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Abstract—With the increased extent of synchrophasor-based
wide area monitoring systems in modern large-scale power
systems, more data-limited classification of fault events in smart
grids becomes possible. Recent works have identified and ex-
ploited the low-rank property of synchrophasor data and power
system dynamics for fault type classification. We develop a new
methodology for modeling particular types of power grid faults
from a tensor perspective, taking advantage of this well-known
low-rank property, and classifying observed faults into categories
by comparing to these low-rank representations. Using simulated
data from the IEEE 39-bus system, we demonstrate that this
approach is robust to limited temporal observation and sparse
embedding of measurement units on the grid.

Index Terms—Synchrophasor data, fault classification, low-
rank modeling, tensor models.

I. INTRODUCTION

To monitor and diagnose patterns observed in large-scale
power systems, many smart grid technologies have been
implemented in electric power systems, for example in the
case of grids equipped with phasor measurement units (PMUs)
[1], [2]. PMUs measure voltage, current, and frequency at
embedded locations across a power grid to produce time-
synchronized synchrophasors. This high-frequency but time-
synchronized property of PMU data has become a critical
component in the advent of data-driven techniques for smart
grid diagnostics [3].

A key area of interest is the identification of faults in power
systems, which may lead to cascading failures and blackouts
without timely intervention [4], [5].However, the intervention
time frames for such fault-induced electrical instabilities are
usually in the order of milliseconds to tens of seconds [6].
Therefore, it is necessary for classification to require little
data to make accurate characterizations. PMUs enable such
classification, but the size and shape of PMU data requires
particular consideration. It is important to carefully consider
the three-way nature of PMU data when conducting analyses:
the sensor in the grid, the sensor channel, and time.

Modern sensor data can often be naturally represented as
multi-way arrays, or tensors, and decomposition is central to
their analysis [7]. A common approach for matrices is the
singular value decomposition (SVD), where two component
matrices contain the singular vectors weighted by the singular

values. SVD allows one to identify rank, or the number of
modes required to capture (essentially) all information in the
data. Many types of data are low rank [8]–[10]; see [11] for
more applications. PMU data are low rank [12], and many
methods use this to recover missing data [13]–[15] or for bad
PMU data detection [16], [17].

The low-rank modeling and classification of fault types is
discussed in Section II. This is followed by a series of experi-
ments described in Section III, including a consideration of the
time window used for fault type classification (Section III-A),
an ablation on the individual PMU channels (Section III-B),
and a study of the effect of a partial observation of the grid
(Section III-C). We conclude with a discussion in Section IV.

A. Related Works
Typical classification approaches are often applied for fault

identification [18], [19], including unsupervised cluster-based
approaches [20]. Many approaches use explicit feature model-
ing, such as those extracted by intrinsic mode functions from
signals in [21]. Others use low-rank models; for example,
[22] apply principal component analysis (PCA) to PMU data,
detecting changes in these components. PCA is also used by
[23] for classification feature compression.

Training models requires a large amount of data covering
different configurations and initial conditions [12]. Low-rank
methods address this by suggesting that while a particular
type of fault in the grid may yield different measurements
at different times, the principal modes may share similar
characteristics. For example, [24] estimate subspaces of PMU
data for comparison to newly observed data. Others consider
low-rank representation of multiple PMU channels jointly,
such as [25], which are then used for feature construction
in convolutional neural network classification. Our approach
utilizes multiple channels of PMU data to construct low-rank
representations of each fault type directly, comparing new
observations to these models as in [24].

II. METHODS

In our approach, the typical behavior of the power grid
under a given fault type is modeled and new observations
are classified according to the type of fault by comparing
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Fig. 1. Flowchart of the modeling and classification approach used for fault type classification. First, as outlined in the top panel, the readings from previously-
observed faults are used to construct an approximation for standard power grid response to each type of fault. Then, as outlined in the bottom panel, when a
new fault is observed, the approximation is used to classify the fault type which is most similar to the observed readings.

to these models. The problem is formalized in Section II-A.
The truncated SVD for event type modeling is described
in Section II-B, with the comparison of new observations
outlined in Sections II-C and II-D. The outline of our approach
is visualized as a flowchart in Figure 1.

A. Problem Formulation and Notation
In a simulated grid with 39 PMUs, each sensor reads voltage

magnitude (VOLT), phase angle (ANGLE), and frequency
(FREQ) with a period of 5 ms. Line trip, load increase, and
temporary line-to-ground faults are simulated. We have a set
of observations measuring 10 seconds of readings. In each
observation, the fault takes effect at the 1 second mark. Define:

• k → {1, 2, 3} : Fault type index
• i → {1, . . . , 39} : PMU sensor index
• j → {1, 2, 3} : “Channel” index (indicator for VOLT,

ANGLE, or FREQ)
• n → {1, . . . , N (k)} : Power grid sample/observation index
• t → {1, . . . , T} : Time index

N (k) is the number of observations of fault type k. The data
are tensors X(k) of shape (N (k)↑39↑3↑T ). Each component
is denoted x(k)

ijnt. Under fault type k, for PMU i, channel j, and
time t, the data can be constructed using an approximation:

x(k)
ijnt = µ(k)

ijt + ω(k)ijnt. (1)

The residuals of observation x(k)
ijnt with respect to the recon-

struction µ(k)
ijt are denoted ω(k)ijnt.

B. Low-Rank Representation
Matrix X(k)

jn of shape (39 ↑ T ) contains T readings of 39
PMUs at channel j and observation n. The SVD is:

X(k)
jn = U (k)

jn !(k)
jn

(
V (k)
jn

)T
, (2)

where !(k)
jn is a diagonal matrix containing the (descending-

order) singular values of X(k)
jn , and the columns of U (k)

jn and

V (k)
jn contain the singular vectors. A rank d representation of

X(k)
jn is constructed by the first d principal components:

X̃(k)
jn = U (k)

jn !̃(k)
jn

(
V (k)
jn

)T
, (3)

where !̃(k)
jn contains only the first d singular values. We

take the component-wise mean of each X̃(k)
jn for all N (k)

observations to obtain the low-rank, average representation
X̃(k)

j . Each row, µ̂(k)
ij , is the approximation of channel j in

PMU i during fault type k through time. There are 3 matrices
for each fault type (one per channel). This is visualized in the
top of Figure 1.

C. Residuals of the Approximation
Individual components of X(k) can be constructed:

x(k)
ijnt = µ̂(k)

ijt + ω(k)ijnt, (4)

with residual ω(k)ijnt. Given µ̂(k)
ij , residuals may be computed

for every component:

ω(k)ijnt = x(k)
ijnt ↓ µ̂(k)

ijt . (5)

Since each channel may have different scale, residuals may
also be scaled differently. To address this, we define the sets

E(k
→)

j→ =
{
ω(k)ijnt : j = j→, k = k→

}
, (6)

containing all residuals for fault type k→ and channel j→. Let

Ē(k
→)

j→ be the mean and ε

(
E(k

→)
j→

)
be the standard deviation of

these sets, respectively. Given new residual z(k)j from channel
j comparing to fault type k, define the standardized residual:

z̃(k)j =
z(k)j ↓ Ē(k)

j

ε
(
E(k)
j

) . (7)

This ensures residuals are of comparable magnitude.
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Fig. 2. In (a), the F1 score of classification for each of the three classes of fault type is considered. The x-axis displays the beginning of the 0.25 second
window used for classification, where the time is relative to the beginning of the simulation in which the fault is applied at the one second mark. The F1
score is displayed on the y-axis. The red curve plots the micro-averaged F1 score across all classes, which experiences its maximal value for the window
beginning at the 1.275 second mark. In (b), the confusion matrix for the corresponding “best” micro-F1 window is visualized.

TABLE I
PMU CHANNEL SUBSET CLASSIFICATION PERFORMANCE

FULL VOLT ANGLE FREQ VOLT+ANGLE ANGLE+FREQ VOLT+FREQ
F1 0.69 0.68 0.42 0.33 0.72 0.34 0.68
Line Trip Accuracy 0.62 0.52 0.98 0.54 0.77 0.62 0.53
Load Increase Accuracy 0.50 0.49 0.01 0.55 0.31 0.48 0.51
Temp Line 0.85 0.92 0.06 0.03 0.85 0.00 0.90

D. Fault Type Classification
Suppose a fault is detected and an observation tensor Zω of

shape (39 ↑ 3 ↑ ϑ) contains ϑ time-steps of readings for the
39 PMUs and 3 channels per PMU. This is compared to each
X̃(k)

j to classify Zω . First, define X̃(k)
ω as the (39 ↑ 3 ↑ ϑ)

tensor which “stacks” X̃(k)
j and truncates to the appropriate

time window. Then,

Z(k)
ω = Zω ↓ X̃(k)

ω . (8)

Each Z(k)
ω contains the residuals (5), which can be standard-

ized by (7) to produce Z̃(k)
ω . The classification of the type of

fault can be determined according to which Z̃(k)
ω has smallest

squared Frobenius norm. Effectively, the classification selects
the fault type whose approximation according to Section II-B
most closely matches the observed fault. The observation of
a new fault and subsequent classification are visualized in the
bottom half of the flowchart in Figure 1.

III. EXPERIMENTS

Consider labeled simulated data containing 2,194 line trip
faults, 998 load increase faults, and 2,240 temporary line-to-
ground faults in a 39-bus power grid. Faults occur at one
second followed by nine more seconds of measurement (period
of 5 milliseconds). 80% of the data is used to develop X̃(k)

j .
The remaining 20% of the data are used for classification.

We demonstrate the importance of the time window considered
when conducting classification in Section III-A. Then, the
effect of each channel is examined in an ablation study

(Section III-B). Finally, we study the effect on classification
of partial observations of the power grid in Section III-C.

A. Windowed Classification

To evaluate the performance of classification through time,
we consider a moving window classification approach. At
any point in time, we consider a window of 0.25 seconds of
readings (in the case of our data, this is equivalent to ϑ = 50
time steps). Beginning with the point in time at which the
fault takes place (the one second mark in our simulated data),
we consider 21 such windows, where the start time is shifted
by 0.025 seconds each time. That is, we consider windows
from 1.000-1.250 seconds, 1.025-1.275 seconds, . . . , 1.500-
1.750 seconds. For each of these time windows, we perform
classification according to Section II-D on the classification
split of the data.

The F1 scores for each class corresponding to window
choice are visualized in Figure 2(a). The line trip score
increases for earlier windows while the score of the load
increase fault increases more drastically. The score of tem-
porary line-to-ground faults plateaus at early times followed
by a sharp decline. The micro-averaged F1 gradually increases
through time, peaking at the 1.275-1.525 second window. The
confusion matrix for this window is visualized in Figure 2(b),
indicating that performance for line trip and temporary line-
to-ground faults is better than that of load increase faults.
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Fig. 3. In (a), the F1 score of classification for each of the three classes of fault type is considered. The x-axis displays the number of PMUs (nPMU) used
for classification, and the observation window is 1.275-1.525 seconds measured from the beginning of the simulation (recall, the fault occurs at one second).
The F1 score is again plotted on the vertical axis. The red curve plots the micro-averaged F1 score across all classes. In (b), the confusion matrix for the
observation of a single PMU is visualized.

B. Channel Ablation

Next, we conduct an ablation study to determine the effect
of each PMU channel (voltage, phase angle, and frequency)
on the classification performance. To do so, rather than using
the entire residuals tensor Z(k)

ω in the classification, (chan-
nel dimension) sub-matrices are used. That is, we perform
classification using only voltage, phase angle, or frequency,
or a combination of two channels. Using the result from
Section III-A, this section uses the time window from 1.275-
1.525 seconds. These ϑ = 50 time readings are used to
perform the classification, which is repeated for all possible
combinations of the three channels.

The performance in the ablation study is displayed in Ta-
ble I. Voltage alone has the highest F1 score for single-channel
classification, followed by angle and frequency. Considering
pairs of channels, voltage combined with angle achieves the
highest score followed closely by combining voltage with
frequency. Considering angle and frequency together achieves
very low score. These results indicate that voltage is necessary
for high performance. The VOLT + ANGLE classification
exhibits the best F1, but compared to Figure 2(b) using all
channels, we observe worse performance in classifying load
increase type faults.

C. Partial Observation

In many cases, it is unrealistic to assume that all buses in
the power grid will have an associated PMU. To study the
effectiveness of our approach in these more realistic cases,
we aim to determine how the performance of classification is
affected by only considering a subset of the PMU readings. In
this case, we consider sub-matrices corresponding to subsets
of the entire set of 39 PMUs in the power grid. In each trial,
we fix the number of PMUs to be used, denoted nPMU. That
is, nPMU sub-matrices from tensor Z(k)

ω are considered to
conduct the classification. We choose a random subset nPMU

number of PMUs to consider for each observation. We again
use a window from 1.275-1.525 seconds.

Figure 3(a) shows the F1 score for each fault type over a
range of nPMU. Temporary line-to-ground faults achieve the
best performance and load increase faults achieve the worst.
The micro-averaged F1 score increases only slightly with
nPMU, from just over 0.6 when a single PMU is observed
to just under 0.7 when more than 30 are observed. The
confusion matrix for the observation of a single PMU is
displayed in Figure 3(b). Line trip and temporary line-to-
ground faults experience a slight decrease in performance
compared to Figure 2(b), but the overall performance is only
slightly diminished.

IV. CONCLUSION

We have demonstrated the utility of low-rank tensor-based
modeling of faults. Our approach is interpretable and effi-
cient, constructing simple models and using difference-based
classification. We have demonstrated that, given a detected
fault in simulated data, our approach can effectively classify
faults according to the three types of observed disturbances.
Furthermore, an ablation study indicates that using a subset
of the PMU channels can yield similar performance. Finally,
we have found that this approach works well given only an
observation of a subset of the grid.

Next steps can combine our approach with rapid detection,
potentially providing a method for both quick detection and
classification of fault type. This combination of temporal and
categorical information could lead to effective and informed
response to failures in the grid.
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