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Abstract— Robots will achieve true autonomy in controlling

their bodies and interacting with their environments only

when they are able to learn within the constraints of their

designs or environments with minimal to no prior information

and can learn from and adapt to new tasks and conditions

without experiencing catastrophic forgetting of prior ones. The

autonomous learning of control is of an especial important in

the case of tendon-driven robots, which offer a wide set of

advantages such as flexibility in the placement of actuators, but

also introduce further challenges to its modeling and control.

Here, we have extended our bio-inspired learning algorithm,

General-to-Particular, to a quadruped system and have shown

its aptitude in learning to control the system within only a few

seconds and performing functional movements with continuous

learning. Most importantly, we have successfully utilized simple

tactile sensory information to enable the system to distinguish

between changes in the amount of load it carries and achieve

lifelong-learning without catastrophic forgetting (continually

learn without overwriting the previous skills).

I. INTRODUCTION

Vertebrates can develop motor skills from limited exposure
to a task, learn from and adapt to changes when facing a new
experience, generalize basic principles across different tasks,
and learn how to perform new tasks without overwriting the
old ones. This lifelong-learning (L2M) without catastrophic
forgetting ability has equipped them with their enviable
learning speed, efficiency, and adaptability even without a
comprehensive prior about or model of the task, their body,
or the environment. The level to which an agent with artificial
intelligence can mimic these abilities will be a decisive factor
in determining if it can learn, perform, and adapt in real-
world applications with limited observability, incomplete or
even inaccurate priors, and uncertainties in interacting with
the environment or other agents.

,Vertebrate do not have explicit access to their biome-
chanical models or its parameters (such as maximal muscle
forces or the moment-arm values). Although not very often
in current commercial robots, it can be the case in some of
the robotic applications as well. It is an important challenge
when the robot is expected to adapt to the changes to which
it is introduced or if it wants to learn in a design-agnostic
way rather quickly and using limited experience [1], [2],
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[3], [4], [5], which opens up new avenues toward brain-
body coevolution in robots. By enabling robots to learn
by exploring and to create self-awareness of their body
dynamics, they will be able to adapt to changes in their body
dynamics or even completely new body structures.

Tendon-driven systems are great study cases for design-
agnostic autonomous learning of controls since these systems
are notorious for their inherent challenges in their controls.
Although they can be used to provide great ranges of forces
and velocities [6], [7], [8], from the controls perspective, their
simultaneously over- and under-determined nature greatly
constraints the feasible kinematic state space. Moreover, this
makes the control problem even more challenging, as there
is no one-to-one relationship between DoFs and actuators,
as is the case in joint-driven systems [6], [7].

Even when a successful control strategy is found for a
particular task, it is important to be able to distinguish
different tasks and utilize the knowledge gathered during
learning one to have a head-start in learning the others.
Tactile sensory information is an important type of feedback
signal that can play an important role in discriminating
different tasks or different phases in a single task. It has
been shown that tactile sensory information can provide
important information such as success in a reaching task [9]
or hitting the floor signal (heel strike) during locomotion
[10]. Moreover, if placed on the extremities, it can be a
good indicator of the weight that the limb is carrying at
each moment and therefore it can better guide the control
strategy toward adjustments on the muscle forces.

Here we have implemented and expanded our G2P al-
gorithm to a quadruped robot with two DoFs controlled
by three tendons on each limb and have studied the ef-
fects of different architectures of Artificial Neural Networks
(ANNs), incorporating position error feedback, and endpoint
tactile sensory information to controls and adaptation (both
forward—generalizing to new tasks—, and backward—no
catastrophic forgetting of old tasks) across 4 different test
cases: performing limb movements in the air, on the floor,
on the floor while carrying a light load, and on the floor
carrying a heavy load. Moreover, we have tested two different
curricula with the forward and reverse order of the test cares
mentioned above (light to heavy and vice versa). Our results
show that more specialized ANN architecture (one ANN
for each limb) outperforms a single large ANN that maps
all the input kinematics to the estimated muscle activations.
Moreover, our system can achieve reasonable performance
(RMSE of joint angles in a 10-second point-to-point and
cyclical movement tasks) within only minutes of exploration

2024 10th IEEE RAS/EMBS International Conference for
Biomedical Robotics and Biomechatronics (BioRob)
1-4 September 2024. Heidelberg, Germany

979-8-3503-8652-3/24/$31.00 ©2024 IEEE 612

2
0

2
4

 1
0

t
h

 I
E

E
E

 R
A

S
/
E

M
B

S
 I

n
t
e

r
n

a
t
io

n
a

l 
C

o
n

fe
r
e

n
c
e

 f
o

r
 B

io
m

e
d

ic
a

l 
R

o
b

o
t
ic

s
 a

n
d

 B
io

m
e

c
h

a
t
r
o

n
ic

s
 (

B
io

R
o

b
) 

|
 9

7
9

-8
-3

5
0

3
-8

6
5

2
-3

/
2

4
/
$

3
1

.0
0

 ©
2

0
2

4
 I

E
E

E
 |

 D
O

I:
 1

0
.1

1
0

9
/
B

IO
R

O
B

6
0

5
1

6
.2

0
2

4
.1

0
7

1
9

9
0

2

Authorized licensed use limited to: University of Southern California. Downloaded on January 14,2025 at 23:33:38 UTC from IEEE Xplore.  Restrictions apply. 



and in the absence of any prior model of the system or the
environment. Moreover, this proposed model model-agnostic
approach will enable robots to learn without being limited to
a specific physical design which will also open the doors to
the brain-body coevolution idea (lifelong adaptation of both
controls and physical structure) in robots.

II. METHODS

Here we discuss the design of the quadruped system, tasks
it is tested on the learning pipeline, and the variables studied:
the effects of position error feedback, tactile sensing, and the
architecture of the ANNs used.

A. Quadruped design and the simulation environment
We have designed a tendon-driven quadruped with three

tendons and two DoF on each limb (each limb follows a
similar design to[5], [11]). Each tendon is actuated using
a MuJoCo Muscle actuator with peak active force equal to
120N. Also, this quadruped design is an expansion of the
OpenAI’s HalfCheetah (which has only 2 limbs) design and
inherits most of the other physical parameters from it. The
resulting design file (in .xml format; more details and xml
design files are available online as a part of the supplemen-
tary files) was run by the MuJoCo physics simulator [12]. We
have used 2.5 ms time step to reduce the effects of potential
integration errors during the simulation.

B. Tasks and Test cases
1) Tasks: We have tested all our cases with two tasks:

continuous cyclical movements and point-to-point move-
ments (similar to [5], [11]

a) cyclical movements: During this task, the proximal
and distal joints follow sinusoidal trajectories with ⇡/2 phase
difference. In addition, diagonal limbs will be synchronized
together (similar to trotting). This task consists of 10 seconds
with a frequency of 1.5 Hz (15 cycles during the entire task).

b) point-to-point movements: In point-to-point task, the
position of each angle is determined randomly from the range
of motion of each limb (Uniformly distributed). In this case,
the four limbs are following the same desired positions. This
tasks consists of 10 seconds with 10 position commands for
each joint (1 second in each position).

2) Test cases: We have tested both tasks in four different
cases, as described here.

a) Suspended in Air: In this case, the quadruped is
suspended in air and therefore the limbs will not be in contact
with the floor. In this case, the only thing the system needs
to learn is how to deal with and control dynamics of its own
limbs (see Fig. 1a).

b) Walking on the floor: In this case, the system is
put on the floor, the limbs can interact with the floor, and
therefore can move. In this case, system is going to experi-
ence contact dynamics and need to deal with its weight. The
density (volumetric mass density) of all parts of the body is
set to 1000Kg/m3 (except the density of head, neck, and
tail, which are mainly added for visual purposes, and are set
to 10Kg/m3; see Fig. 1b)

c) Walking on the floor with a load (light): This case
is similar to walking on the floor with a slight difference
that it now has to carry a load (as seen on Fig. 1c). This
will have a direct effect on the weight and therefore a robust
and successful control strategy would require the system to
adopt the changes caused by it. The density of the load in
this case is also set to 1000Kg/m3.

d) Walking on the floor with a load (heavy): In this
case, the load weight is twice that of the previous case;
in other words, this case is identical to the previous in all
aspects except the load density which is set to 2000Kg/m3

(see Fig. 1d).

C. Learning pipeline (G2P algorithm)

To be able to find a mapping between the desired kine-
matics and the muscle activations that would lead to them
on our tendon-driven system, we use the G2P algorithm [5]
which is consisted of two main parts:

1) Motor babbling: During this phase, muscle are ran-
domly activated (uniformly distributed from the 0 to 100%
activation range) and the resulting sensory input information
(Tactile sensory information which is endpoint force val-
ues and Kinematics which consist of joint angles, angular
velocities, and angular accelerations) are collected. Sensory
information and activations are then used to train an ANN as
input and desired outputs, respectively. The resulting ANN
will then be used to predict muscle activations required to
perform the desired tasks during the refinement phases. For
all cases in this study, we have performed the babbling phase
for 60 seconds (supplementary video, Part I).

2) Refinements: During this phase, the kinematics of the
desired task (here, either cyclical or point-to-point) are sent
to the ANN to estimate the required muscle activations,
and then to perform the move using those activations. Also,
for the tactile sensory, we always feed the tactile sensory
of the previous time step (except the first simulation step
where we feed 0 on the tactile sensory input). The resulting
task-specific sensory information and muscle activations
are concatenated with the data available so far and used
to re-tune the ANN. Please note that the motor babbling
provides sparse sampling within a vast volume of the
sensory information while refinements enables sampling
more specific to the sensory space of a desired task
(supplementary video, part II).

a. Perform motor babbling
b. Train an ANN with the resulting data
c. Perform a particular task
d. Refine the ANN model with all the data

collected so far and go to c.
TABLE I

SIMPLIFIED FLOWCHART OF THE G2P ALGORITHM.

613
Authorized licensed use limited to: University of Southern California. Downloaded on January 14,2025 at 23:33:38 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. The simulated tendon-driven quadruped in air (a), on the floor (b), with light load (c), and with heavy load (d).

D. Scaling sensory data

Scaling and normalization of input data can enhance the
learning speed and therefore improve on the data-efficiency
of a machine learning algorithm. This is even more pro-
nounced when inputs have different units and therefore can
have vast differences in their ranges. To address this problem,
we have scaled the input data (dividing them by their
expected variance). To make sure that we are not depending
on prior information, we calculate these scaling factors by
running a 60 second babbling (which is done only once
for the entire curriculum of tasks and test cases) when the
quadruped is on the floor (no load) and use the collected
data to calculate scaling factors for all cases. It is obvious
that these values do not guarantee unit standard deviation
for all sensory data collected across different tasks and test
cases, however, it greatly reduces the differences in ranges
and therefore helps in faster convergence of the ANN training
processes.

E. ANN architectures

We have studied two different ANN architectures to assess
which one can lead to more accurate control of movements.
A single ANN for the entire system and Multiple ANNs (one
for each limb). Regardless of this architecture, all ANNs
start with a babbling (in air), and once they got trained,
they will concatinate any data coming from new babblings
or refinements and re-tune their weights using (train on) this
cumulative concatenated data set while warm-starting using
the weights from the last case (the ANN weights after the last
training and before the addition of the new data). The error
defined to train the ANNs is the mean square error (mse)
over all muscle activation (fed into the ANN vs. the estimated
ones). We use MLP ANNs with one hidden layer (with 24
hidden layer neurons for the single ANN and 6 hidden layer
neurons for each ANN in the multiple ANN case), linear
activation functions (which we observed to perform better
than the case of using sigmoid functions), and the ADAM
optimizer [13] implementation in the Keras API from the
Tensowflow library.

1) Single ANN: In this case, we use a single ANN
that maps all the sensory input into the predicted muscle
activations of all 12 muscles. One hypothesis is that since
the ANN has access to all sensory inputs (kinematics and
tactile sensory of all limbs) at the same time, it might be
able to utilize these extra information to better implement

the inverse dynamics and therefore enable better control of
the limbs.

2) Multiple ANNs: In this case, we use a single ANN for
each limb (that is four identical ANNs in total) that maps
all the sensory input of that limb into the predicted muscle
activation values (3 muscles). An opposing hypothesis to the
one brought up in the Single ANN subsection is that a more
focused input and output might mean fewer distractive data
points for the ANN and therefore lead to better convergence
and a superior control of the limbs compared to the previous
case.

F. Tactile sensory information utilization
We have studied the potential contribution of tactile

sensory in improving the control performance in our G2P
framework; especially across different test cases (in terms
of both forward and backward generalizability). A MuJoCo
touch sensor (sensing the magnitude of the applied force)
is used at the end of each limb (see the green areas on
Fig. 1a-d). We study the performance of the system across
tasks and test cases with and without access to these tactile
information.

G. position error feedback
Similar to [11], we have implemented corrective position

error feedback on the position error of the joints and here
we have studied the amount in which it contributes to
the improvement of the accuracy of the limb control in
our simulated quadruped across task, test cases, and ANN
architectures.

H. Performance metrics
Here, we have assessed the control error on joint positions

in the proposed L2M framework. As an essential part of L2M
without catastrophic forgetting, the agent should demonstrate
both forward learning (being able to learn as it is introduced
to new tasks) and backward generalizability (being able to
still perform well on the task it has learn earlier even after
being trained on the newer tasks) capabilities.

1) Defining of error: Also, to measure how well a system
has learned to perform the desired movements, we calculate
the round mean square error (rmse) over the joint angles
(across all limbs) for the last half of the data (to make sure
the effects of transient initial conditions are washed out) and
report it. We use rmse as opposed to mse since it preserves
the the units of the inputs (radians).
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2) Forward learning plots: In these series of plots, we
show the error of each task and the progress of error after
each babbling or refinement. Please note that for each point
in these plots, we use the updated model that was trained
with the cumulative data so far.

3) Backward generalization plot: Once babbling and re-
finement phases across all test cases are over and the ANN
parameters are re-tuned using the most updated cumulative
data set, we fix the model (ANN parameters) and test all
task cases again with this final model. This will show how
well the current model can generalize across all tasks it has
learned so far without being re-tuned.

III. RESULTS

Here, we have demonstrated the effect of studied config-
urations on the control accuracy over the joint angles. At
each figure, we have only changed the configuration of the
interest (position error feedback, tactile sensory information,
and the ANN structure) and compared the results while the
other configurations are kept the same.

A. Effects of position error feedback
Fig. 2a shows the forward learning plots for the config-

uration with and without position error feedback in orange
and blue, respectively. Also, columns on Fig. 2a-d are corre-
sponding to the test cases of: in air, on the floor, on the floor
with the light load, and on the floor with the heavy load (from
left to right, respectively). Also, Fig. 3a shows the backward
generalization plot for all the test cases mentioned above for
the configuration with and without position error feedback
(for each test case, right and left box plots, respectively).

As you can see, the plots on Fig. 2a show that the having
position error feedback greatly reduces the time needed
for the error curves to converge and therefore reduce the
number of refinements needed for the error plots to flatten.
Also, Fig. 3a (backward generalization results) show that
the corrective position error feedback significantly reduces
the joint position error across all test cases (One and two
stars represent p-valeus equal or smaller than 0.05 and 0.01,
respectively, for a one way ANOVA analysis).

In terms of other configurations, these plots represent the
results where there is no tactile feedback and the system
uses multiple ANNs, however, the general pattern is consis-
tent across other variations (position error feedback always
enhances the performance). Please see the supplementary
documents for the complete set of result plots for all possible
configurations.

B. Effects of ANN architecture
Fig. 2b show the forward learning plots for for all cases

for the configuration with multiple, and single ANNs in
orange and blue, respectively. Fig. 3b shows the backward
generalization plot for all the test cases for the configuration
with a multiple and single ANNs (for each test case, right
and left box plots, respectively).

As can be seen on both figures, the multiple ANN structure
outperforms the single one. Moreover, this difference in

performance is more significant in tasks that are experiencing
the effects of weight which suggests that multiple ANN
structure can better handle (is more robust) the unexpected
dynamics of interactions with the floor that are caused by
the weight.

One hypothesis would be that since the single ANN has
more coefficients (weights and biases) to set, it would need
more data to converge. However, we saw a similar pattern
(multiple ANNs outperforming the single ANN) even when
trained on larger data set. Moreover, the fact that the forward
learning curves are almost flat after the second case rejects
this hypothesis.

Alternatively, a larger ANN might be more likely to suffer
from local minima. In addition, the kinematic input from
other limbs seems not to be very helpful and therefore create
destructive interference. The differences in the performance
are even more statistically significant when we enable posi-
tion error feedback (see supplementary information). This
reinforces the destructive interference in the single ANN
hypothesis since there is only a single corrective position
error feedback signal for each joint for the multiple ANN
structure being fed back to the ANN while all the corrective
position error feedback signals are fed back to the same ANN
in the single ANN structure.

C. Effects of tactile sensory information
Fig. 2c show the forward learning plots for for all cases

for the configuration with and without tactile sensory in
orange and blue, respectively. Fig. 3c shows the backward
generalization plot for all the test cases for the configuration
with and without tactile sensory (for each test case, right and
left box plots, respectively).

Here, we have selected the results with configuration
without position error feedback to isolate the contributions
of tactile sensory. We see that pretense of feedback highly
enhances the accuracy and therefore covers most of the con-
tributions of the tactile sensory (please see the supplementary
figures).

As can be seen on both figures, overall, the tactile feedback
contributes in enhanced performance. It is especially the
case for the backward generalization results of the more
extreme cases (on air and with the heavy load). We believe
that it is because the presence of the tactile sensory enables
the mapping to differentiate cases with different weight and
therefore select the appropriate muscle activation values for
each case. On the contrary, the configuration without the
tactile sensory do not have access to these discriminatory
information and the ANN tries to minimize the error over
the entire data set (across all cases) and therefore would not
have major performance drop for the ”on floor” and ”with
light load” cases but would suffer more (compare to the
configuration with the tactile sensory) on the more extreme
cases (”in air” and ”with heavy load”).

Importantly, we see an even more pronounced contribution
for the sensory in the single ANN structure (please see the
supplementary info) that is persistent for all four test cases.
It suggests that having access to sensory signals from other
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Fig. 2. Forward learning plots across test cases (in air, on floor, on floor with load, on floor with heavy load). Comparing the cases with and without
feedback (a), with single or multiple ANNs (b), with or without tactile sensory (c), and best vs. worst combination of features (d).

limbs can further enhance the performance since it provides
a more complete set of information regarding the total weight
of the system and the part that is being carried by each leg.
Therefore, similar to biological systems, it seems like having
specialized networks that are interconnected with each other
at some level (here, sharing the sensory information of each
limb with other limbs) seems to be a promising future design
architecture to pursue.

Also, please note that the ”with tactile sensory” case has
a relatively higher error on the 0th refinement of the ”on
the floor” case (the test results before babbling or being
trained on the information collected from the new test case).
This is because the input nodes associated with the tactile

sensory information so far have always fed with zeros (since
there is no touch during the ”in air” case) and therefore, the
weights associated with them are not refined. These weights,
however, are pruned right after the system is exposed to
the new environment and the ANNs are trained with data
including tactile sensory information.

D. Stacking all improvements

In this part, in order to assess the overall contribution of
these configurations, we have stacked all the configurations
that had lead to an improvement in performance (A system
with position error feedback, tactile sensory, and multiple
ANNs) and have compared the resulting performance with
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Fig. 3. Backward generalization plots across test cases. Comparing the cases with and without feedback (a), with single or multiple ANNs (b), with or
without tactile sensory (c), and best vs. worst combination of features (d).

the system without any of these configurations. We label
these two systems as higher performance and lower per-
formance configurations, respectively. Please note that the
without enhancement system is similar in configurations to
the original G2P algorithm presented in [5].

Fig. 2d and 3d show the plots for the forward learning and
backward generalization results, respectively. As it is clear
from these figures, there is a significant improvement in the
control performance for the higher performance configura-
tions in both forward learning and backward generalization
which leads to a better L2M without catastrophic forgetting
performance in achieving kinematic control which is the
main focus of this paper (also, see supplementary video, parts
III and IV).

IV. CONCLUSION

Here we have implemented task-agnostic autonomous
learning for a bio-inspired tendon-driven quadruped and have
studied the effects of different configurations on its kinematic
control performance. Our results show that the proposed
framework is able to learn without any prior knowledge
about the design parameters just after a minute of random
kinematic exploration (motor babbling) and a few attempts
of the task of interest (followed by refinements).

We have shown that the corrective position error feedback
that utilized the forward model generated using the G2P
algorithm significantly improves the performance. Also, our
results show that smaller and more specific neural networks
would outperform a single all-in all-out network when only
dealt with kinematic information. However, our results sug-
gest that having access to tactile sensory information from
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other limbs can further enhance the performance of each
limbs.

Our proposed framework was able to achieve RMSE of
less than 4� in controlling joint positions of a tendon-driven
quadruped which satisfied the main goal of this research.
Moreover, we have shed some light into the effect of con-
tributions of ANN structure and tactile sensory in kinematic
control which can help future work in designing even more
accurate and data-efficient control frameworks.

V. LIMITATIONS AND FUTURE WORK

As brought up in the previous section, our results suggest
that although a single ANN for each limb in general out-
performed an all-in all-out approach, having access to tactile
information of other limbs can favorably affect the kinematic
control of a limb. This makes sense since by having access to
these information, an ANN would be able to make a better
assumption regarding the total weight of the system what
fraction of it that the limbs needs to taken care. This is
also supported by evidence seen in biology where smaller
and densely connected local networks are more sparsely
interconnected to other networks at some levels [14], [15].
Implementation of such a hybrid ANN architecture is beyond
the scope of the current work but is a very interesting avenue
to pursue for future studies.

Here we have achieved to satisfactory levels of kinematic
control and it would be interesting to attach it to a higher
level controlled (in a hierarchical fashion) to perform func-
tional tasks. Moreover, here we have only shown the effect
of studied configurations in kinematic control; however, it
would be interesting to also study contributions of the sen-
sory information (either tactile or kinematic) on higher level
planing and control task. For example, sensory signals are
known to contribute significantly in high level task planning
and dexterous manipulation tasks in biological systems [16],
[17].

Moreover, although we have used a physically faithful
simulator (MuJoCo), it would be an interesting future work
to also assess the performance of the system in a real-world,
physical implementation. Lastly, here we have studied the
L2M capabilities of the proposed framework in adapting and
generalizing to different weight loads, however, assessing
the adaptiveness of such L2M algorithms to changes to the
system design (wear and tear, partial damage or loss of a
limb, etc.) would be another interesting research direction
that will further pave the way for highly robust, adaptive,
and multipurpose L2M robots.

VI. SUPPLEMENTARY INFORMATION

Code, design assets, and other information can be found
on the project’s GitHub repository at: https://github.
com/marjanin/quadruped
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