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ABSTRACT

Researchers across various fields seek to understand causal relation-
ships but often find controlled experiments impractical. To address
this, statistical tools for causal discovery from naturally observed
data have become crucial. Non-linear regression models, such as
Gaussian process regression, are commonly used in causal infer-
ence but have limitations due to high costs when adapted for secure
computation. Support vector regression (SVR) offers an alternative
but remains costly in an Multi-party computation context due to
conditional branches and support vector updates.

In this paper, we propose AITIA, the first two-party secure com-
putation protocol for bivariate causal discovery. The protocol is
based on optimized multi-party computation design choices and
is secure in the semi-honest setting. At the core of our approach
is BSGD-SVR, a new non-linear regression algorithm designed for
MPC applications, achieving both high accuracy and low computa-
tion and communication costs. Specifically, we reduce the training
complexity of the non-linear regression model from approximately
from O(N?3) to O(N?) where N is the number of training samples.
We implement ArTiA using CrypTen and assess its performance
across various datasets. Empirical evaluations show a significant
speedup of 3.6X to 340x compared to the baseline approach.

1 INTRODUCTION

Many researches in social, medical and natural sciences aim to
answer questions with the following format: “What is the cause of
X?” or “What is the effect of X?” Although some of these questions
can be answered by controlled experiments, these trials are usually
expensive or even impossible to conduct. To address this challenge,
people turn to developing statistical tools to discover causal re-
lationships between variables from naturally observed data. This
category of tools is referred to as causal inference.

Causal Inference is intrinsically data-hungry. The more data
is fed to the algorithm, the more accurate the result will be. As
a result, causal inference usually requires rich datasets collected
from different parties. However, this raises privacy concerns. For
example, suppose that two hospitals want to collaboratively run
a causal inference algorithm on their combined dataset so as to
determine if a new medicine is effective on diabetes. However, due
to HIPAA regulations, they are reluctant to share medical records
with one another.

Multi-party computation (MPC) is a promising approach to ad-
dressing the above privacy concern. Generally, MPC allows multi-
ple parties to jointly compute a function on shared inputs without
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revealing more information than the function output. However,
general-purpose MPC protocols, such as garbled circuit [50, 51] or
GMW [13], typically introduce large performance overhead due to
extra computation and communication. Therefore, one would like
to develop a customized and efficient protocol for privacy-preserving
causal inference between the combined dataset of multiple parties.

Non-linear Regression Approaches and Their Limitations. The core
component of bivariate causal inference is a non-linear regression
algorithm. In the community of causal inference, one of the most
widely used non-linear regression is Gaussian process regression [35].
However, as pointed out in [35], Gaussian process regression suffers
from slow training time and the disadvantage is further exacerbated
as the number of training samples increases. Besides, Gaussian
process regression is an one-off regression algorithm. Its training
and testing happen at the same time and once there is a small
change in the dataset the whole process needs to be re-run, which
makes it less preferred in a dynamic setting where data changes
rapidly. To address the issue, we turn to another standard non-
linear regression model namely support vector regression (abbrev.
SVR). There are many variants of SVR and in this paper we mainly
focus on e-SVR [7]. Although SVR partially overcome the defects
of Gaussian process regression, it contains many if-branches which
is costly (i.e., not friendly) in the MPC setting. Besides, the model
of SVR stores some training examples for future prediction, known
as support vectors. For obliviousness in the MPC setting, if trivially
adapted, the SVR model needs to contain all the training samples,
which leads to slow training and huge memory consumption.

Our Proposed MPC-friendly Approach. To overcome the above
challenges, we propose a new training algorithm for SVR based
on the well-known stochastic gradient descent (SGD). There have
been systematic efforts to apply SGD on support vector machine
(SVM) [44, 55], a close relative of SVR but there are no such efforts
for SVR. Hence, we propose the first SGD-based training for SVR,
following the same design pattern of P-packSVM [55], a SGD-based
SVM training algorithm. To suppress the number of support vectors,
we adopt the idea of budgeting [48] to impose an upper bound on
the number of support vectors. Putting it all together, our new
training algorithm employs a Budgeted Stochastic Gradient Descent
approach for Support Vector Regression (BSGD-SVR).

From SVR to Secure Protocol. Although our BSGD-SVR algorithm
is designed to be MPC-friendly, it is far from trivial to adapt the algo-
rithm to the privacy-preserving context. The main reason is that the
BSGD-SVR contains many conditional branching operators while
modifying the training model. The secure version of the BSGD-SVR



algorithm should not reveal which branch was evaluated. Thus,
it is inefficient to directly apply generic secure computation tech-
niques (such as garbled circuit [14, 52]) to the non-secure algorithm
without customized optimizations. To build a secure and efficient
version of BSGD-SVR that we call ArT1A!, we propose a series of
optimizations that: speed up the initialization process, make the
budgeting technique oblivious, eliminate conditional branches, and
vectorize the algorithm.

Our Contribution. In summary, we make the following contribu-
tions in this paper.

e We propose BSGD-SVR, an MPC-friendly non-linear regression
model and design an efficient secure protocol for it. Compared
to the baselines, BSGD-SVR has lower computation and commu-
nication complexity.

e We propose AITIA, the first secure bivariate causal inference
protocol, designed for the semi-honest setting, with a straight-
forward extension to the malicious setting.

e We implement A1TIA in the Crypten framework [9] and evaluate
it empirically. The results show that Art1a achieves a 3.6 — 340X
speedup compared to the baseline. Our implementation can be
found at https://github.com/asu-crypto/Aitia

2 BACKGROUND AND RELATED WORK

In this section, we discuss the concepts and relevant literature from
causal discovery and cryptography used in our protocol AITIA.

2.1 Causal Inference

Let X, Y be two random variables, and Pr(X, Y) be the joint probabil-
ity distribution, i.e., the observational distribution after measuring
both quantities without any intervention. In a causality study, e.g.,
drug effects, the designer applies an external intervention that
forces variable X to take value x; this action is denoted as “do(x)”. If
this intervention has an effect, it is reflected in the interventional dis-
tribution, i.e., Pr(Y|do(x)). Variable X causes Y, denoted as X — Y,
holds when Pr(Y|do(x)) # Pr(Y|do(x")) for x # x’.

Even though there are several possible outcomes when analyzing
the causal relation between X and Y, in this work, we focus on
the following well-studied case: we assume that (1) X and Y are
dependent and that (2) there is no selection bias, no confounding,
no feedback relation between them. Under these assumptions, the
study of bivariate causal discovery reduces to deciding whether
X — YorY — X, ie., the direction of the causal relation.

Bivariate Causal Inference. In this work, we are interested in
the setting where the direction of causality must be inferred purely
from observational data. That is, we assume that the data analyst
does not have access to intervention data and does not have the
resources to run a new intervention to test a hypothesis, which,
in the medical field, has high costs in recruiting new participants,
designing the experiment, and getting IRB approval. Our goal is
to focus on the most practical and realistic scenario for causal
discovery, which is a data-driven approach. Due to its practicality,
this approach has attracted a lot of attention in the machine learning
community [11, 17, 18, 23, 28, 33, 38, 45, 57].

Ipronounced e-tee’ -a: the Greek word for cause or reason.

Unfortunately, it is not always possible to decide the direction
of the causality from observational data. On a high level, there has
to be a certain asymmetry between the two variables so that the
causality can be inferred purely through observational data. A series
of works analyzed potential relations between the variables X, Y
that permit such a causal discovery. Hoyer et al. [17] proved that it is
possible to discover causality when the relation between X, Y is non-
linear as long as the latent causes of the system can be modeled
as an additive noise, i.e., the Additive Noise Model. A rigorous
definition of the relation among the random variables is presented
in Definition 2.1, and an illustration of the relation between the
conditional and joint distributions is depicted in Figure 1.

Definition 2.1. We define as Additive Noise Model (ANM) with
causal relation X — Y the model in which (i) the r.v. X follows
the density px, (ii) the noise is captured by r.v. N and follows
the density pn, (iii) X and N are independent, and (iv) there is a
(potentially non-linear) fy such that Y = fy(X) + N.
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Figure 1: Illustration where causality X — Y in the ANM is
identifiable. X-axis (resp. Y-axis) represents the domain of the
random variable. We have Y = cos(X) + Z where X ~ N(0,1)
and the noise is Z ~ N(0,0.3%). The upper-left subplot shows
that data sampled from the joint distribution. The rest show
the contour lines for the joint and conditional distributions.

Specifically, Figure 1 illustrates why the direction of causality
X — Y is identifiable in ANM. Interestingly, when X — Y in ANM,
the mean of the conditional distribution Pr(Y|X) depends on X, i.e.,
the contour lines of Pr(Y|X) shift as X changes (lower-left subplot).
Whereas the conditional distribution Pr(X|Y) depends on Y in a
less obvious way. This asymmetry enables us to discover causality.

In a realistic scenario we only have access to a sample from
the joint distribution, i.e., the observational data. Mooji et al. [33]
proposed an approach (see Algorithm 1) uses the insights from
Figure 1 to discover causality using only observational data. The



observational data is split into two datasets D; and D3. Dataset Dy is
used to estimate the two regression functions f :x > E(Y|X =x)
and § : y — E(X|Y =y). After finalizing the regression functions
f and ¢, the dataset Dy is used to calculate the dependence score
between the residual and the corresponding input variable. If the
dependence score of pair (Y — fy (X)) and X is higher than the score
of (X — f;((Y)) and Y then the direction of causality is Y — X,
otherwise the directionis X — Y.

Algorithm 1: Causal Discovery in ANM.
Input: Observational data Dy: {x;, yi}};, D2: {x}, y;} 12,
chosen of regression model, chosen dependence
score s(+, -).

1 Fit non-linear regression models f , g such that f (x)  yand
gd(y) = x, where (x,y) € Dy

2 Define the dependence scores sx_y = s(x’,y’ — f(x’)),
and sy_,x = s(y’,x' — §(y’)), where (x’,y") € Dy

3 if sy_,y < sy_x thenreturn X — Y

4 elsereturn Y — X

Jumping ahead, the superior performance of our approach comes
from co-designing (i) the machine learning models, i.e., the training
of the regression model, and the dependence score, as well as (ii)
the cryptographic protocols, so that the overall protocol is orders of
magnitude faster than a direct implementation of the state-of-the-
art causal discovery algorithm [33] using a standard and efficient
secure computation library such as CrypTen [9].

Causality Dataset. We evaluate our new MPC-friendly train-
ing method as well as the proposed secure protocol on dataset
CauseEffectPairs (CEP), which is a standard dataset [35] for causal
discovery. CEP contains pairs of random variables that are statisti-
cally dependent, where one variable is known to cause the other.
The CEP collection, version 1.0, consists of pairs from 37 different
datasets across various domains and is available at [34]. For more
details about the chosen datasets, see Appendix D.

2.2 Secure Computation

Secret Sharing. Our AITIA construction makes usage of secret
sharing schemes for computing on private data. Values of the com-
putation are split into two randomly looking values that are held
by a two non-colluding servers. To additively share an ¢-bit value x,
the data owner chooses two random values x1, x2 « {0, 1}5 such
that x; + x2 = x mod {0, 1}. For simplicity, we omit the subscript
of the share and the mod operation and denote the share by [.].
To reconstruct shared value [x], one party sends its share to the
other, who reconstructs the secret x = x1 + x3 locally.

Addition, subtraction, and multiplication-by-constant can be
directly applied to the shares as they can be done locally by the par-
ties without communication, for example, [x + y] = [x] + [y]. For
secure multiplication between two ¢-bit values, we use the Beaver
triple [3] approach. The main idea of Beaver triple is to shift most
of the communication and computation cost into a preprocessing
phase which can be done offline since it does not require knowledge
of the inputs. The offline phase outputs the secret shared values
([a], ], [c]) such that ¢ = ab. In the online phase, parties compute

locally the values [a] = [x] - [a] and [B] = [y] — [b], where x and
y indicate the sensitive inputs. As a next step the two parties jointly
reconstruct « and f by exchanging the shares [a[, [S]. The secret
shared product [xy] is equal to [c] + a[b] + S]a] + af, which can
be locally evaluated by each party. Boolean sharing can be seen as
additive sharing in the field Z;. The addition operation is replaced
by XOR, and multiplication is replaced by AND.

Garbled Circuits. Garbled Circuits (GC) [14, 52] is currently
the most common generic technique for practical two-party secure
computation. The ideal functionality of GC is to take the parties’
inputs x and y, respectively, and compute f on them without reveal-
ing the secret parties’ inputs. In our design for A1T1A, we use “less
than” and “equal” GC where inputs are secretly shared amongst two
parties (i.e., each party holds the shares [x] and [y]). We denote this
garbled circuit by [z] <« GC([x], [y], f). To evaluate a function
f on shared values, GC first reconstructs the shares, performs f
on the top of obtained values, and then secret shares the result
f(x,y) to parties. The garbled circuit technique has seen dramatic
improvements in recent years. The most notable optimized tech-
niques are point-and-permute [5], Free-XOR [22], the half-gate [53],
and fixed-key AES garbling optimizations [4].

2.3 Privacy-Preserving Machine Learning

The emerging MPC-based privacy-preserving machine learning
(PPML) paradigm [8, 12, 16, 26, 27, 30, 32, 40, 43] enables differ-
ent entities to jointly and privately train and evaluate various ML
models over their joint data. Existing literature on PPML mainly
focused on linear regression, logistic regression, neural network
(NN), and transformer [8, 12, 16, 26, 32, 43]. Most PPML schemes
follow a server-aided setting where data owners outsource the
computation to a small number of non-trusted and non-colluding
servers. Mohassel and Zhang [32] introduced the first practical
PPML systems based on a two-server setting. Three-server [30]
and four-server [40] designs achieve a weaker security guarantee
in which collusion between any pair of these servers reveals the
private data of the data owners. Therefore, the two-server PPML
model is still preferable in many applications.

While causal inference plays a crucial role in modern data anal-
ysis, particularly in healthcare applications, there is relatively less
emphasis on developing a secure protocol for causal inference,
despite the extensive body of work in the broader field of PPML.
Recent works applied differential privacy (DP) on top of the causal
inference algorithm [25, 37]. Applying DP-noise significantly re-
duces model accuracy, an important factor in causal discovery. More
significantly, noise-driven methods reveal sensitive information
that a cryptographic approach like ArT1A can completely hide.

2.4 Server-Aided Architecture

In this work, we follow the server-aided framework using two non-
trusted and non-colluding servers. The goal is to train a causal
discovery model on a joint dataset shared by multiple data own-
ers. To achieve this, the data owners secret-share their sensitive
data among two servers which then train models directly on the
secret-shared data. This approach offers several benefits. Firstly,
it involves minimal participation by the data owners, who only
distribute their inputs once in the setup phase and are not involved



Algorithm Training Testing
Time-Complexity || # Exponentiations | #Sqrt | # Divisions # Comparisons # Multiplications Asym

GP Regression [49] O(N?) N(N+1)/2+nN | N N(N +1) 0 N3/2+N%(n+m/2+3/2) + N(nm+m/2 +n+7/3) N/A
SMO-SVR [7] O(TspoN?) N(N+1)/2 0 Tsmo Tspmo (5N +7) N(N +1)m/2 + Tspi0(2N? + N) O(nN)
BSGD-SVR O(TgsgpB + Nz) N(N+1)/2 0 0 Tasgp(Bm + B+ 2) N(N +1)m/2 + TgsgpB O(nB)

Table 1: Detailed counting of fundamental operations for training/testing non-linear regression models. We assume the Radial
Basis Function (RBF) kernel is used in all three algorithms and Cholesky decomposition is used for matrix inversion. We have
listed the operations in decreasing order of cost for MPC implementation.

in any future computation. Secondly, it utilizes efficient two-party
secure computation techniques that require less communication
and computation when deployed between a small number of par-
ticipants. In A1TIA, all intermediate values, such as the output of
causal inference, are secret-shared between the two servers.

3 A NEW MODEL-TRAINING APPROACH
FOR EFFICIENT SECURE COMPUTATION

In this section, we rethink the causal discovery model originally
proposed in the influential work from Hoyer et al. [17]. We revisit
the choice of the model and training algorithm with the goal of
significantly accelerating performance when translated to a 2PC
protocol. As we show in this section, an efficient ML model on plain-
text data does not always translate to an efficient 2PC protocol. In
the next section, we develop additional cryptographic optimizations
tailored to the newly proposed training algorithm.

Notation Explanation
N Number of training samples
n Number of testing samples
m Number of features
B The support vector budget (See Section 3.3)
Talg Number of iterations of algorithm alg, e.g., BSGD, SMO.

Table 2: Notation Table.

3.1 Notations and Problem Setup

We use bold lowercase letters to denote vectors (e.g., x) and bold
uppercase letters to denote matrices (e.g., X). The sequence 1,...,n
is denoted as [n]. Suppose we have a training set (X¥in ¢ RNxm
y'rain ¢ RNY) with N samples. Each sample has m features and a
target value. For a testing dataset X't € R"*™ with true target
yteSt € R, we consider a non-linear regression model A that makes
a prediction y. The accuracy of the prediction by the regression

model is measured by the mean squared error (MSE): 3, (y!*! -v:)2.

With the term x; (resp. y}) to denote the ith sample (resp. target)
in the * dataset. For simplicity, we omit the superscript when the
dataset being used is clear from the context. An overview of the
notation is presented in Table 2. A non-linear regression model M
can call two algorithms:
e Train: takes as input (Xirain, Yirain) and outputs a set of
parameters for a non-linear regression model M.
e Predict: takes as input Xiest as well as M and outputs the
prediction y.

3.2 On Choosing Non-linear Regression

According to Hoyer et al. [17], any non-linear regression model
can be used for bivariate causal discovery (see Algorithm 1). In the
following, we review two existing options for the ANM model.

On Gaussian Process Regression. The work of Mooij et al. [35]
uses Gaussian Process (GP) Regression [41, 42] as the non-parametric
regression model. Typically, Gaussian processes are presented ei-
ther through the weight-space view or function-space view (see
Chapter 2 in [42]). According to the function-space view, a Gaussian
process is a collection of random variables (each associated with a
function) where any finite number of the variables define a joint
Gaussian distribution. GP is characterized by its mean function and
its covariance function defined among pairs of random variables. In
practice, to train a GP regression, one needs to choose a covariance
function, e.g., squared exponential covariance, and use this function
to compute the inversion (or the Cholesky decomposition) of an
N-by-N matrix. A detailed version of the algorithm is presented in
Algorithm 4 in the Appendix.

Overhead in the 2PC Setting. Given that matrix inversion
takes O(N?) time, translating the above computation in a 2PC set-
ting between two servers requires O(N?) rounds of interaction.
Furthermore, matrix inversion can lead to numerical stability chal-
lenges that need to be addressed within the 2PC protocol. This
illustrates that computational methods efficient in non-secure set-
tings may not necessarily be efficient in secure computation settings
due to the need for interaction in the 2PC setting.

It is known in the PPML community that different fundamental
computation steps, e.g., exponentiation, division, comparison, addi-
tion, multiplication, incur different cost when translated to a secure
protocol. Table 1 presents a detailed breakdown of the number of
fundamental operations in GP. The operation that introduces the
highest overhead in an MPC protocol is exponentiation, typically
simplified to multiplication through approximate computation, al-
beit at the expense of accuracy loss.

On Support Vector Regression (SVR). In the following, take a
different approach than [35] and propose a new non-linear regres-
sion model for ANM. Our candidate substitute for GP regression
is called support vector regression (SVR) [2], see Algorithm 5 in
the Appendix . SVR expands the support vector machine method
to handle regression. A kernel SVR is parameterized by a weight
vector w and a bias term b. To make a prediction for an unseen
data point x, kernel SVR first maps the feature vector x to a high-
dimensional space using function ¢(-) and then outputs the inner
product added with a bias term: (w, ¢(x))+b. Note that the range of
mapping ¢(-) has infinite dimensions. Thus, the inner product can-
not be trivially calculated. The above computational challenge can
be solved efficiently by the kernel trick. Intuitively, we can rewrite
the weight vector as w = Zfil ai¢(x;) where x;,i € [N] are train-
ing samples and a;s are weights for the training samples. Hence,
the prediction formula for input x becomes b+Zfi1 ai{p(xi), p(x)).
Then the inner product can be calculated using the kernel trick



(p(x), (%)) = K(x',x) where K(-,) is a tractable kernel func-
tion. Only a small number of training points will have a; # 0, ,
which are referred to as the support vectors.

Challenges of Training SVR via 2PC. The textbook approach
[54] for training a kernel SVR is called sequential minimal opti-
mization (SMO). SMO solves the dual of the regularized SVR op-
timization problem. It works by iteratively choosing a pair of «
parameters, deciding whether they satisfy optimality conditions
namely Karush-Kuhn-Tucker (KKT conditions) [24], and if not, up-
dating the two a. The above SMO approach does not translate to
an efficient 2PC protocol. First, it has an asymptotic complexity of
O(TsgpN?) where Tsgp is the upper bound on the number of itera-
tions (typically at least N). Second, it is unclear how many training
points will become support vectors after training. Consequently,
while translating this approach to a secure 2PC protocol, one has
to introduce oblivious computation to hide not only the identity
but also the number of support vectors. Treating all training points
as potential support vectors incurs significant computation and
communication cost.

3.3 Rethinking SVR with MPC training in Mind

In the following, we sidestep the inefficiencies of GP and SMO-SVR
by designing a new SVR training algorithm that we call Budgeted
Stochastic Gradient Descent SVR or simply BSGD-SVR. Our objective
is to modify SVR so that we simultaneously (i) maintain compara-
ble accuracy of previously proposed training approaches, and (ii)
ensure that the resulting model translates to an efficient training
and testing as a 2PC protocol. We use two algorithmic adjustments
to create a novel variation of SVR that has not been previously
explored, potentially making it of independent interest:

o The first algorithmic insight is to train SVR with Stochastic Gra-
dient Descent (SGD) instead of SMO, an approach inspired by
Zeyuan et al. [55] and Shalev et al. [44] where SGD was used
for Support Vector Machines. This adjustments allows a sim-
pler update rule for the parameters of the model (as opposed to
optimality testing via the KKT conditions).

e The second algorithmic insight to control the number of support
vectors using budgeting. A similar technique was used by Wang
et al. [48] to suppress the number of support vectors for SVM.

We perform a detailed experimental analysis under standard
benchmarks for causal inference (see Table 3) and confirm that our
approach has comparable accuracy to GP and SMO-SVR for every
tested dataset. In Figure 5 in Appendix C, we show additional illus-
trative examples (similar to those in [10]) demonstrating the close
performance of our newly proposed model to previous approaches.

Training SVR via Stochastic Gradient Descent. First, we
propose replacing SMO with SGD to train SVR. To the best of our
knowledge, the only application of SGD to SVR considers non-
kernel based formulation [44]. Trivially applying SGD on SVR will
lead to a gradient vector of infinite dimensions. To control the
length of the gradient, we follow the intuition from [55] which
trains kernel SVMs using SGD by dynamically maintaining a set of
support vectors as shown in Algorithm 2 in Appendix.

The Role of Budgeting in Managing Support Vectors. The
SGD training strategy lowers the time complexity of training from
O(TsmoN?) to O(TesgpB + N?). However, much like SMO, we do

not know beforehand how many training points will act as support
vectors. To address the issue, we replicate the adjustment from [48]
and explicitly enforce a budget B for the number of support vectors.
Roughly speaking, when the number of support vectors is smaller
than the budget B , we maintain a set of fake support vectors so as
to always have B members; when the number exceeds the threshold,
we remove the appropriate number of support vectors.

Specifically, when training, we initialize a dictionary D to store
the support vectors, their weights (which are denoted as x; and «;,
respectively, in SVR algorithm) and the bias value (line 8-9).

Then in each training round, we pick a random sample indexed
by i and run the prediction function on it (line 11-12). If the pre-
diction is accurate enough, we continue to the next loop (line 13).
Otherwise, we either insert the sample into the dictionary or update
its weight depending on whether it is already in the dictionary (line
14-23). Last, if the dictionary is overflowed, we remove the support
vector with the smallest weight (line 24-25). This way, we manage
to control the number of support vectors and obtain a SVR protocol
with an efficient training under MPC setting.

Algorithm 2: BSGD-SVR.
1 Function Predict (X', D, b):

2 Initialize y[i] = b, Vi € [nzest]

3 forie€ 1,2,- -+ ,nsess do

4 for x; € D.keys() do

: | ylil = 91l + Dlx;] - K(xjox:)

6 return y

7 Function Train (X", yn narams = {B, Tsscp, 7, £}):

8 Initialize a dictionary 9 for support vectors and their

corresponding weights

9 Initialize a bias value b = 0

10 fort=1,2,---,Tgscp do

1 Randomly pick a training index i € [N]

12 Run the prediction procedure §j; < Predict(x;,D, b)

13 if prediction and true value differ too much: |y; — 4;| > &

then
14 if the sampled point is already in D: x; is in D.keys()
then

15 if §; > y; then

16 D[XiJ = D[X,’J —r]'K(xi,xi)

17 ‘ b=b-pg

18 else if §; < y; then

19 DIxi] = D[x;] + nK (xi, xi)

20 ‘ b=b+n

21 else

22 if §; > y; then D[x;] = —nK(xi, x;)

23 elseif §; < y; then D[x;] = nK(xi, x;)

24 if there are more than B support vectors in O then
25 ‘ Remove the minimum weight absolute value

from O

26 return O

SVR with Budgeted Stochastic Gradient Descent. Combining
the above ideas, we obtain BSGD-SVR, an 2PC-friendly non-linear
regression model shown in Algorithm 2. The training function
takes data as input and has four hyperparameters: B for budget size,
Tpscp for number of iterations, # for the learning rate to update
the weight, and ¢ as the prediction-threshold. When predicting, we



Dataset Feature—Target Mean Squared Error (MSE) Causal Direction
GP SMO-SVR BSGD-SVR via BSGD-SVR

pairee33: alcohol—corpuscular volume 2.31x 1072 | 1.98x 1072 | (2.40 = 0.06) x 10~2 v
pairee34: alcohol—alkaline phosphotase 2.72x 1072 | 216 X 1072 | (2.45+0.26) x 10~ 2 v
Liver Disorder(345) | pair@@35: alcohol—alanine aminotransferase 290x 1072 | 236 x 1072 | (2.70 £ 0.21) X 10~ 2 v
pairee@36: alcohol—aspartate aminotransferase 3.27% 1072 | 210x 107Z | (2.17 £0.10) x 102 v
pair@e37: alcohol—gamma-glutamyl transpeptidase 378 x 1072 | 1.99x 1072 | (2.21 +0.06) x 10~ 2 v
pair0022: age—height 1.35x10°% [ 1.67x 107% | (2.44 +0.50) x 10~% v
Arrhythmia(452) | pair@@23: age—weight 5.98x 1075 | 4.62x 1075 | (5.32 £ 0.50) X 10 > v
pair@024: age—heart rate 10.4x 1073 [ 9.19x 1073 | (10.3+0.9) x 1073 v
Income(3000) paire@12: age—wage per hour 6.10x 1072 [ 6.17x 107% | (6.09 £ 0.18) x 1074 v
pair@e17: age—dividends from stocks 13.6 X 107> | 14.8x 107> | (8.70 = 1.54) X 10> v
pairee43: temperature ()—temperature (t+1) 6.48x 1072 | 6.52x 107% | (7.50 = 0.52) x 10~ % v
pair@e44: pressure (t)—pressure (t+1) 6.76x 107> | 6.77x 107> | (10.1+1.0) X 10> v
NCEP-NCAR(3000) pair@045: sea level pressure (t)—sea level pressure (t+1) | 4.80 X 107> | 4.89 X 1075 | (4.92 £ 0.19) X 10> v
pairee46: rel. humidity (t)—rel. humidity (t+1) 1.24x107% | 1.48x 1072 | (1.51 +0.08) X 10~2 v
pair@ees: age—length 1.20x 1072 | 1.32x 1072 | (1.58 £ 0.10) X 10~2 v
pair@oe6: age—shell weight 1.24X 1072 | 1.35% 1072 | (1.66 + 0.20) X 102 v
paireee7: age—diameter 556x 107 [ 5.68x 10" % | (7.82+1.16) x 10~ % v
Abalone(4177) pair0ees: age—height 1.61x 1072 | 1.74x 1072 | (1.90 £ 0.05) x 10~ 2 v
pair@e0e9: age—whole weight 1.35x 1072 | 1.47 x 1072 | (1.63 £ 0.08) X 102 v
paire010: age—shucked weight 1.17x 1072 [ 1.26 x 102 | (1.35 +0.04) X 10”2 v
pair@011: age—viscera weight 9.63x 1075 | 10.1x107° | (11.1+0.7) x 1073 v

Table 3: Mean Square Error under different causality inference datasets for models trained with (1) Gaussian Process (GP)
Regression; (2) SMO-SVR; (3) BSGD-SVR. Deviation is calculated over 10 independent runs. As the GP and SMO-SVR imple-
mentations are deterministic, we only show the standard deviation for BSGD-SVR. The “Causal Direction” column compares
whether the predicted causality direction of the model trained with BSGD-SVR matches the ground truth for each pair.

calculate the weighted average of the kernel between each support
vector and the testing data, much like standard SVR.

3.4 On Choosing Dependence Score

As our last step, we need to choose a dependence score that is
suitable for the 2PC setting. According to Mooij et al. [35], the
main candidates for dependence score are (1) HSIC-based scores;
(2) entropy-based scores; (3) Gaussian scores; (4) empirical-Bayes
scores; (5) minimum message length scores. We choose Gaussian
score (see Definition 3.1) because it only requires two variance
computation and two logarithm operations. This choice would
competitive performance in a 2PC setting due to its simplicity.

Definition 3.1 (Gaussian Score). The Gaussian score between two
vectors u and v is defined as

log Var(u) + log Var(v)

3.5 Evaluation of BSGD-SVR

In this section, we would like to answer the following questions:

e How should we choose the support vector budget in BSGD-SVR?

e What is the trade-off between accuracy loss and performance
improvement in BSGD-SVR?

e How do the number of fundamental operations in BSGD-SVR
compare to those in other approaches?

We emphasize that the evaluation in this section concerns the
accuracy of the SVR model trained with the newly proposed BSGD-
SVR algorithm on plaintext/unencrypted data. Section 5 presents
the performance of the (optimized) privacy preserving version.

Setup. To answer these questions, we use five datasets from
the causality dataset CEB [34] to test the proposed non-linear re-
gression model and compare its accuracy to GP and SMO-SVR.
For Gaussian process regression, we use the implementation from
scikit-learn [39] with the default hyper-parameters. For SMO-
SVR, we use the implementation from LibSVM [7] with the default
hyper-parameters. We implement BSGD-SVR in slightly above 100
lines of Python code. We use the Gaussian score as the dependence
score for all the causal inference experiments.

(1) - Parameter Selection. When selecting the budget size B
and the number of training iterations Tgsgp, four aspects should
be taken into account:

e Memory cost: Higher budget means we need to store more data
support vectors in dictionary D

o Generalization: If the budget size B is too small, the support vec-
tors stored in dictionary £ might need to be more representative
to cover all data distribution.

e Accuracy: If Tgsgp is too small, the protocol has not “learned
enough” about the dataset to correctly predict future inputs.

e Runtime: If Tpggp is too large, the protocol runs longer.

In Figure 2, we study the budget size v.s. accuracy trade-off. The
mean squared error (MSE) is being compared against various budget
sizes for different numbers of training data points. The MSE de-
creases rapidly as we increase the budget size from 0.2N to 0.4N in
all datasets. However, when we increase the budget size to 0.6N, the
MSE either decreases at a slower rate or remains the same. Finally,
when we increase the budget size from 0.6N to 1.0N, the trend
shows that MSE decreases in some datasets, while it increases in
others. Overall, although the budget that provides the lowest MSE
varies based on the dataset, the assignment of B = 0.5N balances our



objectives for high accuracy and a small budget. Additionally, our
preliminary experiments showed that the assignment Tgsgp = 2N
is small enough while providing a competitive accuracy. We choose
learning rate n = 0.01 and & = 0.01 for all datasets. More impor-
tantly, we verified (last column of Table 3) that our parameterization
led to the correct direction of causality in all datasets.

1072 3 1073 1074
--BSGD-SVR 1'2 --BSGD-SVR | ¢ | 1 ~BSGD-SVR
2.2 | -2
1.1 5
w2 w1 w4
[22] ) w)
=18 = 0.9 =,
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1,
0.6
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4
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Budget / Training size

(a) Abalone. (b) NCEP-NCAR. (c) Arrhythmia.

Figure 2: MSE vs. Budget Divided by Training Set Size (B/N)

To choose the remaining parameters (learning rate  and small
threshold £), one approach is for a single party (e.g., a hospital) to
tune parameters locally on their private dataset before the secure
protocol. The party then shares the best hyperparameters (1 and )
with all others to start BSGD-SVR training.

(2) - Accuracy Evaluation. The results are shown in Table 3.
For most tested pairs, the accuracy of the model is very similar to
the accuracy of both GP and SMO-SVR. In several datasets, our
experiments show that the accuracy of BSGD-SVR is higher than
both GP and SMO-SVR. For example, BSGD-SVR reduces the MSEs
of GP and SMO-SVR by around ~36% and ~41% respectively for
the age—dividends pair in the Income dataset. Overall, our ex-
periments on 21 real-world datasets show that the newly proposed
BSGD-SVR offers a competitive accuracy across all tested data.

(3) - Number of Fundamental Operations. We also analyze
the computation cost of the three non-linear regression training
algorithms with respect to different fundamental operations so as
to extrapolate their performance once integrated with MPC. Our
analysis is shown in Table 1. The operations in the first row are
ordered in descending order with respect to performance overhead
in an MPC setting. One important observation is that BSGD-SVR
algorithm doesn’t involve any square root or division operation, and
it has the smallest number of exponentiations as well as the smallest
number of multiplications. Overall, the newly proposed BSGD-SVR
performs the smallest number of fundamental operations both in
training and testing compared to SMO-SVR.

4 AITIA: SECURE CAUSAL DISCOVERY

In this Section we present a series of optimizations for Algorithm 2
so as to make the computation steps more efficient in an MPC
setting. These optimizations neither affect security nor change the
final computation result but: (i) eliminate conditional branches, and
(ii) perform oblivious computation when handling the dictionary of
support vectors. Finally, we present the 2PC design of the optimized
BSGD-SVR that we call ArTiA. The protocol is accompanied by a
formal security proof and the corresponding threat model.

4.1 Modifying BSGD-SVR for Efficiency,
Obliviousness, and Branch Removal

To ensure Obliviousness and become “MPC-friendly,” we propose a
series of adjustments to our algorithmic steps of BSGD-SVR. In the
following, we describe the changes and the rationale behind them,
and in Algorithm 3 in Appendix A.

Efficient Initialization of Support Vector Dictionary D. No-
tice that Line 8 of Algorithm 2 initializes a dictionary denoted by
D. For our efficiency-driven optimization, we take into account
the context in which the dictionary is used. That is, D stores the
support vectors. A first approach would be to initialize D with a
collection of randomly chosen training datapoints. Such an action
introduces the following inefficiencies: (1) Suppose we happen to
initialize with a datapoint that has a large-weight absolute value.
In that case, because the removal rule (see Line 25 in BSGD-SVR)
prioritizes the elimination of low-weight absolute value entries,
the model is “stuck” with the large-absolute-value-weight support
vector, a consequence that can affect its accuracy and convergence.
(2) Suppose we happen to initialize with a significant number of
datapoints that need to be removed from D throughout the first
rounds of training. In that case, we introduce a significant overhead
because every removal needs to store the new support vector in
a temporary buffer, identify the minimum weight absolute value
entry, and swap between them. Because of the above inefficiencies
(which we identified through micro-benchmarks), we propose ini-
tializing the dictionary 9O in an empty state. This way, we will not
have to remove unlucky large-weight absolute value initializations
(point (1)) and will eliminate many unnecessary computational
steps from the first B iterations of the algorithm (point (2)). We
introduce two matrices wgt and V to represent the weights and
the support vectors respectively, which replace the use of D. V
contains all the support vectors as its rows while wgt contains the
weight (that is, ; in the SVR notation of Section 3.2) of the support
vectors in the corresponding position. Formally, wgt = D .values()
while V = D keys(). Initially, as D is empty, we initiate both wgt
and V to zero. Overall, the above optimization helps the model
to converge faster (so that Tgsgp remains low) and speeds up the
computation by avoiding unnecessary removals from D.

Oblivious Membership Test in D. Notice that Line 14 of Algo-
rithm 2 checks if the sampled datapoint is already in the dictionary
D. To make this computational step oblivious, we introduce vectors
fnd and ID, each of them of length B+ 1. Vector ID stores the index
of the datapoints from X that serve as support vectors in no
particular order. Vector fnd is a binary vector which is populated as
follows: to check if sampled datapoint i (see Line 11 of Algorithm 2
)is in D, our oblivious analog performs a linear scan on ID; during

the j-th iteration we run the following comparison ID| ] 2 iand
store the output bit of the comparison to fnd[j]. Thus, after the
(B + 1)-th iteration, if any of the entries of fnd is 1, the sampled
datapoint is in 9. The above modification makes the membership
test oblivious by scanning the entire vector. Also, the proposed
computation uses only comparison operations, which are efficient

in an MPC setting. Finally, the comparisons ID[:] 2 i can be run
in parallel for multiple positions of ID, i.e., highly parallelizable
code. For completeness, we note that other oblivious membership



approaches [47, 56] could work just as well. We opted for a sim-
ple approach (the linear scan on B location is fast for the tested
datasets) that can also be parallelized.

Conditional Branch & Prediction Threshold. Notice that
Line 13 of Algorithm 2 performs a conditional branch. To make this
step oblivious, we instead introduce a bit-flag by that takes value 1
if the difference |y; — §;| — £ is positive, and value 0 otherwise. This
bit-flag by will be used in the computation of the next modification
steps and will encode the result of this comparison, e.g., if we
multiply a vector with by then it is zeroed in case |y; — ;| < £.

Oblivious Insertion & Update in D. Lines 15-25 in Algo-
rithm 2 perform an insertion of a new support vector in dictionary
D. Recall that D operates under the budgeted setting so it can
hold at most B support vectors. To accommodate an insertion we
introduce the (B + 1)-th position in D that is used as a buffer to
temporarily host the newly inserted support vector. We have a loop
invariant that states that at the start of each iteration in Line 10, the
buffer position of D should be empty. Thus, in case we are inserting
a new support vector, during the iteration, the buffer must swap its
content with another entry of D.

Locating the Min-Weight Position. Notice that the insertion takes
place when both (1) the membership test fails, i.e., bit-flag bg,q = 0,
and (2) the prediction threshold ¢ is surpassed, i.e., bit flag by =
1. Jumping ahead, we rely on the optimized code of CrypTen to
identify the argmin of |wgt|, so in the following we assume that
vector mloc has 0 everywhere except the location where wgt has
the minimum (absolute) value. To encode the conditional branching
in our computation we introduce the following bit-wise operation

mlocCond = mloc - bg(1 & bgyg),

so that mlocCond is 0 everywhere except for when bgq = 0 and
bg = 1, in which case, mlocCond has value 1 in the location of the
minimum absolute value of wgt. We note that the initialization of
mloc and the assignment of mlocCond need to happen regardless
of the values of bg,q and by for the computation to be oblivious.

A Single Position Vector for Swap & Update. In the next step, we
create a bit-vector called editPos. If we are inserting a new support
vector that is temproarily stored in the buffer-location of D then
the entry editPos(B + 1) will be set to 1. On the other hand, if the
sampled datapoint i is already a support vector in position k of D,
the entry editPos[k] will be set to 1. Notice that the initialization
of editPos depends on the datapoint we sampled, to capture this
conditional intialization we use again bit operations with the bit-
flags bgyq and by to get

editPos = b§(fnd ® ((1 @ bgng)1B+1))s

where 1p,; is a (B + 1)-dimensional vector with 0 everywhere
except location (B + 1) that has value 1.

Weight Adjustment. Next, we use the newly computed editPos
that identifies the position that needs to be updated (either an
existing support vector or the buffer-location) to update the corre-
sponding entry of the weight vector wgt. As for the type of weight
update listed in Lines 16, 17, 22, and 23 of Algorithm 2, we opt for
the RBF kernel K. This kernel has a property that K(x;, x;) = 1, so
the update for each weight can be computed by simply adding or
subtracting the learning rate . Thus, we define upd = sign(j —y)n

to capture both the sign and the change of the weight. The operation
wgt = wgt — upd - editPos

will leave all weights untouched except (1) in case of a new support
vector, the (B+1)-th weight is updated, and (2) in case of an existing
support vector the corresponding weight is updated.

Swap in Case of Insertion. The final step performs a swap between
the (B+1)-location of wgt and the corresponding minimum-weight
support vector, but only if we are inserting a new support vector.
The above requirement is capture already in the way that we com-
puted mlocCond. That is, mlocCond is all 0s when there is no
insertion of a new support vector and it has value 1 in location
the support vector that needs to be removed. Thus, the following
operation performs a swap to move the newly inserted support
vector to its correct location if necessary:

wgt = wgt — mlocCond(wgt — wgt[B + 1]).

The swap needs to address the change not only in vector wgt but
also in vector ID that holds the identifiers of support vectors and
matrix V used to express the support vectors x; as a matrix

V =V —mlocCond(V - x;)
ID = ID — mlocCond(ID - i).

Efficiency via Vectorization. Another more generic optimiza-
tion (as opposed to the above customized modifications in which
the context was important) is to vectorize the computation steps.
For example, the Predict function in Line 1 of BSGD-SVR, has a
double loop; one loop for the set of test vectors and one for the list of

support vectors (see Line 3,4 in Algorithm 2). The final closed-form
expression of this calculation is

b+ Z D[x;] - K(xj, Xsest [i])
x;€D.keys()

but can be equivalently represented using linear algebra as
b + <Wgt» W(V’ Xtest [l])),

where we use wgt instead of D[x;] and use V as the matrix version
of support vectors. Vectorized computation is highly optimized,
parallelizable in CrypTen.

4.2 The Arria Protocol

Threat Model. As described in Section 2.3, our Artia follows the
server-aided framework using two non-trusted and non-colluding
servers P; and P,. Specifically, we assume that there are a set of
data owners Uy, ..., U, each holding a private dataset ¥;. The
data owners securely distribute their sensitive dataset among the
two non-colluding servers P; and P using a secret sharing scheme
described in Section 2.2. At the end of this distribution, each server
holds the secret-shared union of the dataset ¥; as [¥] where ¥ =
{(xi,yi)|xi € R™, yi € R}jc[n)- Our threat model assumes that the
servers are semi-honest as we rely on the semi-honest two-party
secure computation (2PC) tool, CrypTen [9], for implementation.
Thus, the servers follow the protocol description but may attempt to
extract sensitive information from the execution transcript. When
any server (either Py or P) colludes with a set of data owners Uj,
the coalition of corrupt parties learns nothing about the dataset
¥; of other non-corrupt parties (due to the underlying security



PARAMETERS:

Two parties: P; and P

n, Tesgp. &, B, security parameter k

Kernel function K

A pseudorandom generator PRG : {0,1}* — {0,1}*

ProTOCOL:

1. Initialization:
1. Pj chooses a random seed s « {0,1}, and sends it to P;.

and

3. Each party locally initiate bias value [b]; = [b], = 0
II. Secure SVR training: Repeat the following Tgsgp times:

2
3. Each party locally computes [A] < [y'] - [yi]
4. The parties jointly computes [bg] as:

. Each party locally computes [bgg] as b = @?:1 fnd|[ ]

6
7
8. Each party locally computes [upd] : upd < sign(A)n
9

11. The parties jointly compute [mloc] such that:

mloc[j] = {(1)’

14. The parties jointly update V=V — mlocCond (V — x)
15. The parties jointly update ID = ID — mlocCond(ID - i)

locally.

INPUT OF Pjea]: Secret-shared dataset [¥] where ¥ = {(x;, yi)|xi € R™, y; € R}je[n]

2. Each party locally generate shares of 4 matrices [V] € R(B*DX™ [wgt], ID, 15,1 € RB*! such that for party P;: [V]; = 0, [wgt], = [ID], = o,

ifk=B+1,i=1

otherwise

[1B+];[k] = {

1. Each party computes an index i = PRG(s), and define [x] := [x;]
. The parties jointly compute the prediction [y'] : y’ « b+ (wgt, K(V,x))

by — 1, ifA>&orA<-¢
£ 0 otherwise

5. For j € [B], parties jointly computes [fnd[j]] in parallel such that: fnd[j] = {

. The parties jointly compute the updated positions vector [editPos] such that editPos = bs (fnd & ((1 ® bfd)1B+1))

. The parties jointly update [wgt] : wgt = wgt — upd - editPos
10. Each party locally update bias value [b]: [b] = [b] — [upd]

if j = arg min |wgt|
otherwise

12. The parties jointly compute mlocCond = mloc - bz (1 & bgnq)
13. The parties jointly update wgt = wgt — mlocCond(wgt — wgt[B])

16. Each party locally set wgt[B+1] =0,V[B+1] =0,ID[B+1] =0
IIl. Output: A party sends its secret-shared causal inference’s parameters [V], [wgt] to another party who outputs model by reconstructing the shares

1 ifID[j] =i

0 otherwise

Figure 3: Our A1tia Protocol.

guarantee of secret sharing scheme). This threat model of Artia

has been formalized and used in various PPML scheme [31, 32, 40].

Note that our AITIA protocol can be extended to work with
multiple non-colluding and malicious servers if implemented using
MPC libraries that are secure against malicious adversaries like
SPDZ [20]. Such an extension may allow additional optimizations
to scale better in the MPC setting, as opposed to 2PC. We leave this
direction as an open problem.

Main Protocol. We now describe the main protocol of Arria
which closely follows the modified BSGD-SVR algorithm presented
in Section 4.2. We assume that the training samples ¥ are additively
secret-shared amongst two parties. Figure 3 formally presents our
Ar1T1A protocol, which consists of two phases: initialization and
secure BSGD-SVR training. The first phase is to implement Line 8-9
of Algorithm 2 in a privacy-preserving way. To ensure that both

parties chooses similar training samples, the party P; can choose
an arbitrary random seed s and broadcasts it to P,. The party P; can
also generate two shares of each of the 4 matrices V, wgt, ID, 15,1
as well as two shares of the bias b such that they ensure the value
indicated in line 2-3 of Figure 3.

The second phase consists of Tpsgp iterators. Each iteration
starts with choosing a random index j <~ PRG(s) which is the
same across both parties, where s is a PRG’s seed obtained in the
first phase. All the computation is performed on secret-shared ver-
sions of the matrices/vectors. After each iterator, the shares of
V,wgt, b & bgng, ID, 1541 are either refreshed by new shares or up-
dated with a new value. Note that XOR (and addition) can be locally
computed by the party. We implement multiplication based on
Beaver-triple. For equality test (e.g. to learn whether j = ID[i]) we
use the Crypten’s comparison operator, which evaluate j < ID[i]



and j < ID[i] in parallel. Note that the two comparison operators
consists of one arithmetic-to-binary conversion and evaluating the
sign of the first bit of j —ID[i]. Hence, the complexity of this opera-
tor is linear in the length of the input’s value. As the value of index
in the dataset is bounded by number of data points in the dataset,
the length of the index will not be very large. For example, if the
dataset consists of 1 million data points, the length of the index is
20. Thus, this operator is efficient.

THEOREM 4.1. ArtiA in Figure 3 securely computes the BSGD-SV
described in Algorithm 3 in the semi-honest setting, given the ideal
Garbled Circuit (GC) primitive and pseudo-random generator (PRG).

The security proof of our AI1TIiA construction is presented in
Appendix A.1. It follows the security of Arria’s building blocks
(e.g., secure comparison) and the fact that all intermediate values
are under a secret-shared form.

Additional Optimization for Arria. In the following, we de-
tail one last optimization not depicted in Figure 3 for the sake of
simplicity. In Figure 4, the red-colored bars show the breakdown of
the training performance of the original ArTiA design (as presented
in Figure 3), while the blue-colored bars the breakdown after the
optimization. The recorded operations are “Weight Update”, “Pre-
diction”, “Swap”, and “ArgMin”. The shade of the blue (resp. red)
changes to indicate a different operation from the above list.

Based on our experiments the operation “ArgMin”, i.e., finding an
entry with the smallest absolute weight, which is colored light-red is
an expensive step which takes 66% of the total computation cost. To
improve efficiency, we only perform the arg min function after the
first B iteration. At the first B iterations, due to the fact that all wgt
are initialized at 0, we can explicitly choose the minimum position
to be equal to iteration number i and gradually add new vectors
to the i-th column of V. By doing this, we achieve 15% speedup
since the optimized version performs only Tgsgp — B operations of
arg min compared to Tgsgp operations in the original version.
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Figure 4: Runtime breakdown in A1T1A across datasets. Left
and right column refers to runtime before and after removing
argmin computation from the first B iterations, respectively.

5 EVALUATION OF AITIA

This section describes the specifics of our implementation of ArTIA.
We also present an empirical evaluation of its performance in dif-
ferent causality benchmark datasets. The main goal of this Section
is to answer the following question:

Does ArTIA provide faster training and lower com-
munication cost compared to GP and SMO-SVR im-
plemented with PPML libraries?

5.1 Implementation

We implement our Artia protocol using CrypTen [9, 21], a frame-
work for privacy-preserving machine learning built on PyTorch.
We additionally employ CrypTen to implement GP and SMO-SVR.
The outcomes present their secure versions, which we utilize as
baselines for comparison. Below, we briefly explain how we use
CrypTen in our implementation (see [21] for more details).

Data type conversion. CrypTen works with real numbers by
multiplying each of them to a big number B and round the resulted
number to the closest integer in the integer group Zg. In other
words, it converts from x € R to | Bx] € Z4. Later on, to get back
the real number, CrypTen divide by B the integer number:

LBx]
Xx=—.
B

Exponentiation. CrypTen has multiple options for doing ex-
ponentiation approximation. In our experiment, we use the limit
approximation

lim (1+ )"
n—oo n

We set n = 8 in our experiment. This value is recommended by
CrypTen as it provides a favorable balance between accuracy and
efficiency. The exponentiation computation then consists of 8 mul-
tiplications (square operation) along with 1 truncation operation.

Comparison. CrypTen calculates secure comparison, i.e., x >
y given 2 numbers x, y by securely evaluate the left-most bit of
x — y, which gives information about sign of the number, leading
to evaluation of [(x — y) < 0] which is equivalent to [[x < y].

Argmin. We use tree-reduction with log-reduction algorithm
of CrypTen. Given an input list of N elements, the algorithm has a
round complexity of O(log N), communication of O(N?) bits, and
O(N) comparisons.

Reciprocal. CrypTen evaluates [[%]] by using Newton-Rhapson
iterations. This method uses an initial guess, y, for the reciprocal
and repeats the following update:

Yn = Yn(2 — xyn)

In our experiment, we use n = 10, which means we implement 20
secure multiplication operations per secure reciprocal evaluation.

5.2 Evaluation

We utilize the datasets introduced in Section 3.5, employing a
train/test split ratio of 8:2. We evaluation the performance of our
AITIA, secure GP and secure SMO-SVR on a local machine with 11th
Gen Intel(R) Core(TM) i9-11900KF Processor with an all-core CPU
frequency of 3.50GHz, 16 vCPU, 32GB RAM. Unfortunately, due to
extensive computation time, the runtime for secure SMO-SVR is
estimated based on the runtime of their first 10 updates.



Dataset Pair Training Time (s) Comm (GB) Comm (M Rounds)
GP SMO-SVR AIrTIA GP SMO-SVR | ArTia GP SMO-SVR | ArrTia
pair0033 | 28253 (3.77x) | 2945 (39.26X) | 75.01
. . pair0034 | 27162 (3.57x) | 3100 (40.72x) | 7613 0.63 087 016 24
Liver Disorder(345) | pair0035 | 276.44 (3.61x) | 3053 (39.88X) | 76.56 (350x) | (4.83%) 018 | 05wy | (antox) | 078
pair0036 | 270.96 (3.61x) | 3165 (42.12x) | 75.15 . : : :
pair0037 275.03 (3.62X) 3025 (39.83%) 75.95
' pair0022 | 474,57 (4.75x) | 4928 (49.29%) | 99.97 a0 5o 027 567
Arrhythmia(452) | pair0023 | 467.12 (4.69x) | 4904(49.44X) | 99.60 @83x) | (5.17%) 029 | hasxy | Grssx) | o1
pair0024 | 467.01 (4.74x) | 4924 (49.94x) | 98.60 : : : :
Income(3000) pa%rOOlZ 21171 (27.49X) | 188901 (245%) 770 412.07 63.37 12,64 11.61 223.84 0.79
pair0017 | 21168 (27.35x) | 188066 (243X) | 774 | (32.60x) | (5.01x) (14.70x) | (283%)
pair0043 | 21234 (27.66X) | 197850 (258%) 768
pair0044 | 21243 (27.38x) | 197280 (254x) 776 412.07 63.37 11.61 223.84
NCEP-NCAR(3000) pair0085 | 21204 (27.61x) | 196560 (256x) | 768 | (32.60x) | (5.01x) | 2% | qa70x) | (283%) 079
pair0046 | 21328 (27.59x) | 197177 (255X) | 773
pair0005 | 41546 (37.36X) | 378603 (340%) 1112
pair0006 | 41560 (38.09%) | 379104 (347X%) 1091
pair0007 | 41846 (38.32%) | 361227 (331X%) 1092
Abalone(4177) | pair0008 | 41853 (38.20x) | 380608 (348x) | 1093 | -L11-% 121.03 2459 | 224 431.19 1.10
‘ (45.20%) | (4.92x) (20.41%) | (392%)
pair0009 | 41894 (38.58%) | 379606 (350%) 1086
pair0010 | 41710 (38.20x) | 379558 (348X) | 1092
pair0011 | 41730 (37.90%) | 381006 (346X) 1101

Table 4: System Performance of (1) Privacy-Preserving Gaussian Process (GP) Regression; (2) SMO-SVR; (3) ArTiA. Training
dataset pair are assigned in Appendix D. Number of rounds are in millions. Training time of SMO-SVR are estimated based on

the average of the first 10 updates.

In the evaluation, we choose the parameters as follow: B =
0.5, Tesgp = 2N, n = 0.01 for all dataset, and & = 0.01 for Abalone,
Arrhythmia and NCEP-NCAR dataset, &£ = 0.05 for liver disorder
dataset, and £ = 0.001 for the income dataset.

Table 4 and Table 5 report the training and testing performances
of all protocols across various datasets. As expected, our AITiA
demonstrates superior running time and communication cost ef-
ficiency across all datasets, with the difference becoming more
noticeable as the size of the training dataset increases.

Performance of Secure Training. According to our experi-
ments, the training time of our AITIA is significantly faster compared
to the baselines. In particular, for the Liver Disorder dataset, which
consists of 345 data points, our AITIA training is approximately 3.6X
faster than GP and 40x faster than SMO-SVR. In terms of concrete
numbers, training with GP takes over 4 minutes, and training with
SMO-SVR takes nearly an hour, while A1T1A achieves the same
convergence in just over 1 minute.

As the dataset size increases, the performance gap become more
pronounced. Specifically, when training on the Abalone dataset,
consisting of 4177 datapoints, GP and SMO-SVR require 37.36X and
340x more time for training than AITIA, respectively. To provide a
concrete comparison: GP takes over 41500 seconds (approximately
11.5 hours) for one pair of variables, while SMO-SVR takes 361227
seconds (approximately 100 hours) for the same pair. In contrast,
Ar1TiA completes training in only about 1100 seconds, equating
to less than 20 minutes of computational time. The performance
gap between GP and ArTIA increases linearly with the number of
data points, ranging from 3.6X in datasets with 345 data points
(Liver disorder) to 38X in datasets with 4177 data points (Abalone).

Similarly, the gap between SMO-SVR and A1T1A grows from 39.26x
(Liver Disorder) to 350 (Abalone) as the dataset size increases.
The experiment illustrates that ArT1A is both practical and scales
effectively as the number of data points increases to the thousands,
particularly in scenarios where causal inference across multiple
variables is necessary. For instance, when all 7 pairs of the Abalone
dataset are combined, AITIA requires only 2.13 hours, whereas GP
and SMO-SVR demand 81.15 hours and 733 hours, respectively.
When considering communication cost, ArTiA demonstrates
notably reduced communication size and fewer communication
rounds compared to secure GP and SMO-SVR. Like the runtime
performance, there is also a noticeable linear trend in the communi-
cation gap. Specifically, the difference between secure GP and ArTia
ranges from 3.5X more communication size and 2.05X more rounds
when training on Liver disorder (345 data points) to 45X more com-
munication size and 20.41X more rounds when training on Abalone
(which has 12.11 times more data points than Liver disorder). Sim-
ilarly, while the gap in communication between SMO-SVR and
BSGD-SVR remains around 5X, the difference in the number of
rounds increases from 44.10x in Liver disorder to 392x in Abalone.

Performance of Secure Testing. Interstingly, from Table 5,
we can see that the gap between A1T1A and the baselines decreases
as the dataset size increases. For instance, A1TIA exhibits a speed
improvement of 31.43X compared to GP for Liver Disorder with 345
data points, but this figure reduces to only 8% for Abalone with 4177
data points. According to our micro-benchmarks, this phenomenon
is caused by the encoding function of CrypTen’s implementation,
which encodes small tensors. This explains why AITIA testing time
on Liver Disorder and Arrhythmia are much faster compared to



Dataset Pair Testing Time (s) Comm (MB) Comm (Rounds)
GP SMO-SVR ArTIA GP SMO-SVR | ArrTia GP SMO-SVR | Arria
pair0033 | 0.44 (31.43x) | 0.35 (25.00x) | 0.014
. . pair0034 | 045 (32.14%) | 036 (25.71x) [ 0014 | ., e 25 "
Liver Disorder(345) | pair0035 | 0.41 (29.29X) | 0.34 (24.29X) | 0.014 (1090%) | (9.26%) L60 | oa | (s9x) 13
pair0036 | 0.43 (33.08x) | 0.36 (27.79x) | 0.013 . : : :
pair0037 | 0.45 (32.14X) | 036 (25.71x) | 0.014
ir0022 | 1. 104.67X 1.4 33X .01
Arrhythmia(452) i:ﬁgg?ﬁ 1 ?; 5184 EZX; 1 2: Ez; izx; 8 gl? 2989 25.41 2.75 25 22 13
: = : : : 10.87% 9.24x ' 1.92x 1.69%
pair0024 | 1.54 (102.67x) | 1.32 (88.00x) | 0.015 ( )| ¢ ) ( )|« )
Income(3000) pa%r0012 5.70 (6.79X) 3.81 (4.54X) 0.84 1318.41 1120.66 120.89 25 22 13
pair0017 | 570 (8.64x) | 3.81 (5.77x) | 0.66 | (10.91x) | (9.27x) (1.92x) | (1.69x)
Ppair0043 5.65 (6.42X) 3.83 (4.35%) 0.88
pair0044 5.68 (7.47X) 3.82 (5.03%) 0.76 1318.41 1120.66 25 22
NCEP-NCAR(3000 120.89 13
(3000) pair0045 | 561 (7.38x) | 3.81 (5.01x) | 076 | (10.91x) | (9.27) (1.92%) | (1.69%)
pair0046 | 5.6 (8.20x) | 3.83 (5.55x) | 0.69
pair0005 | 9.05 (7.67x) | 4.67 (3.96x) | 1.18
pair0006 | 9.41 (3.40x) | 471 (4.21x) | 1.12
Ppair0007 9.27 (8.06X) 4.73 (4.11x) 1.15
2555.38 2172.11 25 22
Abalone(4177) pair0008 8.71 (7.38X) 4.68 (3.97X) 1.18 234.39 13
. (10.90x) | (9.27x) (1.92x) | (1.69%)
pair0009 9.42 (7.79%) 4.69 (3.88%) 1.21
pair0010 | 9.82 (8.77x) | 4.69 (4.19x) | 1.12
Ppair0011 9.77 (8.01x) 4.68 (3.84%) 1.22

Table 5: System Performance of (1) Privacy-Preserving Gaussian Process (GP) Regression; (2) SMO-SVR; (3) ArtIA. Testing

dataset pair are assigned in Table 7 in Appendix D.

secure GP and SMO-SVR. However, when the set of support vec-
tors becomes sufficiently large, the encoding process slows down,
resulting in AITIA’s testing time being only 3-5X faster compared
to secure SMO-SVR and 6-9% faster compared to secure GP.

Regarding communication, the communication gap between
secure GP and AITIA remains approximately 10.90x for commu-
nication size and 1.92x for the number of rounds. Similarly, the
communication gap between secure SMO-SVR and AITIA stays at
9.26x for communication size and 1.69x for communication rounds.
When testing the Abalone dataset, A1T1A incurs only 234.59 MB
in communication costs, whereas secure GP costs 2555.38 MB and
SMO-SVR costs 2172.11 MB. This demonstrates that AITIA is capa-
ble of significantly more efficient testing even in communication-
limited environments.

6 CONCLUSION & DISCUSSION

In this work, we proposed an efficient secure protocol called ArTiA
for bivariate causal discovery. Our approach involves proposing
a new SVR model accompanied by a training algorithm with the
potential to accelerate significantly the secure implementation. We
proposed a series of optimizations and designed a 2PC protocol
that resulted in a training time speedup of up to 346Xx.

Discussion. Our proposed ArTiA design shows significant im-
provement over textbook approaches implemented in CrypTen. Yet,
there are still exciting open problems to address:

o Alternative Libraries & Speedups: Our current implementation of
ArT1A utilizes Crypten, meaning its performance is closely tied
to Crypten’s performance. For instance, during secure testing,
AI1TIA experiences a slowdown on large datasets, but this could be
improved if the encoding function issue in Crypten is resolved.

o GPU Acceleration: Utilizing GPUs for accelerating machine learn-
ing training is a widespread practice [46], and this trend can also
benefit our ArT1a design. Fortunately, the algorithmic steps in
Ar1T1A are designed for parallelization, enabling direct perfor-
mance enhancements through GPU acceleration. Additionally,
revisiting Algorithm 3 to optimize its execution on GPUs could
further improve efficiency, for example, exploring methods to
enhance the Oblivious Insertion & Update operation in AITIA.
Malicious multiple-party Arria: As discussed in Section 4.2, A1TIA
has the capability to operate with multiple non-colluding and
malicious servers if implemented using MPC libraries that offer
security against malicious adversaries, such as SPDZ [20]. Future
optimization efforts are necessary to accelerate computations in
the malicious MPC setting.
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Algorithm 3: Oblivious BSGD-SVR without if-branches.

1 Function Train(X@n, ytrainy.

2

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Initialize a bias value b = 0.

Initialize 4 matrices: V of size (B + 1) X m to store support vectors, wgt to store weights, ID to store the indices in the budget, and
1p.1 to indicate buffer position. wgt, ID, 1p.1 of size B + 1. V, wgt, ID are initialized at 0, while 1g,; are all 0 except for the last
position, i.e.

1 4 )1 ifi=B+1
Belil = 0, otherwise

fort=0,1,---,Tgsgp do

Randomly pick a training index i € [N]

Run the prediction procedure §; « b + (wgt, K(V, x;))

Use a boolean variable by to indicate whether the difference between the prediction and the true target exceeds the threshold:

_ 1, ifgi—yi >§orgi—yi < —g
700 otherwise

Use a boolean variable bg,g to denote whether the picked sample is already in the support vectors and a boolean vector fnd to
locate it if the answer is yes:

for j=0,1,...,Bdo

fnd[J] = {1, if i = ID[}]

0 otherwise

br = DY, fnd[j]

Get the update position vector editPos: editPos = bz (fnd @ ((1 & bfyd)1B+1))

Get the update value: upd = sign(g; — y;)n

Update weight wgt, bias b, and find the minimum vector mloc:

wgt = wgt — upd - editPos

b=b-upd

mloc[j] = 1, if j = argmin |wgt|
0 otherwise

Swap the buffered position B + 1 with the argmin position

mlocCond = mloc - b(1 @ bgnq)

wgt = wgt — mlocCond(wgt — wgt[B + 1])

Update V,ID

V =V - mlocCond(V — x;)

ID = ID — mlocCond(ID - i)

Reset buffer position to 0:

V[B+1] =wgt(B+1] =ID[B+1] =0

return V, wgt

A OUR BSGD-SVR ALGORITHM
A.1 Security Proof of ArTia

SKETCH OF PROOF: In the first step of our AITIA construction, P; chooses a random seed s and sends it to P,. This simulation is elementary
as s is random. Excepting Step (I,1), the two parties execute symmetric operations in which they execute the same code with their input and
obtain secret shares of the intermediate values and the final output. Thus, the role of both parties is the same, excluding Step (I.1). In the
following, we present a simulation for a corrupted P;. Simulating corrupted P, is similar. We first formally describe the behavior of the

simulator:

(1) The simulator honestly plays the role of PRG at Steps (IL,1). For every query PRG(s) made by the adversary, record outputs in a set

0.

(2) Using garbled circuit, the simulator executes the below computations honestly.

— “if" conditions at Steps (IL,4-5), and (I, 11)
— Kernel function at Step (IL,2)
— Bit operations, additions, and multiplications at Steps (IL,7), (IL,9), (I,12-15)
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(3) Upon receiving the secret-shared parameters of the kernel, the simulator sends them to the ideal functionality of BSGD-SVR. This
causes the honest party P, to obtain the final output.
Due to the security of the garbled circuit and secret-shared intermediate result, the simulation for (2) and (3) is perfect. We now prove
that this simulation and the real interaction are indistinguishable for (1) via the following sequence of hybrids.

Hybrid 0: The real interaction, with P running honestly with input [¥] and giving its output to the environment according to the protocol
description, namely the kernel’s parameters K.
Hybrid 1: Same as the previous hybrid, except for how PRG is simulated. A query to PRG(s) is answered with a uniformly random
response. Thus, the sets O; can be replaced with random.
[m]

B BASELINE ALGORITHMS

This section provides pseudocode for Gaussian Process (GP) Regression and SMO-SVR algorithms that were used in the main paper. The GP
Regression algorithm is taken from [6], and SMO-SVR algorithm is taken from [10]. The algorithms are shown in Algorithm 4 and Algorithm
5 respectively.

Algorithm 4: Gaussian Process Regression.

Input: prior mean y, g+, noise scale o, training dataset (X, y), testing dataset X
Ly =g+ KX X) KX X) + 0?7 (y - p)

C REGRESSION PERFORMANCE

We conducted experiments similar to those described in [10] to evaluate the performance of our BSGD-SVR algorithm in approximating
various functions, including both linear and non-linear ones. Our results demonstrate that BSGD-SVR effectively learns to approximate a
wide range of complicated functions. The functions considered in this section are:

e Linear function: y = 2.4x + 1.3

e Sinus function: y = sin(x)

o y=sin(x*0.15)/x

e Mackey Glass function [29] for r = 17,a = 0.2,b = 0.1, At = 1

The results of the approximation are depicted in Figure 5. These results indicate that BSGD-SVR performs comparably to conventional

SMO-SVR in approximating complex target functions.

D DATASET DETAILS

We provide more information about the dataset that we used in our experiments throughout this paper. The dataset’s reference and source
are presented in Table 6, while the assignments of pair numbers are outlined in Table 7.



Algorithm 5: SMO for e-SVR.

1 Hyperparameters: learning rate o, training iteration upper bound T, tolerance threshold ¢, C, 7
Input: training dataset ¥ = {(x, yi)|xi € R™, y; € R}jc(pn)

2 Function Train(¥):

11
12
13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
32
33
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a «— 0", b « 0,K is a matrix, K;; = K(xj, x;)
Indicator variable on whether we examine all vectors: y = true
fork < T do

Aold =@

if y then

| $={12,....n}

else

| S={ie[n]:l|ali]l ¢ {0;C}}
fori e Sdo

for j € [n],j # ido
s —ali] +alj]
n =KI[i,i] +K[j, j] - 2K[i, j]
A =2¢e/n
y; =b+ X alkIK[i k]
y; = b+ alkIK[j.k]
ali] =alil + 3 (yi +yj —y; —y})
aljl =s-eali]
if a[i] = a[j] < 0 then
if |a[i]| > A&&|a[j] > A| then
| ali] =ali] - sign(a[i]) - A
else if |a[i]| > |a[j]| then
‘ ali] =s
L = max(s - C,-C)
H =min(C,s +C)
a|i] = min(max(e|i],L), H)
alj] =s-ali]
bi =yi —y; + (a[i] —aoa[iDK[i,i] + (a[j] — @oa[JDKI[i, jl + b
bj =yj —y; +(@lj] - @oa DKL), j1 + (a[i] - @oa[iDK]i, j] +b
bi+bj
b=t

if ||layq — || < 7 && y then
‘ return a, b

else
| k=k+1

y=ly

return a, b

Dataset

Size

References

URL

Abalone

4177

[35, 36]

https://archive.ics.uci.edu/ml/datasets/Abalone

Arrhythmia

452

(15, 35]

https://archive.ics.uci.edu/ml/datasets/Arrhythmia

Income

3000

1, 35]

https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)

Liver Disorder

345

(35]

https://archive.ics.uci.edu/ml/datasets/Liver+Disorders

NCEP-NCAR

3000

(19, 33]

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html

Table 6: Datasets.
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Figure 5: Regression Performance of BSGD-SVR vs. standard SMO-SVR across four different functions.




Dataset Size | Feature — Label Pair

alcohol — mean corpuscular volume Ppair0033

alcohol — alkaline phosphotase pair0034

Liver Disorder | 345 | alcohol — alanine aminotransferase pair0035
alcohol — aspartate aminotransferase pair0036

alcohol — gamma-glutamyl transpeptidase pair0037

age — height pair0022

Arrhythmia 452 | age — weight pair0023
age — heart rate pair0024

Income 3000 |28~ v&{ei.ght per hour pa%rOOlZ
age — dividends from stock pair0017

temperature (t) — temperature (¢ + 1) pair0043

pressure (t) — pressure (¢ + 1) pair0044

NCEP-NCAR | 3000

sea level pressure (t) — sea level pressure (¢ + 1) | pair0045
relative humidity (¢) — relative humidity (¢ + 1) | pair0046

age — length Ppair0005
age — shell weight pair0006
age — diameter pair0007
Abalone 4177 | age — height Ppair0008
age — whole weight pair0009
age — shucked weight pair0010
age — viscera weight pair0011

Table 7: Dataset’s Feature — Label associated pair number. The pair number are labelled in similar way as in [35]



Meervers Dataset Pair Training Time (s) Comm (GB) Comm (M Rounds)
GP SMOSVR | Arria | GP | SMO-SVR | Arria | GP_ | SMO-SVR | Arria
0033 | 495.69 (3.43%) | 7121 (49.32x) | 144.39
Liver Disorder | 0034 | 505.26 (357x) | 7476 (52.85x) | 14145 | . 286 049 5.0
(345) 0035 | 50343 (3.52%) | 7441 (52.02%) | 14305 | ol | 050 | gl | 0
0036 | 497.63 (3.46x) | 7475 (52.09%) | 143.49
0037 | 502.30 (3.50x) | 7431 (52.70x) | 143.71
Archythmia | 0022 | $4670(20X) | 12410 (6151x) [ 20175 | - 08 113
(252) 0023 | 840,63 (4.17) | 12533 (6223x) | 20139 | L | SO 0se | nl | 019
0024 | 862.55 (4.30x) | 12518 (62.39%) | 200.63
Tncome 0012 | 39656 (24.89%) | 540341 (339%) | 1593 1240 92494 | . | 3481 386.53 2
(3000) 0017 | 39206 (24.66%) | 536544 (337x) | 1590 | (33.86x) | (25.26%) : (24.51x) | (272%) :
3 0043 | 39332 (24.80x) | 542692 (342x) | 1586
NCEP-NCAR | 0044 | 39352 (24.86x) | 537471 (340x) | 1583 1240 924.94 386.53
3662 | 34.81 1.42
(3000) 0045 | 39586 (24.98x) | 536797 (339x) | 1585 | (33.86x) | (25.26X) (272x)
0046 | 39377 (24.75%) | 538459 (338%) | 1591
0005 | 79729 (35.03x) | 1071488 (471 x) | 2276
0006 | 79425 (34.84x) | 1073849 (471x) | 2280
Abalone 0007 | 80163 (35.14x) | 1073041 (470x) | 2281 1342 2605 6732 165
17 0008 | 79604 (34.85%) | 1076514 (471x) | 2284 | ("o o8 | s | ion | 8 1.98
0009 | 79674 (34.98x) | 1076248 (472x) | 2278
0010 | 79529 (34.96X) | 1075168 (473x) | 2274
0011 | 79634 (34.90x) | 1075184 (471x) | 2282
0033 | 622.27 (3.26x) | 9748 (51.13x) | 190.65
- 0034 | 637.54 (3.37x) | 9883 (52.20%) | 189.02
Lwer(?g)order 0035 | 636.23 (3.34x) | 9851 (51.84x) | 190.04 (31521) (::;SX) 0.73 (3(.);1) (63:2)() 0.14
0036 | 639.16 (3.35%) | 9794 (51.34x) | 190.76
0037 | 640.96 (3.36X) | 9803 (51.37x) | 190.84
[ 0022 | 1054 (3.96X) | 16534 (62.07%) | 266.34
Arrz;t;mla 0023 | 1099 (4.16x) | 16548 (62.65X) | 264.13 (45%761 ) (;(;':Z() 1.20 (40;;1) (7154%9)() 0.19
0024 | 1067 (4.02x) | 16571 (62.46x) | 26531 | \ : : :
Tncome 0012 | 49303 (23.01x) | 705245 (320x) | 2143 1653 1251 sa07 | 3481 38653 P
(3000) 0017 | 48930 (22.82x) | 710124 (331x) | 2144 | (3L.15x) | (23.57%) : (24.51x) | (272x) :
4 0043 | 49061 (22.88x) | 711857 (332%) | 2144
NCEP-NCAR | 0044 | 49148 (22.94x) | 706524 (330x) | 2142 1653 1251 a7 | 3481 386.53 ”
(3000) 0045 | 49200 (22.96X) | 709064 (331x) | 2143 | (31.15x) | (23.57x) : (24.51x) | (272%) :
0046 | 48926 (22.86X) | 709180 (331x) | 2140
0005 | 99165 (31.89x) | 1438749 (463x) | 3110
0006 | 99252 (31.88x) | 1411883 (454x) | 3113
Abalone 0007 | 99378 (31.99%) | 1422002 (458x) | 3107 | .. 4531 6732 1365
(a1 0008_| 99475 (52.00x) | 1413483 (855) | 3108 _| ("0 | (o | 10sas | SO SO 1.98
0009 | 99090 (31.93x) | 1422113 (458x) | 3103
0010 | 99147 (31.82x) | 1415591 (454x) | 3116
0011 | 99004 (31.86x) | 1418585 (457x) | 3107

Table 8: Multiparty System Performance of (1) Privacy-Preserving Gaussian Process (GP) Regression; (2) SMO-SVR; (3) AITIA.

Nservers indicates number of servers.
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