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beta-band intermuscular
coherence is associated with
ipsilateral corticospinal

tract excitability
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Beta-band (15-30 Hz) synchronization between the EMG signals of active limb
muscles can serve as a non-invasive assay of corticospinal tract integrity. Tasks
engaging a single limb often primarily utilize one corticospinal pathway,
although bilateral neural circuits can participate in goal-directed actions
involving multi-muscle coordination and utilization of feedback. Suboptimal
utilization of such circuits after CNS injury can result in unintended mirror
movements and activation of pathological synergies. Accordingly, it is important
to understand how the actions of one limb (e.g., a less-affected limb after
strokes) influence the opposite corticospinal pathway for the rehabilitation
target. Certain unimanual actions decrease the excitability of the “unengaged”
corticospinal tract, presumably to prevent mirror movement, but there is no
direct way to predict the extent to which this will occur. In this study, we tested
the hypothesis that task-dependent changes in beta-band drives to muscles of
one hand will inversely correlate with changes in the opposite corticospinal tract
excitability. Ten participants completed spring pinching tasks known to induce
differential 15-30 Hz drive to muscles. During compressions, transcranial
magnetic stimulation single pulses to the ipsilateral M1 were delivered to
generate motor-evoked potentials in the unengaged hand. The task-induced
changes in ipsilateral corticospinal excitability were inversely correlated with
associated changes in EMG-EMG coherence of the task hand. These results
demonstrate a novel connection between intermuscular coherence and the
excitability of the “unengaged” corticospinal tract and provide a springboard for
further mechanistic studies of unimanual tasks of varying difficulty and their
effects on neural pathways relevant to rehabilitation.

KEYWORDS

beta-band coherence, ipsilateral corticospinal excitability, manual task

dependent intermuscular coherence, stroke rehabilitation

dexterity,

1. Introduction

Neural drive from the motor cortex (M1) to contralateral muscles often includes beta-
band (15-30 Hz) oscillations, the strength of which can serve as an index of cortical
excitability and corticospinal tract integrity (1-11). Corticomuscular drive within the beta-
band is strongly associated with the excitability of the associated corticospinal tract during
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unimanual, isometric finger abduction, and wrist extension tasks
(12, 13) or isometric tibialis anterior contraction (14). The
strength of this oscillatory component of the cortical drive must
be interpreted with careful attention to task conditions as it
factors such as muscle

depends functional

coordination, force magnitude, and limb movement (2, 15-19).

on multiple

Moreover, while studies mostly focus on how actions of one
hand/limb correspond with the beta-band activity and/or
excitability of the contralateral cortex (12, 15, 20), unimanual
tasks can involve both hemispheres (21-29). Unimanual tasks
with, say, the right hand can also alter the excitability of the
corticospinal pathway originating ipsilateral to the task hand
(21-23, 30-33)—that is, the ipsilateral corticospinal tract from
the right brain to the left hand. Highly dexterous unimanual
tasks have been shown to activate a multitude of brain areas,
including the bilateral primary motor cortex, ventral premotor
cortex, posterior parietal cortex, basal ganglia, cerebellum, etc.,
presumably due to the difficulty and dynamics of the required
sensorimotor integration (25-28).

This is a critical consideration after stroke, where beta-band cortical
activity becomes synchronized with ipsilateral muscles (3, 5, 34, 35),
where recovery and prevention of mirror activity may depend on
balanced excitability between cortical hemispheres (36, 37), and
where inappropriate recruitment of compensatory circuits (e.g.,
reticulospinal pathways) may generate pathological synergies (38-41).

In this light, unimanual tasks may not only serve as a simple
testbed for mechanistic studies but, by virtue of engaging
multiple bilateral neural circuits depending on task difficulty,
may contribute to clinical applications such as using a less-
affected limb to assist in the neurorehabilitation of a more-
affected limb after stroke. Development in this area would
require that the relevant neural effects of particular tasks can be
predicted and monitored.

In this study, we tested the hypothesis that task-related changes
in the strength of beta-band corticomuscular drive to muscles of a
task-engaged hand would inversely correlate with changes in the
excitability of the unengaged (ipsilateral) corticospinal tract.
Previous studies have shown that changing the dexterity
demands of pinching tasks can alter beta-band drive to
contralateral muscles (15), and fine sensorimotor tasks can alter
the excitability of the ipsilateral corticospinal tract (33). While it
is possible that both phenomena are related, perhaps reflecting
interhemispheric balance, they have not been examined together,
and thus their potential correlation is unknown.

2. Methods

Ten healthy adults (29.5 + 3.5 years, 4M, 6F) participated in the
study. All participants were right-handed (self-reported). They had
no history of neurological or musculoskeletal disorders or
surgeries and no ongoing pain in the thumb and index finger at
the experimental session. All participants were screened for TMS
eligibility using a TMS safety questionnaire. Each provided written
informed consent, and the study protocol was approved by the
Institutional Review Board at the University of Southern California.
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2.1. Motor task

The participants completed two precision pinch tasks during
which beta-band EMG-EMG coherence was measured between the
first dorsal interosseous (FDI) and abductor pollicis brevis (APB)
muscles. The first task was the compression of a spring less prone
to buckling when compressed (ie., “stable” spring, easy), which
produces a strong beta-band corticospinal drive to the FDI and
APB muscles (15).
compression of a spring more prone to buckling when compressed
(i.e., “unstable” spring, difficult) (15, 42-46). These springs (Valero
Dexterity Test®, Neuromuscular Dynamics, LLC, La Crescenta, CA)

The second task was a force-matched

were custom-designed with the same spring constant but with
different lengths (42, 46). The unstable spring is longer and thus
prone to buckling and is challenging to compress fully, requiring
the greatest dexterity demands of dynamic control of fingertip force
vectors (magnitudes and directions) at low forces (<3N) (42, 46).
The unstable spring would buckle without continual dynamic
shown that this task reduces
intermuscular beta-band
frequencies (15). In contrast, the stable spring is shorter and thus

adjustments, and we have

corticomuscular and coherence at
more easily compressed to the desired force level and requires
relatively low dexterity demands (42). The target force level for both
springs was set per individual as 95% of the force that could be
consistently exerted on the unstable spring and held for 7 s without
it buckling. Forces were acquired from the spring using a miniature
load cell (ELB4-10, Measurement Specialties, Hampton, VA, USA)
connected to a USB-data acquisition unit (National Instruments,
Austin, TX, USA). The visual feedback was provided using custom
MATLAB (MathWorks, Natick, MA, USA) scripts. Each participant
performed 17-25 pinches with each spring. Each pinch consisted of
a 1-second ramp-up phase, a hold phase of the target force level for
7 s, and a 1-second ramp-down phase. Practice trials were provided
prior to recordings to ensure the tasks could be completed
consistently without error.

2.2. EMG recordings

To measure beta-band (15-30 Hz) neural drive to the engaged
muscles, EMG signals were recorded from the first dorsal
interosseous (FDI) and abductor pollicis brevis (APB) muscles of
the right hand. Active surface EMG sensors (Motion Lab
Systems, Inc., Baton Rouge, LA, USA) amplified and bandpass
filtered the EMG signals at 15-3,500 Hz. The EMG data were
acquired at 14,993 Hz and collected using the CED 1401
interface unit and associated Signal 2 software (Cambridge
Electronic Design, UK). EMG was also recorded from the
resting FDI to monitor incidental activity that might influence
TMS measurements.

2.3. TMS protocols

To measure the corticospinal excitability of the ipsilateral M1
during the hold phase of the unimanual pinch tasks, single
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pulses of TMS (Magstim 200; Magstim Company Ltd., Whitland,
UK) were delivered over the right M1 representational area of
the first dorsal interosseous (FDI) of the resting hand (Figure 1).
Participants sat comfortably with the right forearm supported
with a foam cushion. Their left arm and hand rested comfortably
and were supported by pillows. A figure of eight coil (70 mm
diameter) was placed tangentially with the handle pointing
backward and laterally 45 degrees from the midline so that the
induced electric current flowed in a posterior to anterior
direction (47). The coil was initially placed 5cm laterally, and
2 cm anteriorly from the vertex, and moved by 1 cm increments
on a Lycra cap fitted to the subject while searching for the motor
hot spot, which was defined as the location producing the largest
amplitude and most consistent motor evoked potentials (MEPs).
The resting motor threshold (RMT) was then determined as the
minimum intensity that induced a peak MEP greater than 50 pV
for 5 out of 10 trials. Finally, single pulses were delivered over
the hot spot of the ipsilateral, right M1 at 120% of the RMT
during the hold phase. A total of 20 trials were collected per
condition. The timing was varied to prevent anticipation
of the pulse.

Left M1 Right M1
—_——
—_——

Objects

Stable Unstable
spring  spring

Resting

FDI-APB coherence

FIGURE 1

The study set up. Single pulse TMS was delivered over the right M1
during the spring hold phase while compressing either a stable or
unstable spring. Peak-to-peak MEPs were recorded from the resting
left FDI, and right FDI-APB muscle coherence was quantified
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2.4. Data analysis

To quantify ipsilateral corticospinal excitability, the average
peak-to-peak MEPs of FDI was calculated per task, per individual.
To quantify the extent of beta-band drive to the task-engaged
hand, the 1s epochs of EMG from the right FDI and right APB
that preceded each TMS pulse were concatenated per individual
and used to calculate pooled coherence (48), using the MATLAB’s
mscohere function, specifying Gaussian tapering of 500 ms
windows, overlapped by 80%. To account for small variation in
the number of compressions completed per task and facilitate

comparisons across participants, raw coherence was converted to
atanh(\/c)
(/2D
L is the number of segments used in the coherence analysis [with

standard Z-scores using the formula z = — bias, where

overlap accounted for as in (49)] and the bias calculated
empirically as the mean z-value between 100 and 300 Hz (50-52).
The average coherence within the 15-30 Hz frequency range was
calculated per task, per individual.

The cross-task difference in MEP size and 15-30 Hz coherence
were calculated for each participant and then tested for correlation
(Spearman’s rho). Spearman’s correlations were also calculated for
each measure (MEP size and coherence) across subjects within
each task. To determine if task-related differences in unintentional
left  (resting) FDI influenced MEP
measurements, the percent change in average EMG amplitude

activity might have
across tasks was tested for correlation with MEP size across
subjects. Similarly, the percent changes in task-engaged muscle
activity (right FDI and APB) were tested for correlation with the
changes in 15-30 Hz coherence across tasks, to investigate possible
influence of activity-associated signal-to-noise ratios or cross-talk.
Percent changes in compression force along the axis of the spring
as well as in compression force variability (as a metric of task
performance) were calculated as well and tested for correlation
with task-associated changes in MEP size and coherence. Signed-
rank tests were used to test the significance of changes in MEP
amplitudes and coherence across tasks.

3. Results
3.1. Corticospinal excitability

The mean peak-to-peak MEP amplitude in the resting left FDI
was significantly larger during compression of the unstable vs.
stable spring (p=0.014, Figure 2), and this tendency was
8/10 (Figure 3A).
Figure 3C shows the MEP values per individual in each task.

directionally consistent for individuals

3.2. Beta-band drive to task-engaged
muscles

In contrast, beta-band FDI-APB coherence was significantly

smaller during compression of the unstable vs. stable spring (p =
0.0098), and this effect was directionally consistent for 9/10
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individuals (Figure 3B). Figure 3D shows the coherence values per
individual and task.

3.3. Correlation between MEP size and
EMG-EMG coherence

Task-related changes in MEP size were significantly
and inversely correlated with the task-related changes in
beta-band coherence across the 10 individuals (rho =—0.84,
p =0.0045, the MEP and
correlation measurements as shown in Figures 3, 4, it appears

Figure 4). Given individual
the relationship is not only monotonic but reasonably linear
rho =-0.81), the

relationship is beyond the scope of this study. Within

(Pearson’s although modeling precise
each task, the amplitudes of MEPs across individuals were

not correlated with the strength of beta-band coherence

Grand Average MEP
1 — stable
0.5 ——unstable
>
z 0
-0.5
-1
0 5 10 15 20 25 30 35 40 45 50
3 time (ms)
° Grand Average COH
5 2
b
N1
0
0 50 100 150
Frequency (Hz)
FIGURE 2
Grand average MEP waveforms (top) and FDI-APB intermuscular
coherence (bottom) across 10 subjects.

10.3389/fspor.2023.1177004

(rho=0.09 and 0.22 for stable and unstable

compressions, respectively).

spring

The mean (+SD) cross-participant percent (%) difference in
compression force during unstable spring compression relative to
stable spring compression was —3 (+7) %, and these changes did
not correlate with changes in MEP amplitudes (rho=0.03), or
15-30 Hz coherence (rho=0.03). Likewise, the mean (+SD)
change in compression force variability relative to stable spring
compression was —1 (+50) %, and these changes did not
correlate with changes in MEP size (rho=—0.09), or coherence
(rho=0.43) across participants. The mean (+SD) amplitude of
right FDI activity was 126 (+223) % greater in the unstable vs.
stable spring condition, and for the APB muscle, the change was
60 (+82) %. However, the correlation between changes in FDI or

1
10
9
< 8
C
& 7
o 6
2
S 5
S 4
e 3
= 2
1
0

0 5 10

Coh. change (rank)

FIGURE 4
Ranked change in MEP vs. FDI-APB coherence, with trend line
illustrating Spearman's rank correlation (rho = —0.84).

Raw change from stable spring

MEP size

-0.5]

-1.5
-2

Beta-band Coh.

—_—

12 3 4 56 7 8 9 10
Participant

FIGURE 3

C Primary measures from stable and unstable spring

Differences in (A) peak-to-peak MEP size (mV) from the ipsilateral M1 and (B) 15-30 Hz FDI-APB intermuscular coherence (mean Z-score) of the task
hand between stable and unstable spring tasks per participant. Panels (C,D) show the MEP and coherence values from which the changes shown in
(A,B) were derived. For each participant, values for the unstable spring compression are on the right and stable on the left.
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APB amplitudes and changes in coherence were not statistically
significant (rho=-0.61 and —0.64, respectively). The resting
(left) FDI EMG signals were 46 (+61) % larger during unstable
spring compression compared with the stable spring condition,
but again, these changes did not correlate significantly with task-
related changes in MEP amplitudes (rho=-0.47). In summary,
task-associated changes in 15-30 Hz coherence and MEP sizes
were strongly, and significantly correlated with each other across
participants, but they were not significantly correlated with other
measures of task performance or physical effort.

4. Discussion

The study demonstrates a novel relationship between task-
related changes in beta-band intermuscular coherence of an
engaged hand and corticospinal excitability of the unengaged
hand. These findings emphasize that the corticospinal excitability
of either hemisphere can be manipulated by the difficulty of the
task performed by either hand, and further, that the extent of
this effect
measurement of EMG signals (i.e., intermuscular coherence).

may be measurable using a simple, passive

In general, movement and dynamic actions reduce beta-band
neural drive from M1 to muscles (15, 53), but the extent of this
reduction from one task to another has not been directly related
to associated changes in corticospinal excitability, especially from
the unengaged MI1. Rather, corticospinal excitability has been
manipulated directly via transcranial direct current stimulation
(tDCS) (12) tDCS (14). The

consequence of cathodal tDCS was a reduction of beta-band

and beta-band oscillatory

coherence among muscles during an isometric muscle
contraction, along with a correlated decrease of MEP amplitudes
evoked from the contralateral M1 (12). Our study shows that this
basic relationship between the beta-band drive to muscles and
(albeit  with

direction) when a physical task is used to change neural activity

corticospinal  excitability also holds reversed
rather than tDCS. However, our novel observation of an inverted
relationship between intermuscular 15-30 Hz drive, originating
in the contralateral cortex and ipsilateral corticospinal tract
excitability, may suggest that excitability is balanced across
hemispheres during our dexterous tasks. Thus, a change in the
excitability of one corticospinal tract (indexed by beta-band
intermuscular coherence) is matched by an opposite change in
excitability of the
ipsilateral to the engaged hand (measured via MEP amplitudes).

the corticospinal opposite hemisphere

Of course, without more sophisticated approaches (e.g., testing
for intracortical excitability, interhemispheric inhibition, stretch
reflex modulation, etc.), we cannot identify specific neural
mechanisms that might underlie the observed effects. It is also
15-30 Hz
coherence can only be assumed to represent a cortical drive since
EEG was not
investigation characterizing beta-band drive to muscles in terms

worth noting that in this study, intermuscular

cortical measured. However, decades of
of synchrony between motor unit spike trains, between surface
EMG signals, or between EEG and EMG signals has consistently

pointed to this frequency band representing a cortical drive (1, 7,
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15, 54-56). In fact, when we have monitored both
corticomuscular and intermuscular coherence together during
tasks similar to that of the present study (15), the two measures
correspond closely and have similar task-dependencies. Thus, we
consider it appropriate to utilize, for the sake of speculation and
interpretation, a combination of studies which may discuss beta-
band drive to muscles using different measurement methods.
Previous single-pulse TMS studies have shown task-dependent
modulation of the ipsilateral corticospinal excitability (22, 23, 57)
during unimanual tasks. Larger unimanual finger forces and
overt movement (e.g., finger opposition sequence tasks or
rhythmic index finger abduction) (23, 57) increase corticospinal
excitability of the resting hand compared with lower force, static
tasks (21, 23, 30-32). However, these effects likely do not explain
our results, where pinch forces were very low (<3N), and finger
movements were necessarily small in order to prevent the spring
from buckling (42). The reason might be the required motor
control strategy and the involvement of different neural
structures for such dexterous tasks (25-28). Controlling the
instability of the unstable spring emphasizes ongoing dynamic
corrective responses to tactile/proprioceptive feedback as opposed
to purely feed-forward planning of predetermined actions (58).
Although we did not quantify total co-contraction of all active
hand/wrist/forearm muscles, or monitor subtle changes in
fingertip position in space during each pinch, neither feature of
muscle output provides a clear connection between beta-band
coherence and corticospinal excitability. In fact, task-associated
changes in muscle activity in either hand did not correlate highly
with changes in MEP sizes or coherence, suggesting that task-
related differences in overall drive to the muscles, and associated
issues of cross-talk and signal to noise ratios, are very unlikely to
That

significance should not be taken as evidence of zero influence,

explain our main findings. said, lack of statistical
since our sample size allows reliable detection of only very strong
effects. Larger studies, perhaps with single motor unit recordings
and a larger set of recorded hand/finger muscles, would be
needed to fully characterize the extent to which task-associated
changes in muscle activation might have influenced our
measures. Ultimately, our results suggest that the more salient
difference between the stable and unstable spring was the change
in brain-wide neural motor control requirements rather than
simply a required change in physical forces/movement.

Exactly which neural circuits became more engaged when
controlling the unstable spring, and how these circuits impacted
our measures will require further research to understand. Tasks
requiring quick movement corrections involve desynchronization
of the beta band corticomuscular coherence (15), which might
result from the decreased activity of the inhibitory interneurons
in the sensorimotor cortex (53) and require multiple brain areas
and subcortical structures to execute the task successfully (25-
28). The spring task used in this study involves the bilateral
cortico-striatal-cerebellar network, which is modulated by the
degree of instability (26). Greater bilateral activity in the basal
ganglia (BG) is associated with greater instability of the spring
(26). Neuroanatomically and functionally, the bilateral BG is
connected to M1, forming a sensorimotor cortico-striatal loop
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(59-61), which might influence the ipsilateral M1 excitability (29).
The increased blood-oxygen-level-dependent (BOLD) signal from
the fMRI study does not elucidate if this was because of
excitatory or inhibitory neural mechanisms. However, increased
excitatory neural drives within the bilateral cortico-striatal-
cerebellar network are likely to result in ipsilateral M1l
excitability, perhaps explaining our results. However, to identify
specific underlying neural mechanisms of communication
between two hemispheres, further research, including studies of
interhemispheric inhibition, will be necessary.

Our observations may ultimately stem from the activation of
subcortical circuits to meet increased demands on sensorimotor
integration and muscle control, consequently altering cortical
oscillations and excitability. If so, it would be relevant for
neurorehabilitation efforts to explore the possibility that a
unimanual task can access fundamental (and bilateral) neural
control circuits at and across different hierarchies of the central
nervous system. For instance, a unimanual task with such
sensorimotor control requirements could possibly be used for
priming the affected neural circuits before or during motor
rehabilitation in individuals with stroke instead of using
repetitive TMS. In addition, task-based neuromodulation or re-
education of functional neural circuits may be feasible in
individuals with Parkinson’s disease for implicit, reactive motor
control, considering the involved neural circuits and their
ultimate effect on motor impairment (62). Furthermore, the
desired effects can be imposed and modulated by the difficulty of
physical tasks. Any such effort to alter excitability or prime a
particular circuit may be measured peripherally (e.g., via EMG
coherence) or centrally (via brain network analyses) if our initial
results generalize to these clinical contexts.

Future work is required to determine whether task-associated
changes in ipsilateral corticospinal excitability necessarily involve
alteration of contralateral beta-band activity and the extent to
which altered intermuscular coherence can be used as a simple,
non-invasive predictor of this effect. Our findings serve as a
springboard for detailed mechanistic work along these lines, as
well as an unambiguous demonstration of the connections
between tasks, different frequencies of neuromuscular drive, and
corticospinal excitability. This may have clinical value in the
assessment clinical

of neuropathology or application to

neurorehabilitation.
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