy, variability
(uURMSD* < 0) at HOT and BATS, and NPPcpy slightly over-
estimated NPP;,y, variability (uRMSD* > 0) at CARIACO, while
NPPappym shows highly consistent variability with NPPj,y,, vari-
ability (uRMSD* = 0) for both HOT and CARIACO, except slightly
overestimated NPPj,, variability (uRMSD* > 0) at BATS.
Overall (Fig. 3d), the average RMSD* (Table 4) of NPPappy Vs
average RMSD* of NPP;iy, for data from all three sites was as low
as 0.67, followed by NPPygpy (0.90) and NPP¢ppy (1.84), which
indicated that AbPM shows lower forecasting errors and more
accuracy in predictions.

Taylor diagrams: Taylor diagrams (Taylor, 2001) complement
Target diagrams by providing additional information pertaining
to the difference in variability associated with modeled vs.
observed values. In the Taylor diagrams (Figs. 4a-d), the standard
deviation (SDy,), the Pearson’s correlation coefficient (r;,) and
the root mean square difference (RMSDy,,) between Ln(NPP4de1)
and Ln(NPPj,y,) (here the datasets are in natural logarithm
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format for the convenience of drawing Taylor diagrams) are
displayed together to provide a visual evaluation of the perfor-
mance of each model. Note that a model performs better if its
symbol falls closer to the reference point (red pentagram) where
rin is 1.0, which also represents the magnitude of NPPjyy, vari-
ance. Overall (see Fig. 4d), the SDy, of NPPy,,4¢ from all three
sites ranged from 0.51 (NPPppy) to 1.17 (NPPcppy). The Taylor
diagram showed that r;,, mostly ranged between 0.50 and 0.75. It
is noteworthy that, when putting data of all three sites together,
both NPPpppy and NPPygpy reproduced the magnitude of
NPPj,sin, Variance (SDr, = 0.59), but not NPPcppy. At HOT
(Fig. 4a), all three models have similar ry, (~ 0.4) with NPPj;siq,.
At BATS (Fig. 4b), both NPPcppy and NPPygpy had lower rp,
values (< 0.3), while NPPappy was comparatively better (rp, =
0.4). NPPygpym showed slight underestimates but the closest SDy,
of NPPjysir. The low NPPj, variance for HOT (SDy, = 0.25) and
for BATS (SDz, = 0.50) can be attributed to the perennial oligo-
trophy of these waters. NPPappy produced slightly lower values
compared to NPP;p,, and exhibited highest consistency in ry, of
NPPjsir, Whereas both NPPygpy and NPPgppy notably under-
estimated NPPj,y, values and displayed insufficient consistency
in the rp,; of NPPj, in HOT and BATS. Coastal CARIACO time-
series station showed the highest r;; (0.61- 0.73) for all
models, with NPPppy showing the highest ry, (0.73), along with
its SDy, (0.55) approximating the SD;, of NPPjy, (0.50). All the

above statistical measures show that AbPM yielded values of NPP
that were more consistent in magnitude and variance than those
obtained using VGPM and CbPM.

4.2. Long-term monthly time-series of NPP

Figs. 5a-c show the long-term (~20 years, from September 1997 to
~2017) time-series of NPPj,in, and NPP o401 estimates at a) HOT, b)
BATS and ¢) CARIACO. The plots show the seasonal cycles and the
considerable interannual variations in NPP.

At HOT (Fig. 5a), NPPpppym closely tracked NPPyin, especially the
clearly defined summer peaks and the inter-annual variability, except
for the slighly lower values than NPPjy;,, during the period 2012-2017.
Peak values of NPPjiy, (541.4 + 87.6 mg C m =2 d ~1) matched those
from NPPappy (528.5 + 47.4 mg C m 2 d ~!) very well. NPPygpm
consistently exhibited lower values compared to NPPjy, with no
apparent monthly or seasonal fluctuations observed. NPPcppy similarly
underestimated NPP;,,, however, it frequently displayed peaks during
early spring. These differences in the timing of NPP peaks was also re-
ported by other researchers (Ma et al., 2014; Westberry et al., 2008). Of
the three models, AbPM modeled best the high NPP due to summer
blooms at the HOT station and most accurately displayed the seasonal
cycles observed in NPPjysi,.

The seasonal variability of NPP;,, at BATS (Fig. 5b) was more
pronounced, and in general, both NPPapy and NPPygpy were able to
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capture the spring peaks, but not NPP¢ppy. The seasonal minimum of
NPPcppym (— 48 mg C m -2 d “1 was about six fold lower than the
seasonal minimum of NPP;, (~ 304 mg C m ~2.d 71 and often, these
minima seen in NPPcppy aligned more closely with water column Chla,
which was also indicated in Westberry et al. (2008).
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At CARIACO, all three models were able to capture the pronounced
seasonal cycle and interannual variations in NPPjpy,, (Fig. 5¢). Again, the
best fit was provided by NPPuppy. Moreover, of importance is that
NPPappym captured the significantly reduced NPPj,, peaks in 2008-
2011 and 2013- 2016.

In summary, it is clear that NPPpppy not only performed better in
capturing the magnitude of NPP;y,,, but it also reproduced the seasonal
cycles of NPP;,, much better than the other two models.

4.3. Monthly climatology of NPP

The monthly climatology of NPP;;,, and NPPp,,qe] at the three sites
was calculated using the 20+ year time-series (Figs. 6a-c, Table 5). At
HOT, the monthly climatology of NPP;,,, showed weak monthly vari-
ations in spring (March to May), with NPP;,, peaking in summer with a
high around 620 mg C m ~2 d ~!. This monthly climatology is well
captured by NPPappy (Fig. 6a). We noticed the not-exact match in the
temporal shape between NPPppy and NPPj,,, but the two temporal
variations of NPPappy and NPPyp, actually agree with each other very
well if the interannual variability of each is considered. Both NPPygpm
and NPPcppy showed weak seasonal variations in NPP, and the NPP
values were about a factor of 1.6 (for NPPygpy) and 1.9 (for NPPcppm)
lower than NPPj,y,. On the other hand, NPPcy,py obtained significantly
lower NPP for winter months, which could also be clearly observed in
the time-series (Fig. 5a).

At BATS (Fig. 6b), NPPppy mirrored the monthly trend of NPPjpjp,
averaging ~585.0 mg C m ~2 d ! for the Jan.-Apr. period, while a
climatology minimum in August shown by NPPygpy was not observed
either in NPPj,y, or in NPPappy. In contrast, it appears that NPPcppy
showed opposing monthly variations compared to NPPj,,, and that
from other models, suggesting serious uncertainties in NPP¢ppy for this
region.

Being a continental shelf station influenced by upwelling, NPP;;y, at
the CARIACO was much higher and displayed a more pronounced sea-
sonality than that at HOT and BATS (Fig. 6¢). NPPj,,, peaked in Feb.
with the highest value ~1493.8 mg Cm ~2 d ~%, then steadily decreased
to alow ~662.7 mg Cm ~2d ~! in Nov.-Dec., with a secondary peak in
July. It appears that all three models captured this pattern very well,
except that CbPM overestimated NPP in winter and failed to reproduce
the seasonal peak in Feb. seen in NPPj;g,.

The above analysis clearly shows that at all three sites (Table 5),
AbPM could capture not only the seasonal cycle but the magnitude of
variability as well, a performance not observed for VGPM and CbPM.
Further, VGPM performed better than CbPM for the three sites.

4.4. Observed interannual trends in NPP

4.4.1. HOT

For the period between 1988 and 2018, the yearly average from daily
NPPjpsir, at HOT remained relatively constant with a mean around 539.1
(£125.2)mgC m~2dL. This constancy is also reflected in the NPPp,qel
products (see Fig. 7a), but the NPPygpy and NPPcppy values were sys-
tematically lower over the entire time-series (Table 6). The lower
NPPygpy is completely opposite to that observed by Shih et al. (2021)
for a time-series in the South China Sea, where they found that NPPygpy
was ~50% higher than NPPjin,.

The trend in the ~20-year-long NPP;,,, time-series dataset suggests
a weak increasing trend of the order +4.1 mg C m 2 d ™! per year (P <
0.01) from 1988 onwards to 2018, a finding consistent with other recent
reports (Gregg and Rousseaux, 2019; Karl et al., 2021). This increasing
trend weakens to +2.3 mg C m 2 d~! per year (P < 0.05) when the
duration is limited to 1997-2018. This “increase”, however, is appar-
ently driven more by the low values (~450 mg Cm~2d 1) of 1997-1998
vs the high values (~550 mg Cm~2 d ™) of 2014-2015 as is evident from
the lack of an obvious trend (+0.68 mg C m~2 d~! per year) for the
period between 2000 and 2018, as reported earlier (Chavez et al., 2011;
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Table 5
Statistical measures (R? and RMSD) between in situ and modeled NPP (NPP ap,py, NPPygpy and NPPypy) using OC-CCI data for monthly climatology and yearly average
values.
Station Model Monthly climatology Model Yearly averages
N R? RMSD N R? RMSD
AbPM 12 0.71 0.04 AbPM 22 0.22 0.05
HOT VGPM 12 0.21 0.20 VGPM 22 0.05 0.20
CbPM 12 0.66 0.28 CbPM 22 0.08 0.27
AbPM 12 0.83 0.06 AbPM 20 0.33 0.08
BATS VGPM 12 0.59 0.19 VGPM 20 0.21 0.14
CbPM 12 0.49 0.48 CbPM 20 0.03 0.32
AbPM 12 0.80 0.10 AbPM 20 0.53 0.07
CARIACO VGPM 12 0.88 0.13 VGPM 20 0.36 0.09
CbPM 12 0.69 0.12 CbPM 20 0.33 0.12

Church et al., 2013; Hirawake et al., 2011; Koslow and Allen, 2011; Saba
et al., 2010). Previous studies based on NPP;,,, have reported a sig-
nificant decreasing trend (—6.6 mg C m 2 d ™! per year, P < 0.01) from
2000 to 2010, followed by an increasing trend (+9.3 mg C m =2 d~! per
year, P < 0.01) until 2015 after which NPP;;,,, decreased (Boyce et al.,
2010; Krumhardt et al., 2017; Kulk et al., 2020). Assessing the robust-
ness of these trends for climate studies will clearly require a time-series
of longer lengths.

Of the three models, it is evident that only NPPappy most closely
tracked the interannual variations observed in NPP;y,, (Figs. 5a, 7a),
although NPPyppy deviated from NPPj,, to some extent after 2012.
There have been many studies discussing the various reasons regarding
the difference between satellite estimates and in situ measurements
(Gregg and Rousseaux, 2019; Karl et al., 2021; Kavanaugh et al., 2018)
as was observed post 2012. For instance, there could be uncharacterized
geographic variability (Kavanaugh et al., 2018), or a potential shift in
phytoplankton communities (Gregg and Rousseaux, 2019). More spe-
cifically, Karl et al. (2021) observed that the increase in NPP;,, at HOT
is not uniform throughout the water column, whereas NPPy;4] is biased
towards the light-saturated layer. All of these emphasize the importance
of depth-resolved NPP (Brewin et al., 2021; Sathyendranath et al., 2020)
and the necessity of using phytoplankton community specific photo-
synthetic parameters in NPP algorithms (Wu et al., 2022). The other two
models didn’t capture the magnitude, seasonal amplitude and interan-
nual changes in NPPj,g,, at HOT (Fig. 7a).

4.4.2. BATS

Daily NPPjnir, at BATS averaged 419.9 (+ 194.4) mg Cm 2 d ™! and
significant (P < 0.05) interannual variations were observed (Figs. 5b,
7b). Of the three time-series stations, BATS showed the most prominent
changing trends in the annual NPPjy,. From 1997 to 2016, NPPjy;,,, at
BATS generally declined at an average rate of about —2.2 mg Cm~2d !
per year (Table 6), with the greatest decline (—9.3 mg C m~2 d~! per
year, P < 0.01) between 2008 and 2016. This significant decreasing
trend observed over our study period is similar to —5.6 mg Cm ™2 d ! per
year during the 1990-2016 period reported by D’Alelio et al. (2020).
What is noteworthy, however, is the trends of increasing NPPjpy, (+7.9
mg Cm 2d™! per year, P < 0.01) during 1997 to 2007 in our research,
which was reported a decade ago by Saba et al. (2010), who observed
that during the period between 1989 and 2007, NPP;, at BATS had
increased by an average of nearly 2% per year, a result consistent with
other studies for the same period (Chavez et al., 2011; Church et al.,
2013; Hirawake et al., 2011). However, a following study (Lomas et al.,
2013) found a slow but significant decline in NPPjpj,,, from 1988 to 2012
associated with a decline in total microplankton and a slow increase in
prokaryote contribution to NPP over time. Both studies (D’Alelio et al.,
2020; Lomas et al., 2013) have suggested that this long-term shift in the
ecosystem should have a significant impact on the carbon cycle at BATS.
The declining trends reported by us (Table 6) are consistent with Lomas
et al. (2013), and could be the result of the biogeochemical transition at
BATS beginning in the mid-2000s (Figs. 5b, 7b), possibly due to a shift in
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phytoplankton community composition (Krause et al., 2009; Lomas
et al., 2022).

AbPM and CbPM obtained the correct trending sign of the NPPjpgjq,
during 2007-2016 at BATS, but VGPM shows no trend (Table 6). On the
other hand, for trends before 2007, both AbPM and VGPM got the same
sign as that (increase) observed with NPP;;,,, but not CbPM. Further,
none of the three models captured the transition of NPP;y;,,, trends in the
mid-2000s, although they provided the more recent downward trend of
NPPjsiry. As for the many peaks and troughs observed in NPPj,,, none
of the models captured them very well, while these models reproduced
the increase of NPP;y, in 2010 and 2015 corresponding to strong/very
strong El Nino (warm) events. AbPM, in summary, most accurately
replicates these interannual trends.

4.4.3. CARIACO

Interannual variations (1112.4 + 609.8 mg C m~2d ) in annual
NPP;,sir, were most pronounced at CARIACO. Significant (P < 0.01)
changes in NPP;,5;, were observed (Figs. 5c, 7c¢), with a declining rate of
—8.5mg Cm~2d™! per year for the period between 1997 and 2016. We
detected strong oscillations at this station over the two-decade time-
series. The slope of NPP series versus time is no longer close to zero as
was reported earlier by Chavez et al. (2011), nor has it decreased.
Instead, trends in NPPj,, reveal a gradual decrease (—18.3 mg C m2
d! per year, P < 0.01) after 2003 (Figs. 5c, 7c), similar to more recent
findings (Church et al., 2013; Muller-Karger et al., 2019), who attributed
this decline in NPP to weakening of upwelling after 2003 in response to
weakened trade winds and warming of the Atlantic. All models also
displayed a significant increasing trend before 2003 (Table 6), with
NPPappy performing better than the others in tracking NPPjy,. Only
NPPappym successfully captures the decreasing trend of NPPjy, after
2003 and between 1997 and 2016.

4.4.4. Summary of in situ and NPP model-derived climatologies and trends
at three time-series stations

The increase in NPP at HOT and the decreases observed at BATS and
CARIACO indicate that NPP is sensitive to changes in plankton com-
munity structure and/or to interannual variations in hydrographic
forcing or basin-scale climate fluctuations (Church et al., 2013; Ducklow
et al., 2009; Karl et al., 2021; Lomas et al., 2013; Muller-Karger et al.,
2019). Among the three contrasting models studied here (see Tables 5
and 6), AbPM clearly showed better capabilities in capturing the sea-
sonality, monthly climatologies and interannual variability observed in
NPPjsin,. It is worth mentioning that some discrepancies between trends
in NPP and those in earlier literature might arise from the fact that our
time period of the analysis is longer than those in earlier reports.
However, we could reproduce the trends reported by Saba et al. (2010)
and Chavez et al. (2011) for HOT and BATS when we restricted our
analysis to the period (1997-2004 and 1997-2007) reported in their
studies. Additionally, as in previous studies, end-point bias correction
was applied to estimate trends, which can prevent anomalous data at the
beginning or end of a time-series from overly influencing the detection
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of a trend (Rousseaux and Gregg, 2015).
Due to large fluctuations in annual NPPjgy,, and the corresponding
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NPPp0del, trends assessments are affected by the time period of the
study, where different trends can emerge when data from different pe-
riods are analyzed (Lee et al., 2010). For the purpose of this study, we
focused on examining if the models were able to capture the seasonal
and interannual variations observed in NPPj,s,. Towards this end, we
employed cosine similarity between in situ and modeled annual NPP
time series to gauge their closeness (see Table 4), as cosine similarity is a
measure of similarity between two sequences of numbers (a value of 1.0
indicates completely match). This analysis shows that of the three
models tested, AbPM best captures the annual variation in NPPj,, for
the total data (0.87) as well as at each site (0.90 at HOT, 0.87 at BATS
and 0.87 at CARIACO), followed by VGPM and CbPM with 0.84 and
0.82, respectively, for the total data.

Another point worth noting is that episodic large-scale climatic
events, such as the El Nino-Southern Oscillation (ENSO), North Atlantic
Oscillation (NAO), etc., can influence NPP. To facilitate this evaluation,
we have introduced Table S1, summarizing statistics on the correlation
between NPP from in situ measurements and models at three sites, in
relation to seven climate indices. The results reveal significant correla-
tions between the variation in NPPy,, and SST changes associated with
changes in the climatic indices. However, the degree of influence varies
across different climate indices for each site. Specifically, NPP at HOT
exhibits significant correlations with Multivariate El Nino-Southern
Oscillation Index (MEI) and NAO, NPP at BATS is closely linked with
Trans-Nino Index (TNI), and NPP at CARIACO is dominated by the Pa-
cific Decadal Oscillation (PDO) and NAO. This analysis opens avenues
for further exploration and research in understanding the varying im-
pacts of different climate indices on seasonal to decadal fluctions in NPP
at these three long-time series sites.

4.5. Empirical Cumulative Distribution Function (ECDF) of NPP

The ECDF described in section 2.4 allows for a comparison between
the range and median monthly NPP;,y,, versus that of NPPygel from the
three models (Fig. 8). The first quartile (Q;), median (m) and third
quartile (Qs) are typically represented as the point (unit: mg C m “247hH
on the cumulative distribution curve where the curve crosses the 0.25,
0.5 and 0.75 probability level. At HOT, AbPM (Q; = 480.5, m = 520.3,
Q3 =570.3) reproduced the range (Q; = 461.6, Q3 = 618.0) and median
(m = 545.6) of the entire NPP;,,, dataset very well, but VGPM (Q; =
311.1, m = 336.5, Q3 = 366.6) and CbPM (Q; = 244.4, m = 316.9, Q3 =
360.0) underestimated both. At BATS, the ECDF of NPPjyir, (Q1 = 279.2,
m = 397.2, Q3 = 515.0) best matched with that of NPPappym (Q1 = 377.2,
m = 433.9, Q3 = 515.8) values above the median, while in case of
NPPygpm (Q1 = 198.0, m = 296.3, Q3 = 460.9) for values below the
median. Both NPPppy and NPPygpy reproduced ranges similar to that
of NPPjpir,, but no NPPcrpy (Q1 = 130.5, m = 217.4, Q3 = 268.9). At
CARIACO, all three models reproduced the range and median values of
NPPjnsieu, With NPPppy (Q1 = 654.4, m = 917.9, Q3 = 1536.8) showing
an almost exact ECDF as that for the in situ data (Q; = 671.6, m = 925.9,
Qs = 1350.1), with VGPM (Q; = 515.0, m = 730.5, Q3 = 1240.1) and
CbPM (Q; = 901.4, m = 1173.4, Q3 = 1735.6) followed. In summary,
when the ECDF results of the three sites are taken together, it is apparent
that AbPM could reproduce the range and median of the whole NPP;,x,
datasets very well for the three sites, while VGPM and CbPM could also
do so successfully at CARIACO, but both models significantly under-
estimated NPP at the other two sites.

5. Brief discussion of the three NPP models

As discussed in earlier studies (Lee et al., 2015b; Saba et al., 2011)
and shown here, NPPyo4e results from satellite ocean color measure-
ments are highly dependent on the NPP model used. While it is impos-
sible to compare and evaluate all published NPP models (Campbell et al.,
2002; Carr et al., 2006; Saba et al., 2011), our study focused on three
fundamentally contrasting models that are representative of the two
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Interannual trend (in mg C m2d?! year’l) over different time intervals, along with the p-values and statistical mean (standard deviation) of in situ and modeled NPP

(NPPAbpM, NPPVGPM and NppcbpM) U.Sil'lg OC-CCI data.

Station NPP Source Mean NPP Overall Trend Entire Period Period 1 Period 2
mgCm 2d™* 1997-2018 2000-2010 2010-2018
NPPinsion 539 + 125 Increasing +2.3 —6.6 -1.9
HOT AbPM 526 + 73 Decreasing -1.8 —-0.4 —5.6
VGPM 343 + 49 No Trend -0.4 —0.2 +1.4
CbPM 301 + 90 Increasing +2.2 +1.1 +0.6
1997-2016 1997-2007 2007-2016
NPPjnsity 420 + 194 Decreasing —-2.2 +7.9 -9.3
BATS AbPM 458 + 117 Decreasing -3.1 +2.6 -13.7
VGPM 331 +£153 No Trend +0.1 +7.2 -8.0
CbPM 203 + 105 Decreasing -1.6 -1.79 -6.8
1997-2016 1997-2002 2002-2016
NPPinsi 1112 + 610 Decreasing -85 +166.5 -18.3
CARIACO AbPM 1221 + 761 Decreasing -20.9 +187.1 -30.5
VGPM 1078 + 850 Increasing +7.1 +180.6 +4.0
CbPM 1396 + 599 Increasing +1.5 +121.6 -4.3
" P < 0.05.
" P<o0l

strategies employed, i.e., biomass-based (Chla and Cppy) and absorption-
based (apn) NPP models. As articulated in Lee et al. (2015b), each
strategy/model has its own advantages and challenges, but overall a;p-
based or AbPM has fewer or no parameters that are tangled between
photosynthesis and optical properties and hence is less beleaguered by
uncertainties from model inputs, at least in principle (Westberry et al.,
2023).

More specifically, for VGPM, the uncertainties arise from both Chla
estimated from ocean color measurements and Pg, estimated empiri-
cally based on SST. In the case of the latter parameter, Behrenfeld et al.
(2005) concluded that “a clear path for globally modeling or remotely
observing variability in chlorophyll-specific photosynthesis has even to
this day never been identified”. As highlighted in Lee et al. (2015b) and
Lee and Marra (2022), a strategic limitation of Chl-based NPP models,
including VGPM, is the implicit and independent involvement of
phytoplankton-specific absorption coefficient (a;h) in the remotely

sensed Chla and in PB

opt» Where compound errors will be introduced when

inconsistent a;h are embedded in these parameters (Lee et al., 2015b; Lee

and Marra, 2022).

CbPM is more complex than VGPM, and it avoids the association of
a,,, thus a better estimation of NPP from remote sensing is assumed.
However, phytoplankton carbon (Cpry) at present is empirically esti-
mated from by,(443), where large deviations exist between carbon and
bpp(443) even in field measurements (Loisel et al., 2007; Stramski et al.,
2008). Further, when by,(443) is inverted from ocean color measure-
ments, it represents a bulk optical property that may include various
levels of contributions from inorganic particles, detritus and bubbles
(Randolph et al., 2014; Stramski et al., 2004; Zhang et al., 1998). In
addition, as NPP is converted from Cpp, by introducing the phyto-
plankton growth rate, which is parameterized using the ratio of Chla/
Cphy, another set of uncertainties will be introduced. Our results are
consistent with the current understanding that efforts to combine more
sophisticated satellite products with improved Chl-based and Carbon-
based models have only slightly improved NPP accuracy (Kahru,
2017) and none of these algorithms perform exceptionally well when
validated against in situ NPP measurements (Regaudie-de-Gioux et al.,
2019).

AbPM by design avoids the involvement of a;h, thus better results
have been achieved as demonstrated in the literature (Lee et al., 1996;
Lee et al., 2011; Marra et al., 2003), which are further reflected in the
time-series comparisons presented here and in other studies (Song et al.,
2023). While ap, an optical property, can be analytically or semi-
analytically derived from an ocean color spectrum, the required quan-
tum yield of phytoplankton photosynthesis (¢) has to be estimated or
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modeled (Ma et al., 2014; Zoffoli et al., 2018). If the estimation of this
parameter can be further improved for the global ocean, more accurate
NPP products from satellite ocean color measurements are achievable.
For instance, Wu et al. (2022) recently scaled limited ¢ measurements
obtained from a single cruise in the complex waters surrounding the
Korean Peninsula using a coupled bio-optical-hydrographic province
partitioning scheme called BIOMES. NPP.,,4e generated using this
approach agreed extremely well with in situ measurements when AbPM
was applied to ocean color data provided 8 times a day by the Korean
Geostationary Ocean Color Imager (GOCI). In short, while there is still
room to improve the derivation of a,y, from satellite ocean color mea-
surements, further improvements in global AbPM-derived NPP will
depend immensely on robust ways to scale limited shipboard measure-
ments of ¢ across different biogeochemical provinces (Lee et al., 2015b;
Lee and Marra, 2022).

6. Conclusions

In this study, we assessed the performance of three contrasting NPP
models by examining their ability to estimate the magnitude, variability,
and trends observed in NPP;,;,, at three long-term time-series sites, two
of which (HOT and BATS) were located in oligotrophic ocean waters and
one in a coastal upwelling eutrophic basin (CARIACO). NPP;,, data,
which span over two decades from these three long time-series stations,
provided us the basis for a better understanding of uncertainties in
different satellite-based NPP products, the associated discrepancies in
trends with different models, and the need for robust estimates of NPP
for global carbon cycling and long-term climate change studies.

Of the three models used for estimating NPP, AbPM provided the
most consistent NPP compared to NPPj,,, in magnitudes and trends.
The two other widely-used models, VGPM and CbPM, underestimated
NPP in the oligotrophic waters of HOT and BATS. At BATS, the wide
range of interannual variations of NPP;y,, were not well reproduced by
these models, indicating either difficulites of these models for such an
ecosystem or limitations of comparisons between satellite data and in
situ measurements. The downtrends of NPPj,, at CARIACO were
discernible from all NPP models, but AbPM provided the most accurate
estimates of NPP among the models evaluated for the entire period
(1997-2016). Overall, the results from this study point towards AbPM as
a more suitable approach towards obtaining robust NPP estimates from
satellite ocean color measurements, especially because of its superior
ability to capture the temporal variations observed in field NPP mea-
surements. Further improvements in the AbPM-derived NPP values are
possible with better methods to parameterize and scale-up limited field
measurements of quantum yield of phytoplankton photosynthesis to
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larger areas, as was shown in Wu et al. (2022) for the complex water
masses around the Korean peninsula.
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