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Abstract—Solving Hamilton–Jacobi–Isaacs (HJI) PDEs numer-
ically enables equilibrial feedback control in two-player differ-
ential games, yet faces the curse of dimensionality (CoD). While
physics-informed neural networks (PINNs) have shown promise
in alleviating CoD in solving PDEs, vanilla PINNs fall short in
learning discontinuous solutions due to their sampling nature,
leading to poor safety performance of the resulting policies when
values are discontinuous due to state or temporal logic constraints.
In this study, we explore three potential solutions to this challenge:
1) a hybrid learning method that is guided by both supervisory
equilibria and the HJI PDE, 2) a value-hardening method where a
sequence of HJIs are solved with increasing Lipschitz constant on
the constraint violation penalty, and 3) the epigraphical technique
that lifts the value to a higher dimensional state space where it
becomes continuous. Evaluations through 5-D and 9-D vehicle and
13-D drone simulations reveal that the hybrid method outperforms
others in terms of generalization and safety performance by taking
advantage of both the supervisory equilibrium values and co-states,
and the low cost of PINN loss gradients.

Index Terms—General-sum differential game, physics-informed
neural network (PINN), safe human–robot interactions.

I. INTRODUCTION

H
UMAN–ROBOT interactions (HRIs) become prevalent

in safety-critical applications, such as transportation [1],

healthcare [2], and rescue [3]. Conventionally, safety is achieved

by incorporating state constraints in a model predictive control

(MPC) framework. The constraints are usually derived from a

two-player zero-sum game formulation so that the ego player

avoids all system states from which the fellow player can suc-

cessfully launch attacks should it be adversarial [4]. There are

two limitations to this approach as follows. First, the zero-sum

setting can often be overly conservative since fellow players in

civil applications are not always adversarial. Second, real-time

MPC is required on top of value approximation of the zero-sum
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games, limiting the speed and quality of the player’s decision

making.

To address the first limitation, it is tempting to consider

HRI as general-sum differential games with state constraints

and incomplete information, where players have private types

(e.g., reward parameters). In this setting, players can overcome

unnecessary conservatism by updating their beliefs about each

other’s type based on observations of their previous actions. To

address the second limitation, one would ideally need to obtain

the value of the game, which then enables feedback control that

intrinsically satisfies the state constraints while optimizing the

expected payoff, either obsoleting or at least accelerating MPC.

A theoretical challenge toward these idealistic goals, however,

is that we do not have the existence proof or the characterization

of values for general-sum differential games with incomplete

information and state constraints [5]. Hence, we take a step

back and consider games with complete information, for which

Nash equilibrium exists [6] and therefore values are governed

by the Hamilton–Jacobi–Isaacs (HJI) equations. Computing

values, however, is known to encounter the curse of dimen-

sionality (CoD) using mesh-based dynamic programming (DP)

solvers [7]. Physics-informed neural network (PINN) has thus

been introduced to approximate values while circumventing

CoD [8]. Nonetheless, recent studies showed that while PINN

is successful at approximating Lipschitz continuous PDE so-

lutions [8], [9], [10], they encounter convergence issues when

applied to discontinuous ones [11]. In the context of HJI, such

value discontinuity arises when state constraints and temporal

logic specifications are imposed.

Within this context, this article investigates three PINN-based

solutions for approximating values of state-constrained differ-

ential games.

The first solution, called hybrid learning (HL), is devel-

oped based on the insight that discontinuity in value causes

sampling-based methods, such as PINN, to deviate from the true

solutions almost surely, since the measure of the discontinuous

boundaries is zero (or close to zero when we approximate

discontinuities with large-Lipschitz functions in practice). The

solution is thus to augment PINN with supervised equilibrium

data that cover discontinuous regions of the value landscape in

space and time. These equilibria are generated by solving bound-

ary value problems (BVPs) following Pontryagin’s maximum

principle (PMP) [12]. This solution requires human insights on

where the informative equilibrium trajectories with discontin-

uous values (e.g., collisions) lie and the global optimality of
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the BVP solutions. The challenge with sampling discontinuous

boundaries leads to the loss of spatiotemporal causality during

value approximation. Hence, the second solution, called value

hardening (VH), following curriculum learning [13], aims to

improve the chance of learning the discontinuous boundaries

by gradually increasing the Lipschitz constant of a constraint

violation penalty. The third solution, called epigraphical learning

(EL), is based on the epigraphical technique that transforms

discontinuous values of state-constrained games into Lipschitz

continuous ones defined in an augmented state space [14]. We

extend the existing technique from zero-sum games [15] to the

general-sum setting and apply PINN to approximate the smooth

augmented values.

We summarize the systemic design of experiments to be

used to evaluate and compare these solutions. Methods: vanilla

PINN, supervised learning (SL), HL, VH, EL methods, and

their variants. PDE dimensionalities: 5-D, 9-D, and 13-D.

As of writing, 13-D is largest dimensionality among ex-

isting test cases of HJ equations in the differential game

context. Dynamics: linear and nonlinear vehicle and drone

dynamics. Information settings: complete- and incomplete-

information two-player general-sum games. Performance met-

rics: both in- and out-of-distribution generalization and safety

performance.

We claim the following contributions.

1) We show that HL scales better than SL, VH, and EL to

high-dimensional cases in terms of both generalization

(value and action prediction) and safety (when values

are used for feedback control). The key factors for its

success are: i) the supervision on the co-state landscape,

which is directly related to the control policy, ii) the low

cost of PINN training in comparison to SL via solving

BVPs.

2) Consistent with [16], [17], and [18], our ablation stud-

ies highlight the sensitivity of generalization and safety

performance to the choice of neural activation functions,

and the need for adaptive activations. In particular, tanh

and continuously differentiable variants of relu, such as

gelu [19], achieve the best empirical performance when

combined with HL and adaptive activation.

3) While existing studies on solving HJ equations using

machine learning have shown promising results for reach-

ability analysis (e.g., [20]), the safety performance of

the resultant value networks when used as closed-loop

controllers is rarely investigated. We show in this article

that low approximation errors in value do not necessarily

indicate high safety performance when the approximated

value is used for closed-loop control.

This work is extended from its conference version [21] in the

following significant ways.

1) A thorough investigation of the efficacy of the EL tech-

nique when applied to solving differential games.

2) New studies to demonstrate and explain the convergence

challenge encountered when applying VH to 9-D and 13-D

problems.

3) New studies that demonstrate the importance of co-state

loss for high safety performance.

4) Extension of the existing DP solver [22] from zero-sum to

general-sum setting, which enables comparisons between

values approximated by DP, BVP, and PINN variants.

These comparisons allow us to show that values obtained from

all three are similar in the test cases and therefore guiding PINN

by open-loop BVP solutions through HL is reasonable.

The rest of this article is organized as follows. Section II

provides an overview of the relevant literature on value ap-

proximation, PINN, and complete- and incomplete-information

differential games. In Section III, we present the formulation

of two-player general-sum differential games with state con-

straints, its HJ PDEs, and explain the challenge in approximating

its discontinuous values through a toy case. We then discuss the

three potential solutions. The experimental results are presented

and analyzed in Section IV. We give discussion including safety

guarantee, consistency between BVP and HJI values, and effi-

cacy of co-state loss for safety performance in Section V. Finally,

Section VI concludes this article.

II. RELATED WORK

A. Value Approximation and PINN

The values of a general-sum differential game with two-

player and complete-information are viscosity solutions to HJI

equations [23], which are a set of first-order nonlinear PDEs.

The conventional approach to solving such equations involves

essentially nonoscillatory (ENO) schemes [24] and level set

methods [25], [26], which are known to provide accurate ap-

proximations of both temporal and spatial derivatives. How-

ever, these approaches suffer from CoD [27]. Recent studies

have shown that using PINN to approximate PDE solutions

can effectively circumvent the CoD due to its Monte Carlo

nature, provided that the solution is smooth [8]. PINN trains

neural nets as PDE-governed fields, where the training loss is

defined by network-induced residuals with respect to: a) the

boundary conditions [28], [29], b) the governing equations [18],

[20], and/or c) supervisory data drawn from the ground-truth

solutions [30]. Initial studies on convergence and generalization

performance have emerged for a) and b), under the assumption

that both the solution and the network are Lipschitz continu-

ous [9], [10], [28]. Recent studies have explored the effectiveness

of PINN for solving PDEs with discontinuous solutions, such as

Burgers’ equation, where both initial and terminal boundaries

are specified [18]. However, we demonstrate in Section III-E that

PDEs with only terminal or initial boundary conditions, such as

HJIs, present an unidentifiability challenge.

B. Differential Games With Incomplete Information

One driving motivation for approximating values of differ-

ential games is to use the values for fast belief updates on

unknown player types in incomplete-information settings. The

update follows Bayes inference and relies on modeling player

control policies as a type-conditioned distribution shaped by

their values (see Section IV-A for details). In the case study

on uncontrolled intersection (see Section IV-A), we evaluate

the safety performance induced by the value networks, which
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influence both players’ control policies and their belief up-

dates about the types of their fellow players. In addition, we

examine safety performance when players are “empathetic,”

i.e., when they share common beliefs about each other, and

when they are “nonempathetic,” i.e., when they falsely assume

that their true types are known by their fellow players. Our

study shares the same motivation as [31] in that both seek fast

computation of equilibrium during interactions. We take the

approach of precomputing values offline (which then enables

500 Hz policy generation frequency during inference time),

while Fridovich-Keil et al. [31] proposed to simplify games as

linear–quadratic which then facilitates fast (20 Hz) equilibrium

approximation online. Our investigation into differential games

with incomplete information sets us apart from previous HRI

studies that resort to various simplifications of the games in

order to balance theoretical soundness and practicality. These

simplifications involve modeling the games as optimal control

problems or complete-information ones [32], [33], [34], [35],

[36], [37]. While some also use belief updates to adapt motion

planning, they are limited to empirical best responses of the

uninformed player in one-sided information settings [38], [39],

[40], [41], [42]. A recent study proposes to synthesize safety

control policies that account for evolving uncertainty by consid-

ering both physical and belief dynamics [43]. This framework

is currently constrained to one-sided information settings, while

this article studies cases where both players lack information. It

is necessary to point out, however, that we will only investigate

best-response policies of players, i.e., the players choose the best

responses based on their current belief about their fellows (via

their common knowledge about the values of the games) without

considering the future dynamics of beliefs. This is because the

existence of value and player policies for general-sum differen-

tial games with incomplete information is still an open question,

unlike their zero-sum or discrete-time counterparts [44], [45],

[46], [47].

III. DISCONTINUOUS VALUE APPROXIMATION

A. Notations

In a two-player differential game with complete-information,

player i has a state spaceXi ⊂ R
n and an action spaceUi ⊂ R

m.

The time-invariant state dynamics of player i is denoted by

ẋi = fi(xi, ui) (1)

where xi ∈ Xi and ui ∈ Ui. We omit dependence on time when-

ever possible and use ai = (ai, a−i) to concatenate variables ai
from player i and a−i from the fellow player. We denote the par-

tial derivative with respect to x by ∇x· and the joint state space

byX :=
⋃

i=1,2 Xi. The fixed time horizon of the game is [0, T ].
The instantaneous loss of player i is denoted by li(xi, ui) and the

terminal loss gi(xi). Feasible states from player i’s perspective

are defined by the subzero level set {xi ∈ X | ci(xi) ≤ 0}. We

will consider ci(·) a scalar function that measures the worse state

constraint violation in case multiple constraints are present, i.e.,

if ci(xi) > 0,xi violates at least one of the constraints. The value

function of player i is denoted by ϑi(xi, t) : X × [0, T ] → R.

To simplify notation, we will use fi, li, gi, ci, and ϑi to refer to

the dynamics, losses, state constraint, and the value function of

player i. Denote byαi ∈ A : X × [0, T ] → Ui player i’s control

policy, where the policy space A is assumed to be common. We

use xxi,t,αi

s as the state of player i at time s if it follows policy

αi and dynamics fi starting from (xi, t). We denote states for

two players at time s as xxi,t,αi,α−i

s := (xxi,t,αi

s , xx−i,t,α−i

s ). All

acronyms are summarized in Appendix A.

B. Assumptions

Throughout this article, we assume that Ui is compact and

convex; fi : Xi × Ui → R
n and ci : X → R are Lipschitz con-

tinuous; li : Xi × Ui → R and gi : Xi → R are Lipschitz con-

tinuous and bounded.

C. Preliminary

HJI equations: Let (αi, α−i) be a pair of equilibrium policies.

The values for a two-player general-sum differential game are

viscosity solutions to the HJI equations denoted by (L) in (2),

and satisfy the boundary conditions denoted by (D) [48]

L(ϑi,∇xi
ϑi,xi, t, α−i) := ∇tϑi + max

ui∈Ui

{

∇xi
ϑT
i fi − li

}

= 0

D(ϑi,xi) := ϑi(xi, T )− gi = 0, for i = 1, 2. (2)

With the values, the players’ equilibrium policies can then

be derived by αi(xi, t) = arg maxui∈Ui
{∇xi

ϑT
i fi − li}. Notice

that L for player i depends on the equilibrium policy α−i of its

fellow.

PMP: Although solving the HJI equations would give a feed-

back control policy, it is often more practical to compute open-

loop policies for a specific initial state (x̄1, x̄2) ∈ X by solving

a BVP following Pontryagin’s minimum principle (PMP)1:

ẋi = fi, xi(0) = x̄i

λ̇i = −∇xi
hi, λi(T ) = −∇xi

gi

ui = arg max
ui∈Ui

{hi} for i = 1, 2 (3)

where λi is the time-dependent co-state for player i. The co-state

connects PMP and HJI through λi = ∇xi
ϑi. Solutions to (3) are

specific to the given initial states. Although PMP characterizes

local open-loop solutions, empirical studies (see Section V-B)

show that with an effort to search for global solutions, BVP

values are consistent with those governed by the HJI equations.

State-constrained value function: With state constraints, the

value function for player i with some equilibrium policy pair

(αi, α−i) is

ϑi(xi, t)=

∫ T

t

li
(

xxi,t,αi

s , αi

(

xxi,t,αi,α−i

s , s
))

ds+gi
(

xxi,t,αi

T

)

(4)

if ci(x
xi,t,αi,α−i

s ) ≤ 0, ∀s ∈ [t, T ], or +∞ otherwise. Thus,

state constraints introduce discontinuity in the value landscape.

1It should be noted that solving the BVP has its own numerical challenges,
particularly when the equilibrium involves singular arcs [49]. However, these
challenges are beyond the scope of this article.
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Fig. 1. (a) Value comparison among the learning methods for a simple 1-
D case. Red dots are the supervised data. (b) Evolution of the value function
due to gradually hardening delta function. Delta functions are shown on top.
Transparency reduces with hardening.

D. PINN for Solving HJ Equation

PINN trains neural networks ϑ̂i(·, ·) : X × [0, T ] → R to

approximate ϑi. We denote by D = {(x
(k)
1 , x

(k)
2 , t(k))}Kk=1 a

dataset consisting of uniform samples in X1 ×X2 × [0, T ]. The

formulation of the training problem in (5) extends from PINN

for solving zero-sum games [20]

min
ϑ̂1,ϑ̂2

L1

(

ϑ̂1, ϑ̂2; θ
)

:=
K
∑

k=1

2
∑

i=1

∥

∥

∥
L(ϑ̂

(k)
i ,∇xi

ϑ̂
(k)
i ,x

(k)
i , t(k))

∥

∥

∥

+ C1φ
(

D(ϑ̂i,x
(k)
i )

)

(5)

where ϑ̂
(k)
i is an abbreviation for ϑ̂i(x

(k)
i , t(k)) and C1 balances

the L1 PDE residual loss (‖L‖) and the boundary loss (φ(D)).
It is worth noting that in each iteration of solving (5), a sub-

routine is needed to find the control policies by maximizing the

Hamiltonian.

E. Challenge in Approximating Discontinuous HJI Values

We use the following toy case to explain the challenge in

approximating discontinuous values using PINN. Consider a 1-

D function ϑ(x), which is the solution to a differential equation

∇xϑ− δ(x) = 0 with the boundary condition ϑ(1) = 0 in the

interval x ∈ [−1, 1]. δ(x) is a delta function that peaks at x = 0.

Notice that with uniform samples for D, the PINN loss (L1) can

be minimized almost surely by incorrect solutions, e.g., ϑ̂(x) =
0. This unidentifiability issue is due to the differential nature

of the governing equation: the accuracy of ϑ̂ at one point in

space and time depends solely on that of its neighbors. However,

informative neighbors, i.e., those at x = 0 in this toy case, have

zero probability to be sampled.

F. Solutions

1) Hybrid Learning: In the above-mentioned toy case, we

can learn a much improved approximation to the solution using

only two informative data points sampled from each side of 0 (as

shown by the SL curve in Fig. 1). Indeed, Nakamura-Zimmerer

et al. [30] showed that SL can be used for value approximation.

A drawback of this approach, when applied to solving HJIs, is

its high data acquisition costs due to the need for repeatedly

solving BVPs to acquire state-value pairs. We hypothesize that

this drawback can be reduced by combining SL and PINN,

since evaluating and differentiating the latter only require one

forward pass of ϑ̂, which is usually much cheaper than calling

the Newton-type iterative algorithms involved in solving BVPs.

To implement this hybrid method, we define a dataset Ds =

{(x
(k)
i , t(k), ϑ

(k)
i ,∇xi

ϑ
(k)
i ) for i = 1, 2}Kk=1 derived from solv-

ing (3) with initial states uniformly sampled in X . We define the

supervised loss as follows:

min
ϑ̂1,ϑ̂2

L2

(

ϑ̂1, ϑ̂2;Ds

)

:=

K
∑

k=1

2
∑

i=1

∣

∣

∣
ϑ̂
(k)
i − ϑ

(k)
i

∣

∣

∣

+ C2

∥

∥

∥
∇xi

ϑ̂
(k)
i −∇xi

ϑ
(k)
i

∥

∥

∥
(6)

where C2 is a hyperparameter that balances the losses on value

and its gradient. The hybrid method minimizes L1 + L2.

2) Value Hardening: The second solution is to introduce a

surrogate differential equation, which has a continuous solution

that approximates the ground truth. We can then approximate

the true solution by gradually “hardening” this surrogate. For the

toy case, we can improve the solution by gradually hardening a

softened delta function, as shown in Fig. 1(b). Just like HL, this

method also introduces additional computation, as we turn one

learning problem into a sequence of easier learning problems.

In Section IV, we show that with a limited budget, VH fails to

converge for high-dimensional value approximation tasks where

HL succeeds. Finally, we note that VH is similar to [11], where

the authors introduce a gradually hardening diffusion term to

address the same discontinuity issue when solving nonlinear

two-phase hyperbolic transport equations using PINN.

3) Epigraphical Learning: Recall that the discontinuity of

value in our context is caused by state constraints in differential

games. It is shown that a smooth augmented value can be de-

rived through the EL technique for state-constrained differential

games [14], [15]. Our last approach utilizes this technique to

facilitate continuous value approximation in an augmented state

space and compute the value for the original game based on the

approximation. While HJ PDEs with state constraint have been

investigated in zero-sum settings and numerical approximation

of their values have been attempted via DP and conservative

Q-learning [15], [50], this article is among the first to solve

general-sum differential games with state constraints using a

combination of PINN and the EL technique. For completeness,

we briefly introduce the EL technique in the following section.

G. Epigraphical Technique for General-Sum Differential

Games With State Constraints

Let (α1, α2) be a pair of equilibrium policies. The Epigraph-

ical technique introduces an augmented value Vi : X × R ×
[0, T ]

Vi(xi, zi, t) := max

{

max
s∈[t,T ]

ci
(

xxi,t,αi,α−i

s

)

gi
(

xxi,t,αi

T

)

− zi(T )

}

. (7)
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The auxiliary state zi follows:

żi = −li(xi, ui) and zi(0) = z̄i (8)

where z̄i represents the true value of player i at (x̄i, t0) ∈ X ×
[0, T ] and is computed as follows: Find z̄i ∈ [zmin, zmax] such that

Vi(x̄i, z̄i, t0) = 0. If Vi(x̄i, z, t0) > 0 for all z ∈ [zmin, zmax],
then z̄i = +∞. Lemma 1 (Lemma 1 of [15]) formally establishes

this connection between the augmented value Vi and the true

value ϑi(xi, t).
Lemma 1: Suppose assumptions in Section III-B hold. For all

(xi, zi, t) ∈ X × R × [0, T ], ϑi and Vi are related as follows:

ϑi(xi, t)− zi ≤ 0 ⇐⇒ Vi(xi, zi, t) ≤ 0

ϑi(xi, t) = min zi s.t. Vi(xi, zi, t) ≤ 0. (9)

Proof: See Appendix B.

Lemma 2 (Lemma 2 of [15]) provides the optimality condition

for Vi(xi, zi, t), which is the basis for the derivation of HJ

equations with state constraints.

Lemma 2: Suppose assumptions in Section III-B hold. For all

(xi, zi, t) ∈ X × R × [0, T ], for small enough h > 0 such that

t+ h ≤ T we have

Vi(xi, zi, t) = min
αi∈A

max

{

max
s∈[t,t+h]

ci
(

xxi,t,αi,α−i

s

)

Vi (xi(t+ h), zi(t+ h), t+ h)

}

(10)

where xxi,t,αi,α−i

s and xi(t+ h) are solutions to (1) using

(xi, t, ui) and zi(t+ h) is a solution to (8).α−i is the equilibrium

policy of the fellow player.

Proof: See Appendix C.

Theorem 1 presents the HJ equations for players in a general-

sum differential game with state constraints.

Theorem 1 (HJ PDE with state constraints for general-

sum differential games): For all (xi, zi, t) ∈ X × R × [0, T ],
Vi(xi, zi, t) in (7) is a viscosity solution to the following HJ

PDE and boundary conditions:

max{ci (xi)− Vi(xi, zi, t)

∇tVi −Hi(xi, zi,∇xi
Vi,∇ziVi, t)} = 0 (11)

where Hi is the augmented Hamiltonian

Hi = max
ui∈Ui

−∇xi
V T
i fi +∇ziV

T
i li (12)

and Vi(xi, zi, T ) = max{ci(xi), gi(T )− zi(T )}.

Proof: See Appendix D.

To solve state-constrained HJ PDEs using PINN, we define

residuals similar to (2)

L̃(Vi,xi, zi, t) := max {ci (xi)− Vi(xi, zi, t)

∇tVi −Hi(xi, zi,∇xi
Vi,∇ziVi, t)}

D̃(Vi,xi, zi) := Vi(xi, zi, T )−max {ci(xi)

gi(T )− zi(T )} , for i = 1, 2. (13)

Thus, the overall loss can be expressed using the same formula-

tion as in (5)

min
V̂1,V̂2

L3

(

V̂1, V̂2; θ
)

:=

K
∑

k=1

2
∑

i=1

∥

∥

∥
L̃(V̂

(k)
i ,x

(k)
i , z

(k)
i , t(k))

∥

∥

∥

+ C3φ̃
(

D̃(V̂
(k)
i ,x

(k)
i , z

(k)
i )

)

.

(14)

To take advantage of the structure of Vi, we introduce two

networks Ai : X × [0, T ] → R and Bi : X × [0, T ] → R

V̂i(xi, zi, t) := max {Ai(xi, t), Bi(xi, t)− zi} . (15)

Essentially, Ai predicts the worse-case future constraint viola-

tion and Bi predicts the value of the game for player i without

considering the constraint. If Ai > 0, then V̂i > 0 and ϑ does

not exist, i.e., state constraint cannot be satisfied.

IV. CASE STUDY

We conduct empirical studies to compare the generalization

and safety performance of value approximation models using

five different learning methods: vanilla PINN (shortened as

PINN), HL, VH, EL, and SL. We use both vehicle and drone

simulations to formulate the games. The first simulation involves

an interaction between two players (i.e., vehicle) at an uncon-

trolled intersection, which leads to HJIs with coupled value

functions defined on a 5-D state space. We study both complete-

and incomplete-information settings using this simulation. The

second and third studies investigate model safety performance

on a 9-D state space. The former models a collision-avoidance

case and the latter a double-lane change case. It should be noted

that our settings, in terms of the dynamical models and the

state space dimensions, are similar to those of [20] and [4],

yet we extend from their optimal control or zero-sum settings

to general-sum differential games. The last case study on drone

collision avoidance investigates performance of PINN variants

on a higher dimensional state space (13-D) and on nonlinear

dynamics.

Data acquisition: The methods under comparison involve

diverse data acquisition algorithms (supervised data via iterative

BVP solving and PINN data via random sampling) and learning

algorithms (supervised and curriculum learning). Hence, we use

the total wall-clock time for data acquisition and learning as

a unified measure of the computational cost. To ensure a fair

comparison, the data size for each method is chosen to keep

their computational costs as close to each other as possible.

Computational costs of all the case studies are summarized in

Table I. To improve training convergence, we normalize the input

data to lie in [−1, 1].
Network architecture: For all cases, we will present results

obtained using fully connected networks with three hidden

layers, each comprising 64 neurons, and with tanh, relu, or

sin activation functions. The following experimentations on

network architecture were conducted but omitted to keep this

article concise. 1) Experiments on deeper and wider networks

did not lead to significant improvement in generalization and

safety performance, or qualitative changes to the conclusions

we will present. 2) We observe that gelu performs similarly to

tanh in terms of the generalization and safety performance.
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TABLE I
COMPUTATIONAL COSTS FOR ALL LEARNING METHODS IN ALL CASE STUDIES

Hardware: For all case studies, all methods except EL are

conducted on one workstation with 3.50 GHz Xeon E5-1620

v4 CPU and four GeForce GTX 1080 Ti GPU with 11GB

memory. Due to the increased dimensionality of the augmented

value in EL, we use an A100 GPU with 40GB memory to

achieve convergence. Our empirical results suggest that EL

is not as data efficient as the hybrid method even with this

advantage.

Performance metrics: Since all case studies involve collision

avoidance as their state constraints, our analysis will focus on

collision rate (Col.%) as a safety metric. Specifically, collision

rate is the probability of sampling an initial state for which

closed-loop control of both players using the value network leads

to a collision: Col.% = Npred/Ngt, where Npred is the number

of collision trajectories resulted from the value network and Ngt

is the number of collision-free trajectories resulted from solving

BVPs. Both share the same uniform samples of initial states. In

addition, we report in Case 1 generalization performance of the

value networks in terms of their mean absolute approximation

errors in value and control inputs along the test state trajectories.

The ground truth value and control inputs are derived from BVP.

Hypotheses: The following hypotheses will be tested empiri-

cally through the case studies.

1) With the same computational budget, HL yields better

generalization and safety performance than vanilla PINN,

VH, SL, and EL across all presented cases and settings.

The key ingredient for high safety performance is the

co-state loss.

2) The choice of the activation function and its parameters is

critical to the safety performance. In general, continuously

differentiable activations, e.g., tanhand sin, are bet-

ter than activations with discontinuous derivatives, e.g.,

relu.

A. Case 1: Uncontrolled Intersection

Experiment setup: The schematics of the uncontrolled inter-

section case and the parameters (R, L, and W for road length,

car length, and car width, respectively) are depicted in Fig. 2.

Each player is represented by two state variables: location (di)
and speed (vi), which together form the state of the player as

Fig. 2. (a) State trajectories of players projected to (d1, d2). Solid gray box:
collision area from the perspective of aggressive players; hollow boxes (magenta
for player 1 and blue for player 2): collision areas from the perspectives of
nonaggressive players. Red box: sampling domain for initial states. Color: Actual
values of player 1. (b) Uncontrolled intersection setup.

xi := (di, vi). The shared dynamics between the players follow

the equations ḋi = vi and v̇i = ui, where ui ∈ [−5, 10]m/s2

represents the scalar control input, i.e., the acceleration of the

player. The instantaneous loss is

li(ui) = u2
i (16)

and the player type-dependent state constraint is

ci(xi; θ) = δ(di, θi)δ(d−i, 1) (17)

where δ(d, θ) = 1 iff d ∈ [R/2− θW/2, (R+W )/2 + L] or

otherwise δ(d, θ) = 0. θ ∈ Θ := {1, 5} represents the aggres-

sive (a) or nonaggressive (na) type of a player, where the

nonaggressive player adopts a larger collision zone, see hollow

boxes in Fig. 2. The terminal loss is defined to incentivize players

to move across the intersection and restore nominal speed

gi(xi) = −µdi(T ) + (vi(T )− v̄)2 (18)

where µ = 10−6, v̄ = 18m/s, and T = 3 s. For hybrid, VH, and

vanilla PINN, we treat the state constraint as a penalty in a

modified instantaneous loss

l̃i(xi, ui; θ) = li(ui) + bσ(di, θi)σ(d−i, 1) (19)

where

σ(d, θ) = (1 + exp(−γ(d−R/2 + θW/2)))−1

(1 + exp(γ(d− (R+W )/2− L)))−1
(20)

γ = 5 is a shape parameter and b = 104 is chosen to be large

enough to avoid collisions, and cause a large Lipschitz constant

in the resulting value functions.

Data: For SL, 1.7k ground truth trajectories are generated

from initial states uniformly sampled in XGT := [15, 20]m ×
[18, 25]m/s by solving (3). Each trajectory consists of 31 × 2

data points (sampled with a time interval of 0.1s and for two

players), resulting in a total of 105.4 k data points. For vanilla

PINN and VH, 122 k states are sampled uniformly in XHJ :=
[15, 105]m × [15, 32]m/s. For HL, 1k ground truth trajectories

(62 k data points) are uniformly sampled in XGT , and 60k states

are uniformly sampled in XHJ . For EL, we first gather a sample

of 200 k states from XHJ to ensure adherence to the boundary
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conditions. Subsequently, additional 110 k states are sampled

from XHJ every 30 k training iterations, resulting in a total of

1300 k sampled data points upon completion of the training

process.

For the auxiliary state, recall that its initial value represents the

player’s value of the game. In the intersection case, the best-case

loss is −1.05 × 10−4 with zero collisions and control efforts,

while the worst-case loss without collision is 300 where the

player constantly uses the maximum acceleration or deceler-

ation. Hence, we uniformly sample zi ∈ [−1.05 × 10−4, 300].
The same sampling procedure is applied to all subcases with

enumeration of player types: (a, a), (na, a), (a, na), and (na,

na).

The selection of state spaces to sample from, namelyXGT and

XHJ , is based on various factors: In the case of ground truth tra-

jectories, the initial states for both players are uniformly sampled

from identical domains. This is because informative collision

and near-collision cases often occur when players start from

similar states. In addition, the range of locations for supervised

data is chosen as [15, 20]m to increase the likelihood of sampling

informative trajectories within the specified time window. The

speed range of [18, 25]m/s is selected based on typical vehicle

speed limits. For PINN and variants, the sample space XHJ

approximately covers all states that players can reach within the

time window. It is noteworthy that within XHJ ×XHJ , about

20% of the states will induce collisions. Adaptive sampling for

PINN, such as in [18], can potentially improve the data efficiency

further but is not studied in this article.

Training: All training problems except EL are solved using the

Adam optimizer with a fixed learning rate of 2 × 10−5. For SL,

the networks are trained for 100 k iterations. For vanilla PINN,

we adopt the curriculum learning method proposed in [20].

Specifically, we first train the networks for 10 k iterations using

122 k uniformly sampled boundary states at the terminal time.

We then refine the networks for 260 k gradient descent steps, with

states sampled from an expanding time window starting from

the terminal. For VH, we follow the same learning procedure,

but we soften the collision penalty using sigmoid functions

and gradually increased the shape parameter of the sigmoid to

harden the penalty. To keep the computational cost of VH similar

to that of the hybrid, we use 5.4k training iterations for each

hardening step for a total of 50 steps. For the hybrid method, we

pretrain the networks for 100 k iterations using the supervised

data and combine the supervised data with states sampled from

an expanding time window starting from the terminal time to

minimize L1 + L2 for 100k iterations. For EL, we first train the

network to fulfill the boundary condition over 50 k iterations.

Subsequently, we refine the network through 3 k gradient steps

per epoch, encompassing a total of ten epochs for every 30 k

training iterations. The network refinement process spans 300 k

training iterations in total.

It should be noted that our initial experiment with EL led

to poor generalization and safety performance. In the results we

will present, adaptive activations [18] and adaptive learning rates

are implemented, in addition to the use of a larger computational

budget, to slightly improve the performance, which still falls

short of that of HL.

TABLE II
GENERALIZATION AND SAFETY PERFORMANCE (COLLISION RATE) ON

COMPLETE-INFORMATION GAMES

1) Results for Complete-Information Games: We generate

a separate set of 600 ground truth trajectories for each of the

four player type configurations by solving BVPs, with initial

states uniformly sampled from XGT . To evaluate generalization

performance, we measure the mean absolute errors (MAEs) of

value and control input predictions, denoted by |ϑ− ϑ̂| and

|u− û|, respectively, across the test trajectories. For safety

performance, we use the learned value networks to compute

the players’ closed-loop control inputs and the state trajectories.

From all resulting trajectories computed based on test initial

states, we report the percentage of collisions that are avoidable

according to BVP solutions. The performance results are sum-

marized in Table II, where we averaged the performance of (a,

na) and (na, a) due to their symmetry. Sample trajectories for

(a, a) are shown in Fig. 3.

To further evaluate the out-of-distribution performance of

supervised and HL, we repeat the tests using 500 uniformly

sampled initial states in XXP := [15, 30]m × [18, 25]m/s. The

results are summarized in the same table and figure. In both

tests, the hybrid method demonstrates the best generalization

and safety performance. Notably, the vanilla PINN exhibits poor

generalization due to value discontinuity. EL performs only

better than vanilla PINN in regard of safety. Further inspection

shows that EL can actually identify the backward reachable

sets (i.e., unsafe zones) well, see Fig. 4. To elaborate, given
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Fig. 3. (a), (g) Ground truth trajectories (projected to d1-d2) for XGT and
XXP , respectively. (b)–(f), (h)–(l) Trajectories generated using hybrid, VH,
epigraphical, supervised, and vanilla PINN methods under XGT and XXP ,
respectively. Color: Actual equilibrial values of player 1 along the trajectories.
Trajectories with inevitable collisions are removed for clearer comparison on
safety performance. Red dots represent initial states with avoidable collisions.

t ∈ [0, T ] and a value network V̂ trained for fix player types

(a, a), the unsafe zone is defined as {x ∈ XXP |V̂ (x, t) > 0}.

We approximate the ground truth unsafe zone by computing

trajectories of sample initial states in XXP by solving (3) [see

Fig. 4(a)]. We compare the ground truth with the approximations

from hybrid and EL in Fig. 4(b) and (c). The results here reveal

an important limitation of values approximated through PINN:

TABLE III
SAFETY PERFORMANCE (COLLISION RATE) W/ DIFFERENT ACTIVATION

FUNCTIONS (W/ L1) AND BOUNDARY NORMS (W/ tanh)

High empirical accuracy in characterizing the unsafe zone does

not necessarily imply high safety performance, such as in the

case of EL. This is potentially because feedback control requires

accurate approximation of the value gradients instead of the

segmentation of value in space–time [see |u− û| comparison

in Fig. 4(i)]. For the same reason, high safety performance does

not imply high accuracy in characterizing the unsafe zone either,

such as in the case of HL. We further verify that adding the

supervised co-state loss to EL improves its safety performance

to be comparable with that of HL. See Section V-C for details.

Ablation studies: We conduct ablation studies to understand

the effects of activation functions and the norm of the boundary

loss on model performance. Safety results are summarized in

Table III for player types (a, a) and using the HL method,

with training and testing conducted in XGT . The corresponding

trajectories are visualized in Fig. 5. The results indicate that:

1) the choice of the activation function significantly affects the

resultant models, withtanh outperformingrelu andsin, and

2) the choice of the boundary norm does not have a significant

influence.

Remarks: We note that relu networks have been shown

to converge to piecewise smooth functions in a supervised

setting [51]. However, convergence in the PINN setting requires

continuity of the network and its gradient [9], which relu does

not offer. Our results are consistent with those of [18], where

relu underperforms in solving PDEs. We note, however, that

smooth variants of relu, such as gelu, can achieve perfor-

mance comparable to that of tanh. We also note that while

sin does not perform well for Case 1, it achieves comparable

performance to tanh in Cases 2–4 (see Sections IV-B, IV-C,

and IV-D). This result suggests that fine-tuning of the frequency

parameter of sin is necessary and case-dependent [52].

2) Results for Incomplete-Information Games: In games

with incomplete information, we investigate the effectiveness of

using value networks both for closed-loop control and for belief

updates: Each player is uncertain about the types of the other

players and therefore holds a belief about their fellow player’s

types. A belief is a probability distribution over the type space

and is updated over time as the player observes new actions from

their fellow player. We examine two belief update settings: the

first assumes that players have common prior belief and syn-

chronized belief dynamics [53]. In other words, player i knows

about player j’s uncertainty about player i’s type. We refer to

players in this setting as “empathetic.” The second setting is

nonempathetic, where player i falsely assumes that player j has
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Fig. 4. (a) Ground truth safe/unsafe initial states projected to d1-d2 frame, where black dots represent collision-free trajectories while orange dots depict
trajectories with collision. (b) Value contours at initial time to classify safe/unsafe zones using HL. (c)–(h) Value contours along time using EL. Blue (red) regions
represent unsafe (safe) states. (i) Comparison of mean and standard deviation of |u− û| from HL and EL across test trajectories sampled from XGT .

Fig. 5. Trajectories generated using neural networks with (a) relu and (b)
sin activation functions and using L1 for boundary norm (for tanh, refer to
Fig. 3); trajectories generated using (c) L1- and (d) L2-norms for the boundary
values and using tanh for activation. All trajectories are based on HL.

full knowledge about player i’s type. We follow [54] to simulate

the state and belief dynamics: We model player i to continuously

update its belief based on observations, and then determine its

next control inputs based on the value network parameterized

by the most likely type of player j as well as player i’s truth

type. We evaluate the efficacy of the hybrid and supervised

methods, which achieve the best performance across cases, by

measuring their safety performance in incomplete-information

settings. The simulations use the same initial states as tests in

the complete-information games.

Empathetic belief update: We consider the case where play-

ers can take one of the two types: Θ = {a, na}. Let Dt =
{(x(k),u(k))}tk=1 be a finite set of observed states and control

inputs of both players accumulated up to time t. Let pi(t) :=
Pr(θi = a | Dt−1) be the belief of player j about player i at the

beginning of time step t, and qθ̂i (t) := Pr(ui(t) |x(t), θ̂) where

θ̂ ∈ {(a, a), (a, na), (na, a), (na, na)} is a point estimate of θ

based on the current beliefs p.

We assume player i’s control policy follows a Boltzmann

distribution:

qθ̂i (t) =
ehi(xi(t),ui(t),t;θ̂)

∑

U ehi(xi(t),u′
i
,t;θ̂)

(21)

where

hi(xi(t), ui(t), t; θ̂) = ∇xi
fTi ϑθ̂

i − l̃θ̂ii (22)

where ϑθ̂

i is player i’s approximated value if the game is played

with player types θ̂, and l̃θ̂ii is the instantaneous loss that incor-

porates the collision penalty if player i is of type θ̂i.

Denote the marginal by qθ̂ii (t) := Pr(ui(t)|x(t), θ̂i), we have

qθ̂ii (t) = q
(θ̂i,a)
i (t)p−i(t) + q

(θ̂i,na)
i (t)(1− p−i(t)). (23)

Given the observations Dt, pi follows a Bayes update:

pi(t+ 1) =
qai (t)pi(t)

qai (t)pi(t) + qnai (t)(1− pi(t))
. (24)

Remarks:

1) If any element of p(t) is mistakenly assigned a zero

probability, this mistake cannot be corrected in future

updates. To address this, we modify p(t) using

p(t) ⇐ (1− ε)p(t) + εp(0) (25)

before its next update and set the learning rate 1− ε =
0.95. p(0) represents the initial belief.
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TABLE IV
COLLISION RATE IN UNCONTROLLED INTERSECTIONS WITH INCOMPLETE

INFORMATION: E - EMPATHETIC, NE - NONEMPATHETIC

2) To make (21) more tractable, we discretize the space of

control inputs as U := {−5,−4, . . ., 0, . . ., 10}m/s2. In

addition, we used discrete time steps with a time interval

of 0.05 s to simulate the interactions.

3) We test two settings of initial beliefs. In the first setting,

each player believes that the other player has a proba-

bility of 80% of being aggressive; in the second setting,

the probability is 20%. These initial beliefs correspond

to p(0) = (0.8, 0.2) and p(0) = (0.2, 0.8), respectively.

While a more extensive test over the initial belief space

could be interesting, it is beyond the scope of this study.

Nonempathetic belief update: A nonempathetic player up-

dates its belief about the other player’s type by assuming that his

type is known. Let the true types be θ∗. Player −i’s belief about

player i’s type now becomes a conditional p′i(t) := Pr(θi =
a|Dt−1, θ

∗
−i). The Bayes update of p′i(t) follows:

p′i(t+ 1) =
q
(a,θ∗

−i
)

i (t)p′i(t)

q
(a,θ∗

−i
)

i (t)p′i(t) + q
(na,θ∗

−i
)

i (t)(1− p′i(t))
. (26)

Consequently, each player starts with its own belief, which are

not necessarily common during the interaction.

Control policy: Given the beliefspi(t)orp′i(t), player−ifinds

the most likely type of player i. The control policy of player i is

determined by the value function corresponding to (θ∗i , θ̂−i). It

is worth noting that player i employs a policy that is consistent

with its true type, even if player j holds an incorrect belief about

player i, which player i acknowledges in the empathetic setting.

This setup allows players to signal their own types through their

actions.

Simulation results: We present simulated interactions be-

tween two players at an uncontrolled intersection in an

incomplete-information setting. The simulations are performed

on a grid that enumerates the following settings: (empathetic,

nonempathetic) × (correct prior, wrong prior) × (aggressive,

nonaggressive), where both players have identical settings to

limit the scope. For each setting, we evaluate the safety perfor-

mance of the value approximation models learned through the

hybrid and supervised methods using test samples from XGT .

Table IV summarizes the results that the hybrid models have

a lower chance of collision than the supervised ones under all

settings.

Fig. 6. Narrow road collision avoidance setup with two players.

B. Case 2: Narrow Road Collision Avoidance

Experiment setup: The schematic is depicted in Fig. 6, where

the states of player i consist of its location (pxi , pyi ), orientation

(ψi), and speed (vi), denoted as xi := [pxi , p
y
i , ψi, vi]

T . The

system dynamics is modeled using a unicycle model
⎡

⎢

⎢

⎣

ṗxi
ṗyi
ψ̇i

v̇i

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

vi cos(ψi)
vi sin(ψi)

ωi

ui

⎤

⎥

⎥

⎦

(27)

where ωi ∈ [−1, 1]rad/s and ui ∈ [−5, 10]m/s2 are control in-

puts that represent angular velocity and acceleration, respec-

tively. The instantaneous loss incorporates control effort

li(xi, ui; θi) = kω2
i + u2

i (28)

where k = 100. The state constraint is

ci(xi) = η −
√

((R− px2)− px1)
2 + (py2 − py1)

2 (29)

where η = 1.5m and R = 70m. ci(·) > 0 is considered as a

collision incident. The parameter R represents the length of the

road, and η = 1.5m is the collision threshold. The terminal loss

is designed to encourage players to move along the lane and

restore nominal speed

gi(xi) = −µpxi (T ) + (vi(T )− v̄)2 + (pyi (T )− p̄y)2 (30)

where µ = 10−6, v̄ = 18m/s, p̄y = 3m, and T = 3 s. For hy-

brid, VH, and vanilla PINN, we treat the state constraint as a

penalty in a modified instantaneous loss

l̃i(xi, ωi, ui) = kω2
i + u2

i + bσ(xi, η) (31)

where the penalty function is defined as

σ(xi, η) = (1 + exp(−γci(xi)))
−1.

The parameter b is set to 104 to impose a high penalty on

collision, while γ = 5 is a shape parameter.

Data: For SL, we generate 1.45 k ground truth trajectories

by uniformly sampling initial states from XGT := [15, 20]m ×
[2.25, 3.75]m × [−π/180, π/180]rad × [18, 25]m/s, resulting

in a total of 89.9 k data points. For vanilla PINN and its

VH variant, we uniformly sample 122 k states from XHJ :=
[15, 90]m × [0, 6]m × [−0.15, 0.18]rad × [18, 25]m/s. For HL,

we generate 1 k ground truth trajectories (62k data points) by uni-

formly sampling initial states from [15, 20]m × [2.25, 3.75]m ×
[−π/180, π/180]rad × [18, 25]m/s and sample 60k states

uniformly from [15, 90]m × [0, 6]m × [−0.15, 0.18]rad × [18,
25]m/s. For EL, we introduce an auxiliary state zi with a range

of [−9 × 10−5, 300] to account for both the best- and worst-case

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12,2025 at 04:16:40 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: VALUE APPROXIMATION FOR TWO-PLAYER GENERAL-SUM DIFFERENTIAL GAMES WITH STATE CONSTRAINTS 4641

TABLE V
COLLISION RATE W/ DIFFERENT ACTIVATION FUNCTIONS

Fig. 7. Narrow road collision avoidance visualization. (a) Ground truth safe
trajectory. Transparency reduces along time. (b)–(f) Trajectories generated using
hybrid, VH, epigraphical, supervised, and vanilla PINN models, respectively.

scenarios. We employ the same settings as in Case 1 for the

remaining aspects of the experiment.

Training: For vanilla PINN, we pretrain the networks for 10

k iterations using 122 k uniformly sampled boundary states and

then train them for 430 k iterations. For VH, we use 8.8 k training

iterations for each hardening step and a total of 50 steps for a

fair comparison. The remaining settings are the same as those

in Case 1.

Results: We evaluate the safety performance of the methods

on a test set of 600 ground truth collision-free trajectories with

initial states drawn from XGT . The results are summarized in

Table V, and the distance between players during interactions

is visualized in Fig. 8. Similar to Case 1, the HL method

outperformed the others. Fig. 7 demonstrates interactions from

the same initial state in which only the hybrid method avoids a

collision.

We notice that VH fails to generalize well in this higher

dimensional case (and in Case 3). We hypothesize that vanilla

PINN, which VH is based on, is less scalable in compute than

hybrid PINN as the state dimensionality increases.

While the relationship between learning dynamics of PINN

and state dimensionality is yet to be understood, here we empiri-

cally show that VH PINN requires significantly higher compute

to converge in Case 2 due to its higher state dimensionality.

To make this empirical study more tractable, we use a mildly

softened collision penalty with γ = 0.1 in both Case 1 and 2.

We uniformly sample 122k states fromXHJ and train the model

using ten hardening steps until γ reaches 0.1. To visualize the

convergence, in Fig. 9 we show the value along a randomly

chosen equilibrium trajectory derived from PMP for Case 1

Fig. 8. (a) Ground truth distance between players over time for XGT . (b)–(f)
Distance between players over time using hybrid, VH, epigraphical, supervised,
and vanilla PINN under XGT , respectively. Red dashed line represents the
threshold distance for collision.

Fig. 9. (a) VH uses 20k training iterations for each hardening step, for a total
of ten steps to converge to ground truth in Case 1. (b) VH uses 20k/110k training
iterations for each hardening step, for a total of ten steps to converge to ground
truth in Case 2. Compared to Case 1, VH takes around 5.6 times longer to
converge to the ground truth in Case 2.

(left) and Case 2 (right). We can see that by 20k iterations,

VH already converges to the ground truth in Case 1, while in

Case 2, convergence requires more than 110 k iterations.

C. Case 3: Double-Lane Change

Experiment setup: The schematic is shown in Fig. 10, de-

picting the states of player i as its location (pxi , pyi ), orientation

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 12,2025 at 04:16:40 UTC from IEEE Xplore.  Restrictions apply. 



4642 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 10. Double-lane change setup with two players.

(ψi), and speed (vi). xi := [pxi , p
y
i , ψi, vi]

T . The dashed blue

and orange color (with increasing transparency along the x-axis)

in the figure represents desired trajectories for both players.

We use the same unicycle model and instantaneous loss as in

Section IV-B. The terminal loss is set to incentivize players to

stay within their respective lanes and regain the nominal speed

gi(xi) = − µpxi (T ) + (pyi (T )− p̄yi )
2

+ (vi(T )− v̄)2 + κ(ψi(T )− ψ̄)2 (32)

where µ = 10−6, κ = 100, p̄y1 = 6m for player 1 and p̄y2 = 2m

for player 2, v̄ = 18m/s, ψ̄ = 0 rad, and T = 4s.

Data: In the case of SL, we generate 1.45k ground truth

trajectories by uniformly sampling initial states from the

set X 1
GT := [0, 3]m × [1.25, 2.75]m × [−π/180, π/180]rad ×

[18, 25]m/s for player 1, and X 2
GT := [0, 3]m × [5.25, 6.75]m ×

[−π/180, π/180]rad × [18, 25]m/s for player 2, resulting in a to-

tal of 118.9k data points. For vanilla and VH PINN, we uniformly

sample 162k states from the set X 1
HJ := [0, 95]m × [0, 6]m ×

[−0.15, 0.13]rad × [17, 26]m/s for player 1, and X 2
HJ :=

[0, 95]m × [2, 8]m × [−0.13, 0.15]rad × [17, 26]m/s for player

2. In the case of HL, we generate 1k ground truth trajectories

(82 k data points) by uniformly sampling initial states fromX 1
GT

for player 1, and X 2
GT for player 2. In addition, we sample 80 k

states uniformly from X 1
HJ for player 1, and X 2

HJ for player 2.

For EL, we initially gather a sample of 200 k states from XHJ

to ensure adherence to the boundary condition. We set the range

of the auxiliary state zi as [−9.5× 10−5, 400]. All other settings

follow Case 1.

Training: In this experiment, we employ the Adam optimizer

with a constant learning rate of 1× 10−4. For vanilla PINN,

we initiate the pretraining phase with 10k iterations, utilizing

162 k boundary states uniformly sampled. Subsequently, we

continue with the training phase, performing 350 k iterations.

For VH, we set the training duration for each hardening step to

7.2 k iterations, completing a total of 50 steps to ensure a fair

comparison. All other settings remain consistent with those of

Case 1.

Results: We assess the safety performance on a test set

comprising 600 ground truth collision-free trajectories. These

trajectories are generated by sampling initial states from XGT .

The results are summarized in Table VI, while the interaction

distances between players are visualized in Fig. 11. Similar

to Cases 1 and 2, the hybrid method demonstrates superior

performance compared to the others. Similar to Case 2, VH fails

to generalize effectively within a computational budget similar

to HL. Fig. 12 shows interaction trajectories starting from one

TABLE VI
COLLISION RATE W/ DIFFERENT ACTIVATION FUNCTIONS

Fig. 11. (a) Ground truth distance between players over time for XGT . (b)–(f)
Distance between players over time using hybrid, VH, epigraphical, supervised,
and vanilla PINN models under XGT , respectively. Red dashed line represents
the threshold distance for collision.

particular initial state where the hybrid method achieves safe

interaction while the others fail.

D. Case 4: Two-Drone Collision Avoidance

Experiment setup: In this experiment, we consider that the

states of player i consist of its location (pxi , pyi , pzi ), and speed

(vxi , vyi , vzi ), denoted as xi := [pxi , p
y
i , p

z
i , v

x
i , v

y
i , v

z
i ]

T . We use

the flight dynamics (in the near-hover regime, at zero yaw with

respect to a global coordinate frame) described in [42]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ṗxi
ṗyi
ṗzi
v̇xi
v̇yi
v̇zi

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

vxi
vyi
vzi

g tan(θi)
−g tan(φi)

τi − g

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(33)
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Fig. 12. Double-lane change visualization. (a) Ground truth safe trajectory. Transparency reduces along time. (b)–(f) Trajectories generated using hybrid, VH,
epigraphical, supervised, and vanilla PINN models, respectively.

where the tracking control ui = (θi, φi, τi) corresponds to roll,

pitch and thrust. In this experiment, θi ∈ [−0.05, 0.05]rad, φi ∈
[−0.05, 0.05]rad, τi ∈ [7.81, 11.81]m/s2, and g = 9.81m/s2.

Note that we have assumed a zero yaw angle for the quadrotor.

The instantaneous loss considers the control effort and the

collision penalty

l̃i(xi, ωi, ui) = kθ tan
2(θi) + kφ tan

2(φi)

+ (τi − g)2 + bσ(xi, η) (34)

where the penalty function is defined as

σ(xi, η) = (1 + exp(γ(S − η)))−1

S=
√

((Rx − px2)− px1)
2 + ((Ry − py2)− py1)

2 + (pz2 − pz1)
2.

b = 104 and γ = 5. In addition, the parameters Rx = 5m and

Ry = 5m are used to transform the coordinate positions of the

two players along the x and y axes, respectively. The values of

kθ = 100 and kφ = 100 determine the tradeoff between control

effort for roll, pitch, and thrust. Furthermore, η = 0.9m repre-

sents the collision threshold. The terminal loss is set to encourage

players to move along their respective x and y directions, to

return to 0m on the z-axis, and to remain stationary when the

simulation is complete

gi(xi) = − µpxi (T )− µpyi (T ) + (pzi (T )− p̄zi )
2

+(vxi (T )− v̄xi )
2 + (vyi (T )− v̄yi )

2 + (vzi (T )− v̄zi )
2

(35)

where µ = 10−6, p̄zi = 0m, v̄xi = v̄yi = v̄zi = 0m/s, and T = 4s.

In this case study, we only compare the generalization and safety

performance between the hybrid and the supervised methods,

and use vanilla PINN as a baseline. VH and EL are dropped

from the comparison since they do not generalize well in high-

dimensional cases as we found in Sections IV-B and IV-C.

Data: In the case of SL, we generate 1.25k ground

truth trajectories by uniformly sampling initial states from

the set XGT := [0, 1]m × [0, 1]m × [−0.1, 0.1]m × [2, 4]m/s ×
[2, 4]m/s × [0, 0.1]m/s, resulting in a total of 102.5k data

points. For vanilla PINN, we uniformly sample 162k states

from the set XHJ := [0, 15.5]m × [0, 15.5]m × [−1.8, 2]m ×
[0.3, 4.5]m/s × [0.3, 4.5]m/s × [−1.8, 1.8]m/s. In the case of

HL, we generate 1 k ground truth trajectories (82 k data points)

by uniformly sampling initial states from XGT . In addition, we

sample 80k states uniformly from XHJ .

Training: We use the Adam optimizer with a fixed learning

rate of 1× 10−4. For vanilla PINN, we pretrain the networks for

100k iterations using 162k uniformly sampled boundary states

and subsequently train them for an additional 400k iterations.

TABLE VII
COLLISION RATE W/ DIFFERENT ACTIVATION FUNCTIONS

Fig. 13. Two-drone collision avoidance visualization. (a) Ground truth safe
trajectory. (b)–(d) Trajectories generated using hybrid, supervised, and vanilla
PINN models, respectively.

The remaining settings for this experiment align with those used

in Case 1.

Results: We assess the safety performance on a test set

comprising 600 ground truth collision-free trajectories. These

trajectories are generated by uniformly sampling initial states

from XGT . The results are summarized in Table VII, while the

interaction distances between players are visualized in Fig. 14.

Similar to the first three cases, the HL method demonstrates

superior performance compared to the other methods. Fig. 13

visualizes the trajectories starting from a particular initial state

where the hybrid method achieves safe interaction, while the

other baselines yield collisions and undesired trajectories.
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Fig. 14. (a) Ground truth distance between players over time for XGT . (b)–
(d) Distance between players over time using hybrid, supervised, and vanilla
PINN models underXGT , respectively. Red dashed line represents the threshold
distance for collision.

V. DISCUSSION

A. Safety Guarantee

We note that our method does not provide safety certificate

in its current form and discuss potential future directions. Policy

certification: For fixed-time differential games, it is possible to

consider the interaction, i.e., the interchanging computation of

actions (via approximated value gradients) and states (via an

ODE solver), as a neural-network controlled system (NNCS),

for which certification tools emerge [55], [56]. It should be noted

that reachability analysis of NNCS is currently limited to small

state space (due to the exponential growth in the approximation

polynomial degree with respect to the state space dimension-

ality [55]), small Lipschitz constant (due to linear growth of

approximation error with respect to the Lipschitz constant of the

neural network), and small network sizes (e.g., four layers each

with 20 neurons in [55]). Specifically, reachability analysis (e.g.,

forward [57], backward [58], or automated [59] methods) for

NNCS can be applied to a 6-D quadrotor system. However, these

analyses are limited to small network sizes and face challenges

in achieving real-time verification for each closed-loop policy

using trained models. Post-hoc state-constrained control: When

policy certification becomes intractable, an alternative could be

to use a linear–quadratic reformulation of the game with con-

servative state constraint approximation for online computation

of policies. In this setting, the value approximation network

offers good initial policy guesses. This method trades off overall

performance of policies in attaining Nash equilibrium for a

computationally tractable safety guarantee. A recent study [60]

explores online value approximations with safety guarantees

for zero-sum games, yet it does not cover general-sum games

and safe reachable analysis of online policy computation. Hsu

et al. [61] proposed a unified framework to review the existing

safety analysis approaches for closed-loop policy.

Fig. 15. (a), (c) Difference |ϑBVP − ϑDP| in (d1, d2) frame with v1,2 =
18m/s at t = 0 using DP spatial resolution dx = 0.5 and dx = 0.3, respec-
tively. (b), (d) Numerical solutions ϑ obtained through DP and BVP solver,
respectively. (e) Difference |ϑBVP − ϑVH| in (d1, d2) frame with v1,2 = 18m/s
at t = 0. (f) Approximated solutions ϑ obtained through HJI-based learning
approach-VH.

B. Consistency Between BVP and HJI Values

Recognizing that PMP is only necessary conditions for local

optimality [62] while HJ solutions satisfy global optimality, we

adopted multiple initial guesses to solve BVPs in order to seek

global solutions. This treatment was applied to all case studies.

Taking Case 1 as an example, we initialize the BVP solver

with four state trajectories that follow constant control inputs:

{(−5,−5)m/s2, (−5, 10)m/s2, (10,−5)m/s2, (10, 10)m/s2}.

These trajectories represent four categories of interactions

where each of the players either yield or accelerate through

the intersection, and potentially lead to different equilibria. To

address the issue with multiplicity of equilibrium, we choose

the one that yields the best sum of values (i.e., Pareto optimal

Nash equilibrium).

In the following, we empirically show that this treatment

leads to consistent value landscapes between BVP and HJI. A

visualization of the comparison uses the value contour from Case

1, projected to (d1, d2) with fixed v1,2 = 18m/s and t = 0 and

with player types (a, a). See Fig. 15.

To compute values from the BVP solver, we sample initial

states from [15, 40]m × [15, 40]m with fixed v1,2 = 18m/s and

with the spatial resolution dx = 0.3m. For each initial state, we

solve the BVP and compute ϑ at t = 0.
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Fig. 16. (a), (c) Trajectories generated using HL w/o and w co-state loss under
XGT . (b), (d) Trajectories generated using EL w/o and w co-state loss under
XGT .

For HJI values, we consider two approximations of the ground

truth. First, we extend an existing HJ PDE solver [22] from

zero-sum to general-sum. Since this DP solver has limited

scalability with respect to state dimensions (up to 6-D as

demonstrated in [22]), we only applied the solver to Case 1

where values are 5-D. The value difference between BVP and

the DP solver, |ϑBVP − ϑDP|, is visualized for two DP spatial

resolution settings: dx = 0.5 and dx = 0.3 in Fig. 15(a) and

(c), respectively. dx = 0.3 is the highest resolution supported

by our computing hardware. Note that values reported do not

take into account constraint violation penalty, and unsafe states

are assigned a constant value of −100. We observe that the

difference |ϑBVP − ϑDP| decreases as the resolution improves,

and expect the trend to continue if the resolution were to be

further increased. Since the DP solver has limited resolution,

we resort to VH as a second approximation of the ground truth

because it achieves relatively good generalization performance

without using supervisory data in Case 1. Fig. 15(e) visualizes

the value difference between BVP and VH, |ϑBVP − ϑVH|, which

again shows the similarity between the two.

C. Importance of the Co-State Loss for Safety Performance

Finally, we provide details on the empirical study where we

show that achieving good safety performance requires accuracy

co-state (value gradient) approximation. While the epigraphical

technique facilitates smooth value approximation, it does not

explicitly enforce small approximation errors on co-states. In

the following, we conducted a comparison between the HL

and the EL methods with identical training settings for Case

1: During their training, HL and EL uniformly sample 1 k

ground-truth trajectories (62 k data points) in XGT and 60 k

states in XHJ . In addition, we uniformly sample the auxil-

iary state zi ∈ [−1.05 × 10−4, 300] for EL. Both methods are

solved using the Adam optimizer with a fixed learning rate of

2 × 10−5. We pretrain the networks for 100 k iterations using

the supervised data and combine the supervised data with states

sampled from an expanding time window starting from the

terminal time to minimize L1 + L2 [(5) and (6)] and L2 + L3

[(6) and (14)] with 100k iterations for HL and EL, respectively.

We show that the safety performance of EL is still worse than HL

when using supervised data without the co-state loss in L2 [see

Fig. 16(b)], and its safety performance significantly improves

when the co-state loss is considered [see Fig. 16(d)]. On the

other hand, Fig. 16(a) shows that HL performs worse without

the co-state loss. Hence, we conjecture that ensuring good safety

performance requires not only small approximation errors for

values but also for co-states.

VI. CONCLUSION

We proposed an HL method that combines the strengths

of SL and vanilla PINN to approximate discontinuous value

functions as solutions to two-player general-sum differential

games. The proposed method yields better generalization and

safety performance than an array of baselines, including SL,

vanilla PINN, VH, and EL, when using the same computational

budget. We empirically demonstrate that the co-state loss is the

key factor for high safety performance, and the choice of the

activation function and its parameters is crucial to the safety

performance of learned models. Finally, all results in this article

can be reproduced using our code.2

APPENDIX A

SUMMARY OF ACRONYMS

Table VIII summarizes acronyms used in this article.

TABLE VIII
ACRONYMS USED THROUGHOUT THIS ARTICLE

APPENDIX B

PROOF OF LEMMA 1 (FOLLOWING PROOFS IN [15])

Proof:

i) ϑi(xi, t)− zi ≤ 0 implies that there exists αi ∈ A such

that
∫ T

t

li
(

xxi,t,αi

s , αi

(

xxi,t,αi,α−i

s , s
))

ds

+ gi
(

xxi,t,αi

T

)

− zi ≤ 0 (36)

2[Online]. Available: https://github.com/dayanbatuofu/Value_Appro_Game
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and ci(x
xi,t,αi,α−i

s ) ≤ 0 for s ∈ [t, T ]. Thus, there exists

αi such that Vi(xi, zi, t) ≤ 0.

ii) Vi(xi, zi, t) ≤ 0 and ci(x
xi,t,αi,α−i

s ) ≤ 0 implies that

there exists αi ∈ A such that

∫ T

t

li
(

xxi,t,αi

s , αi

(

xxi,t,αi,α−i

s , s
))

ds

+ gi
(

xxi,t,αi

T

)

− zi ≤ 0 (37)

which concludes ϑi(xi, t)− zi ≤ 0. �

APPENDIX C

PROOF OF LEMMA 2 (FOLLOWING PROOFS IN [15] AND [63])

Proof: For any policy αi and a small step h > 0, we can use

(7) to derive the following relation (α∗
−i represents equilibrium

policy for the fellow player of player i):

Vi(xi, zi, t) = min
αi∈A

max

{

max
s∈[t,T ]

ci

(

x
xi,t,αi,α

∗
−i

s

)

gi
(

xxi,t,αi

T

)

− zi(T )
}

= max

{

max
s∈[t,t+h]

ci(x
xi,t,αi,α

∗
−i

s )

max

{

max
s∈[t+h,T ]

ci

(

x
xi,t,αi,α

∗
−i

s

)

gi
(

xxi,t,αi

T

)

− zi(T )
}}

.

There exists two different policies αi1 , αi2 ∈ A such that

αi =

{

αi1(s), s ∈ [t, t+ h]
αi2(s), s ∈ (t+ h, T ].

Then, we have

Vi(xi, zi, t) = min
αi1

∈A,αi2
∈A

max

{

max
s∈[t,t+h]

ci

(

x
xi,t,αi,α

∗
−i

s

)

max

{

max
s∈[t+h,T ]

ci(x
xi,t,αi,α

∗
−i

s )

gi
(

xxi,t,αi

T

)

− zi(T )
}}

= min
αi1

∈A
max

{

max
s∈[t,t+h]

ci

(

x
xi,t,αi,α

∗
−i

s

)

min
αi2

∈A
max

{

max
s∈[t+h,T ]

ci

(

x
xi,t,αi,α

∗
−i

s

)

gi
(

xxi,t,αi

T

)

− zi(T )
}}

= min
αi1

∈A
max

{

max
s∈[t,t+h]

ci

(

x
xi,t,αi,α

∗
−i

s

)

Vi(xi(t+ h), zi(t+ h), t+ h)}

= min
αi∈A

max

{

max
s∈[t,t+h]

ci

(

x
xi,t,αi,α

∗
−i

s

)

Vi(xi(t+ h), zi(t+ h), t+ h)} .

�

APPENDIX D

PROOF OF THEOREM 1 (FOLLOWING PROOFS IN [15] AND [63])

Proof:

1) When t = T , Vi is easily satisfied based on definition

Vi(xi, zi, T ) = max
{

ci

(

x
xi,t,αi,α

∗
−i

T

)

,

gi
(

xxi,t,αi

T

)

− zi(T )
}

= max {ci(xi(T )), gi(T )− zi(T )} . (38)

2) Let Wi ∈ C∞(X × R × [0, T ]), and assume that Vi −
Wi has local maximum at (xi(t0), zi(t0), t0) ∈ X × R ×
[0, T ) and (Vi −Wi)(xi(t0), zi(t0), t0) = 0, we need to

prove

max
{

ci(x
xi,t,αi,α

∗
−i

t0
)−Wi(xi(t0), zi(t0), t0)

∇tWi(xi(t0), zi(t0), t0)−Hi(t0,xi(t0), zi(t0)

∇xi
Wi(xi(t0), zi(t0), t0),∇ziWi(xi(t0), zi(t0), t0))

}

≥ 0. (39)

Suppose not. Then, there exists ξ > 0 and α̃i ∈ A such

that

ci(x
xi,t,α̃i,α

∗
−i

s )−Wi(xi(t0), zi(t0), t0) ≤ −ξ,

∇tWi(xi, zi, t) +∇xi
Wi(xi, zi, t) · fi(xi, α̃i, α

∗
−i)

−∇ziWi(xi, zi, t) · li

(

xxi,t,α̃i

s , α̃i

(

x
xi,t,α̃i,α

∗
−i

s , s
))

≤−ξ.

(40)

for all points (xi, zi, t) sufficiently close to

(xi(t0), zi(t0), t0): there exists small enough h1 > 0
such that ||xi − xi(t0)||+ |zi − zi(t0)|+ |t− t0| < h1.

According to assumptions in Section III-B, choose a small

h such that ||xi − xi(t0)||+ |zi − zi(t0)| < h1 − h for

s ∈ [t0, t0 + h], then

ci(x
xi,t,α̃i,α

∗
−i

s )−Wi(xi(t0), zi(t0), t0) ≤ −ξ

∇tWi(xi, zi, s) +∇xi
Wi(xi, zi, s) · fi(xi, α̃i, α

∗
−i)

−∇ziWi(xi, zi, s) · li

(

xxi,t,α̃i

s , α̃i

(

x
xi,t,α̃i,α

∗
−i

s , s
))

≤−ξ.

(41)

According to the condition that Vi −Wi has a local max-

imum at (x(t0), zi(t0), t0), then

Vi(xi(t0 + h), zi(t0 + h), t0 + h)

−Wi(xi(t0 + h), zi(t0 + h), t0 + h)

≤ Vi(xi(t0), zi(t0), t0)−Wi(x(t0), zi(t0), t0)

⇒ Vi(xi(t0 + h), zi(t0 + h), t0 + h)

− Vi(xi(t0), zi(t0), t0)

≤ Wi(xi(t0 + h), zi(t0 + h), t0 + h)

−Wi(xi(t0), zi(t0), t0)
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⇒ Vi(xi(t0 + h), zi(t0 + h), t0 + h)

− Vi(xi(t0), zi(t0), t0)

≤

∫ t0+h

t0

dWi

dt
ds

⇒ Vi(xi(t0 + h), zi(t0 + h), t0 + h)

− Vi(xi(t0), zi(t0), t0)

≤

∫ t0+h

t0

{∇tWi(xi, zi, s) +∇xi
Wi(xi, zi, s) · fi

−∇ziWi(xi, zi, s) · li} ds ≤ −ξh. (42)

Lemma 2 says that

Vi(xi(t0), zi(t0), t0) = min
ui∈Ui

max

{

max
s∈[t0,t0+h]

ci(xi(s))

Vi(xi(t0 + h), zi(t0 + h), t0 + h)

}

. (43)

Subtract (43) by Wi(xi(t0), zi(t0), t0) on both sides and

combine (41) and (42)

0 = (Vi −Wi)(xi(t0), zi(t0), t0)

= min
ui∈Ui

max {−ξ,−ξh} < 0 (44)

which is a contradiction. Thus, we prove that

max
{

ci(x
xi,t,αi,α

∗
−i

t0
)−Wi(xi(t0), zi(t0), t0)

∇tWi(xi(t0), zi(t0), t0)−Hi(t0,xi(t0), zi(t0)

∇xi
Wi(xi(t0), zi(t0), t0),∇ziWi(xi(t0), zi(t0), t0))

}

≥ 0. (45)

3) LetWi ∈ C∞(X × R × [0, T ]), and assume thatVi −Wi

has local minimum at (xi(t0), zi(t0), t0)) ∈ X × R ×
[0, T ) and (Vi −Wi)(xi(t0), zi(t0), t0)) = 0, we need to

prove

max
{

ci(x
xi,t,αi,α

∗
−i

t0
)−Wi(xi(t0), zi(t0), t0)

∇tWi(xi(t0), zi(t0), t0)−Hi(t0,xi(t0), zi(t0)

∇xi
Wi(xi(t0), zi(t0), t0),∇ziWi(xi(t0), zi(t0), t0))

}

≤ 0. (46)

The definition of Vi says that

Vi(xi(t0), zi(t0), t0) = max

{

max
s∈[t0,T ]

ci(x
xi,t,αi,α

∗
−i

s )

gi
(

xxi,t,αi

T

)

− zi(T )

}

≥ max
{

ci(x
xi,t,αi,α

∗
−i

t0
)

gi
(

xxi,t,αi

T

)

− zi(T )
}

(47)

for all αi ∈ A(t0). Subtract (47) by Wi(xi(t0), zi(t0), t0)
on both sides to have

0 = (Vi −Wi)(xi(t0), zi(t0), t0)

≥ max
{

ci

(

x
xi,t,αi,α

∗
−i

t0

)

−Wi(xi(t0), zi(t0), t0), gi
(

xxi,t,αi

T

)

− zi(T )

−Wi(xi(t0), zi(t0), t0)
}

. (48)

Then, we must prove the following inequality:

∇tWi(xi(t0), zi(t0), t0)−Hi(t0,xi(t0), zi(t0)

∇xi
Wi(xi(t0), zi(t0), t0),∇ziWi(xi(t0), zi(t0), t0))≤0.

(49)

Suppose not. Then, there exists ξ > 0 such that

∇tWi(xi, zi, t)− max
ui∈Ui

[−∇xi
Wi(xi, zi, t) · fi

+ ∇ziWi(xi, zi, t) · li] ≥ ξ (50)

for all points (xi, zi, t) sufficiently close to

(xi(t0), zi(t0), t0): there exists small enough h1 > 0
such that ||xi − xi(t0)||+ |zi − zi(t0)|+ |t− t0| < h1.

For any αi ∈ A, where

αi ∈ arg maxαi∈A
−∇xi

Wi(xi, zi, s) · fi(xi, αi, α
∗
−i)

+∇ziWi(xi, zi, s) · li

(

xxi,t,αi

s , αi

(

x
xi,t,αi,α

∗
−i

s , s
))

.

(51)

According to assumptions in Section III-B, choose a small

h such that ||xi − xi(t0)||+ |zi − zi(t0)| < h1 − h for

s ∈ [t0, t0 + h], then

∇tWi(xi, zi, s) +∇xi
Wi(xi, zi, s) · fi(xi, αi, α

∗
−i)

−∇ziWi(xi, zi, s) · li

(

xxi,t,αi

s , αi

(

x
xi,t,αi,α

∗
−i

s , s
))

≥ξ

(52)

for all s ∈ [t0, t0 + h]. We integrate (52) over s ∈ [t0, t0 +
h] to get

Wi(xi(t0 + h), zi(t0 + h), t0 + h)

−Wi(xi(t0), zi(t0), t0) ≥ ξh. (53)

We have the following relation because (53) holds for all

ui ∈ Ui:

min
ui∈Ui

Wi(xi(t0 + h), zi(t0 + h), t0 + h)

−Wi(xi(t0), zi(t0), t0) ≥ ξh. (54)

According to the condition that Vi −Wi has a local min-

imum at (xi(t0), zi(t0), t0), then

min
ui∈Ui

Vi(xi(t0 + h), zi(t0 + h), t0 + h)

− Vi(xi(t0), zi(t0), t0)

≥ min
ui∈Ui

Wi(xi(t0 + h), zi(t0 + h), t0 + h)
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−Wi(xi(t0), zi(t0), t0)

≥ ξh

⇒ min
ui∈Ui

Vi(xi(t0 + h), zi(t0 + h), t0 + h)

> Vi(xi(t0), zi(t0), t0). (55)

However, Lemma 2 says that

min
ui∈Ui

Vi(xi(t0 + h), zi(t0 + h), t0 + h)

≤ Vi(x(t0), zi(t0), t0) (56)

which is a contradiction. Thus, we prove that

max
{

ci(x
xi,t,αi,α

∗
−i

t0
)−Wi(xi(t0), zi(t0), t0),

∇tWi(xi(t0), zi(t0), t0)−Hi(t0,xi(t0), zi(t0),

∇xi
Wi(xi(t0), zi(t0), t0),∇ziWi(xi(t0), zi(t0), t0))

}

≤ 0. (57)

Hence, we prove that Vi(xi, zi, t) is the viscosity

solution. �
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