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Abstract—Solving Hamilton-Jacobi-Isaacs (HJI) PDEs numer-
ically enables equilibrial feedback control in two-player differ-
ential games, yet faces the curse of dimensionality (CoD). While
physics-informed neural networks (PINNs) have shown promise
in alleviating CoD in solving PDEs, vanilla PINNs fall short in
learning discontinuous solutions due to their sampling nature,
leading to poor safety performance of the resulting policies when
values are discontinuous due to state or temporal logic constraints.
In this study, we explore three potential solutions to this challenge:
1) a hybrid learning method that is guided by both supervisory
equilibria and the HJI PDE, 2) a value-hardening method where a
sequence of HJIs are solved with increasing Lipschitz constant on
the constraint violation penalty, and 3) the epigraphical technique
that lifts the value to a higher dimensional state space where it
becomes continuous. Evaluations through 5-D and 9-D vehicle and
13-D drone simulations reveal that the hybrid method outperforms
others in terms of generalization and safety performance by taking
advantage of both the supervisory equilibrium values and co-states,
and the low cost of PINN loss gradients.

Index Terms—General-sum differential game, physics-informed
neural network (PINN), safe human-robot interactions.

1. INTRODUCTION

UMAN-ROBOT interactions (HRIs) become prevalent
H in safety-critical applications, such as transportation [1],
healthcare [2], and rescue [3]. Conventionally, safety is achieved
by incorporating state constraints in a model predictive control
(MPC) framework. The constraints are usually derived from a
two-player zero-sum game formulation so that the ego player
avoids all system states from which the fellow player can suc-
cessfully launch attacks should it be adversarial [4]. There are
two limitations to this approach as follows. First, the zero-sum
setting can often be overly conservative since fellow players in
civil applications are not always adversarial. Second, real-time
MPC is required on top of value approximation of the zero-sum
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games, limiting the speed and quality of the player’s decision
making.

To address the first limitation, it is tempting to consider
HRI as general-sum differential games with state constraints
and incomplete information, where players have private types
(e.g., reward parameters). In this setting, players can overcome
unnecessary conservatism by updating their beliefs about each
other’s type based on observations of their previous actions. To
address the second limitation, one would ideally need to obtain
the value of the game, which then enables feedback control that
intrinsically satisfies the state constraints while optimizing the
expected payoff, either obsoleting or at least accelerating MPC.

A theoretical challenge toward these idealistic goals, however,
is that we do not have the existence proof or the characterization
of values for general-sum differential games with incomplete
information and state constraints [5]. Hence, we take a step
back and consider games with complete information, for which
Nash equilibrium exists [6] and therefore values are governed
by the Hamilton—Jacobi-Isaacs (HJI) equations. Computing
values, however, is known to encounter the curse of dimen-
sionality (CoD) using mesh-based dynamic programming (DP)
solvers [7]. Physics-informed neural network (PINN) has thus
been introduced to approximate values while circumventing
CoD [8]. Nonetheless, recent studies showed that while PINN
is successful at approximating Lipschitz continuous PDE so-
lutions [8], [9], [10], they encounter convergence issues when
applied to discontinuous ones [11]. In the context of HJI, such
value discontinuity arises when state constraints and temporal
logic specifications are imposed.

Within this context, this article investigates three PINN-based
solutions for approximating values of state-constrained differ-
ential games.

The first solution, called hybrid learning (HL), is devel-
oped based on the insight that discontinuity in value causes
sampling-based methods, such as PINN, to deviate from the true
solutions almost surely, since the measure of the discontinuous
boundaries is zero (or close to zero when we approximate
discontinuities with large-Lipschitz functions in practice). The
solution is thus to augment PINN with supervised equilibrium
data that cover discontinuous regions of the value landscape in
space and time. These equilibria are generated by solving bound-
ary value problems (BVPs) following Pontryagin’s maximum
principle (PMP) [12]. This solution requires human insights on
where the informative equilibrium trajectories with discontin-
uous values (e.g., collisions) lie and the global optimality of
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the BVP solutions. The challenge with sampling discontinuous
boundaries leads to the loss of spatiotemporal causality during
value approximation. Hence, the second solution, called value
hardening (VH), following curriculum learning [13], aims to
improve the chance of learning the discontinuous boundaries
by gradually increasing the Lipschitz constant of a constraint
violation penalty. The third solution, called epigraphical learning
(EL), is based on the epigraphical technique that transforms
discontinuous values of state-constrained games into Lipschitz
continuous ones defined in an augmented state space [14]. We
extend the existing technique from zero-sum games [15] to the
general-sum setting and apply PINN to approximate the smooth
augmented values.

We summarize the systemic design of experiments to be
used to evaluate and compare these solutions. Methods: vanilla
PINN, supervised learning (SL), HL, VH, EL methods, and
their variants. PDE dimensionalities: 5-D, 9-D, and 13-D.
As of writing, 13-D is largest dimensionality among ex-
isting test cases of HJ equations in the differential game
context. Dynamics: linear and nonlinear vehicle and drone
dynamics. Information settings: complete- and incomplete-
information two-player general-sum games. Performance met-
rics: both in- and out-of-distribution generalization and safety
performance.

We claim the following contributions.

1) We show that HL scales better than SL, VH, and EL to
high-dimensional cases in terms of both generalization
(value and action prediction) and safety (when values
are used for feedback control). The key factors for its
success are: i) the supervision on the co-state landscape,
which is directly related to the control policy, ii) the low
cost of PINN training in comparison to SL via solving
BVPs.

2) Consistent with [16], [17], and [18], our ablation stud-
ies highlight the sensitivity of generalization and safety
performance to the choice of neural activation functions,
and the need for adaptive activations. In particular, tanh
and continuously differentiable variants of relu, such as
gelu [19], achieve the best empirical performance when
combined with HL and adaptive activation.

3) While existing studies on solving HJ equations using
machine learning have shown promising results for reach-
ability analysis (e.g., [20]), the safety performance of
the resultant value networks when used as closed-loop
controllers is rarely investigated. We show in this article
that low approximation errors in value do not necessarily
indicate high safety performance when the approximated
value is used for closed-loop control.

This work is extended from its conference version [21] in the

following significant ways.

1) A thorough investigation of the efficacy of the EL tech-
nique when applied to solving differential games.

2) New studies to demonstrate and explain the convergence
challenge encountered when applying VH to 9-D and 13-D
problems.

3) New studies that demonstrate the importance of co-state
loss for high safety performance.
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4) Extension of the existing DP solver [22] from zero-sum to
general-sum setting, which enables comparisons between
values approximated by DP, BVP, and PINN variants.

These comparisons allow us to show that values obtained from
all three are similar in the test cases and therefore guiding PINN
by open-loop BVP solutions through HL is reasonable.

The rest of this article is organized as follows. Section II
provides an overview of the relevant literature on value ap-
proximation, PINN, and complete- and incomplete-information
differential games. In Section III, we present the formulation
of two-player general-sum differential games with state con-
straints, its HJ PDEs, and explain the challenge in approximating
its discontinuous values through a toy case. We then discuss the
three potential solutions. The experimental results are presented
and analyzed in Section IV. We give discussion including safety
guarantee, consistency between BVP and HJI values, and effi-
cacy of co-state loss for safety performance in Section V. Finally,
Section VI concludes this article.

II. RELATED WORK
A. Value Approximation and PINN

The values of a general-sum differential game with two-
player and complete-information are viscosity solutions to HJI
equations [23], which are a set of first-order nonlinear PDEs.
The conventional approach to solving such equations involves
essentially nonoscillatory (ENO) schemes [24] and level set
methods [25], [26], which are known to provide accurate ap-
proximations of both temporal and spatial derivatives. How-
ever, these approaches suffer from CoD [27]. Recent studies
have shown that using PINN to approximate PDE solutions
can effectively circumvent the CoD due to its Monte Carlo
nature, provided that the solution is smooth [8]. PINN trains
neural nets as PDE-governed fields, where the training loss is
defined by network-induced residuals with respect to: a) the
boundary conditions [28], [29], b) the governing equations [18],
[20], and/or c) supervisory data drawn from the ground-truth
solutions [30]. Initial studies on convergence and generalization
performance have emerged for a) and b), under the assumption
that both the solution and the network are Lipschitz continu-
ous [9], [10], [28]. Recent studies have explored the effectiveness
of PINN for solving PDEs with discontinuous solutions, such as
Burgers’ equation, where both initial and terminal boundaries
are specified [18]. However, we demonstrate in Section III-E that
PDEs with only terminal or initial boundary conditions, such as
HIIs, present an unidentifiability challenge.

B. Differential Games With Incomplete Information

One driving motivation for approximating values of differ-
ential games is to use the values for fast belief updates on
unknown player types in incomplete-information settings. The
update follows Bayes inference and relies on modeling player
control policies as a type-conditioned distribution shaped by
their values (see Section IV-A for details). In the case study
on uncontrolled intersection (see Section IV-A), we evaluate
the safety performance induced by the value networks, which
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influence both players’ control policies and their belief up-
dates about the types of their fellow players. In addition, we
examine safety performance when players are “empathetic,”
i.e., when they share common beliefs about each other, and
when they are “nonempathetic,” i.e., when they falsely assume
that their true types are known by their fellow players. Our
study shares the same motivation as [31] in that both seek fast
computation of equilibrium during interactions. We take the
approach of precomputing values offline (which then enables
500 Hz policy generation frequency during inference time),
while Fridovich-Keil et al. [31] proposed to simplify games as
linear—quadratic which then facilitates fast (20 Hz) equilibrium
approximation online. Our investigation into differential games
with incomplete information sets us apart from previous HRI
studies that resort to various simplifications of the games in
order to balance theoretical soundness and practicality. These
simplifications involve modeling the games as optimal control
problems or complete-information ones [32], [33], [34], [35],
[36], [37]. While some also use belief updates to adapt motion
planning, they are limited to empirical best responses of the
uninformed player in one-sided information settings [38], [39],
[40], [41], [42]. A recent study proposes to synthesize safety
control policies that account for evolving uncertainty by consid-
ering both physical and belief dynamics [43]. This framework
is currently constrained to one-sided information settings, while
this article studies cases where both players lack information. It
is necessary to point out, however, that we will only investigate
best-response policies of players, i.e., the players choose the best
responses based on their current belief about their fellows (via
their common knowledge about the values of the games) without
considering the future dynamics of beliefs. This is because the
existence of value and player policies for general-sum differen-
tial games with incomplete information is still an open question,
unlike their zero-sum or discrete-time counterparts [44], [45],
[46], [47].

III. DISCONTINUOUS VALUE APPROXIMATION
A. Notations

In a two-player differential game with complete-information,
player i has a state space X; C R™ and an action spacelf; C R™.
The time-invariant state dynamics of player ¢ is denoted by

&y = fi(wi, u;) (D

where x; € X and u; € U;. We omit dependence on time when-
ever possible and use a; = (a;, a_;) to concatenate variables a;
from player ¢ and a_; from the fellow player. We denote the par-
tial derivative with respect to = by V.- and the joint state space
by X :=J,_, 5 &;. The fixed time horizon of the game is [0, 7.
The instantaneous loss of player i is denoted by ; (;, u;) and the
terminal loss g;(x;). Feasible states from player i’s perspective
are defined by the subzero level set {x; € X' | ¢;(x;) < 0}. We
will consider ¢;(-) a scalar function that measures the worse state
constraint violation in case multiple constraints are present, i.e.,
if¢;(x;) > 0,x; violates at least one of the constraints. The value
function of player i is denoted by ¥;(x;,t) : X x [0,7] = R.
To simplify notation, we will use f;, l;, g;, ¢;, and ¥; to refer to
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the dynamics, losses, state constraint, and the value function of
playeri. Denote by a; € A : X x [0, T] — U; player i’s control
policy, where the policy space A is assumed to be common. We
use z7h% as the state of player ¢ at time s if it follows policy
«; and dynamics f; starting from (z;,t). We denote states for
two players at time s as xXi:0%%-i 1= (gZibai pP-ibosi) Al
acronyms are summarized in Appendix A.

B. Assumptions

Throughout this article, we assume that {{; is compact and
convex; f; : X; x U; — R™ and ¢; : X — R are Lipschitz con-
tinuous; I; : X; x U; — R and g; : X; — R are Lipschitz con-
tinuous and bounded.

C. Preliminary

HJI equations: Let («;, c_; ) be a pair of equilibrium policies.
The values for a two-player general-sum differential game are
viscosity solutions to the HJI equations denoted by (L) in (2),
and satisfy the boundary conditions denoted by (D) [48]

L(’ﬂi, Vi, Vi, X, t, Oé_i) = V¥; + max {Vxlﬂffz — ll} =0
u; €U;

D(ﬁi,xi) = ’l%(Xi,T) — g = O, for ’L = 1,2 (2)

With the values, the players’ equilibrium policies can then
be derived by a;(x;, t) = arg max,, ., { Vi, 9] f; — 1;}. Notice
that L for player ¢ depends on the equilibrium policy a_; of its
fellow.

PMP: Although solving the HJI equations would give a feed-
back control policy, it is often more practical to compute open-
loop policies for a specific initial state (Z1,Z2) € X by solving
a BVP following Pontryagin’s minimum principle (PMP)!:

&y = fi, 2(0) =z

Ai=—Vihi, 2(T) =V

u; = argmax {h;} for i=1,2 3)
w; €U;

where 1; is the time-dependent co-state for player i. The co-state
connects PMP and HJI through A; = V. 9;. Solutions to (3) are
specific to the given initial states. Although PMP characterizes
local open-loop solutions, empirical studies (see Section V-B)
show that with an effort to search for global solutions, BVP
values are consistent with those governed by the HJI equations.

State-constrained value function: With state constraints, the
value function for player ¢ with some equilibrium policy pair
(Oéi, a,i) is

T
ﬂi(xi,t):/ L@l her oy (xX00000 ) ds+gi (a0
t

“)
if ¢;(xXibana-i) <0,Vs € [t,T], or +oo otherwise. Thus,

S
state constraints introduce discontinuity in the value landscape.

!t should be noted that solving the BVP has its own numerical challenges,
particularly when the equilibrium involves singular arcs [49]. However, these
challenges are beyond the scope of this article.
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Fig. 1. (a) Value comparison among the learning methods for a simple 1-
D case. Red dots are the supervised data. (b) Evolution of the value function
due to gradually hardening delta function. Delta functions are shown on top.
Transparency reduces with hardening.

D. PINN for Solving HJ Equation

PINN trains neural networks 9;(-,-) : X x [0,7] = R to
approximate ;. We denote by D = {(xgk),x;k),t(’“))}f:l a
dataset consisting of uniform samples in X3 x Xy x [0, 7. The
formulation of the training problem in (5) extends from PINN
for solving zero-sum games [20]

K 2
min L, (191,192; 9) =Y ZHL@%M’ VXi&Z(k)7XZ(k)7t(k))“
02 k=11i=1

+Ci6 (D, x)) )

where ﬁﬁ’” is an abbreviation for 9; (xgk), ")) and C} balances
the L1 PDE residual loss (|| L||) and the boundary loss (¢(D)).
It is worth noting that in each iteration of solving (5), a sub-
routine is needed to find the control policies by maximizing the
Hamiltonian.

E. Challenge in Approximating Discontinuous HJI Values

We use the following toy case to explain the challenge in
approximating discontinuous values using PINN. Consider a 1-
D function ¢(x), which is the solution to a differential equation
V.9 — 6(x) = 0 with the boundary condition ¥(1) = 0 in the
interval z € [—1, 1]. §(x) is a delta function that peaks at z = 0.
Notice that with uniform samples for D, the PINN loss (L) can
be minimized almost surely by incorrect solutions, e.g., @(m) =
0. This unidentifiability issue is due to the differential nature
of the governing equation: the accuracy of U at one point in
space and time depends solely on that of its neighbors. However,
informative neighbors, i.e., those at x = 0 in this toy case, have
zero probability to be sampled.

F. Solutions

1) Hybrid Learning: In the above-mentioned toy case, we
can learn a much improved approximation to the solution using
only two informative data points sampled from each side of O (as
shown by the SL curve in Fig. 1). Indeed, Nakamura-Zimmerer
et al. [30] showed that SL can be used for value approximation.
A drawback of this approach, when applied to solving HJIs, is
its high data acquisition costs due to the need for repeatedly
solving BVPs to acquire state-value pairs. We hypothesize that
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this drawback can be reduced by combining SL and PINN,
since evaluating and differentiating the latter only require one
forward pass of ¥, which is usually much cheaper than calling
the Newton-type iterative algorithms involved in solving BVPs.

To implement this hybrid method, we define a dataset Dy =
(= t® 9® 7 9®)) for i = 1,2} | derived from solv-
ing (3) with initial states uniformly sampled in X’. We define the
supervised loss as follows:

min Lo (191,192;7)8) = éz

2
91,02 P

90— 9|

+ Oy ( Yy, 0P — v, 08 H ©6)
where C5 is a hyperparameter that balances the losses on value
and its gradient. The hybrid method minimizes Ly + Lo.

2) Value Hardening: The second solution is to introduce a
surrogate differential equation, which has a continuous solution
that approximates the ground truth. We can then approximate
the true solution by gradually “hardening” this surrogate. For the
toy case, we can improve the solution by gradually hardening a
softened delta function, as shown in Fig. 1(b). Just like HL, this
method also introduces additional computation, as we turn one
learning problem into a sequence of easier learning problems.
In Section IV, we show that with a limited budget, VH fails to
converge for high-dimensional value approximation tasks where
HL succeeds. Finally, we note that VH is similar to [11], where
the authors introduce a gradually hardening diffusion term to
address the same discontinuity issue when solving nonlinear
two-phase hyperbolic transport equations using PINN.

3) Epigraphical Learning: Recall that the discontinuity of
value in our context is caused by state constraints in differential
games. It is shown that a smooth augmented value can be de-
rived through the EL technique for state-constrained differential
games [14], [15]. Our last approach utilizes this technique to
facilitate continuous value approximation in an augmented state
space and compute the value for the original game based on the
approximation. While HJ PDEs with state constraint have been
investigated in zero-sum settings and numerical approximation
of their values have been attempted via DP and conservative
Q-learning [15], [50], this article is among the first to solve
general-sum differential games with state constraints using a
combination of PINN and the EL technique. For completeness,
we briefly introduce the EL technique in the following section.

G. Epigraphical Technique for General-Sum Differential
Games With State Constraints

Let (a1, a2) be a pair of equilibrium policies. The Epigraph-

ical technique introduces an augmented value V; : X x R x
(0,71

max ¢; (X?i;twai;a—i)
set,T)

Vi(xi, zi,t) := max {

Ji (a:;’to”) — z,»(T)}. 7)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12,2025 at 04:16:40 UTC from IEEE Xplore. Restrictions apply.



ZHANG et al.: VALUE APPROXIMATION FOR TWO-PLAYER GENERAL-SUM DIFFERENTIAL GAMES WITH STATE CONSTRAINTS

The auxiliary state z; follows:
Zi = —l; (xi, ul) and z; (O) =z (8)

where z; represents the true value of player i at (X;,%y) € X X
[0, T'] and is computed as follows: Find Z; € [zmin, Zmax] such that
Vi(Xi, Ziyto) = 0. If Vi(X;,2,t0) > 0 for all z € [zmin, Zmax)»
then z; = +o00.Lemma 1 (Lemma 1 of [15]) formally establishes
this connection between the augmented value V; and the true
value ¥;(x;, ).

Lemma 1: Suppose assumptions in Section III-B hold. For all
(xi,2i,t) € X x R x [0,T], ¥; and V; are related as follows:

Vi(x4,t) — 2 <0 <= Vi(x4,2i,t) <0
S.t. V;‘(Xi, Zi,t) <0. 9)

9 (x;,t) = min z;

Proof: See Appendix B.

Lemma 2 (Lemma 2 of [ 15]) provides the optimality condition
for V;(x;,2;,t), which is the basis for the derivation of HJ
equations with state constraints.

Lemma 2: Suppose assumptions in Section III-B hold. For all
(xi, 2i,t) € X x R x [0, T, for small enough ~ > 0 such that
t + h <T we have

max ¢; (X’,‘"’t’o‘“o‘*")

aicA s€[t,t+h] N

Vi(xi, z;,t) = min max{

Vi (xi(t+h),zi(t + h),t +h) } (10)

where xXt:®:%-i and x;(t + h) are solutions to (1) using
(xi,t,u;)and z;(t + h)isasolution to (8). cv_; is the equilibrium
policy of the fellow player.

Proof: See Appendix C.

Theorem 1 presents the HJ equations for players in a general-
sum differential game with state constraints.

Theorem 1 (HJ PDE with state constraints for general-
sum differential games): For all (x;,z;,t) € X x R x [0,T],
Vi(xi, 2z, t) in (7) is a viscosity solution to the following HJ
PDE and boundary conditions:

max{c; (x;) — Vi(xi, 2, t)

where H,; is the augmented Hamiltonian
H; = max —V,, Vi'f, + V., V'l (12)

Uq EZ/{,;

and V;(x;, z;, T') = max{c;(x;), g:(T) — z;(T)}.

Proof: See Appendix D.

To solve state-constrained HJ PDEs using PINN, we define
residuals similar to (2)

L(Vi, x4, 2, t) == max {¢; (x;) — Vi(xy, 2, 1)
ViVi = Hi(xi, 2, Vx, Vi, V2, Vi, 1)}
f?(Vi,xZ-,zi) = Vi(x4, 2, T) — max {¢;(x;)
9i(T) — 2z (T)}, fori=1,2. (13)

Thus, the overall loss can be expressed using the same formula-
tion as in (5)
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K 2
min  Lj <V1,V2;9> = ZZ H~(‘7i(k)7xz(k)7zgk)7t(k))H
Vi ve k=1i=1

+ C3¢~) (D(‘A/i(k)axz(k)v Zz(k))) :

(14)

To take advantage of the structure of V;, we introduce two
networks A; : X x [0,7] - Rand B; : X x [0,T] - R

Vi(xi,zi,t) = max{Ai(xi,t),B,-(xi,t) _27} (15)

Essentially, A; predicts the worse-case future constraint viola-
tion and B; predicts the value of the game for player ¢ without
considering the constraint. If A; > 0, then Vi > 0 and 9 does
not exist, i.e., state constraint cannot be satisfied.

IV. CASE STUDY

We conduct empirical studies to compare the generalization
and safety performance of value approximation models using
five different learning methods: vanilla PINN (shortened as
PINN), HL, VH, EL, and SL. We use both vehicle and drone
simulations to formulate the games. The first simulation involves
an interaction between two players (i.e., vehicle) at an uncon-
trolled intersection, which leads to HJIs with coupled value
functions defined on a 5-D state space. We study both complete-
and incomplete-information settings using this simulation. The
second and third studies investigate model safety performance
on a 9-D state space. The former models a collision-avoidance
case and the latter a double-lane change case. It should be noted
that our settings, in terms of the dynamical models and the
state space dimensions, are similar to those of [20] and [4],
yet we extend from their optimal control or zero-sum settings
to general-sum differential games. The last case study on drone
collision avoidance investigates performance of PINN variants
on a higher dimensional state space (13-D) and on nonlinear
dynamics.

Data acquisition: The methods under comparison involve
diverse data acquisition algorithms (supervised data via iterative
BVP solving and PINN data via random sampling) and learning
algorithms (supervised and curriculum learning). Hence, we use
the total wall-clock time for data acquisition and learning as
a unified measure of the computational cost. To ensure a fair
comparison, the data size for each method is chosen to keep
their computational costs as close to each other as possible.
Computational costs of all the case studies are summarized in
Table I. To improve training convergence, we normalize the input
data to lie in [—1, 1].

Network architecture: For all cases, we will present results
obtained using fully connected networks with three hidden
layers, each comprising 64 neurons, and with tanh, relu, or
sin activation functions. The following experimentations on
network architecture were conducted but omitted to keep this
article concise. 1) Experiments on deeper and wider networks
did not lead to significant improvement in generalization and
safety performance, or qualitative changes to the conclusions
we will present. 2) We observe that gelu performs similarly to
tanh in terms of the generalization and safety performance.
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TABLE I
COMPUTATIONAL COSTS FOR ALL LEARNING METHODS IN ALL CASE STUDIES

Learning Method

Case Study ~ Computational Cost
No. (minutes) HL VH EL SL PINN
Data Acquisition 83 - - 142 -
Case 1 Model Training 110 195 600 52 195
Total Cost 193 195 600 194 195
Data Acquisition 250 - - 363 -
Case 2 Model Training 165 420 840 60 420
Total Cost 415 420 840 423 420
Data Acquisition 250 - - 363 -
Case 3 Model Training 180 430 880 70 430
Total Cost 430 430 880 433 430
Data Acquisition 500 - - 625 -
Case 4 Model Training 210 - - 85 716
Total Cost 710 - - 710 716

Hardware: For all case studies, all methods except EL are
conducted on one workstation with 3.50 GHz Xeon ES5-1620
v4 CPU and four GeForce GTX 1080 Ti GPU with 11GB
memory. Due to the increased dimensionality of the augmented
value in EL, we use an A100 GPU with 40GB memory to
achieve convergence. Our empirical results suggest that EL
is not as data efficient as the hybrid method even with this
advantage.

Performance metrics: Since all case studies involve collision
avoidance as their state constraints, our analysis will focus on
collision rate (Col.%) as a safety metric. Specifically, collision
rate is the probability of sampling an initial state for which
closed-loop control of both players using the value network leads
to a collision: Col.% = Npyrea/Ngt, where Npreq is the number
of collision trajectories resulted from the value network and N
is the number of collision-free trajectories resulted from solving
BVPs. Both share the same uniform samples of initial states. In
addition, we report in Case 1 generalization performance of the
value networks in terms of their mean absolute approximation
errors in value and control inputs along the test state trajectories.
The ground truth value and control inputs are derived from BVP.

Hypotheses: The following hypotheses will be tested empiri-
cally through the case studies.

1) With the same computational budget, HL yields better

generalization and safety performance than vanilla PINN,
VH, SL, and EL across all presented cases and settings.
The key ingredient for high safety performance is the
co-state loss.

2) The choice of the activation function and its parameters is
critical to the safety performance. In general, continuously
differentiable activations, e.g., tanhand sin, are bet-
ter than activations with discontinuous derivatives, e.g.,
relu.

A. Case 1: Uncontrolled Intersection

Experiment setup: The schematics of the uncontrolled inter-
section case and the parameters (R, L, and W for road length,
car length, and car width, respectively) are depicted in Fig. 2.
Each player is represented by two state variables: location (d;)
and speed (v;), which together form the state of the player as
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Fig. 2. (a) State trajectories of players projected to (d1, dz2). Solid gray box:
collision area from the perspective of aggressive players; hollow boxes (magenta
for player 1 and blue for player 2): collision areas from the perspectives of
nonaggressive players. Red box: sampling domain for initial states. Color: Actual
values of player 1. (b) Uncontrolled intersection setup.

x; = (d;,v;). The shared dynamics between the players follow
the equations di =wv; and v; = u;, where u; € [—5, 1O]m/s2
represents the scalar control input, i.e., the acceleration of the
player. The instantaneous loss is

Li(u;) = u? (16)
and the player type-dependent state constraint is

where 6(d,0) =1iff d e [R/2—-0W/2,(R+W)/2+ L] or
otherwise 6(d,0) = 0. § € © := {1,5} represents the aggres-
sive (a) or nonaggressive (na) type of a player, where the
nonaggressive player adopts a larger collision zone, see hollow
boxes in Fig. 2. The terminal loss is defined to incentivize players
to move across the intersection and restore nominal speed

gi(zi) = —pdi(T) + (v;(T) — v)? (18)

where (1 = 1079, 5 = 18 m/s, and T = 3's. For hybrid, VH, and
vanilla PINN, we treat the state constraint as a penalty in a
modified instantaneous loss

Ii(xi, w33 0) = L (w;) + bo(di, 0:)o(d_i, 1) (19)
where
o(d,0) = (14 exp(—y(d — R/2+ 0W/2))) "
(I+exp(y(d = (R+W)/2- L))" (20)

v =5 is a shape parameter and b = 10* is chosen to be large
enough to avoid collisions, and cause a large Lipschitz constant
in the resulting value functions.

Data: For SL, 1.7k ground truth trajectories are generated
from initial states uniformly sampled in X7 := [15,20]m X
[18,25]m/s by solving (3). Each trajectory consists of 31 x 2
data points (sampled with a time interval of 0.1s and for two
players), resulting in a total of 105.4 k data points. For vanilla
PINN and VH, 122 k states are sampled uniformly in X :=
[15,105]m x [15,32]m/s. For HL, 1k ground truth trajectories
(62 k data points) are uniformly sampled in X, and 60k states
are uniformly sampled in Xz ;. For EL, we first gather a sample
of 200 k states from X'y to ensure adherence to the boundary
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conditions. Subsequently, additional 110 k states are sampled
from X'y every 30 k training iterations, resulting in a total of
1300 k sampled data points upon completion of the training
process.

For the auxiliary state, recall that its initial value represents the
player’s value of the game. In the intersection case, the best-case
loss is —1.05 x 10~* with zero collisions and control efforts,
while the worst-case loss without collision is 300 where the
player constantly uses the maximum acceleration or deceler-
ation. Hence, we uniformly sample z; € [—1.05 x 10~#,300].
The same sampling procedure is applied to all subcases with
enumeration of player types: (a, a), (na, a), (a, na), and (na,
na).

The selection of state spaces to sample from, namely X7 and
X7, 1s based on various factors: In the case of ground truth tra-
jectories, the initial states for both players are uniformly sampled
from identical domains. This is because informative collision
and near-collision cases often occur when players start from
similar states. In addition, the range of locations for supervised
dataischosen as [15, 20] m to increase the likelihood of sampling
informative trajectories within the specified time window. The
speed range of [18,25] m/s is selected based on typical vehicle
speed limits. For PINN and variants, the sample space X'z s
approximately covers all states that players can reach within the
time window. It is noteworthy that within X7 x X7, about
20% of the states will induce collisions. Adaptive sampling for
PINN, such asin [18], can potentially improve the data efficiency
further but is not studied in this article.

Training: All training problems except EL are solved using the
Adam optimizer with a fixed learning rate of 2 x 1073, For SL,
the networks are trained for 100 k iterations. For vanilla PINN,
we adopt the curriculum learning method proposed in [20].
Specifically, we first train the networks for 10 k iterations using
122 k uniformly sampled boundary states at the terminal time.
We then refine the networks for 260 k gradient descent steps, with
states sampled from an expanding time window starting from
the terminal. For VH, we follow the same learning procedure,
but we soften the collision penalty using sigmoid functions
and gradually increased the shape parameter of the sigmoid to
harden the penalty. To keep the computational cost of VH similar
to that of the hybrid, we use 5.4k training iterations for each
hardening step for a total of 50 steps. For the hybrid method, we
pretrain the networks for 100 k iterations using the supervised
data and combine the supervised data with states sampled from
an expanding time window starting from the terminal time to
minimize I.; + Lo for 100k iterations. For EL, we first train the
network to fulfill the boundary condition over 50 k iterations.
Subsequently, we refine the network through 3 k gradient steps
per epoch, encompassing a total of ten epochs for every 30 k
training iterations. The network refinement process spans 300 k
training iterations in total.

It should be noted that our initial experiment with EL led
to poor generalization and safety performance. In the results we
will present, adaptive activations [ 18] and adaptive learning rates
are implemented, in addition to the use of a larger computational
budget, to slightly improve the performance, which still falls
short of that of HL.
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TABLE II
GENERALIZATION AND SAFETY PERFORMANCE (COLLISION RATE) ON
COMPLETE-INFORMATION GAMES

Test Player Learning Metrics
Domain Types Method [9 — 9| lu —al L Col.% |
HL 0.46 0.09 + 0.10 0.00%
VH 4.17 0.34 £ 0.19 0.67%
(a, a) EL 28.30 0.85 + 3.92 42.3%
SL 0.57 0.12 4+ 0.36 1.67%
PINN 3.39 0.96 &+ 4.19 84.8%
HL 9.43 0.49 + 3.55 3.50%
VH 79.35 1.10 £+ 5.42 0.50%
Xar (a, na) EL 123.79 224 + 208 42.7%
SL 10.58 0.54 +3.92 4.50%
PINN 15.33 1.27 £ 7.16 83.3%
HL 1.00 0.04 + 0.03 1.33%
VH 21.76 0.34 + 1.33 8.50%
(na, na) EL 130.53 0.66 £+ 5.66 16.5%
SL 3.49 0.10 £ 0.46 4.33%
PINN 114.67 1.88 £+ 13.72 83.5%
HL 0.41 0.09 + 0.08 0.20%
VH 2.03 0.20 £+ 0.07 0.20%
(a, a) EL 11.93 034+ 162 19.0%
SL 0.69 0.17 £ 0.28 0.20%
PINN 1.54 0.37 4+ 1.88 35.2%
HL 17.39 0.46 + 3.17 0.10%
VH 32.64 0.57 &£ 2.71 0.20%
Xxp (a, na) EL 62.62 0.96 + 8.64 10.5%
SL 19.01 0.56 + 3.09 0.60%
PINN 19.57 0.58 + 3.89 31.3%
HL 1.80 0.10 £ 0.12 0.00%
VH 11.54 0.24 £+ 0.68 6.40%
(na, na) EL 63.73 0.41 £+ 3.02 2.33%
SL 4.25 0.30 + 0.72 2.20%
PINN 60.39 0.95 £+ 7.31 36.0%

HL, VH, EL, SL, PINN are for HL, VH, epigraphical, supervised, and vanilla PINN
methods, respectively.

1) Results for Complete-Information Games: We generate
a separate set of 600 ground truth trajectories for each of the
four player type configurations by solving BVPs, with initial
states uniformly sampled from X7 . To evaluate generalization
performance, we measure the mean absolute errors (MAEs) of
value and control input predictions, denoted by |J — 1§| and
|u — 4|, respectively, across the test trajectories. For safety
performance, we use the learned value networks to compute
the players’ closed-loop control inputs and the state trajectories.
From all resulting trajectories computed based on test initial
states, we report the percentage of collisions that are avoidable
according to BVP solutions. The performance results are sum-
marized in Table II, where we averaged the performance of (a,
na) and (na, a) due to their symmetry. Sample trajectories for
(a, a) are shown in Fig. 3.

To further evaluate the out-of-distribution performance of
supervised and HL, we repeat the tests using 500 uniformly
sampled initial states in X'y p := [15,30]m x [18, 25]m/s. The
results are summarized in the same table and figure. In both
tests, the hybrid method demonstrates the best generalization
and safety performance. Notably, the vanilla PINN exhibits poor
generalization due to value discontinuity. EL. performs only
better than vanilla PINN in regard of safety. Further inspection
shows that EL can actually identify the backward reachable
sets (i.e., unsafe zones) well, see Fig. 4. To elaborate, given
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Fig. 3. (a), (g) Ground truth trajectories (projected to dy-dg) for Xgr and
Xx p, respectively. (b)—(f), (h)—(1) Trajectories generated using hybrid, VH,
epigraphical, supervised, and vanilla PINN methods under Xg7 and Xx p,
respectively. Color: Actual equilibrial values of player 1 along the trajectories.
Trajectories with inevitable collisions are removed for clearer comparison on
safety performance. Red dots represent initial states with avoidable collisions.

t €10,7] and a value network V trained for fix player types
(a, a), the unsafe zone is defined as {x € Xxp|V(x,t) > 0}.
We approximate the ground truth unsafe zone by computing
trajectories of sample initial states in X'y p by solving (3) [see
Fig. 4(a)]. We compare the ground truth with the approximations
from hybrid and EL in Fig. 4(b) and (c). The results here reveal
an important limitation of values approximated through PINN:
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TABLE III

SAFETY PERFORMANCE (COLLISION RATE) W/ DIFFERENT ACTIVATION
FUNCTIONS (W/ L) AND BOUNDARY NORMS (W/ tanh)

Method Activation Boundary Norm
tanh relu sin Lt L?
Hybrid 0.00% 198% 28.7% 0.00%  0.4%
Value hardening 0.67%  85.1%  84.6% - -
Epigraphical 423%  788%  89.8% - -
Supervised 1.67% 250%  19.5% - -
Physics-informed  84.8%  84.0%  84.7% - -

High empirical accuracy in characterizing the unsafe zone does
not necessarily imply high safety performance, such as in the
case of EL. This is potentially because feedback control requires
accurate approximation of the value gradients instead of the
segmentation of value in space—time [see |u — 4| comparison
in Fig. 4(i)]. For the same reason, high safety performance does
not imply high accuracy in characterizing the unsafe zone either,
such as in the case of HL. We further verify that adding the
supervised co-state loss to EL improves its safety performance
to be comparable with that of HL. See Section V-C for details.

Ablation studies: We conduct ablation studies to understand
the effects of activation functions and the norm of the boundary
loss on model performance. Safety results are summarized in
Table III for player types (a, a) and using the HL method,
with training and testing conducted in Xgr. The corresponding
trajectories are visualized in Fig. 5. The results indicate that:
1) the choice of the activation function significantly affects the
resultant models, with tanh outperforming relu and sin, and
2) the choice of the boundary norm does not have a significant
influence.

Remarks: We note that relu networks have been shown
to converge to piecewise smooth functions in a supervised
setting [51]. However, convergence in the PINN setting requires
continuity of the network and its gradient [9], which relu does
not offer. Our results are consistent with those of [18], where
relu underperforms in solving PDEs. We note, however, that
smooth variants of relu, such as gelu, can achieve perfor-
mance comparable to that of tanh. We also note that while
sin does not perform well for Case 1, it achieves comparable
performance to tanh in Cases 2—4 (see Sections IV-B, IV-C,
and IV-D). This result suggests that fine-tuning of the frequency
parameter of sin is necessary and case-dependent [52].

2) Results for Incomplete-Information Games: In games
with incomplete information, we investigate the effectiveness of
using value networks both for closed-loop control and for belief
updates: Each player is uncertain about the types of the other
players and therefore holds a belief about their fellow player’s
types. A belief is a probability distribution over the type space
and is updated over time as the player observes new actions from
their fellow player. We examine two belief update settings: the
first assumes that players have common prior belief and syn-
chronized belief dynamics [53]. In other words, player 7 knows
about player j’s uncertainty about player ¢’s type. We refer to
players in this setting as “empathetic.” The second setting is
nonempathetic, where player ¢ falsely assumes that player j has
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(a) Ground truth safe/unsafe initial states projected to dj-do frame, where black dots represent collision-free trajectories while orange dots depict

trajectories with collision. (b) Value contours at initial time to classify safe/unsafe zones using HL. (c)—-(h) Value contours along time using EL. Blue (red) regions
represent unsafe (safe) states. (i) Comparison of mean and standard deviation of |u — 4| from HL and EL across test trajectories sampled from Xg.
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Fig. 5. Trajectories generated using neural networks with (a) relu and (b)
sin activation functions and using L' for boundary norm (for tanh, refer to
Fig. 3); trajectories generated using (c) L*- and (d) L?-norms for the boundary
values and using tanh for activation. All trajectories are based on HL.

full knowledge about player i’s type. We follow [54] to simulate
the state and belief dynamics: We model player ¢ to continuously
update its belief based on observations, and then determine its
next control inputs based on the value network parameterized
by the most likely type of player 7 as well as player ¢’s truth
type. We evaluate the efficacy of the hybrid and supervised
methods, which achieve the best performance across cases, by
measuring their safety performance in incomplete-information
settings. The simulations use the same initial states as tests in
the complete-information games.

Empathetic belief update: We consider the case where play-
ers can take one of the two types: © = {a,na}. Let D; =
{(x(k),u(k))},_, be a finite set of observed states and control
inputs of both players accumulated up to time ¢. Let p;(¢) :=
Pr(6; = a| D;_1) be the belief of player j about player ¢ at the
beginning of time step ¢, and ¢? (¢) := Pr(u;(t) | x(t), @) where
6 € {(a,a), (a,na), (na,a), (na,na)} is a point estimate of @
based on the current beliefs p.

We assume player ¢’s control policy follows a Boltzmann
distribution:

. hi(x;(t),uq(t),t;0)
()= =

_ 21
Eu eli(xi(t),u},;0) @

where

hi(xi(t), i (t), 1 0) = Ve £799 — 17 (22)

where 19? is player ¢’s approximated value if the game is played
with player types 6, and l?i is the instantaneous loss that incor-
porates the collision penalty if player 7 is of type 6;.

Denote the marginal by ¢ (¢) := Pr(u;(t)|x(t), 6;), we have

gl (1) = " Wp-i(t) + ¢ " (W) (1 = pilt)).  (23)
Given the observations D,, p; follows a Bayes update:
4 ()pi(t)
pi(t+1) = — = . (24)
D= om0 + 00— pi®)
Remarks:

1) If any element of p(t) is mistakenly assigned a zero
probability, this mistake cannot be corrected in future
updates. To address this, we modify p(t) using

p(t) = (1 = ¢)p(t) + ep(0)

before its next update and set the learning rate 1 — e =
0.95. p(0) represents the initial belief.

(25)
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TABLE IV
COLLISION RATE IN UNCONTROLLED INTERSECTIONS WITH INCOMPLETE
INFORMATION: E - EMPATHETIC, NE - NONEMPATHETIC

Belief update model  Initial belief — True type  Hybrid  Supervised
(e,e) (a,a) (a,a) 0.00% 0.00%
(ne,ne) (a,a) (a,a) 0.00% 0.00%
(e,e) (na,na) (na,na) 0.67% 6.67%
(ne,ne) (na,na) (na,na) 0.67% 6.67%
(e,e) (a,a) (na,na) 2.00% 2.67%
(ne,ne) (a,a) (na,na) 2.67% 2.67%
(e,e) (na,na) (a,a) 2.00% 8.00%
(ne,ne) (na,na) (a,a) 2.67% 4.00%

2) To make (21) more tractable, we discretize the space of
control inputs as U := {—5,—4,...,0,...,10}m/s>. In
addition, we used discrete time steps with a time interval
of 0.05 s to simulate the interactions.

3) We test two settings of initial beliefs. In the first setting,
each player believes that the other player has a proba-
bility of 80% of being aggressive; in the second setting,
the probability is 20%. These initial beliefs correspond
to p(0) = (0.8,0.2) and p(0) = (0.2, 0.8), respectively.
While a more extensive test over the initial belief space
could be interesting, it is beyond the scope of this study.

Nonempathetic belief update: A nonempathetic player up-

dates its belief about the other player’s type by assuming that his
type is known. Let the true types be 8*. Player —i’s belief about
player i’s type now becomes a conditional pj(t) := Pr(6; =
a|D;—1,0* ;). The Bayes update of p,(¢) follows:

a,0”;
ot (D)

a,b* . na,0* ; / .
o0 + " 00 - pi0)

pit+1)= (26)

Consequently, each player starts with its own belief, which are
not necessarily common during the interaction.

Control policy: Given the beliefs p; (t) or p/,(t), player —i finds
the most likely type of player i. The control policy of player ¢ is
determined by the value function corresponding to (6, é,z) It
is worth noting that player ¢ employs a policy that is consistent
with its true type, even if player j holds an incorrect belief about
player 7, which player 7 acknowledges in the empathetic setting.
This setup allows players to signal their own types through their
actions.

Simulation results: We present simulated interactions be-
tween two players at an uncontrolled intersection in an
incomplete-information setting. The simulations are performed
on a grid that enumerates the following settings: (empathetic,
nonempathetic) x (correct prior, wrong prior) X (aggressive,
nonaggressive), where both players have identical settings to
limit the scope. For each setting, we evaluate the safety perfor-
mance of the value approximation models learned through the
hybrid and supervised methods using test samples from Xgr.
Table IV summarizes the results that the hybrid models have
a lower chance of collision than the supervised ones under all
settings.
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Fig. 6. Narrow road collision avoidance setup with two players.

B. Case 2: Narrow Road Collision Avoidance

Experiment setup: The schematic is depicted in Fig. 6, where
the states of player ¢ consist of its location (p], p?), orientation
(1;), and speed (v;), denoted as x; := [p?¥,p!, i, v;]T. The
system dynamics is modeled using a unicycle model

2 v; cos(¥;)
i .
pi | _ | visin(yi)
s = wi 27

where w; € [—1, 1]rad/s and u; € [—5, 10]m/s? are control in-
puts that represent angular velocity and acceleration, respec-
tively. The instantaneous loss incorporates control effort

Li(ziywis 0;) = kw? + u? (28)
where £ = 100. The state constraint is
cilxi) =n— /(R —p3) —p§)* + 04 —p))>  (29)

where n = 1.5m and R = 70m. ¢;(-) > 0 is considered as a
collision incident. The parameter R represents the length of the
road, and 7 = 1.5 m is the collision threshold. The terminal loss
is designed to encourage players to move along the lane and
restore nominal speed

gi(zi) = —pp{ (T) + (vi(T) — 0)* + (p{(T) — p¥)*>  (30)

where 1 = 1076, v = 18 m/s, p¥ = 3m, and T = 3s. For hy-
brid, VH, and vanilla PINN, we treat the state constraint as a
penalty in a modified instantaneous loss

lNi(xi,w“ui) = kw? + uf + bo(xi, 1) 31

where the penalty function is defined as
a(xi,n) = (1 +exp(—vei(xi)))

The parameter b is set to 10* to impose a high penalty on
collision, while v = 5 is a shape parameter.

Data: For SL, we generate 1.45 k ground truth trajectories
by uniformly sampling initial states from Xg7 := [15,20]m X
[2.25,3.75]m x [—7 /180, 7/180]rad x [18,25]m/s, resulting
in a total of 89.9 k data points. For vanilla PINN and its
VH variant, we uniformly sample 122 k states from X'y ; :=
[15,90]m x [0,6]m x [—0.15,0.18]rad x [18,25]m/s. For HL,
we generate | k ground truth trajectories (62k data points) by uni-
formly sampling initial states from [15, 20jm x [2.25,3.75]m X
[—7/180,7/180]rad x [18,25] m/s and sample 60k states
uniformly from [15,90]m X [0,6]m x [—0.15,0.18]rad x [18,
25]m/s. For EL, we introduce an auxiliary state z; with a range
of [-9 x 107>, 300] to account for both the best- and worst-case
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TABLE V
COLLISION RATE W/ DIFFERENT ACTIVATION FUNCTIONS

Learning Method

Test Activation

Domain  Functions HL VH EL SL PINN
tanh 1.67% 952% 483% 217% 81.3%

XoT relu 652% 982% 705% 67.7%  83.8%
sine 1.67% 98.5% 69.7% 3.17% 98.3%
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Fig. 7. Narrow road collision avoidance visualization. (a) Ground truth safe
trajectory. Transparency reduces along time. (b)—(f) Trajectories generated using
hybrid, VH, epigraphical, supervised, and vanilla PINN models, respectively.
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scenarios. We employ the same settings as in Case 1 for the
remaining aspects of the experiment.

Training: For vanilla PINN, we pretrain the networks for 10
k iterations using 122 k uniformly sampled boundary states and
then train them for 430 k iterations. For VH, we use 8.8 k training
iterations for each hardening step and a total of 50 steps for a
fair comparison. The remaining settings are the same as those
in Case 1.

Results: We evaluate the safety performance of the methods
on a test set of 600 ground truth collision-free trajectories with
initial states drawn from Xg7. The results are summarized in
Table V, and the distance between players during interactions
is visualized in Fig. 8. Similar to Case 1, the HL method
outperformed the others. Fig. 7 demonstrates interactions from
the same initial state in which only the hybrid method avoids a
collision.

We notice that VH fails to generalize well in this higher
dimensional case (and in Case 3). We hypothesize that vanilla
PINN, which VH is based on, is less scalable in compute than
hybrid PINN as the state dimensionality increases.

While the relationship between learning dynamics of PINN
and state dimensionality is yet to be understood, here we empiri-
cally show that VH PINN requires significantly higher compute
to converge in Case 2 due to its higher state dimensionality.
To make this empirical study more tractable, we use a mildly
softened collision penalty with v = 0.1 in both Case 1 and 2.
We uniformly sample 122k states from X 7 y and train the model
using ten hardening steps until ~y reaches 0.1. To visualize the
convergence, in Fig. 9 we show the value along a randomly
chosen equilibrium trajectory derived from PMP for Case 1
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Fig. 8.  (a) Ground truth distance between players over time for Xg7. (b)—(f)
Distance between players over time using hybrid, VH, epigraphical, supervised,
and vanilla PINN under X7, respectively. Red dashed line represents the
threshold distance for collision.

Case 1 Value Comparison at y = 0.1 Case 2 Value Comparison at y = 0.1
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Fig. 9. (a) VH uses 20k training iterations for each hardening step, for a total
of ten steps to converge to ground truth in Case 1. (b) VH uses 20k/110k training
iterations for each hardening step, for a total of ten steps to converge to ground
truth in Case 2. Compared to Case 1, VH takes around 5.6 times longer to
converge to the ground truth in Case 2.

(left) and Case 2 (right). We can see that by 20k iterations,
VH already converges to the ground truth in Case 1, while in
Case 2, convergence requires more than 110 k iterations.

C. Case 3: Double-Lane Change

Experiment setup: The schematic is shown in Fig. 10, de-
picting the states of player ¢ as its location (p¥, p!), orientation
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Fig. 10.  Double-lane change setup with two players.

(1), and speed (v;). x; == [p¥, p!, i, v;]T. The dashed blue
and orange color (with increasing transparency along the x-axis)
in the figure represents desired trajectories for both players.
We use the same unicycle model and instantaneous loss as in
Section I'V-B. The terminal loss is set to incentivize players to
stay within their respective lanes and regain the nominal speed
gi(zi) = — i (T) + (W} (T) — p})?

+ (0i(T) = 0)* + K(i(T) — )
where ;1 = 1075, k = 100, p} = 6m for player 1 and pj = 2m
for player 2, v = 18m/s, 1/; = 0Orad, and T" = 4s.

Data: In the case of SL, we generate 1.45k ground truth
trajectories by uniformly sampling initial states from the
set XLy :=0,3]m x [1.25,2.75]m x [—7/180, 7/180]rad x
[18, 25]m/s for player 1, and X2, := [0, 3]m x [5.25,6.75]m x
[—7/180, 7 /180]rad x [18,25]m/s for player 2, resulting in a to-
tal of 118.9k data points. For vanillaand VH PINN, we uniformly
sample 162k states from the set X7, := [0,95]m x [0, 6Jm x
[—0.15,0.13]rad x [17,26]m/s for player 1, and X7, :=
[0,95]m x [2,8]m x [—0.13,0.15]rad x [17,26]m/s for player
2. In the case of HL, we generate 1k ground truth trajectories
(82 k data points) by uniformly sampling initial states from X2 -
for player 1, and X2 for player 2. In addition, we sample 80 k
states uniformly from X}, ; for player 1, and X7, for player 2.
For EL, we initially gather a sample of 200 k states from X7 s
to ensure adherence to the boundary condition. We set the range
of the auxiliary state z; as [—9.5 x 107°,400]. All other settings
follow Case 1.

Training: In this experiment, we employ the Adam optimizer
with a constant learning rate of 1 x 10~%. For vanilla PINN,
we initiate the pretraining phase with 10k iterations, utilizing
162 k boundary states uniformly sampled. Subsequently, we
continue with the training phase, performing 350 k iterations.
For VH, we set the training duration for each hardening step to
7.2 k iterations, completing a total of 50 steps to ensure a fair
comparison. All other settings remain consistent with those of
Case 1.

Results: We assess the safety performance on a test set
comprising 600 ground truth collision-free trajectories. These
trajectories are generated by sampling initial states from X7 .
The results are summarized in Table VI, while the interaction
distances between players are visualized in Fig. 11. Similar
to Cases 1 and 2, the hybrid method demonstrates superior
performance compared to the others. Similar to Case 2, VH fails
to generalize effectively within a computational budget similar
to HL. Fig. 12 shows interaction trajectories starting from one

(32)
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TABLE VI
COLLISION RATE W/ DIFFERENT ACTIVATION FUNCTIONS

Learning Method

Test Activation
Domain  Functions HL VH EL SL PINN
tanh 0.00% 23.0% 462% 0.33% 30.2%
Xar relu 1.33% 403% 61.0% 0.00% 52.5%
sine 0.50% 11.2% 48.5% 1.00% 17.3%
2 GT 0 2 Hybrid 0
E‘- 15 =2000 E 15 =2000
g 10 +=4000 E 10 -4000
§ 5 —6000 E s —6000
a a
0 8000 0 -8000
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=
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i
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g
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Fig. 11.  (a) Ground truth distance between players over time for X7 . (b)—(f)
Distance between players over time using hybrid, VH, epigraphical, supervised,
and vanilla PINN models under X, respectively. Red dashed line represents
the threshold distance for collision.

particular initial state where the hybrid method achieves safe
interaction while the others fail.

D. Case 4: Two-Drone Collision Avoidance

Experiment setup: In this experiment, we consider that the
states of player ¢ consist of its location (p], pf, p7), and speed
(vF, vY, v7), denoted as z; := [p¥,pY, pZ,v¥, vY,vF]T. We use
the flight dynamics (in the near-hover regime, at zero yaw with
respect to a global coordinate frame) described in [42]

D; vy

b} vf

il _ v7

oF| | gtan(6;) (33)
vy —gtan(e;)

Ulz T — g
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Fig. 12.
epigraphical, supervised, and vanilla PINN models, respectively.

where the tracking control u; = (6;, ¢;, 7;) corresponds to roll,
pitch and thrust. In this experiment, §; € [—0.05,0.05]rad, ¢; €
[~0.05,0.05]rad, 7; € [7.81,11.81]m/s?, and g = 9.81 m/s>.
Note that we have assumed a zero yaw angle for the quadrotor.
The instantaneous loss considers the control effort and the
collision penalty

Zi (Xi, Wi, ui) =ky tan? (91) + k‘¢ tan? (qﬁl)

+ (i — 9)* + bo(xi,m) (34)

where the penalty function is defined as

o(xi,m) = (1 +exp(y(S —n))) "

S=\/((R. —p3) —pD) + (R,

b = 10* and vy = 5. In addition, the parameters R, = 5m and
R, = 5m are used to transform the coordinate positions of the
two players along the = and y axes, respectively. The values of
k¢ = 100 and k4 = 100 determine the tradeoff between control
effort for roll, pitch, and thrust. Furthermore, n = 0.9 m repre-
sents the collision threshold. The terminal loss is set to encourage
players to move along their respective x and y directions, to
return to Om on the z-axis, and to remain stationary when the
simulation is complete

—ph) —pY)%+ (p5 — pi)%

gi(xi) = — wp(T) — ppl (T) + (p}(T) — p7)?

+(Wf(T) = 07)? + (v} (T) = 9}) + (v}(T) — v7)?
(35)

where = 1076, p? = Om, o¥ = 0! = v7 = Om/s,and T = 4s.
In this case study, we only compare the generalization and safety
performance between the hybrid and the supervised methods,
and use vanilla PINN as a baseline. VH and EL are dropped
from the comparison since they do not generalize well in high-
dimensional cases as we found in Sections IV-B and IV-C.

Data: In the case of SL, we generate 1.25k ground
truth trajectories by uniformly sampling initial states from
the set Xgr := [0, 1Jm x [0, 1Jm x [—0.1,0.1Jm x [2,4]m/s X
[2,4]m/s x [0,0.1]m/s, resulting in a total of 102.5k data
points. For vanilla PINN, we uniformly sample 162k states
from the set Xp; :=[0,15.5/m x [0, 15.5]m x [—1.8,2]m X
[0.3,4.5]m/s x [0.3,4.5]m/s x [—~1.8,1.8]m/s. In the case of
HL, we generate 1 k ground truth trajectories (82 k data points)
by uniformly sampling initial states from Xg7. In addition, we
sample 80k states uniformly from X ;.

Training: We use the Adam optimizer with a fixed learning
rate of 1 x 10~%. For vanilla PINN, we pretrain the networks for
100k iterations using 162k uniformly sampled boundary states
and subsequently train them for an additional 400k iterations.

Double-lane change visualization. (a) Ground truth safe trajectory. Transparency reduces along time. (b)—(f) Trajectories generated using hybrid, VH,

TABLE VII
COLLISION RATE W/ DIFFERENT ACTIVATION FUNCTIONS

Learning Method

Test Activation
Domain  Functions HL SL PINN
tanh 0.00% 0.17% 75.8%
Xar relu 34.0% 0.67% 76.2%
sine 0.00% 0.17% 75.7%
GT —-— Player 1 trajectory Hybrid —— Player 1 trajectory
—— Player 2 trajectory —— Player 2 trajectory
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Fig. 13.  Two-drone collision avoidance visualization. (a) Ground truth safe
trajectory. (b)—(d) Trajectories generated using hybrid, supervised, and vanilla
PINN models, respectively.

The remaining settings for this experiment align with those used
in Case 1.

Results: We assess the safety performance on a test set
comprising 600 ground truth collision-free trajectories. These
trajectories are generated by uniformly sampling initial states
from Xgp. The results are summarized in Table VII, while the
interaction distances between players are visualized in Fig. 14.
Similar to the first three cases, the HL method demonstrates
superior performance compared to the other methods. Fig. 13
visualizes the trajectories starting from a particular initial state
where the hybrid method achieves safe interaction, while the
other baselines yield collisions and undesired trajectories.
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Fig. 14.  (a) Ground truth distance between players over time for Xg7. (b)—

(d) Distance between players over time using hybrid, supervised, and vanilla
PINN models under X, respectively. Red dashed line represents the threshold
distance for collision.

V. DISCUSSION

A. Safety Guarantee

We note that our method does not provide safety certificate
in its current form and discuss potential future directions. Policy
certification: For fixed-time differential games, it is possible to
consider the interaction, i.e., the interchanging computation of
actions (via approximated value gradients) and states (via an
ODE solver), as a neural-network controlled system (NNCS),
for which certification tools emerge [55], [56]. It should be noted
that reachability analysis of NNCS is currently limited to small
state space (due to the exponential growth in the approximation
polynomial degree with respect to the state space dimension-
ality [55]), small Lipschitz constant (due to linear growth of
approximation error with respect to the Lipschitz constant of the
neural network), and small network sizes (e.g., four layers each
with 20 neurons in [55]). Specifically, reachability analysis (e.g.,
forward [57], backward [58], or automated [59] methods) for
NNCS can be applied to a 6-D quadrotor system. However, these
analyses are limited to small network sizes and face challenges
in achieving real-time verification for each closed-loop policy
using trained models. Post-hoc state-constrained control: When
policy certification becomes intractable, an alternative could be
to use a linear—quadratic reformulation of the game with con-
servative state constraint approximation for online computation
of policies. In this setting, the value approximation network
offers good initial policy guesses. This method trades off overall
performance of policies in attaining Nash equilibrium for a
computationally tractable safety guarantee. A recent study [60]
explores online value approximations with safety guarantees
for zero-sum games, yet it does not cover general-sum games
and safe reachable analysis of online policy computation. Hsu
et al. [61] proposed a unified framework to review the existing
safety analysis approaches for closed-loop policy.
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© [9pvp — Opp| for ©" = (a, a) Vpp for ©" = (a,a)
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d1 d1
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|95vp — 9pp| for 0" = (a, @) Opyp for O = (a, a)
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[95vp — Byl for ©" = (a, a) Yy for 0" = (a, a)
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Fig. 15. (a), (c) Difference |Ygyp — Ypp| in (d1,d2) frame with vy o =
18 m/s at t = 0 using DP spatial resolution dz = 0.5 and dx = 0.3, respec-
tively. (b), (d) Numerical solutions 1) obtained through DP and BVP solver,
respectively. () Difference [¥gyp — Vv in (d1, d2) frame withvy o = 18 m/s
at t = 0. (f) Approximated solutions ¥} obtained through HJI-based learning
approach-VH.

B. Consistency Between BVP and HJI Values

Recognizing that PMP is only necessary conditions for local
optimality [62] while HJ solutions satisfy global optimality, we
adopted multiple initial guesses to solve BVPs in order to seek
global solutions. This treatment was applied to all case studies.
Taking Case 1 as an example, we initialize the BVP solver
with four state trajectories that follow constant control inputs:
{(=5, —5)m/s?, (—5,10)m/s?, (10, —5)m/s?, (10, 10)m/s?}.
These trajectories represent four categories of interactions
where each of the players either yield or accelerate through
the intersection, and potentially lead to different equilibria. To
address the issue with multiplicity of equilibrium, we choose
the one that yields the best sum of values (i.e., Pareto optimal
Nash equilibrium).

In the following, we empirically show that this treatment
leads to consistent value landscapes between BVP and HJI. A
visualization of the comparison uses the value contour from Case
1, projected to (dy, d2) with fixed v1 2 = 18 m/s and ¢ = 0 and
with player types (a, a). See Fig. 15.

To compute values from the BVP solver, we sample initial
states from [15, 40jm x [15, 40]m with fixed v1 » = 18 m/s and
with the spatial resolution dx = 0.3m. For each initial state, we
solve the BVP and compute ¢ at t = 0.
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Fig. 16.  (a), (c) Trajectories generated using HL w/o and w co-state loss under
XgT. (b), (d) Trajectories generated using EL w/o and w co-state loss under
Xar.

For HJI values, we consider two approximations of the ground
truth. First, we extend an existing HJ PDE solver [22] from
zero-sum to general-sum. Since this DP solver has limited
scalability with respect to state dimensions (up to 6-D as
demonstrated in [22]), we only applied the solver to Case 1
where values are 5-D. The value difference between BVP and
the DP solver, |dgyp — Upp|, is visualized for two DP spatial
resolution settings: dx = 0.5 and dz = 0.3 in Fig. 15(a) and
(c), respectively. dr = 0.3 is the highest resolution supported
by our computing hardware. Note that values reported do not
take into account constraint violation penalty, and unsafe states
are assigned a constant value of —100. We observe that the
difference |Jgyp — Ypp| decreases as the resolution improves,
and expect the trend to continue if the resolution were to be
further increased. Since the DP solver has limited resolution,
we resort to VH as a second approximation of the ground truth
because it achieves relatively good generalization performance
without using supervisory data in Case 1. Fig. 15(e) visualizes
the value difference between BVP and VH, |9gyp — Pyu|, which
again shows the similarity between the two.

C. Importance of the Co-State Loss for Safety Performance

Finally, we provide details on the empirical study where we
show that achieving good safety performance requires accuracy
co-state (value gradient) approximation. While the epigraphical
technique facilitates smooth value approximation, it does not
explicitly enforce small approximation errors on co-states. In
the following, we conducted a comparison between the HL
and the EL methods with identical training settings for Case
1: During their training, HL and EL uniformly sample 1 k
ground-truth trajectories (62 k data points) in X7 and 60 k
states in Xp ;. In addition, we uniformly sample the auxil-
iary state z; € [~1.05 x 107#,300] for EL. Both methods are
solved using the Adam optimizer with a fixed learning rate of
2 x 107>, We pretrain the networks for 100 k iterations using
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the supervised data and combine the supervised data with states
sampled from an expanding time window starting from the
terminal time to minimize Ly + Lo [(5) and (6)] and Ly + L3
[(6) and (14)] with 100k iterations for HL and EL, respectively.
We show that the safety performance of EL is still worse than HL
when using supervised data without the co-state loss in Ly [see
Fig. 16(b)], and its safety performance significantly improves
when the co-state loss is considered [see Fig. 16(d)]. On the
other hand, Fig. 16(a) shows that HL performs worse without
the co-state loss. Hence, we conjecture that ensuring good safety
performance requires not only small approximation errors for
values but also for co-states.

VI. CONCLUSION

We proposed an HL method that combines the strengths
of SL and vanilla PINN to approximate discontinuous value
functions as solutions to two-player general-sum differential
games. The proposed method yields better generalization and
safety performance than an array of baselines, including SL,
vanilla PINN, VH, and EL, when using the same computational
budget. We empirically demonstrate that the co-state loss is the
key factor for high safety performance, and the choice of the
activation function and its parameters is crucial to the safety
performance of learned models. Finally, all results in this article
can be reproduced using our code.?

APPENDIX A
SUMMARY OF ACRONYMS

Table VIII summarizes acronyms used in this article.

TABLE VIII
ACRONYMS USED THROUGHOUT THIS ARTICLE

Acronym  Full Name Acronym  Full Name
HIJI Hamilton-Jacobi-Isaacs PINN Physics-Informed
Neural Network
CoD Curse of Dimensionality PMP Pontryagin’s Max-
imum Principle
DpP Dynamic Programming NNCS Neural-Network
Control System
HRI Human-Robot Interaction a aggressive
MPC Model Predictive Control na non-aggressive
BVP Boundary Value Problem e empathetic
ENO Essentially Non-Oscillatory  ne non-empathetic
MAEs Mean Absolute Errors GT Ground Truth
EL Epigraphical Learning HL Hybrid Learning
SL Supervised Learning VH Value Hardening
APPENDIX B
PROOF OF LEMMA 1 (FOLLOWING PROOFS IN [15])
Proof:
i) 9;(xi,t) — z; <0 implies that there exists a; € A such
that

/T l; (x?’t’o‘i7ai (x;‘i’t’o‘i"’*i,s)) ds
t

+gi (a7") =2 <0 (36)

2[Online]. Available: https://github.com/dayanbatuofu/Value_Appro_Game
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and ¢;(x¥b*i%-i) < 0 for s € [t,T]. Thus, there exists
«; such that Vi(xi, zi,t) <0.

il) Vi(x;,2,t) <0 and ¢;(xXb2-1) <0 implies that
there exists «; € A such that

T
/ l; (x?’t’“i,ai (x’s‘i’t’““a*"', s)) ds
t

+g; (27 5) =2, <0

which concludes 9;(x;,t) — z; < 0. O

(37

APPENDIX C
PROOF OF LEMMA 2 (FOLLOWING PROOFS IN [15] AND [63])

Proof: For any policy «; and a small step i > 0, we can use
(7) to derive the following relation (o* ; represents equilibrium
policy for the fellow player of player 7):

. xX;,t,00,a
Vi(x4, z;,t) = min max{ max ¢; (xs“ v )
a;eA set,T)

gz( b ) _Zi(T)}
= max{ max  ¢;(Xs
s€[t,t+h]

Xyt 0
max max ¢; (Xs '
s€[t+h,T)

g: (@) = %(D)}}

There exists two different policies o, , o;, € A such that

= {aon

X, t,0,a" )

€ [t,t+ hl
€ (t+h,T].

Then, we have

. X, b0,
Vi(xi, zi,t) = min max c¢; (xsl v )

max
a; €A, €A s€t,t+h]

Xi,t,0,00
max q max ¢ (Xs )
se[t+h,T)

gi (@7""") = 2(T)}}

. ( X;,t,a,a% )
= min max max ¢; | Xs
a;, €A {se[t,t-ﬁ-h]
. ( xut,ai,a*,i)
min max max ¢; | Xs
iy €A s€[t+h,T)

gi (277") = z(T)}}

xl,f a0
max ¢; | Xg

= min max
s€[t,t+h]

iy cA

Vi(xi(t+h),zi(t + h),t +h)}

X, b0,
max ¢; | Xs
se(t,t+h]

zi(t+h),t+h)}.

= min max
a;eA

‘/i(xi(t + h)v
O
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APPENDIX D
PROOF OF THEOREM 1 (FOLLOWING PROOFS IN [15] AND [63])

Proof:
1) Whent =T, V; is easily satisfied based on definition
%(Xi,Zi,T):maX{Ci <X;7 toqa ),
gi (277) = ZZ'(T)}
= max {¢;(x;(T)), g:(T) —

2) Let W; € C°(X x R x [0,T]), and assume that V; —
W; has local maximum at (x;(to), 2;(to),to) € X X R x
[0,T) and (V; — W;)(x4(t0), 2i(to), to) = 0, we need to
prove

zi(T)}. (38)

') = Wixi(to), zi(to), to)
— Hi(to, xi(to), zi(to)

Vi, Wi(xi(to), zi(to), to), V=, Wi(xi(to), zi(to), tO))}

X, b0,
max § ¢; (X,

ViWi(xi(to), zi(to), to)

> 0. (39)
Suppose not. Then, there exists £ > 0 and &; € A such
that

X;,t,0,0
Ci (XS ) - W?(X7(t0)7 Zi(to)v tO) < 757

ViWi(xi, zi, t) + Vi, Wi(x4, 23, t) - £i (%5, &u, @)

PE

(40)

X;,t,0 0"
—VZiWi(Xi,Zi,t)'li(l‘x“t B Oél( e

for all points (x;,z,t) sufficiently close to
(xi(to), zi(to), to): there exists small enough hy >0
such that ||Xz — Xi(tO)H + |Zi — Zi(t0)| + ‘t — to‘ < hi.
According to assumptions in Section III-B, choose a small

h such that ||x; — x;(to)|| + |z — 2i(to)| < h1 — h for
s € [to,to + h|, then

Xi,t,0q,00
ci(Xs ) = Wi(xi(to), zi(to), to) < —§

Vf (Xl’ Ziy S ) + inWi(xi7 Zis S) : fi(Xi7di7 aiq,)

“Yes

(41)

Xi,t, 0,00

zi,t,0 ~
*vleVv(XuZMS) 'li(xs“ ’ 7'70471()(5

According to the condition that V; — W; has a local max-
imum at (X(to), Zi (to), to), then

Vi(xi(to + h), zi(to + h),to + h)

— Wi(xi(to + h), zi(to + h),to + h)
< Vi(xi(to), zi(to), to) — Wi(x(to), zi(to), to)
= Vi(xi(to + h), zi(to + h),to + h)

= Vi(xi(to), zi(to), to)
< Wi(xi(to + h), zi(to + h),to + h)

— Wi(x;(to), zi(to), to)
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3)

= Vi(xi(to + h), zi(to + h),to + h)
— Vi(xi(to), zi(to), to)

to+h dW:
< / Wi ds
t

dt

0
= Vi(xi(to + h), zi(to + h),to + h)
— Vi(xi(to), zi(to), to)
to+h
< / {VeWi(xi, 21, 8) + Vi, Wi(x4, 23, 5) - £

to
—Vz,i Wi(Xi, Zi, 8) . lz} ds < —fh (42)

Lemma 2 says that

Vi (t0). (1) t0) = i m {_moc - cix(5)
Vi(xi(to—|—h),2’i(t0—|—h),to—|—h)}. (43)

Subtract (43) by W;(x;(to), z:(to), to) on both sides and
combine (41) and (42)

0= (Vi = Wi)(xi(to), zi(to), to)
= 151615{11 max {—&, —¢h} <0 (44)
which is a contradiction. Thus, we prove that
) — Wi(xi(to), zi(to), to)
V. Wi(xi(to), zi(to), to) — Hi(to, xi(to), zi(to)
Vi Wilxi(to), zi(to), to), V=, Wi(xi(to), zi(to), t0)) }
> 0. (45)

LetW; € C*(X x R x [0,T]), and assume that V; — W;
has local minimum at (x;(¢o), 2;(t0),t0)) € X x R x
[0, T) and (‘/z — Wi)(Xi(t(]), Zi(to), to)) = 0, we need to
prove

.
Xi,t,o,0"

max {ci (X3,

Xt 0,00

max {Ci(xto ) = Wilxi(to), 2i(to), to)
ViWi(xi(to), zi(to), to) — Hilto, xi(to), zi(to)

Vi, Wi(xi(to), zi(to), to), V=, Wi(xi(to), zi(to), to))}

<0. (46)
The definition of V; says that
Vi(x;(to), zi(to), to) = max{ max ci(x;(i’t’ai’aii)
s€(to, T

g (a5 = (1)}

max< ¢ (Xxi7t1ai7aii)
i\ Xt

v

gi (a5) = =(D)} @D

forall a; € A(tp). Subtract (47) by W;(x;(to), z:(to), to)
on both sides to have

0= (Vi = Wi)(xi(to), zi(to), to)
> max {ci (x;i’t’ai’a*’i)
— Wi(x4(to), 2i(to) . o), gi (x55%) — 2(T)
— Wilxi(to), zi(to).to) (48)
Then, we must prove the following inequality:

ViWi(xi(to), zi(to), to) — Hi(to, xi(to), zi(to)

vxi Wi(xi(t0)7 Zi(to)a to)?in Wi(xi(t0)7 Zi(to)a to)) <0.
(49)

Suppose not. Then, there exists £ > 0 such that
thi (Xl', Ziy t) — max [7in Wz (Xl', Ziy t) . fl

w; €EU;
+ V., Wi(xi,2i,t) - ;] > & (50)

for all points (x;,z,t) sufficiently close to
(xi(to), zi(to),to): there exists small enough hy >0
such that ||X2 — Xz(tO)H + |ZZ — Zz(t0)| + |t — t0| < hl.
For any «; € A, where

i © a8 maxaieA - vx1 Wz(XZ’ Zis S) : fl(xly (7% aiz)
il it
+ vnWi(Xi, Ziy S) . lz (ggzutyaz’ai (X: @, 73)) .
(51D

According to assumptions in Section III-B, choose a small
h such that ||Xi — Xi(tO)H + |ZZ — Zi(to)‘ < hy — h for
s € [to, to + h], then

ViWi(xi, 2i, 8) + Vi, WilX4, 23, 8) - (x4, 05, %)
— V. Wi(xi,2i,8) - I (ﬂff“t’ai, a; (in’t’ai’atﬂs)) >
(52)

forall s € [to, to + h]. We integrate (52) over s € [tg, o +
h] to get

Wi(Xi(to + h), Zl'(t() + h),to -+ h)
— Wi(Xi(to), Zi(to),to) 2 £h (53)

We have the following relation because (53) holds for all
u; € Ui:

min W;(x;(to + h), zi(to + h),to + h)

w; €U;
— Wi(xi<t0>7 Zi(to), to) Z €h (54)

According to the condition that V; — W, has a local min-
imum at (x; (o), i (to), to), then

min V;(x;(to + h), zi(to + h),to + h)
u; EU;

— Vi(xi(to), zi(to), to)
Z min Wi(Xi(tO + h), Zi(to + h),to —+ h)

Uq EZ/{,;
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— Wi(xi(to), 2i(to), to)
> &h
= min Vi(x;(to + h), zi(to + h),to + h)

wu; €U;
> %(Xi(to)a Zi(tO)a t())

However, Lemma 2 says that

(55)

min V;(Xi(to + h), Zi<t0 + h),t() + h)
u €U;

< Vi(x(to), zi(to), to)

which is a contradiction. Thus, we prove that

(56)
max {ci(x;:’t’ai’aii) — Wi(xi(to), zi(to), to),
ViWi(xi(to), zi(to), to) — Hi(to, xi(to), zi(to),
inWi(Xi(to),Zi(tO),t())7VziWi(xi(tO))Z’i(to)?to))}
<0. (57)

Hence, we prove that Vj(x;,z;,t) is the viscosity
solution. O
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