
Aitia: Efficient Secure Computation of Bivariate Causal Discovery

Truong Son Nguyen
Arizona State University

snguye63@asu.edu

Lun Wang
UC Berkeley

wanglun@berkeley.edu

Evgenios M. Kornaropoulos
George Mason University

evgenios@gmu.edu

Ni Trieu
Arizona State University

nitrieu@asu.edu

ABSTRACT

Researchers across various fields seek to understand causal relation-

ships but often find controlled experiments impractical. To address

this, statistical tools for causal discovery from naturally observed

data have become crucial. Non-linear regression models, such as

Gaussian process regression, are commonly used in causal infer-

ence but have limitations due to high costs when adapted for secure

computation. Support vector regression (SVR) offers an alternative

but remains costly in an Multi-party computation context due to

conditional branches and support vector updates.

In this paper, we propose Aitia, the first two-party secure com-

putation protocol for bivariate causal discovery. The protocol is

based on optimized multi-party computation design choices and

is secure in the semi-honest setting. At the core of our approach

is BSGD-SVR, a new non-linear regression algorithm designed for

MPC applications, achieving both high accuracy and low computa-

tion and communication costs. Specifically, we reduce the training

complexity of the non-linear regression model from approximately

from O(𝑁 3) to O(𝑁 2) where 𝑁 is the number of training samples.

We implement Aitia using CrypTen and assess its performance

across various datasets. Empirical evaluations show a significant

speedup of 3.6× to 340× compared to the baseline approach.

1 INTRODUCTION

Many researches in social, medical and natural sciences aim to

answer questions with the following format: łWhat is the cause of

X?ž or łWhat is the effect of X?ž Although some of these questions

can be answered by controlled experiments, these trials are usually

expensive or even impossible to conduct. To address this challenge,

people turn to developing statistical tools to discover causal re-

lationships between variables from naturally observed data. This

category of tools is referred to as causal inference.

Causal Inference is intrinsically data-hungry. The more data

is fed to the algorithm, the more accurate the result will be. As

a result, causal inference usually requires rich datasets collected

from different parties. However, this raises privacy concerns. For

example, suppose that two hospitals want to collaboratively run

a causal inference algorithm on their combined dataset so as to

determine if a new medicine is effective on diabetes. However, due

to HIPAA regulations, they are reluctant to share medical records

with one another.

Multi-party computation (MPC) is a promising approach to ad-

dressing the above privacy concern. Generally, MPC allows multi-

ple parties to jointly compute a function on shared inputs without

Work presented at CCS’24.

revealing more information than the function output. However,

general-purpose MPC protocols, such as garbled circuit [50, 51] or

GMW [13], typically introduce large performance overhead due to

extra computation and communication. Therefore, one would like

to develop a customized and efficient protocol for privacy-preserving

causal inference between the combined dataset of multiple parties.

Non-linear Regression Approaches and Their Limitations. The core

component of bivariate causal inference is a non-linear regression

algorithm. In the community of causal inference, one of the most

widely used non-linear regression isGaussian process regression [35].

However, as pointed out in [35], Gaussian process regression suffers

from slow training time and the disadvantage is further exacerbated

as the number of training samples increases. Besides, Gaussian

process regression is an one-off regression algorithm. Its training

and testing happen at the same time and once there is a small

change in the dataset the whole process needs to be re-run, which

makes it less preferred in a dynamic setting where data changes

rapidly. To address the issue, we turn to another standard non-

linear regression model namely support vector regression (abbrev.

SVR). There are many variants of SVR and in this paper we mainly

focus on 𝜖-SVR [7]. Although SVR partially overcome the defects

of Gaussian process regression, it contains many if-branches which

is costly (i.e., not friendly) in the MPC setting. Besides, the model

of SVR stores some training examples for future prediction, known

as support vectors. For obliviousness in the MPC setting, if trivially

adapted, the SVR model needs to contain all the training samples,

which leads to slow training and huge memory consumption.

Our Proposed MPC-friendly Approach. To overcome the above

challenges, we propose a new training algorithm for SVR based

on the well-known stochastic gradient descent (SGD). There have

been systematic efforts to apply SGD on support vector machine

(SVM) [44, 55], a close relative of SVR but there are no such efforts

for SVR. Hence, we propose the first SGD-based training for SVR,

following the same design pattern of P-packSVM [55], a SGD-based

SVM training algorithm. To suppress the number of support vectors,

we adopt the idea of budgeting [48] to impose an upper bound on

the number of support vectors. Putting it all together, our new

training algorithm employs a Budgeted Stochastic Gradient Descent

approach for Support Vector Regression (BSGD-SVR).

From SVR to Secure Protocol. Although our BSGD-SVR algorithm

is designed to beMPC-friendly, it is far from trivial to adapt the algo-

rithm to the privacy-preserving context. The main reason is that the

BSGD-SVR contains many conditional branching operators while

modifying the training model. The secure version of the BSGD-SVR

1

algorithm should not reveal which branch was evaluated. Thus,

it is inefficient to directly apply generic secure computation tech-

niques (such as garbled circuit [14, 52]) to the non-secure algorithm

without customized optimizations. To build a secure and efficient

version of BSGD-SVR that we call Aitia1, we propose a series of

optimizations that: speed up the initialization process, make the

budgeting technique oblivious, eliminate conditional branches, and

vectorize the algorithm.

Our Contribution. In summary, we make the following contribu-

tions in this paper.

• We propose BSGD-SVR, an MPC-friendly non-linear regression

model and design an efficient secure protocol for it. Compared

to the baselines, BSGD-SVR has lower computation and commu-

nication complexity.

• We propose Aitia, the first secure bivariate causal inference

protocol, designed for the semi-honest setting, with a straight-

forward extension to the malicious setting.

• We implement Aitia in the Crypten framework [9] and evaluate

it empirically. The results show that Aitia achieves a 3.6 − 340×

speedup compared to the baseline. Our implementation can be

found at https://github.com/asu-crypto/Aitia

2 BACKGROUND AND RELATED WORK

In this section, we discuss the concepts and relevant literature from

causal discovery and cryptography used in our protocol Aitia.

2.1 Causal Inference

Let𝑋,𝑌 be two random variables, and Pr(𝑋,𝑌) be the joint probabil-

ity distribution, i.e., the observational distribution after measuring

both quantities without any intervention. In a causality study, e.g.,

drug effects, the designer applies an external intervention that

forces variable𝑋 to take value 𝑥 ; this action is denoted as łdo(𝑥)ž. If

this intervention has an effect, it is reflected in the interventional dis-

tribution, i.e., Pr(𝑌 |do(𝑥)). Variable 𝑋 causes 𝑌 , denoted as 𝑋 → 𝑌 ,

holds when Pr(𝑌 |do(𝑥)) ≠ Pr(𝑌 |do(𝑥 ′)) for 𝑥 ≠ 𝑥 ′.

Even though there are several possible outcomes when analyzing

the causal relation between 𝑋 and 𝑌 , in this work, we focus on

the following well-studied case: we assume that (1) 𝑋 and 𝑌 are

dependent and that (2) there is no selection bias, no confounding,

no feedback relation between them. Under these assumptions, the

study of bivariate causal discovery reduces to deciding whether

𝑋 → 𝑌 or 𝑌 → 𝑋 , i.e., the direction of the causal relation.

Bivariate Causal Inference. In this work, we are interested in

the setting where the direction of causality must be inferred purely

from observational data. That is, we assume that the data analyst

does not have access to intervention data and does not have the

resources to run a new intervention to test a hypothesis, which,

in the medical field, has high costs in recruiting new participants,

designing the experiment, and getting IRB approval. Our goal is

to focus on the most practical and realistic scenario for causal

discovery, which is a data-driven approach. Due to its practicality,

this approach has attracted a lot of attention in themachine learning

community [11, 17, 18, 23, 28, 33, 38, 45, 57].

1pronounced e-tee’-a: the Greek word for cause or reason.

Unfortunately, it is not always possible to decide the direction

of the causality from observational data. On a high level, there has

to be a certain asymmetry between the two variables so that the

causality can be inferred purely through observational data. A series

of works analyzed potential relations between the variables 𝑋,𝑌

that permit such a causal discovery. Hoyer et al. [17] proved that it is

possible to discover causality when the relation between𝑋,𝑌 is non-

linear as long as the latent causes of the system can be modeled

as an additive noise, i.e., the Additive Noise Model. A rigorous

definition of the relation among the random variables is presented

in Definition 2.1, and an illustration of the relation between the

conditional and joint distributions is depicted in Figure 1.

Definition 2.1. We define as Additive Noise Model (ANM) with

causal relation 𝑋 → 𝑌 the model in which (𝑖) the r.v. 𝑋 follows

the density 𝑝𝑋 , (𝑖𝑖) the noise is captured by r.v. 𝑁 and follows

the density 𝑝𝑁 , (𝑖𝑖𝑖) 𝑋 and 𝑁 are independent, and (𝑖𝑣) there is a

(potentially non-linear) 𝑓𝑌 such that 𝑌 = 𝑓𝑌 (𝑋) + 𝑁 .

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3
Observed Data Joint Dist. P(X,Y)

-2 -1 0 1 2

-2

-1

0

1

2

Conditional Dist. P(Y|X)

-2 -1 0 1 2

-2

-1

0

1

2
Conditional Dist. P(X|Y)

-2 -1 0 1 2

-2

-1

0

1

2

Figure 1: Illustration where causality 𝑋 → 𝑌 in the ANM is

identifiable.𝑋 -axis (resp.𝑌 -axis) represents the domain of the

random variable. We have 𝑌 = cos(𝑋) + 𝑍 where 𝑋 ∼ 𝑁 (0, 1)

and the noise is 𝑍 ∼ 𝑁 (0, 0.32). The upper-left subplot shows

that data sampled from the joint distribution. The rest show

the contour lines for the joint and conditional distributions.

Specifically, Figure 1 illustrates why the direction of causality

𝑋 → 𝑌 is identifiable in ANM. Interestingly, when 𝑋 → 𝑌 in ANM,

the mean of the conditional distribution Pr(𝑌 |𝑋) depends on 𝑋 , i.e.,

the contour lines of Pr(𝑌 |𝑋) shift as 𝑋 changes (lower-left subplot).

Whereas the conditional distribution Pr(𝑋 |𝑌) depends on 𝑌 in a

less obvious way. This asymmetry enables us to discover causality.

In a realistic scenario we only have access to a sample from

the joint distribution, i.e., the observational data. Mooji et al. [33]

proposed an approach (see Algorithm 1) uses the insights from

Figure 1 to discover causality using only observational data. The

2

observational data is split into two datasets𝐷1 and𝐷2. Dataset𝐷1 is

used to estimate the two regression functions 𝑓 : 𝑥 → 𝐸 (𝑌 |𝑋 = 𝑥)

and 𝑔 : 𝑦 → 𝐸 (𝑋 |𝑌 = 𝑦). After finalizing the regression functions

𝑓 and 𝑔, the dataset 𝐷2 is used to calculate the dependence score

between the residual and the corresponding input variable. If the

dependence score of pair (𝑌 − 𝑓𝑌 (𝑋)) and𝑋 is higher than the score

of (𝑋 − 𝑓𝑋 (𝑌)) and 𝑌 then the direction of causality is 𝑌 → 𝑋 ,

otherwise the direction is 𝑋 → 𝑌 .

Algorithm 1: Causal Discovery in ANM.

Input: Observational data 𝐷1: {𝑥𝑖 , 𝑦𝑖 }
𝑛
𝑖=1, 𝐷2: {𝑥

′
𝑖 , 𝑦
′
𝑖 }

𝑚
𝑖=1,

chosen of regression model, chosen dependence

score 𝑠 (·, ·).

1 Fit non-linear regression models 𝑓 , 𝑔 such that 𝑓 (x) ≈ y and

𝑔(y) ≈ x, where (𝑥,𝑦) ∈ 𝐷1

2 Define the dependence scores 𝑠𝑋→𝑌 = 𝑠 (x′, y′ − 𝑓 (x′)),

and 𝑠𝑌→𝑋 = 𝑠 (y′, x′ − 𝑔(y′)), where (𝑥 ′, 𝑦′) ∈ 𝐷2

3 if 𝑠𝑋→𝑌 < 𝑠𝑌→𝑋 then return 𝑋 → 𝑌

4 else return 𝑌 → 𝑋

Jumping ahead, the superior performance of our approach comes

from co-designing (𝑖) the machine learning models, i.e., the training

of the regression model, and the dependence score, as well as (𝑖𝑖)

the cryptographic protocols, so that the overall protocol is orders of

magnitude faster than a direct implementation of the state-of-the-

art causal discovery algorithm [33] using a standard and efficient

secure computation library such as CrypTen [9].

Causality Dataset.We evaluate our new MPC-friendly train-

ing method as well as the proposed secure protocol on dataset

CauseEffectPairs (CEP), which is a standard dataset [35] for causal

discovery. CEP contains pairs of random variables that are statisti-

cally dependent, where one variable is known to cause the other.

The CEP collection, version 1.0, consists of pairs from 37 different

datasets across various domains and is available at [34]. For more

details about the chosen datasets, see Appendix D.

2.2 Secure Computation

Secret Sharing. Our Aitia construction makes usage of secret

sharing schemes for computing on private data. Values of the com-

putation are split into two randomly looking values that are held

by a two non-colluding servers. To additively share an ℓ-bit value 𝑥 ,

the data owner chooses two random values 𝑥1, 𝑥2 ← {0, 1}
ℓ such

that 𝑥1 + 𝑥2 = 𝑥 mod {0, 1}ℓ . For simplicity, we omit the subscript

of the share and the mod operation and denote the share by J.K.
To reconstruct shared value J𝑥K, one party sends its share to the

other, who reconstructs the secret 𝑥 = 𝑥1 + 𝑥2 locally.

Addition, subtraction, and multiplication-by-constant can be

directly applied to the shares as they can be done locally by the par-

ties without communication, for example, J𝑥 + 𝑦K = J𝑥K + J𝑦K. For
secure multiplication between two ℓ-bit values, we use the Beaver

triple [3] approach. The main idea of Beaver triple is to shift most

of the communication and computation cost into a preprocessing

phase which can be done offline since it does not require knowledge

of the inputs. The offline phase outputs the secret shared values

(J𝑎K, J𝑏K, J𝑐K) such that 𝑐 = 𝑎𝑏. In the online phase, parties compute

locally the values J𝛼K = J𝑥K− J𝑎K and J𝛽K = J𝑦K− J𝑏K, where 𝑥 and

𝑦 indicate the sensitive inputs. As a next step the two parties jointly

reconstruct 𝛼 and 𝛽 by exchanging the shares J𝛼K, J𝛽K. The secret
shared product J𝑥𝑦K is equal to J𝑐K + 𝛼J𝑏K + 𝛽J𝑎K + 𝛼𝛽 , which can

be locally evaluated by each party. Boolean sharing can be seen as

additive sharing in the field Z2. The addition operation is replaced

by XOR, and multiplication is replaced by AND.

Garbled Circuits. Garbled Circuits (GC) [14, 52] is currently

the most common generic technique for practical two-party secure

computation. The ideal functionality of GC is to take the parties’

inputs 𝑥 and𝑦, respectively, and compute 𝑓 on them without reveal-

ing the secret parties’ inputs. In our design for Aitia, we use łless

thanž and łequalž GC where inputs are secretly shared amongst two

parties (i.e., each party holds the shares J𝑥K and J𝑦K). We denote this

garbled circuit by J𝑧K ← GC(J𝑥K, J𝑦K, 𝑓). To evaluate a function

𝑓 on shared values, GC first reconstructs the shares, performs 𝑓

on the top of obtained values, and then secret shares the result

𝑓 (𝑥,𝑦) to parties. The garbled circuit technique has seen dramatic

improvements in recent years. The most notable optimized tech-

niques are point-and-permute [5], Free-XOR [22], the half-gate [53],

and fixed-key AES garbling optimizations [4].

2.3 Privacy-Preserving Machine Learning

The emerging MPC-based privacy-preserving machine learning

(PPML) paradigm [8, 12, 16, 26, 27, 30, 32, 40, 43] enables differ-

ent entities to jointly and privately train and evaluate various ML

models over their joint data. Existing literature on PPML mainly

focused on linear regression, logistic regression, neural network

(NN), and transformer [8, 12, 16, 26, 32, 43]. Most PPML schemes

follow a server-aided setting where data owners outsource the

computation to a small number of non-trusted and non-colluding

servers. Mohassel and Zhang [32] introduced the first practical

PPML systems based on a two-server setting. Three-server [30]

and four-server [40] designs achieve a weaker security guarantee

in which collusion between any pair of these servers reveals the

private data of the data owners. Therefore, the two-server PPML

model is still preferable in many applications.

While causal inference plays a crucial role in modern data anal-

ysis, particularly in healthcare applications, there is relatively less

emphasis on developing a secure protocol for causal inference,

despite the extensive body of work in the broader field of PPML.

Recent works applied differential privacy (DP) on top of the causal

inference algorithm [25, 37]. Applying DP-noise significantly re-

duces model accuracy, an important factor in causal discovery. More

significantly, noise-driven methods reveal sensitive information

that a cryptographic approach like Aitia can completely hide.

2.4 Server-Aided Architecture

In this work, we follow the server-aided framework using two non-

trusted and non-colluding servers. The goal is to train a causal

discovery model on a joint dataset shared by multiple data own-

ers. To achieve this, the data owners secret-share their sensitive

data among two servers which then train models directly on the

secret-shared data. This approach offers several benefits. Firstly,

it involves minimal participation by the data owners, who only

distribute their inputs once in the setup phase and are not involved

3

Algorithm
Training Testing

Time-Complexity # Exponentiations #Sqrt # Divisions # Comparisons # Multiplications Asym

GP Regression [49] O(𝑁 3) 𝑁 (𝑁 + 1)/2 + 𝑛𝑁 𝑁 𝑁 (𝑁 + 1) 0 𝑁 3/2 + 𝑁 2 (𝑛 +𝑚/2 + 3/2) + 𝑁 (𝑛𝑚 +𝑚/2 + 𝑛 + 7/3) N/A

SMO-SVR [7] O(𝑇SMO𝑁
2) 𝑁 (𝑁 + 1)/2 0 𝑇SMO 𝑇SMO (5𝑁 + 7) 𝑁 (𝑁 + 1)𝑚/2 +𝑇SMO (2𝑁

2 + 𝑁) O(𝑛𝑁)

BSGD-SVR O(𝑇BSGD𝐵 + 𝑁
2) 𝑁 (𝑁 + 1)/2 0 0 𝑇BSGD (𝐵𝑚 + 𝐵 + 2) 𝑁 (𝑁 + 1)𝑚/2 +𝑇BSGD𝐵 O(𝑛𝐵)

Table 1: Detailed counting of fundamental operations for training/testing non-linear regression models. We assume the Radial

Basis Function (RBF) kernel is used in all three algorithms and Cholesky decomposition is used for matrix inversion. We have

listed the operations in decreasing order of cost for MPC implementation.

in any future computation. Secondly, it utilizes efficient two-party

secure computation techniques that require less communication

and computation when deployed between a small number of par-

ticipants. In Aitia, all intermediate values, such as the output of

causal inference, are secret-shared between the two servers.

3 A NEWMODEL-TRAINING APPROACH
FOR EFFICIENT SECURE COMPUTATION

In this section, we rethink the causal discovery model originally

proposed in the influential work from Hoyer et al. [17]. We revisit

the choice of the model and training algorithm with the goal of

significantly accelerating performance when translated to a 2PC

protocol. As we show in this section, an efficient MLmodel on plain-

text data does not always translate to an efficient 2PC protocol. In

the next section, we develop additional cryptographic optimizations

tailored to the newly proposed training algorithm.

Notation Explanation

𝑁 Number of training samples

𝑛 Number of testing samples

𝑚 Number of features

𝐵 The support vector budget (See Section 3.3)

𝑇alg Number of iterations of algorithm alg, e.g., BSGD, SMO.

Table 2: Notation Table.

3.1 Notations and Problem Setup

We use bold lowercase letters to denote vectors (e.g., x) and bold

uppercase letters to denote matrices (e.g., X). The sequence 1, . . . , 𝑛

is denoted as [𝑛]. Suppose we have a training set (Xtrain ∈ R𝑁×𝑚,

ytrain ∈ R𝑁) with 𝑁 samples. Each sample has𝑚 features and a

target value. For a testing dataset Xtest ∈ R𝑛×𝑚 with true target

ytest ∈ R𝑛 , we consider a non-linear regressionmodelA that makes

a prediction ŷ. The accuracy of the prediction by the regression

model is measured by the mean squared error (MSE):
∑

𝑖 (y
test
𝑖 −ŷ𝑖)

2.

With the term x∗𝑖 (resp. 𝑦
∗
𝑖) to denote the 𝑖𝑡ℎ sample (resp. target)

in the ∗ dataset. For simplicity, we omit the superscript when the

dataset being used is clear from the context. An overview of the

notation is presented in Table 2. A non-linear regression modelM

can call two algorithms:

• Train: takes as input (Xtrain, ytrain) and outputs a set of

parameters for a non-linear regression modelM.

• Predict: takes as inputXtest as well asM and outputs the

prediction ŷ.

3.2 On Choosing Non-linear Regression

According to Hoyer et al. [17], any non-linear regression model

can be used for bivariate causal discovery (see Algorithm 1). In the

following, we review two existing options for the ANM model.

OnGaussian Process Regression. Thework ofMooij et al. [35]

uses Gaussian Process (GP) Regression [41, 42] as the non-parametric

regression model. Typically, Gaussian processes are presented ei-

ther through the weight-space view or function-space view (see

Chapter 2 in [42]). According to the function-space view, a Gaussian

process is a collection of random variables (each associated with a

function) where any finite number of the variables define a joint

Gaussian distribution. GP is characterized by its mean function and

its covariance function defined among pairs of random variables. In

practice, to train a GP regression, one needs to choose a covariance

function, e.g., squared exponential covariance, and use this function

to compute the inversion (or the Cholesky decomposition) of an

𝑁 -by-𝑁 matrix. A detailed version of the algorithm is presented in

Algorithm 4 in the Appendix.

Overhead in the 2PC Setting. Given that matrix inversion

takes O(𝑁 3) time, translating the above computation in a 2PC set-

ting between two servers requires O(𝑁 3) rounds of interaction.

Furthermore, matrix inversion can lead to numerical stability chal-

lenges that need to be addressed within the 2PC protocol. This

illustrates that computational methods efficient in non-secure set-

tings may not necessarily be efficient in secure computation settings

due to the need for interaction in the 2PC setting.

It is known in the PPML community that different fundamental

computation steps, e.g., exponentiation, division, comparison, addi-

tion, multiplication, incur different cost when translated to a secure

protocol. Table 1 presents a detailed breakdown of the number of

fundamental operations in GP. The operation that introduces the

highest overhead in an MPC protocol is exponentiation, typically

simplified to multiplication through approximate computation, al-

beit at the expense of accuracy loss.

On Support Vector Regression (SVR). In the following, take a

different approach than [35] and propose a new non-linear regres-

sion model for ANM. Our candidate substitute for GP regression

is called support vector regression (SVR) [2], see Algorithm 5 in

the Appendix . SVR expands the support vector machine method

to handle regression. A kernel SVR is parameterized by a weight

vector w and a bias term 𝑏. To make a prediction for an unseen

data point x, kernel SVR first maps the feature vector x to a high-

dimensional space using function 𝜙 (·) and then outputs the inner

product added with a bias term: ⟨w, 𝜙 (x)⟩+𝑏. Note that the range of

mapping 𝜙 (·) has infinite dimensions. Thus, the inner product can-

not be trivially calculated. The above computational challenge can

be solved efficiently by the kernel trick. Intuitively, we can rewrite

the weight vector as w =
∑𝑁
𝑖=1 𝛼𝑖𝜙 (x𝑖) where x𝑖 , 𝑖 ∈ [𝑁] are train-

ing samples and 𝛼𝑖s are weights for the training samples. Hence,

the prediction formula for input x becomes 𝑏+
∑𝑁
𝑖=1 𝛼𝑖 ⟨𝜙 (x𝑖), 𝜙 (x)⟩.

Then the inner product can be calculated using the kernel trick

4

⟨𝜙 (x′), 𝜙 (x)⟩ = K(x′, x) where K(·, ·) is a tractable kernel func-

tion. Only a small number of training points will have 𝛼𝑖 ≠ 0, ,

which are referred to as the support vectors.

Challenges of Training SVR via 2PC. The textbook approach

[54] for training a kernel SVR is called sequential minimal opti-

mization (SMO). SMO solves the dual of the regularized SVR op-

timization problem. It works by iteratively choosing a pair of 𝛼

parameters, deciding whether they satisfy optimality conditions

namely Karush-Kuhn-Tucker (KKT conditions) [24], and if not, up-

dating the two 𝛼 . The above SMO approach does not translate to

an efficient 2PC protocol. First, it has an asymptotic complexity of

O(𝑇SGD𝑁
2) where𝑇SGD is the upper bound on the number of itera-

tions (typically at least 𝑁). Second, it is unclear how many training

points will become support vectors after training. Consequently,

while translating this approach to a secure 2PC protocol, one has

to introduce oblivious computation to hide not only the identity

but also the number of support vectors. Treating all training points

as potential support vectors incurs significant computation and

communication cost.

3.3 Rethinking SVR with MPC training in Mind

In the following, we sidestep the inefficiencies of GP and SMO-SVR

by designing a new SVR training algorithm that we call Budgeted

Stochastic Gradient Descent SVR or simply BSGD-SVR. Our objective

is to modify SVR so that we simultaneously (𝑖) maintain compara-

ble accuracy of previously proposed training approaches, and (𝑖𝑖)

ensure that the resulting model translates to an efficient training

and testing as a 2PC protocol. We use two algorithmic adjustments

to create a novel variation of SVR that has not been previously

explored, potentially making it of independent interest:

• The first algorithmic insight is to train SVR with Stochastic Gra-

dient Descent (SGD) instead of SMO, an approach inspired by

Zeyuan et al. [55] and Shalev et al. [44] where SGD was used

for Support Vector Machines. This adjustments allows a sim-

pler update rule for the parameters of the model (as opposed to

optimality testing via the KKT conditions).

• The second algorithmic insight to control the number of support

vectors using budgeting. A similar technique was used by Wang

et al. [48] to suppress the number of support vectors for SVM.

We perform a detailed experimental analysis under standard

benchmarks for causal inference (see Table 3) and confirm that our

approach has comparable accuracy to GP and SMO-SVR for every

tested dataset. In Figure 5 in Appendix C, we show additional illus-

trative examples (similar to those in [10]) demonstrating the close

performance of our newly proposed model to previous approaches.

Training SVR via Stochastic Gradient Descent. First, we

propose replacing SMO with SGD to train SVR. To the best of our

knowledge, the only application of SGD to SVR considers non-

kernel based formulation [44]. Trivially applying SGD on SVR will

lead to a gradient vector of infinite dimensions. To control the

length of the gradient, we follow the intuition from [55] which

trains kernel SVMs using SGD by dynamically maintaining a set of

support vectors as shown in Algorithm 2 in Appendix.

The Role of Budgeting in Managing Support Vectors. The

SGD training strategy lowers the time complexity of training from

O(𝑇SMO𝑁
2) to O(𝑇BSGD𝐵 + 𝑁

2). However, much like SMO, we do

not know beforehand how many training points will act as support

vectors. To address the issue, we replicate the adjustment from [48]

and explicitly enforce a budget 𝐵 for the number of support vectors.

Roughly speaking, when the number of support vectors is smaller

than the budget 𝐵 , we maintain a set of fake support vectors so as

to always have 𝐵 members; when the number exceeds the threshold,

we remove the appropriate number of support vectors.

Specifically, when training, we initialize a dictionary D to store

the support vectors, their weights (which are denoted as x𝑖 and 𝛼𝑖 ,

respectively, in SVR algorithm) and the bias value (line 8-9).

Then in each training round, we pick a random sample indexed

by 𝑖 and run the prediction function on it (line 11-12). If the pre-

diction is accurate enough, we continue to the next loop (line 13).

Otherwise, we either insert the sample into the dictionary or update

its weight depending on whether it is already in the dictionary (line

14-23). Last, if the dictionary is overflowed, we remove the support

vector with the smallest weight (line 24-25). This way, we manage

to control the number of support vectors and obtain a SVR protocol

with an efficient training under MPC setting.

Algorithm 2: BSGD-SVR.

1 Function Predict(Xtest, D, b):

2 Initialize ŷ[𝑖] = 𝑏, ∀𝑖 ∈ [𝑛𝑡𝑒𝑠𝑡]

3 for 𝑖 ∈ 1, 2, · · · , 𝑛𝑡𝑒𝑠𝑡 do

4 for x𝑗 ∈ D .𝑘𝑒𝑦𝑠 () do

5 ŷ[𝑖] = ŷ[𝑖] + D[x𝑗] · K (x𝑗 , x𝑖)

6 return ŷ

7 Function Train(Xtrain, ytrain, params = {𝐵,𝑇BSGD, 𝜂, 𝜉 }):

8 Initialize a dictionary D for support vectors and their

corresponding weights

9 Initialize a bias value 𝑏 = 0

10 for 𝑡 = 1, 2, · · · ,𝑇BSGD do

11 Randomly pick a training index 𝑖 ∈ [𝑁]

12 Run the prediction procedure 𝑦̂𝑖 ← Predict(x𝑖 ,D, b)

13 if prediction and true value differ too much: |𝑦𝑖 − 𝑦̂𝑖 | > 𝜉

then

14 if the sampled point is already in D: x𝑖 is in D.keys()

then

15 if 𝑦̂𝑖 > 𝑦𝑖 then

16 D[x𝑖] = D[x𝑖] − 𝜂K(𝑥𝑖 , 𝑥𝑖)

17 𝑏 = 𝑏 − 𝜂

18 else if 𝑦̂𝑖 < 𝑦𝑖 then

19 D[x𝑖] = D[x𝑖] + 𝜂K(𝑥𝑖 , 𝑥𝑖)

20 𝑏 = 𝑏 + 𝜂

21 else

22 if 𝑦̂𝑖 > 𝑦𝑖 then D[x𝑖] = −𝜂K(𝑥𝑖 , 𝑥𝑖)

23 else if 𝑦̂𝑖 < 𝑦𝑖 then D[x𝑖] = 𝜂K(𝑥𝑖 , 𝑥𝑖)

24 if there are more than 𝐵 support vectors in D then

25 Remove the minimum weight absolute value

from D
26 return D

SVRwithBudgeted StochasticGradientDescent.Combining

the above ideas, we obtain BSGD-SVR, an 2PC-friendly non-linear

regression model shown in Algorithm 2. The training function

takes data as input and has four hyperparameters: 𝐵 for budget size,

𝑇𝐵𝑆𝐺𝐷 for number of iterations, 𝜂 for the learning rate to update

the weight, and 𝜉 as the prediction-threshold. When predicting, we

5

Dataset Feature→Target
Mean Squared Error (MSE) Causal Direction

GP SMO-SVR BSGD-SVR via BSGD-SVR

Liver Disorder(345)

pair0033: alcohol→corpuscular volume 2.31 × 10−2 1.98 × 10−2 (2.40 ± 0.06) × 10−2 ✓

pair0034: alcohol→alkaline phosphotase 2.72 × 10−2 2.16 × 10−2 (2.45 ± 0.26) × 10−2 ✓

pair0035: alcohol→alanine aminotransferase 2.90 × 10−2 2.36 × 10−2 (2.70 ± 0.21) × 10−2 ✓

pair0036: alcohol→aspartate aminotransferase 3.27 × 10−2 2.10 × 10−2 (2.17 ± 0.10) × 10−2 ✓

pair0037: alcohol→gamma-glutamyl transpeptidase 3.78 × 10−2 1.99 × 10−2 (2.21 ± 0.06) × 10−2 ✓

Arrhythmia(452)

pair0022: age→height 1.35 × 10−4 1.67 × 10−4 (2.44 ± 0.50) × 10−4 ✓

pair0023: age→weight 5.98 × 10−3 4.62 × 10−3 (5.32 ± 0.50) × 10−3 ✓

pair0024: age→heart rate 10.4 × 10−3 9.19 × 10−3 (10.3 ± 0.9) × 10−3 ✓

Income(3000)
pair0012: age→wage per hour 6.10 × 10−4 6.17 × 10−4 (6.09 ± 0.18) × 10−4 ✓

pair0017: age→dividends from stocks 13.6 × 10−5 14.8 × 10−5 (8.70 ± 1.54) × 10−5 ✓

NCEP-NCAR(3000)

pair0043: temperature (t)→temperature (t+1) 6.48 × 10−4 6.52 × 10−4 (7.50 ± 0.52) × 10−4 ✓

pair0044: pressure (t)→pressure (t+1) 6.76 × 10−5 6.77 × 10−5 (10.1 ± 1.0) × 10−5 ✓

pair0045: sea level pressure (t)→sea level pressure (t+1) 4.80 × 10−3 4.89 × 10−3 (4.92 ± 0.19) × 10−3 ✓

pair0046: rel. humidity (t)→rel. humidity (t+1) 1.24 × 10−2 1.48 × 10−2 (1.51 ± 0.08) × 10−2 ✓

Abalone(4177)

pair0005: age→length 1.20 × 10−2 1.32 × 10−2 (1.58 ± 0.10) × 10−2 ✓

pair0006: age→shell weight 1.24 × 10−2 1.35 × 10−2 (1.66 ± 0.20) × 10−2 ✓

pair0007: age→diameter 5.56 × 10−4 5.68 × 10−4 (7.82 ± 1.16) × 10−4 ✓

pair0008: age→height 1.61 × 10−2 1.74 × 10−2 (1.90 ± 0.05) × 10−2 ✓

pair0009: age→whole weight 1.35 × 10−2 1.47 × 10−2 (1.63 ± 0.08) × 10−2 ✓

pair0010: age→shucked weight 1.17 × 10−2 1.26 × 10−2 (1.35 ± 0.04) × 10−2 ✓

pair0011: age→viscera weight 9.63 × 10−3 10.1 × 10−3 (11.1 ± 0.7) × 10−3 ✓

Table 3: Mean Square Error under different causality inference datasets for models trained with (1) Gaussian Process (GP)

Regression; (2) SMO-SVR; (3) BSGD-SVR. Deviation is calculated over 10 independent runs. As the GP and SMO-SVR imple-

mentations are deterministic, we only show the standard deviation for BSGD-SVR. The łCausal Directionž column compares

whether the predicted causality direction of the model trained with BSGD-SVR matches the ground truth for each pair.

calculate the weighted average of the kernel between each support

vector and the testing data, much like standard SVR.

3.4 On Choosing Dependence Score

As our last step, we need to choose a dependence score that is

suitable for the 2PC setting. According to Mooij et al. [35], the

main candidates for dependence score are (1) HSIC-based scores;

(2) entropy-based scores; (3) Gaussian scores; (4) empirical-Bayes

scores; (5) minimum message length scores. We choose Gaussian

score (see Definition 3.1) because it only requires two variance

computation and two logarithm operations. This choice would

competitive performance in a 2PC setting due to its simplicity.

Definition 3.1 (Gaussian Score). The Gaussian score between two

vectors u and v is defined as

logVar(u) + logVar(v)

3.5 Evaluation of BSGD-SVR

In this section, we would like to answer the following questions:

• How should we choose the support vector budget in BSGD-SVR?

• What is the trade-off between accuracy loss and performance

improvement in BSGD-SVR?

• How do the number of fundamental operations in BSGD-SVR

compare to those in other approaches?

We emphasize that the evaluation in this section concerns the

accuracy of the SVR model trained with the newly proposed BSGD-

SVR algorithm on plaintext/unencrypted data. Section 5 presents

the performance of the (optimized) privacy preserving version.

Setup. To answer these questions, we use five datasets from

the causality dataset CEB [34] to test the proposed non-linear re-

gression model and compare its accuracy to GP and SMO-SVR.

For Gaussian process regression, we use the implementation from

scikit-learn [39] with the default hyper-parameters. For SMO-

SVR, we use the implementation from LibSVM [7] with the default

hyper-parameters. We implement BSGD-SVR in slightly above 100

lines of Python code. We use the Gaussian score as the dependence

score for all the causal inference experiments.

(1) - Parameter Selection. When selecting the budget size 𝐵

and the number of training iterations 𝑇BSGD, four aspects should

be taken into account:

• Memory cost: Higher budget means we need to store more data

support vectors in dictionary D

• Generalization: If the budget size 𝐵 is too small, the support vec-

tors stored in dictionaryD might need to be more representative

to cover all data distribution.

• Accuracy: If 𝑇BSGD is too small, the protocol has not łlearned

enoughž about the dataset to correctly predict future inputs.

• Runtime: If 𝑇BSGD is too large, the protocol runs longer.

In Figure 2, we study the budget size v.s. accuracy trade-off. The

mean squared error (MSE) is being compared against various budget

sizes for different numbers of training data points. The MSE de-

creases rapidly as we increase the budget size from 0.2𝑁 to 0.4𝑁 in

all datasets. However, when we increase the budget size to 0.6𝑁 , the

MSE either decreases at a slower rate or remains the same. Finally,

when we increase the budget size from 0.6𝑁 to 1.0𝑁 , the trend

shows that MSE decreases in some datasets, while it increases in

others. Overall, although the budget that provides the lowest MSE

varies based on the dataset, the assignment of𝐵 = 0.5𝑁 balances our

6

objectives for high accuracy and a small budget. Additionally, our

preliminary experiments showed that the assignment 𝑇BSGD = 2𝑁

is small enough while providing a competitive accuracy. We choose

learning rate 𝜂 = 0.01 and 𝜉 = 0.01 for all datasets. More impor-

tantly, we verified (last column of Table 3) that our parameterization

led to the correct direction of causality in all datasets.

0.2 0.4 0.6 0.8 1
1.4

1.6

1.8

2

2.2

·10−2

Budget / Training size

M
SE

BSGD-SVR

(a) Abalone.

0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
·10−3

Budget / Training size

M
SE

BSGD-SVR

(b) NCEP-NCAR.

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

·10−4

Budget / Training size

M
SE

BSGD-SVR

(c) Arrhythmia.

Figure 2: MSE vs. Budget Divided by Training Set Size (𝐵/𝑁)

To choose the remaining parameters (learning rate 𝜂 and small

threshold 𝜉), one approach is for a single party (e.g., a hospital) to

tune parameters locally on their private dataset before the secure

protocol. The party then shares the best hyperparameters (𝜂 and 𝜉)

with all others to start BSGD-SVR training.

(2) - Accuracy Evaluation. The results are shown in Table 3.

For most tested pairs, the accuracy of the model is very similar to

the accuracy of both GP and SMO-SVR. In several datasets, our

experiments show that the accuracy of BSGD-SVR is higher than

both GP and SMO-SVR. For example, BSGD-SVR reduces the MSEs

of GP and SMO-SVR by around ∼36% and ∼41% respectively for

the age→dividends pair in the Income dataset. Overall, our ex-

periments on 21 real-world datasets show that the newly proposed

BSGD-SVR offers a competitive accuracy across all tested data.

(3) - Number of Fundamental Operations.We also analyze

the computation cost of the three non-linear regression training

algorithms with respect to different fundamental operations so as

to extrapolate their performance once integrated with MPC. Our

analysis is shown in Table 1. The operations in the first row are

ordered in descending order with respect to performance overhead

in an MPC setting. One important observation is that BSGD-SVR

algorithm doesn’t involve any square root or division operation, and

it has the smallest number of exponentiations as well as the smallest

number of multiplications. Overall, the newly proposed BSGD-SVR

performs the smallest number of fundamental operations both in

training and testing compared to SMO-SVR.

4 AITIA: SECURE CAUSAL DISCOVERY

In this Section we present a series of optimizations for Algorithm 2

so as to make the computation steps more efficient in an MPC

setting. These optimizations neither affect security nor change the

final computation result but: (𝑖) eliminate conditional branches, and

(𝑖𝑖) perform oblivious computation when handling the dictionary of

support vectors. Finally, we present the 2PC design of the optimized

BSGD-SVR that we call Aitia. The protocol is accompanied by a

formal security proof and the corresponding threat model.

4.1 Modifying BSGD-SVR for Efficiency,
Obliviousness, and Branch Removal

To ensure Obliviousness and become łMPC-friendly,ž we propose a

series of adjustments to our algorithmic steps of BSGD-SVR. In the

following, we describe the changes and the rationale behind them,

and in Algorithm 3 in Appendix A.

Efficient Initialization of Support Vector DictionaryD. No-

tice that Line 8 of Algorithm 2 initializes a dictionary denoted by

D. For our efficiency-driven optimization, we take into account

the context in which the dictionary is used. That is, D stores the

support vectors. A first approach would be to initialize D with a

collection of randomly chosen training datapoints. Such an action

introduces the following inefficiencies: (1) Suppose we happen to

initialize with a datapoint that has a large-weight absolute value.

In that case, because the removal rule (see Line 25 in BSGD-SVR)

prioritizes the elimination of low-weight absolute value entries,

the model is łstuckž with the large-absolute-value-weight support

vector, a consequence that can affect its accuracy and convergence.

(2) Suppose we happen to initialize with a significant number of

datapoints that need to be removed from D throughout the first

rounds of training. In that case, we introduce a significant overhead

because every removal needs to store the new support vector in

a temporary buffer, identify the minimum weight absolute value

entry, and swap between them. Because of the above inefficiencies

(which we identified through micro-benchmarks), we propose ini-

tializing the dictionary D in an empty state. This way, we will not

have to remove unlucky large-weight absolute value initializations

(point (1)) and will eliminate many unnecessary computational

steps from the first 𝐵 iterations of the algorithm (point (2)). We

introduce two matrices wgt and V to represent the weights and

the support vectors respectively, which replace the use of D. V

contains all the support vectors as its rows while wgt contains the

weight (that is, 𝛼𝑖 in the SVR notation of Section 3.2) of the support

vectors in the corresponding position. Formally, wgt = D .values()

while V = D .keys(). Initially, as D is empty, we initiate both wgt

and V to zero. Overall, the above optimization helps the model

to converge faster (so that 𝑇BSGD remains low) and speeds up the

computation by avoiding unnecessary removals from D.

Oblivious Membership Test inD. Notice that Line 14 of Algo-

rithm 2 checks if the sampled datapoint is already in the dictionary

D. To make this computational step oblivious, we introduce vectors

fnd and ID, each of them of length 𝐵 + 1. Vector ID stores the index

of the datapoints from Xtrain that serve as support vectors in no

particular order. Vector fnd is a binary vector which is populated as

follows: to check if sampled datapoint 𝑖 (see Line 11 of Algorithm 2

) is inD, our oblivious analog performs a linear scan on ID; during

the 𝑗-th iteration we run the following comparison ID[𝑗]
?
= 𝑖 and

store the output bit of the comparison to fnd[𝑗]. Thus, after the

(𝐵 + 1)-th iteration, if any of the entries of fnd is 1, the sampled

datapoint is in D. The above modification makes the membership

test oblivious by scanning the entire vector. Also, the proposed

computation uses only comparison operations, which are efficient

in an MPC setting. Finally, the comparisons ID[·]
?
= 𝑖 can be run

in parallel for multiple positions of ID, i.e., highly parallelizable

code. For completeness, we note that other oblivious membership

7

approaches [47, 56] could work just as well. We opted for a sim-

ple approach (the linear scan on 𝐵 location is fast for the tested

datasets) that can also be parallelized.

Conditional Branch & Prediction Threshold. Notice that

Line 13 of Algorithm 2 performs a conditional branch. To make this

step oblivious, we instead introduce a bit-flag 𝑏𝜉 that takes value 1

if the difference |𝑦𝑖 −𝑦𝑖 | − 𝜉 is positive, and value 0 otherwise. This

bit-flag 𝑏𝜉 will be used in the computation of the next modification

steps and will encode the result of this comparison, e.g., if we

multiply a vector with 𝑏𝜉 then it is zeroed in case |𝑦𝑖 − 𝑦𝑖 | < 𝜉 .

Oblivious Insertion & Update in D. Lines 15-25 in Algo-

rithm 2 perform an insertion of a new support vector in dictionary

D. Recall that D operates under the budgeted setting so it can

hold at most 𝐵 support vectors. To accommodate an insertion we

introduce the (𝐵 + 1)-th position in D that is used as a buffer to

temporarily host the newly inserted support vector. We have a loop

invariant that states that at the start of each iteration in Line 10, the

buffer position ofD should be empty. Thus, in case we are inserting

a new support vector, during the iteration, the buffer must swap its

content with another entry of D.

Locating the Min-Weight Position. Notice that the insertion takes

place when both (1) the membership test fails, i.e., bit-flag 𝑏fnd = 0,

and (2) the prediction threshold 𝜉 is surpassed, i.e., bit flag 𝑏𝜉 =

1. Jumping ahead, we rely on the optimized code of CrypTen to

identify the argmin of |wgt|, so in the following we assume that

vector mloc has 0 everywhere except the location where wgt has

the minimum (absolute) value. To encode the conditional branching

in our computation we introduce the following bit-wise operation

mlocCond = mloc · 𝑏𝜉 (1 ⊕ 𝑏fnd),

so thatmlocCond is 0 everywhere except for when 𝑏fnd = 0 and

𝑏𝜉 = 1, in which case, mlocCond has value 1 in the location of the

minimum absolute value of wgt. We note that the initialization of

mloc and the assignment of mlocCond need to happen regardless

of the values of 𝑏fnd and 𝑏𝜉 for the computation to be oblivious.

A Single Position Vector for Swap & Update. In the next step, we

create a bit-vector called editPos. If we are inserting a new support

vector that is temproarily stored in the buffer-location of D then

the entry editPos(𝐵 + 1) will be set to 1. On the other hand, if the

sampled datapoint 𝑖 is already a support vector in position 𝑘 of D,

the entry editPos[𝑘] will be set to 1. Notice that the initialization

of editPos depends on the datapoint we sampled, to capture this

conditional intialization we use again bit operations with the bit-

flags 𝑏fnd and 𝑏𝜉 to get

editPos = 𝑏𝜉 (fnd ⊕ ((1 ⊕ 𝑏fnd)1𝐵+1)),

where 1𝐵+1 is a (𝐵 + 1)-dimensional vector with 0 everywhere

except location (𝐵 + 1) that has value 1.

Weight Adjustment. Next, we use the newly computed editPos

that identifies the position that needs to be updated (either an

existing support vector or the buffer-location) to update the corre-

sponding entry of the weight vector wgt. As for the type of weight

update listed in Lines 16, 17, 22, and 23 of Algorithm 2, we opt for

the RBF kernel 𝐾 . This kernel has a property that K(𝑥𝑖 , 𝑥𝑖) = 1, so

the update for each weight can be computed by simply adding or

subtracting the learning rate 𝜂. Thus, we define 𝑢𝑝𝑑 = sign(𝑦 −𝑦)𝜂

to capture both the sign and the change of the weight. The operation

wgt = wgt − 𝑢𝑝𝑑 · editPos

will leave all weights untouched except (1) in case of a new support

vector, the (𝐵+1)-th weight is updated, and (2) in case of an existing

support vector the corresponding weight is updated.

Swap in Case of Insertion. The final step performs a swap between

the (𝐵+1)-location of wgt and the corresponding minimum-weight

support vector, but only if we are inserting a new support vector.

The above requirement is capture already in the way that we com-

puted mlocCond. That is, mlocCond is all 0s when there is no

insertion of a new support vector and it has value 1 in location

the support vector that needs to be removed. Thus, the following

operation performs a swap to move the newly inserted support

vector to its correct location if necessary:

wgt = wgt −mlocCond(wgt −wgt[𝐵 + 1]).

The swap needs to address the change not only in vector wgt but

also in vector ID that holds the identifiers of support vectors and

matrix V used to express the support vectors x𝑗 as a matrix

V = V −mlocCond(V − 𝑥𝑖)

ID = ID −mlocCond(ID − 𝑖) .

Efficiency via Vectorization. Another more generic optimiza-

tion (as opposed to the above customized modifications in which

the context was important) is to vectorize the computation steps.

For example, the Predict function in Line 1 of BSGD-SVR, has a

double loop; one loop for the set of test vectors and one for the list of

support vectors (see Line 3,4 in Algorithm 2). The final closed-form

expression of this calculation is

𝑏 +
∑︁

x𝑗 ∈D .𝑘𝑒𝑦𝑠 ()

D[x𝑗] · K(x𝑗 ,X𝑡𝑒𝑠𝑡 [𝑖])

but can be equivalently represented using linear algebra as

𝑏 + ⟨wgt,K(V,X𝑡𝑒𝑠𝑡 [𝑖])⟩,

where we usewgt instead ofD[x𝑗] and useV as the matrix version

of support vectors. Vectorized computation is highly optimized,

parallelizable in CrypTen.

4.2 The Aitia Protocol

Threat Model. As described in Section 2.3, our Aitia follows the

server-aided framework using two non-trusted and non-colluding

servers 𝑃1 and 𝑃2. Specifically, we assume that there are a set of

data owners 𝑈1, . . . ,𝑈𝑁 , each holding a private dataset Ψ𝑗 . The

data owners securely distribute their sensitive dataset among the

two non-colluding servers 𝑃1 and 𝑃2 using a secret sharing scheme

described in Section 2.2. At the end of this distribution, each server

holds the secret-shared union of the dataset Ψ𝑗 as JΨK where Ψ =

{(𝑥𝑖 , 𝑦𝑖) |𝑥𝑖 ∈ R
𝑚, 𝑦𝑖 ∈ R}𝑖∈[𝑛] . Our threat model assumes that the

servers are semi-honest as we rely on the semi-honest two-party

secure computation (2PC) tool, CrypTen [9], for implementation.

Thus, the servers follow the protocol description but may attempt to

extract sensitive information from the execution transcript. When

any server (either 𝑃1 or 𝑃2) colludes with a set of data owners𝑈 𝑗 ,

the coalition of corrupt parties learns nothing about the dataset

Ψ𝑗 of other non-corrupt parties (due to the underlying security

8

Parameters:

• Two parties: 𝑃1 and 𝑃2
• 𝜂,𝑇BSGD, 𝜉 , 𝐵, security parameter 𝜅

• Kernel function K

• A pseudorandom generator 𝑃𝑅𝐺 : {0, 1}𝜅 → {0, 1}∗

Input of 𝑃𝑖∈ [2] : Secret-shared dataset JΨK where Ψ = { (𝑥𝑖 , 𝑦𝑖) |𝑥𝑖 ∈ R
𝑚, 𝑦𝑖 ∈ R}𝑖∈ [𝑛]

Protocol:

I. Initialization:

1. 𝑃1 chooses a random seed 𝑠 ← {0, 1}𝜅 , and sends it to 𝑃2.

2. Each party locally generate shares of 4 matrices JVK ∈ R(𝐵+1)×𝑚, JwgtK, ID, 1𝐵+1 ∈ R
𝐵+1 such that for party 𝑃𝑖 : JVK𝑖 = 0, JwgtK𝑖 = JIDK𝑖 = 0,

and

J1𝐵+1K𝑖 [𝑘] =

{

1, if 𝑘 = 𝐵 + 1, 𝑖 = 1

0 otherwise

3. Each party locally initiate bias value J𝑏K1 = J𝑏K2 = 0

II. Secure SVR training: Repeat the following𝑇BSGD times:

1. Each party computes an index 𝑖 = 𝑃𝑅𝐺 (𝑠) , and define JxK := Jx𝑖K

2. The parties jointly compute the prediction J𝑦′K : 𝑦′ ← 𝑏 + ⟨wgt,K(V, x) ⟩

3. Each party locally computes JΔK← J𝑦′K − J𝑦𝑖K
4. The parties jointly computes J𝑏𝜉 K as:

𝑏𝜉 =

{

1, if Δ > 𝜉 or Δ < −𝜉

0 otherwise

5. For 𝑗 ∈ [𝐵], parties jointly computes Jfnd[𝑗]K in parallel such that: fnd[𝑗] =

{

1, if ID[𝑗] = 𝑖

0 otherwise

6. Each party locally computes J𝑏fndK as 𝑏fnd =
⊕𝐵

𝑗=1 fnd[𝑗]

7. The parties jointly compute the updated positions vector JeditPosK such that editPos = 𝑏𝜉 (fnd ⊕ ((1 ⊕ 𝑏fnd)1𝐵+1))

8. Each party locally computes J𝑢𝑝𝑑K : 𝑢𝑝𝑑 ← sign(Δ)𝜂

9. The parties jointly update JwgtK : wgt = wgt − 𝑢𝑝𝑑 · editPos

10. Each party locally update bias value J𝑏K: J𝑏K = J𝑏K − J𝑢𝑝𝑑K

11. The parties jointly compute JmlocK such that:

mloc[𝑗] =

{

1, if 𝑗 = argmin |wgt |

0 otherwise

12. The parties jointly computemlocCond = mloc · 𝑏𝜉 (1 ⊕ 𝑏fnd)

13. The parties jointly update wgt = wgt −mlocCond(wgt − wgt[𝐵])

14. The parties jointly update V = V −mlocCond(V − x)

15. The parties jointly update ID = ID −mlocCond(ID − 𝑖)

16. Each party locally set wgt[𝐵 + 1] = 0,V[𝐵 + 1] = 0, ID[𝐵 + 1] = 0

III. Output: A party sends its secret-shared causal inference’s parameters JVK, JwgtK to another party who outputs model by reconstructing the shares

locally.

Figure 3: Our Aitia Protocol.

guarantee of secret sharing scheme). This threat model of Aitia

has been formalized and used in various PPML scheme [31, 32, 40].

Note that our Aitia protocol can be extended to work with

multiple non-colluding and malicious servers if implemented using

MPC libraries that are secure against malicious adversaries like

SPDZ [20]. Such an extension may allow additional optimizations

to scale better in the MPC setting, as opposed to 2PC. We leave this

direction as an open problem.

Main Protocol.We now describe the main protocol of Aitia

which closely follows the modified BSGD-SVR algorithm presented

in Section 4.2. We assume that the training samples Ψ are additively

secret-shared amongst two parties. Figure 3 formally presents our

Aitia protocol, which consists of two phases: initialization and

secure BSGD-SVR training. The first phase is to implement Line 8-9

of Algorithm 2 in a privacy-preserving way. To ensure that both

parties chooses similar training samples, the party 𝑃1 can choose

an arbitrary random seed 𝑠 and broadcasts it to 𝑃2. The party 𝑃1 can

also generate two shares of each of the 4 matrices V,wgt, ID, 1𝐵+1
as well as two shares of the bias 𝑏 such that they ensure the value

indicated in line 2-3 of Figure 3.

The second phase consists of 𝑇BSGD iterators. Each iteration

starts with choosing a random index 𝑗 ← 𝑃𝑅𝐺 (𝑠) which is the

same across both parties, where 𝑠 is a PRG’s seed obtained in the

first phase. All the computation is performed on secret-shared ver-

sions of the matrices/vectors. After each iterator, the shares of

V,wgt, 𝑏𝜉 , 𝑏fnd, ID, 1𝐵+1 are either refreshed by new shares or up-

dated with a new value. Note that XOR (and addition) can be locally

computed by the party. We implement multiplication based on

Beaver-triple. For equality test (e.g. to learn whether 𝑗 = ID[𝑖]) we

use the Crypten’s comparison operator, which evaluate 𝑗 ≤ ID[𝑖]

9

and 𝑗 < ID[𝑖] in parallel. Note that the two comparison operators

consists of one arithmetic-to-binary conversion and evaluating the

sign of the first bit of 𝑗 − ID[𝑖]. Hence, the complexity of this opera-

tor is linear in the length of the input’s value. As the value of index

in the dataset is bounded by number of data points in the dataset,

the length of the index will not be very large. For example, if the

dataset consists of 1 million data points, the length of the index is

20. Thus, this operator is efficient.

Theorem 4.1. Aitia in Figure 3 securely computes the BSGD-SV

described in Algorithm 3 in the semi-honest setting, given the ideal

Garbled Circuit (GC) primitive and pseudo-random generator (PRG).

The security proof of our Aitia construction is presented in

Appendix A.1. It follows the security of Aitia’s building blocks

(e.g., secure comparison) and the fact that all intermediate values

are under a secret-shared form.

Additional Optimization for Aitia. In the following, we de-

tail one last optimization not depicted in Figure 3 for the sake of

simplicity. In Figure 4, the red-colored bars show the breakdown of

the training performance of the original Aitia design (as presented

in Figure 3), while the blue-colored bars the breakdown after the

optimization. The recorded operations are łWeight Updatež, łPre-

dictionž, łSwapž, and łArgMinž. The shade of the blue (resp. red)

changes to indicate a different operation from the above list.

Based on our experiments the operation łArgMinž, i.e., finding an

entrywith the smallest absolute weight, which is colored light-red is

an expensive step which takes 66% of the total computation cost. To

improve efficiency, we only perform the argmin function after the

first 𝐵 iteration. At the first 𝐵 iterations, due to the fact that all wgt

are initialized at 0, we can explicitly choose the minimum position

to be equal to iteration number 𝑖 and gradually add new vectors

to the 𝑖-th column of V. By doing this, we achieve 15% speedup

since the optimized version performs only 𝑇BSGD − 𝐵 operations of

argmin compared to 𝑇BSGD operations in the original version.

Figure 4: Runtime breakdown in Aitia across datasets. Left

and right column refers to runtime before and after removing

argmin computation from the first 𝐵 iterations, respectively.

5 EVALUATION OF AITIA

This section describes the specifics of our implementation of Aitia.

We also present an empirical evaluation of its performance in dif-

ferent causality benchmark datasets. The main goal of this Section

is to answer the following question:

Does Aitia provide faster training and lower com-

munication cost compared to GP and SMO-SVR im-

plemented with PPML libraries?

5.1 Implementation

We implement our Aitia protocol using CrypTen [9, 21], a frame-

work for privacy-preserving machine learning built on PyTorch.

We additionally employ CrypTen to implement GP and SMO-SVR.

The outcomes present their secure versions, which we utilize as

baselines for comparison. Below, we briefly explain how we use

CrypTen in our implementation (see [21] for more details).

Data type conversion. CrypTen works with real numbers by

multiplying each of them to a big number 𝐵 and round the resulted

number to the closest integer in the integer group Z𝑞 . In other

words, it converts from 𝑥 ∈ R to ⌊𝐵𝑥⌉ ∈ Z𝑞 . Later on, to get back

the real number, CrypTen divide by 𝐵 the integer number:

𝑥 =
⌊𝐵𝑥⌉

𝐵
.

Exponentiation. CrypTen has multiple options for doing ex-

ponentiation approximation. In our experiment, we use the limit

approximation

lim
𝑛→∞

(1 +
𝑥

2𝑛
)2

𝑛
.

We set 𝑛 = 8 in our experiment. This value is recommended by

CrypTen as it provides a favorable balance between accuracy and

efficiency. The exponentiation computation then consists of 8 mul-

tiplications (square operation) along with 1 truncation operation.

Comparison. CrypTen calculates secure comparison, i.e., 𝑥 >

𝑦 given 2 numbers 𝑥,𝑦 by securely evaluate the left-most bit of

𝑥 − 𝑦, which gives information about sign of the number, leading

to evaluation of J(𝑥 − 𝑦) < 0K which is equivalent to J𝑥 < 𝑦K.
Argmin.We use tree-reduction with log-reduction algorithm

of CrypTen. Given an input list of 𝑁 elements, the algorithm has a

round complexity of O(log𝑁), communication of O(𝑁 2) bits, and

O(𝑁) comparisons.

Reciprocal. CrypTen evaluates J 1
𝑥 K by using Newton-Rhapson

iterations. This method uses an initial guess, 𝑦0, for the reciprocal

and repeats the following update:

𝑦𝑛 = 𝑦𝑛 (2 − 𝑥𝑦𝑛)

In our experiment, we use 𝑛 = 10, which means we implement 20

secure multiplication operations per secure reciprocal evaluation.

5.2 Evaluation

We utilize the datasets introduced in Section 3.5, employing a

train/test split ratio of 8:2. We evaluation the performance of our

Aitia, secure GP and secure SMO-SVR on a local machine with 11th

Gen Intel(R) Core(TM) i9-11900KF Processor with an all-core CPU

frequency of 3.50GHz, 16 vCPU, 32GB RAM. Unfortunately, due to

extensive computation time, the runtime for secure SMO-SVR is

estimated based on the runtime of their first 10 updates.

10

Dataset Pair
Training Time (s) Comm (GB) Comm (M Rounds)

GP SMO-SVR Aitia GP SMO-SVR Aitia GP SMO-SVR Aitia

Liver Disorder(345)

pair0033 282.53 (3.77×) 2945 (39.26×) 75.01

0.63

(3.50×)

0.87

(4.83×)
0.18

0.16

(2.05×)

3.44

(44.10×)
0.078

pair0034 271.62 (3.57×) 3100 (40.72×) 76.13

pair0035 276.44 (3.61×) 3053 (39.88×) 76.56

pair0036 270.96 (3.61×) 3165 (42.12×) 75.15

pair0037 275.03 (3.62×) 3025 (39.83×) 75.95

Arrhythmia(452)

pair0022 474.57 (4.75×) 4928 (49.29×) 99.97
1.40

(4.83×)

1.50

(5.17×)
0.29

0.27

(2.45×)

5.67

(51.55×)
0.11pair0023 467.12 (4.69×) 4904(49.44×) 99.60

pair0024 467.01 (4.74×) 4924 (49.94×) 98.60

Income(3000)
pair0012 21171 (27.49×) 188901 (245×) 770 412.07

(32.60×)

63.37

(5.01×)
12.64

11.61

(14.70×)

223.84

(283×)
0.79

pair0017 21168 (27.35×) 188066 (243×) 774

NCEP-NCAR(3000)

pair0043 21234 (27.66×) 197850 (258×) 768

412.07

(32.60×)

63.37

(5.01×)
12.64

11.61

(14.70×)

223.84

(283×)
0.79

pair0044 21243 (27.38×) 197280 (254×) 776

pair0045 21204 (27.61×) 196560 (256×) 768

pair0046 21328 (27.59×) 197177 (255×) 773

Abalone(4177)

pair0005 41546 (37.36×) 378603 (340×) 1112

1111.59

(45.20×)

121.03

(4.92×)
24.59

22.45

(20.41×)

431.19

(392×)
1.10

pair0006 41560 (38.09×) 379104 (347×) 1091

pair0007 41846 (38.32×) 361227 (331×) 1092

pair0008 41853 (38.29×) 380608 (348×) 1093

pair0009 41894 (38.58×) 379606 (350×) 1086

pair0010 41710 (38.20×) 379558 (348×) 1092

pair0011 41730 (37.90×) 381006 (346×) 1101

Table 4: System Performance of (1) Privacy-Preserving Gaussian Process (GP) Regression; (2) SMO-SVR; (3) Aitia. Training

dataset pair are assigned in Appendix D. Number of rounds are in millions. Training time of SMO-SVR are estimated based on

the average of the first 10 updates.

In the evaluation, we choose the parameters as follow: 𝐵 =

0.5,𝑇BSGD = 2𝑁,𝜂 = 0.01 for all dataset, and 𝜉 = 0.01 for Abalone,

Arrhythmia and NCEP-NCAR dataset, 𝜉 = 0.05 for liver disorder

dataset, and 𝜉 = 0.001 for the income dataset.

Table 4 and Table 5 report the training and testing performances

of all protocols across various datasets. As expected, our Aitia

demonstrates superior running time and communication cost ef-

ficiency across all datasets, with the difference becoming more

noticeable as the size of the training dataset increases.

Performance of Secure Training. According to our experi-

ments, the training time of ourAitia is significantly faster compared

to the baselines. In particular, for the Liver Disorder dataset, which

consists of 345 data points, ourAitia training is approximately 3.6×

faster than GP and 40× faster than SMO-SVR. In terms of concrete

numbers, training with GP takes over 4 minutes, and training with

SMO-SVR takes nearly an hour, while Aitia achieves the same

convergence in just over 1 minute.

As the dataset size increases, the performance gap become more

pronounced. Specifically, when training on the Abalone dataset,

consisting of 4177 datapoints, GP and SMO-SVR require 37.36× and

340× more time for training than Aitia, respectively. To provide a

concrete comparison: GP takes over 41500 seconds (approximately

11.5 hours) for one pair of variables, while SMO-SVR takes 361227

seconds (approximately 100 hours) for the same pair. In contrast,

Aitia completes training in only about 1100 seconds, equating

to less than 20 minutes of computational time. The performance

gap between GP and Aitia increases linearly with the number of

data points, ranging from 3.6× in datasets with 345 data points

(Liver disorder) to 38× in datasets with 4177 data points (Abalone).

Similarly, the gap between SMO-SVR and Aitia grows from 39.26×

(Liver Disorder) to 350× (Abalone) as the dataset size increases.

The experiment illustrates that Aitia is both practical and scales

effectively as the number of data points increases to the thousands,

particularly in scenarios where causal inference across multiple

variables is necessary. For instance, when all 7 pairs of the Abalone

dataset are combined, Aitia requires only 2.13 hours, whereas GP

and SMO-SVR demand 81.15 hours and 733 hours, respectively.

When considering communication cost, Aitia demonstrates

notably reduced communication size and fewer communication

rounds compared to secure GP and SMO-SVR. Like the runtime

performance, there is also a noticeable linear trend in the communi-

cation gap. Specifically, the difference between secure GP andAitia

ranges from 3.5×more communication size and 2.05×more rounds

when training on Liver disorder (345 data points) to 45× more com-

munication size and 20.41×more rounds when training on Abalone

(which has 12.11 times more data points than Liver disorder). Sim-

ilarly, while the gap in communication between SMO-SVR and

BSGD-SVR remains around 5×, the difference in the number of

rounds increases from 44.10× in Liver disorder to 392× in Abalone.

Performance of Secure Testing. Interstingly, from Table 5,

we can see that the gap between Aitia and the baselines decreases

as the dataset size increases. For instance, Aitia exhibits a speed

improvement of 31.43× compared to GP for Liver Disorder with 345

data points, but this figure reduces to only 8× for Abalone with 4177

data points. According to our micro-benchmarks, this phenomenon

is caused by the encoding function of CrypTen’s implementation,

which encodes small tensors. This explains why Aitia testing time

on Liver Disorder and Arrhythmia are much faster compared to

11

Dataset Pair
Testing Time (s) Comm (MB) Comm (Rounds)

GP SMO-SVR Aitia GP SMO-SVR Aitia GP SMO-SVR Aitia

Liver Disorder(345)

pair0033 0.44 (31.43×) 0.35 (25.00×) 0.014

17.44

(10.90×)

14.82

(9.26×)
1.60

25

(1.92×)

22

(1.69×)
13

pair0034 0.45 (32.14×) 0.36 (25.71×) 0.014

pair0035 0.41 (29.29×) 0.34 (24.29×) 0.014

pair0036 0.43 (33.08×) 0.36 (27.79×) 0.013

pair0037 0.45 (32.14×) 0.36 (25.71×) 0.014

Arrhythmia(452)

pair0022 1.57 (104.67×) 1.46 (97.33×) 0.015
29.89

(10.87×)

25.41

(9.24×)
2.75

25

(1.92×)

22

(1.69×)
13pair0023 1.57 (104.67×) 1.28 (85.33×) 0.015

pair0024 1.54 (102.67×) 1.32 (88.00×) 0.015

Income(3000)
pair0012 5.70 (6.79×) 3.81 (4.54×) 0.84 1318.41

(10.91×)

1120.66

(9.27×)
120.89

25

(1.92×)

22

(1.69×)
13

pair0017 5.70 (8.64×) 3.81 (5.77×) 0.66

NCEP-NCAR(3000)

pair0043 5.65 (6.42×) 3.83 (4.35×) 0.88

1318.41

(10.91×)

1120.66

(9.27×)
120.89

25

(1.92×)

22

(1.69×)
13

pair0044 5.68 (7.47×) 3.82 (5.03×) 0.76

pair0045 5.61 (7.38×) 3.81 (5.01×) 0.76

pair0046 5.66 (8.20×) 3.83 (5.55×) 0.69

Abalone(4177)

pair0005 9.05 (7.67×) 4.67 (3.96×) 1.18

2555.38

(10.90×)

2172.11

(9.27×)
234.39

25

(1.92×)

22

(1.69×)
13

pair0006 9.41 (8.40×) 4.71 (4.21×) 1.12

pair0007 9.27 (8.06×) 4.73 (4.11×) 1.15

pair0008 8.71 (7.38×) 4.68 (3.97×) 1.18

pair0009 9.42 (7.79×) 4.69 (3.88×) 1.21

pair0010 9.82 (8.77×) 4.69 (4.19×) 1.12

pair0011 9.77 (8.01×) 4.68 (3.84×) 1.22

Table 5: System Performance of (1) Privacy-Preserving Gaussian Process (GP) Regression; (2) SMO-SVR; (3) Aitia. Testing

dataset pair are assigned in Table 7 in Appendix D.

secure GP and SMO-SVR. However, when the set of support vec-

tors becomes sufficiently large, the encoding process slows down,

resulting in Aitia’s testing time being only 3-5× faster compared

to secure SMO-SVR and 6-9× faster compared to secure GP.

Regarding communication, the communication gap between

secure GP and Aitia remains approximately 10.90× for commu-

nication size and 1.92× for the number of rounds. Similarly, the

communication gap between secure SMO-SVR and Aitia stays at

9.26× for communication size and 1.69× for communication rounds.

When testing the Abalone dataset, Aitia incurs only 234.59 MB

in communication costs, whereas secure GP costs 2555.38 MB and

SMO-SVR costs 2172.11 MB. This demonstrates that Aitia is capa-

ble of significantly more efficient testing even in communication-

limited environments.

6 CONCLUSION & DISCUSSION

In this work, we proposed an efficient secure protocol called Aitia

for bivariate causal discovery. Our approach involves proposing

a new SVR model accompanied by a training algorithm with the

potential to accelerate significantly the secure implementation. We

proposed a series of optimizations and designed a 2PC protocol

that resulted in a training time speedup of up to 346×.

Discussion. Our proposed Aitia design shows significant im-

provement over textbook approaches implemented in CrypTen. Yet,

there are still exciting open problems to address:

• Alternative Libraries & Speedups: Our current implementation of

Aitia utilizes Crypten, meaning its performance is closely tied

to Crypten’s performance. For instance, during secure testing,

Aitia experiences a slowdown on large datasets, but this could be

improved if the encoding function issue in Crypten is resolved.

• GPU Acceleration: Utilizing GPUs for accelerating machine learn-

ing training is a widespread practice [46], and this trend can also

benefit our Aitia design. Fortunately, the algorithmic steps in

Aitia are designed for parallelization, enabling direct perfor-

mance enhancements through GPU acceleration. Additionally,

revisiting Algorithm 3 to optimize its execution on GPUs could

further improve efficiency, for example, exploring methods to

enhance the Oblivious Insertion & Update operation in Aitia.

• Malicious multiple-party Aitia: As discussed in Section 4.2, Aitia

has the capability to operate with multiple non-colluding and

malicious servers if implemented using MPC libraries that offer

security against malicious adversaries, such as SPDZ [20]. Future

optimization efforts are necessary to accelerate computations in

the malicious MPC setting.

ACKNOWLEDGMENTS.

We thanks Qi Pang for contributing helpful suggestions to our

protocol implementation. The first and the fourth authors were

partially supported by NSF awards #2101052, #2115075, and ARPA-

H SP4701-23-C-0074. The third author was partially supported by

the NSF award #2154732 and the Meta Security Research Award.

12

REFERENCES
[1] Website of the u.s. census bureau, 1994.
[2] Mariette Awad and Rahul Khanna. Support vector regression. In Efficient learning

machines, pages 67ś80. Springer, 2015.
[3] Donald Beaver. Efficient multiparty protocols using circuit randomization. In

Joan Feigenbaum, editor, Advances in Cryptology Ð CRYPTO ’91, pages 420ś432,
Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[4] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Effi-
cient garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on Security
and Privacy, pages 478ś492. IEEE Computer Society Press, May 2013.

[5] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for
secure multi-party computation. In Peng Ning, Paul F. Syverson, and Somesh
Jha, editors, ACM CCS 2008, pages 257ś266. ACM Press, October 2008.

[6] C. Williams C.E Rasmussen. Gaussian Process for Machine Learning. MIT Press,
2005.

[7] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector
machines. ACM transactions on intelligent systems and technology (TIST), 2(3):1ś
27, 2011.

[8] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48, ICML’16,
pages 201ś210. JMLR.org, 2016.

[9] Facebook. CrypTen: a framework for Privacy Preserving Machine Learning built
on PyTorch. https://github.com/facebookresearch/CrypTen.

[10] Gary Flake and Steve Lawrence. Efficient svm regression training with smo.
Machine Learning, 46, 03 2001.

[11] Nir Friedman and Iftach Nachman. Gaussian process networks. arXiv preprint
arXiv:1301.3857, 2013.

[12] Radhika Garg, Kang Yang, Jonathan Katz, and Xiao Wang. Scalable mixed-mode
mpc. Cryptology ePrint Archive, Paper 2023/1700, 2023. https://eprint.iacr.org/
2023/1700.

[13] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC ’87, pages 218ś229, New York, NY, USA, 1987. Association for Computing
Machinery.

[14] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In Alfred
Aho, editor, 19th ACM STOC, pages 218ś229. ACM Press, May 1987.

[15] H Altay Guvenir, Burak Acar, Gulsen Demiroz, and Ayhan Cekin. A supervised
machine learning algorithm for arrhythmia analysis. In Computers in Cardiology
1997, pages 433ś436. IEEE, 1997.

[16] Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen jie Lu, Cheng Hong, and Kui
Ren. Ciphergpt: Secure two-party gpt inference. Cryptology ePrint Archive,
Paper 2023/1147, 2023. https://eprint.iacr.org/2023/1147.

[17] Patrik O Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard
Schölkopf. Nonlinear causal discovery with additive noise models. In Advances
in neural information processing systems, pages 689ś696, 2009.

[18] Dominik Janzing, Joris Mooij, Kun Zhang, Jan Lemeire, Jakob Zscheischler, Povi-
las Daniušis, Bastian Steudel, and Bernhard Schölkopf. Information-geometric
approach to inferring causal directions. Artificial Intelligence, 182:1ś31, 2012.

[19] Eugenia Kalnay, Masao Kanamitsu, Robert Kistler, William Collins, Dennis
Deaven, Lev Gandin, Mark Iredell, Suranjana Saha, Glenn White, John Woollen,
et al. The ncep/ncar 40-year reanalysis project. Bulletin of the American meteoro-
logical Society, 77(3):437ś472, 1996.

[20] Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In
Proceedings of the 2020 ACM SIGSACConference on Computer and Communications
Security, 2020.

[21] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark
Ibrahim, and Laurens van der Maaten. Crypten: Secure multi-party computation
meets machine learning. Advances in Neural Information Processing Systems, 34,
2021.

[22] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In Proc. of the 35th ICALP, volume 5126 of Lecture Notes
in Computer Science, pages 486ś498. Springer, 2008.

[23] Samory Kpotufe, Eleni Sgouritsa, Dominik Janzing, and Bernhard Schölkopf.
Consistency of causal inference under the additive noise model. In International
Conference on Machine Learning, pages 478ś486, 2014.

[24] H W Kuhn and A W Tucker. Nonlinear programming proceedings of the 2nd
berkeley symposium on mathematical statistics and probability. In University of
California Press, Berkeley, pages 481ś492, 1951.

[25] Matt J. Kusner, Yu Sun, Karthik Sridharan, and Kilian Q. Weinberger. Private
causal inference. In Arthur Gretton and Christian C. Robert, editors, Proceed-
ings of the 19th International Conference on Artificial Intelligence and Statistics,
volume 51 of Proceedings of Machine Learning Research, pages 1308ś1317, Cadiz,
Spain, 09ś11 May 2016. PMLR.

[26] Dacheng Li, HongyiWang, Rulin Shao, HanGuo, Eric Xing, andHao Zhang. MPC-
FORMER: FAST, PERFORMANT AND PRIVATE TRANSFORMER INFERENCE
WITHMPC. In The Eleventh International Conference on Learning Representations,
2023.

[27] Yun Li, Yufei Duan, Zhicong Huang, Cheng Hong, Chao Zhang, and Yifan Song.
Efficient 3PC for binary circuits with application to Maliciously-Secure DNN
inference. In 32nd USENIX Security Symposium (USENIX Security 23), pages
5377ś5394, Anaheim, CA, August 2023. USENIX Association.

[28] David Lopez-Paz, Krikamol Muandet, Bernhard Schölkopf, and Iliya Tolstikhin.
Towards a learning theory of cause-effect inference. In International Conference
on Machine Learning, pages 1452ś1461, 2015.

[29] Michael C. Mackey and Leon Glass. Oscillation and chaos in physiological
control systems. Science, 197(4300):287ś289, 1977.

[30] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for
machine learning. In Proceedings of the 2018 ACM SIGSACConference on Computer
and Communications Security, CCS ’18, pages 35ś52, New York, NY, USA, 2018.
Association for Computing Machinery.

[31] Payman Mohassel, Mike Rosulek, and Ni Trieu. Practical privacy-preserving
k-means clustering. The 20th Privacy Enhancing Technologies Symposium, 2020.
https://eprint.iacr.org/2019/1158.

[32] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-
preserving machine learning. In 2017 IEEE Symposium on Security and Privacy,
pages 19ś38. IEEE Computer Society Press, May 2017.

[33] Joris MMooij, Dominik Janzing, TomHeskes, and Bernhard Schölkopf. On causal
discovery with cyclic additive noise models. In Advances in neural information
processing systems, pages 639ś647, 2011.

[34] Joris M Mooij, Dominik Janzing, Jakob Zscheischler, and Bernhard Schölkopf.
CauseEffectPairs repository. http://webdav.tuebingen.mpg.de/cause-effect/,
2014.

[35] Joris M Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, and Bernhard
Schölkopf. Distinguishing cause from effect using observational data: methods
and benchmarks. The Journal of Machine Learning Research, 17(1):1103ś1204,
2016.

[36] Warwick J Nash, Tracy L Sellers, Simon R Talbot, Andrew J Cawthorn, andWes B
Ford. The population biology of abalone (haliotis species) in tasmania. i. blacklip
abalone (h. rubra) from the north coast and islands of bass strait. Sea Fisheries
Division, Technical Report, 48:p411, 1994.

[37] Yuki Ohnishi and Jordan Awan. Locally private causal inference for randomized
experiments, 2023.

[38] Office on Smoking, Centers for Disease Control, Prevention, et al. How tobacco
smoke causes disease: The biology and behavioral basis for smoking-attributable
disease: A report of the surgeon general. 2010.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825ś2830, 2011.

[40] Rahul Rachuri and Ajith Suresh. Trident: Efficient 4pc framework for privacy
preserving machine learning. CoRR, abs/1912.02631, 2019.

[41] Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine
learning (GPML) toolbox. J. Mach. Learn. Res., 11:3011ś3015, 2010.

[42] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for
machine learning. Adaptive computation and machine learning. MIT Press, 2006.

[43] Deevashwer Rathee, Anwesh Bhattacharya, Divya Gupta, Rahul Sharma, and
Dawn Song. Secure floating-point training. Cryptology ePrint Archive, Paper
2023/467, 2023. https://eprint.iacr.org/2023/467.

[44] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pega-
sos: Primal estimated sub-gradient solver for svm. Mathematical programming,
127(1):3ś30, 2011.

[45] Xiaohai Sun, Dominik Janzing, and Bernhard Schölkopf. Causal reasoning by
evaluating the complexity of conditional densities with kernel methods. Neuro-
computing, 71(7-9):1248ś1256, 2008.

[46] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu. Cryptgpu: Fast privacy-
preserving machine learning on the gpu. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 1021ś1038, 2021.

[47] Xiao Wang, Kartik Nayak, Chang Liu, Elaine Shi, Emil Stefanov, and Yan Huang.
Oblivious data structures. IACR Cryptol. ePrint Arch., page 185, 2014.

[48] Zhuang Wang, Koby Crammer, and Slobodan Vucetic. Breaking the curse of
kernelization: Budgeted stochastic gradient descent for large-scale svm training.
The Journal of Machine Learning Research, 13(1):3103ś3131, 2012.

[49] Christopher K Williams and Carl Edward Rasmussen. Gaussian processes for
machine learning, volume 2. MIT press Cambridge, MA, 2006.

[50] Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on
foundations of computer science (sfcs 1982), pages 160ś164. IEEE, 1982.

[51] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986), pages 162ś167. IEEE,
1986.

13

[52] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162ś167. IEEE Computer Society Press, October 1986.

[53] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole -
reducing data transfer in garbled circuits using half gates. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
220ś250. Springer, Heidelberg, April 2015.

[54] Zhi-Qiang Zeng, Hong-Bin Yu, Hua-Rong Xu, Yan-Qi Xie, and Ji Gao. Fast train-
ing support vector machines using parallel sequential minimal optimization. In
2008 3rd international conference on intelligent system and knowledge engineering,
volume 1, pages 997ś1001. IEEE, 2008.

[55] Allen Zhu Zeyuan, ChenWeizhu, Wang Gang, Zhu Chenguang, and Chen Zheng.
P-packsvm: Parallel primal gradient descent kernel svm. In 2009 Ninth IEEE
International Conference on Data Mining, pages 677ś686. IEEE, 2009.

[56] Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin. Linear private
set union from Multi-Query reverse private membership test. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 337ś354, Anaheim, CA, August
2023. USENIX Association.

[57] Kun Zhang and Aapo Hyvarinen. On the identifiability of the post-nonlinear
causal model. arXiv preprint arXiv:1205.2599, 2012.

14

Algorithm 3: Oblivious BSGD-SVR without if-branches.

1 Function Train(Xtrain, ytrain):

2 Initialize a bias value 𝑏 = 0.

3 Initialize 4 matrices: V of size (𝐵 + 1) ×𝑚 to store support vectors, wgt to store weights, ID to store the indices in the budget, and

1B+1 to indicate buffer position. wgt, ID, 1B+1 of size 𝐵 + 1. V,wgt, ID are initialized at 0, while 1B+1 are all 0 except for the last

position, i.e.

4 1B+1 [𝑖] =

{

1, if 𝑖 = 𝐵 + 1

0, otherwise

5 for 𝑡 = 0, 1, · · · ,𝑇BSGD do

6 Randomly pick a training index 𝑖 ∈ [𝑁]

7 Run the prediction procedure 𝑦𝑖 ← 𝑏 + ⟨wgt,K(V, 𝑥𝑖)⟩

8 Use a boolean variable 𝑏𝜉 to indicate whether the difference between the prediction and the true target exceeds the threshold:

𝑏𝜉 =

{

1, if 𝑦𝑖 − 𝑦𝑖 > 𝜉 or 𝑦𝑖 − 𝑦𝑖 < −𝜉

0 otherwise

9 Use a boolean variable 𝑏fnd to denote whether the picked sample is already in the support vectors and a boolean vector fnd to

locate it if the answer is yes:

10 for 𝑗 = 0, 1, . . . , 𝐵 do

11 fnd[𝑗] =

{

1, if 𝑖 = ID[𝑗]

0 otherwise

12 𝑏 𝑓 =
⊕𝐵

𝑗=1 fnd[𝑗]

13 Get the update position vector editPos: editPos = 𝑏𝜉 (fnd ⊕ ((1 ⊕ 𝑏fnd)1B+1))

14 Get the update value: 𝑢𝑝𝑑 = sign(𝑦 𝑗 − 𝑦 𝑗)𝜂

15 Update weight wgt, bias 𝑏, and find the minimum vectormloc:

16 wgt = wgt − 𝑢𝑝𝑑 · editPos

17 𝑏 = 𝑏 − 𝑢𝑝𝑑

18 mloc[𝑗] =

{

1, if 𝑗 = argmin |wgt|

0 otherwise

19 Swap the buffered position 𝐵 + 1 with the argmin position

20 mlocCond = mloc · 𝑏𝜉 (1 ⊕ 𝑏fnd)

21 wgt = wgt −mlocCond(wgt −wgt[𝐵 + 1])

22 Update V, ID

23 V = V −mlocCond(V − x𝑖)

24 ID = ID −mlocCond(ID − 𝑖)

25 Reset buffer position to 0:

26 V[𝐵 + 1] = wgt[𝐵 + 1] = ID[𝐵 + 1] = 0

27 return V,wgt

A OUR BSGD-SVR ALGORITHM

A.1 Security Proof of Aitia

Sketch of proof: In the first step of our Aitia construction, 𝑃1 chooses a random seed 𝑠 and sends it to 𝑃2. This simulation is elementary

as 𝑠 is random. Excepting Step (I,1), the two parties execute symmetric operations in which they execute the same code with their input and

obtain secret shares of the intermediate values and the final output. Thus, the role of both parties is the same, excluding Step (I.1). In the

following, we present a simulation for a corrupted 𝑃1. Simulating corrupted 𝑃2 is similar. We first formally describe the behavior of the

simulator:

(1) The simulator honestly plays the role of PRG at Steps (II,1). For every query 𝑃𝑅𝐺 (𝑠) made by the adversary, record outputs in a set

O1.

(2) Using garbled circuit, the simulator executes the below computations honestly.

ś “if" conditions at Steps (II,4-5), and (II,11)

ś Kernel function at Step (II,2)

ś Bit operations, additions, and multiplications at Steps (II,7), (II,9), (II,12-15)

15

(3) Upon receiving the secret-shared parameters of the kernel, the simulator sends them to the ideal functionality of BSGD-SVR. This

causes the honest party 𝑃2 to obtain the final output.

Due to the security of the garbled circuit and secret-shared intermediate result, the simulation for (2) and (3) is perfect. We now prove

that this simulation and the real interaction are indistinguishable for (1) via the following sequence of hybrids.

Hybrid 0: The real interaction, with 𝑃2 running honestly with input JΨK and giving its output to the environment according to the protocol

description, namely the kernel’s parameters 𝐾 .

Hybrid 1: Same as the previous hybrid, except for how 𝑃𝑅𝐺 is simulated. A query to 𝑃𝑅𝐺 (𝑠) is answered with a uniformly random

response. Thus, the sets O1 can be replaced with random.

□

B BASELINE ALGORITHMS

This section provides pseudocode for Gaussian Process (GP) Regression and SMO-SVR algorithms that were used in the main paper. The GP

Regression algorithm is taken from [6], and SMO-SVR algorithm is taken from [10]. The algorithms are shown in Algorithm 4 and Algorithm

5 respectively.

Algorithm 4: Gaussian Process Regression.

Input: prior mean 𝜇𝜇𝜇, 𝜇𝜇𝜇∗, noise scale 𝜎 , training dataset (𝑋𝑋𝑋,𝑦𝑦𝑦), testing dataset𝑋𝑋𝑋∗

1 𝑦𝑦𝑦∗ = 𝜇𝜇𝜇∗ + 𝐾 (𝑋𝑋𝑋 ∗,𝑋𝑋𝑋) [𝐾 (𝑋𝑋𝑋,𝑋𝑋𝑋) + 𝜎2𝐼𝐼𝐼]−1 (𝑦𝑦𝑦 − 𝜇𝜇𝜇)

C REGRESSION PERFORMANCE

We conducted experiments similar to those described in [10] to evaluate the performance of our BSGD-SVR algorithm in approximating

various functions, including both linear and non-linear ones. Our results demonstrate that BSGD-SVR effectively learns to approximate a

wide range of complicated functions. The functions considered in this section are:

• Linear function: 𝑦 = 2.4𝑥 + 1.3

• Sinus function: 𝑦 = 𝑠𝑖𝑛(𝑥)

• 𝑦 = 𝑠𝑖𝑛(𝑥 ∗ 0.15)/𝑥

• Mackey Glass function [29] for 𝜏 = 17, 𝑎 = 0.2, 𝑏 = 0.1,Δ𝑡 = 1

The results of the approximation are depicted in Figure 5. These results indicate that BSGD-SVR performs comparably to conventional

SMO-SVR in approximating complex target functions.

D DATASET DETAILS

We provide more information about the dataset that we used in our experiments throughout this paper. The dataset’s reference and source

are presented in Table 6, while the assignments of pair numbers are outlined in Table 7.

16

Algorithm 5: SMO for 𝜖-SVR.

1 Hyperparameters: learning rate 𝜎 , training iteration upper bound 𝑇 , tolerance threshold 𝜖 , 𝐶 , 𝜏

Input: training dataset Ψ = {(𝑥𝑖 , 𝑦𝑖) |𝑥𝑖 ∈ R
𝑚, 𝑦𝑖 ∈ R}𝑖∈[𝑛]

2 Function Train(Ψ):

3 𝛼𝛼𝛼 ← 0𝑛 , 𝑏 ← 0,𝐾𝐾𝐾 is a matrix,𝐾𝐾𝐾𝑖 𝑗 = 𝐾 (𝑥𝑖 , 𝑥 𝑗)

4 Indicator variable on whether we examine all vectors: 𝛾 = true

5 for 𝑘 ≤ 𝑇 do

6 𝛼𝛼𝛼𝑜𝑙𝑑 = 𝛼𝛼𝛼

7 if 𝛾 then

8 S = {1, 2, . . . , 𝑛}

9 else

10 S = {𝑖 ∈ [𝑛] : |𝛼𝛼𝛼 [𝑖] | ∉ {0;𝐶}}

11 for 𝑖 ∈ S do

12 for 𝑗 ∈ [𝑛], 𝑗 ≠ 𝑖 do

13 𝑠 ← 𝛼𝛼𝛼 [𝑖] +𝛼𝛼𝛼 [𝑗]

14 𝜂 = 𝐾𝐾𝐾 [𝑖, 𝑖] +𝐾𝐾𝐾 [𝑗, 𝑗] − 2𝐾𝐾𝐾 [𝑖, 𝑗]

15 Δ = 2𝜖/𝜂

16 𝑦∗𝑖 = 𝑏 +
∑𝑛
𝑘=1

𝛼𝛼𝛼 [𝑘]𝐾𝐾𝐾 [𝑖, 𝑘]

17 𝑦∗𝑗 = 𝑏 +
∑𝑛
𝑘=1

𝛼𝛼𝛼 [𝑘]𝐾𝐾𝐾 [𝑗, 𝑘]

18 𝛼𝛼𝛼 [𝑖] = 𝛼𝛼𝛼 [𝑖] + 1
𝜂 (𝑦𝑖 + 𝑦 𝑗 − 𝑦

∗
𝑖 − 𝑦

∗
𝑗)

19 𝛼𝛼𝛼 [𝑗] = 𝑠 −𝛼𝛼𝛼 [𝑖]

20 if 𝛼𝛼𝛼 [𝑖] ∗𝛼𝛼𝛼 [𝑗] < 0 then

21 if |𝛼𝛼𝛼 [𝑖] | ≥ Δ&&|𝛼𝛼𝛼 [𝑗] ≥ Δ| then

22 𝛼𝛼𝛼 [𝑖] = 𝛼𝛼𝛼 [𝑖] − sign(𝛼𝛼𝛼 [𝑖]) · Δ

23 else if |𝛼𝛼𝛼 [𝑖] | > |𝛼𝛼𝛼 [𝑗] | then

24 𝛼𝛼𝛼 [𝑖] = 𝑠

25 𝐿 = max(𝑠 −𝐶,−𝐶)

26 𝐻 = min(𝐶, 𝑠 +𝐶)

27 𝛼𝛼𝛼 [𝑖] = min(max(𝛼𝛼𝛼 [𝑖], 𝐿), 𝐻)

28 𝛼𝛼𝛼 [𝑗] = 𝑠 −𝛼𝛼𝛼 [𝑖]

29 𝑏𝑖 = 𝑦𝑖 − 𝑦
∗
𝑖 + (𝛼𝛼𝛼 [𝑖] −𝛼𝛼𝛼𝑜𝑙𝑑 [𝑖])𝐾𝐾𝐾 [𝑖, 𝑖] + (𝛼𝛼𝛼 [𝑗] −𝛼𝛼𝛼𝑜𝑙𝑑 [𝑗])𝐾𝐾𝐾 [𝑖, 𝑗] + 𝑏

30 𝑏 𝑗 = 𝑦 𝑗 − 𝑦
∗
𝑗 + (𝛼𝛼𝛼 [𝑗] −𝛼𝛼𝛼𝑜𝑙𝑑 [𝑗])𝐾𝐾𝐾 [𝑗, 𝑗] + (𝛼𝛼𝛼 [𝑖] −𝛼𝛼𝛼𝑜𝑙𝑑 [𝑖])𝐾𝐾𝐾 [𝑖, 𝑗] + 𝑏

31 𝑏 =
𝑏𝑖+𝑏 𝑗

2

32 if ∥𝛼𝛼𝛼𝑜𝑙𝑑 −𝛼𝛼𝛼 ∥ < 𝜏 && 𝛾 then

33 return 𝛼𝛼𝛼,𝑏

34 else

35 𝑘 = 𝑘 + 1

36 𝛾 =!𝛾

37 return 𝛼𝛼𝛼,𝑏

Dataset Size References URL

Abalone 4177 [35, 36] https://archive.ics.uci.edu/ml/datasets/Abalone

Arrhythmia 452 [15, 35] https://archive.ics.uci.edu/ml/datasets/Arrhythmia

Income 3000 [1, 35] https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)

Liver Disorder 345 [35] https://archive.ics.uci.edu/ml/datasets/Liver+Disorders

NCEP-NCAR 3000 [19, 33] http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html

Table 6: Datasets.

17

(a) 𝑦 = 2.4𝑥 + 1.3 (b) 𝑦 = sin𝑥

(c) 𝑦 = sin(𝑥 ∗ 0.15)/𝑥 (d) Mackey-Glass

Figure 5: Regression Performance of BSGD-SVR vs. standard SMO-SVR across four different functions.

18

Dataset Size Feature→ Label Pair

Liver Disorder 345

alcohol→ mean corpuscular volume pair0033

alcohol→ alkaline phosphotase pair0034

alcohol→ alanine aminotransferase pair0035

alcohol→ aspartate aminotransferase pair0036

alcohol→ gamma-glutamyl transpeptidase pair0037

Arrhythmia 452

age→ height pair0022

age→ weight pair0023

age→ heart rate pair0024

Income 3000
age→ weight per hour pair0012

age→ dividends from stock pair0017

NCEP-NCAR 3000

temperature (𝑡) → temperature (𝑡 + 1) pair0043

pressure (𝑡) → pressure (𝑡 + 1) pair0044

sea level pressure (𝑡) → sea level pressure (𝑡 + 1) pair0045

relative humidity (𝑡) → relative humidity (𝑡 + 1) pair0046

Abalone 4177

age→ length pair0005

age→ shell weight pair0006

age→ diameter pair0007

age→ height pair0008

age→ whole weight pair0009

age→ shucked weight pair0010

age→ viscera weight pair0011

Table 7: Dataset’s Feature→ Label associated pair number. The pair number are labelled in similar way as in [35]

19

𝑛servers Dataset Pair
Training Time (s) Comm (GB) Comm (M Rounds)

GP SMO-SVR Aitia GP SMO-SVR Aitia GP SMO-SVR Aitia

3

Liver Disorder

(345)

0033 495.69 (3.43×) 7121 (49.32×) 144.39

1.93

(3.86×)

3.86

(7.72×)
0.50

0.49

(3.50×)

8.60

(61.43×)
0.14

0034 505.26 (3.57×) 7476 (52.85×) 141.45

0035 503.43 (3.52×) 7441 (52.02×) 143.05

0036 497.63 (3.46×) 7475 (52.09×) 143.49

0037 502.30 (3.50×) 7431 (52.70×) 143.71

Arrhythmia

(452)

0022 846.70 (4.20×) 12410 (61.51×) 201.75
4.29

(5.23×)

7.31

(8.91×)
0.82

0.82

(4.32×)

14.39

(75.74×)
0.190023 840.63 (4.17×) 12533 (62.23×) 201.39

0024 862.55 (4.30×) 12518 (62.39×) 200.63

Income

(3000)

0012 39656 (24.89×) 540341 (339×) 1593 1240

(33.86×)

924.94

(25.26×)
36.62

34.81

(24.51×)

386.53

(272×)
1.42

0017 39206 (24.66×) 536544 (337×) 1590

NCEP-NCAR

(3000)

0043 39332 (24.80×) 542692 (342×) 1586

1240

(33.86×)

924.94

(25.26×)
36.62 34.81

386.53

(272×)
1.42

0044 39352 (24.86×) 537471 (340×) 1583

0045 39586 (24.98×) 536797 (339×) 1585

0046 39377 (24.75×) 538459 (338×) 1591

Abalone

(4177)

0005 79729 (35.03×) 1071488 (471 ×) 2276

3342

(46.97×)

2605

(36.61×)
71.15

67.32

(34.00×)

1365

(689×)
1.98

0006 79425 (34.84×) 1073849 (471×) 2280

0007 80163 (35.14×) 1073041 (470×) 2281

0008 79604 (34.85×) 1076514 (471×) 2284

0009 79674 (34.98×) 1076248 (472×) 2278

0010 79529 (34.96×) 1075168 (473×) 2274

0011 79634 (34.90×) 1075184 (471×) 2282

4

Liver Disorder

(345)

0033 622.27 (3.26×) 9748 (51.13×) 190.65

2.57

(3.52×)

5.45

(7.47×)
0.73

0.49

(3.50×)

8.60

(61.43×)
0.14

0034 637.54 (3.37×) 9883 (52.29×) 189.02

0035 636.23 (3.34×) 9851 (51.84×) 190.04

0036 639.16 (3.35×) 9794 (51.34×) 190.76

0037 640.96 (3.36×) 9803 (51.37×) 190.84

Arrhythmia

(452)

0022 1054 (3.96×) 16534 (62.07×) 266.34
5.72

(4.76×)

10.27

(8.56×)
1.20

0.82

(4.32×)

14.39

(75.74×)
0.190023 1099 (4.16×) 16548 (62.65×) 264.13

0024 1067 (4.02×) 16571 (62.46×) 265.31

Income

(3000)

0012 49303 (23.01×) 705245 (329×) 2143 1653

(31.15×)

1251

(23.57×)
53.07

34.81

(24.51×)

386.53

(272×)
1.42

0017 48930 (22.82×) 710124 (331×) 2144

NCEP-NCAR

(3000)

0043 49061 (22.88×) 711857 (332×) 2144

1653

(31.15×)

1251

(23.57×)
53.07

34.81

(24.51×)

386.53

(272×)
1.42

0044 49148 (22.94×) 706524 (330×) 2142

0045 49200 (22.96×) 709064 (331×) 2143

0046 48926 (22.86×) 709180 (331×) 2140

Abalone

(4177)

0005 99165 (31.89×) 1438749 (463×) 3110

4455

(43.19×)

3531

(32.49×)
103.13

67.32

(34.00×)

1365

(689×)
1.98

0006 99252 (31.88×) 1411883 (454×) 3113

0007 99378 (31.99×) 1422002 (458×) 3107

0008 99475 (32.00×) 1413483 (455×) 3108

0009 99090 (31.93×) 1422113 (458×) 3103

0010 99147 (31.82×) 1415591 (454×) 3116

0011 99004 (31.86×) 1418585 (457×) 3107

Table 8: Multiparty System Performance of (1) Privacy-Preserving Gaussian Process (GP) Regression; (2) SMO-SVR; (3) Aitia.

𝑛servers indicates number of servers.

20

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Causal Inference
	2.2 Secure Computation
	2.3 Privacy-Preserving Machine Learning
	2.4 Server-Aided Architecture

	3 A New Model-Training Approach for Efficient Secure Computation
	3.1 Notations and Problem Setup
	3.2 On Choosing Non-linear Regression
	3.3 Rethinking SVR with MPC training in Mind
	3.4 On Choosing Dependence Score
	3.5 Evaluation of BSGD-SVR

	4 Aitia: Secure Causal Discovery
	4.1 Modifying BSGD-SVR for Efficiency, Obliviousness, and Branch Removal
	4.2 The Aitia Protocol

	5 Evaluation of Aitia
	5.1 Implementation
	5.2 Evaluation

	6 Conclusion & Discussion
	References
	A Our BSGD-SVR algorithm
	A.1 Security Proof of Aitia

	B Baseline Algorithms
	C Regression Performance
	D Dataset Details

