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Abstract

Electron cyclotron waves (whistlers) are commonly observed in plasmas near Earth and the solar wind. In the
presence of nonlinear mirror modes, bursts of whistlers, usually called lion roars, have been observed within low
magnetic field regions associated with these modes. In the intracluster medium (ICM) of galaxy clusters, the
excitation of the mirror instability is expected, but it is not yet clear whether electron and ion cyclotron (IC) waves
can also be present under conditions where gas pressure dominates over magnetic pressure (high β). In this work,
we perform fully kinetic particle-in-cell simulations of a plasma subject to a continuous amplification of the mean
magnetic field B(t) to study the nonlinear stages of the mirror instability and the ensuing excitation of whistler and
IC waves under ICM conditions. Once mirror modes reach nonlinear amplitudes, both whistler and IC waves start
to emerge simultaneously, with subdominant amplitudes, propagating in low-B regions, quasi-parallel to B(t). We
show that the underlying source of excitation is the pressure anisotropy of electrons and ions trapped in mirror
modes with loss-cone-type distributions. We also observe that IC waves play an essential role in regulating the ion
pressure anisotropy at nonlinear stages. We argue that whistler and IC waves are a concomitant feature at late
stages of the mirror instability even at high β, and therefore, expected to be present in astrophysical environments
like the ICM. We discuss the implications of our results for collisionless heating and dissipation of turbulence in
the ICM.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Intracluster medium (858); Galaxy clusters
(584); Extragalactic magnetic fields (507); High energy astrophysics (739)

Supporting material: animations

1. Introduction

Several classes of astrophysical plasmas display fully
developed turbulent states and a weak collisionality, in the
sense that the particles’ mean free path is several orders of
magnitude larger than the typical radius at which they gyrate
around the ambient magnetic field. These two characteristics
alone can make the transport properties and global evolution of
the astrophysical environment in question challenging and
dependent on the local evolution at particle scales. Therefore, a
detailed study of the behavior of these plasmas at the kinetic
level becomes a necessity.

That is the case of the intracluster medium (ICM) of galaxy
clusters. The ICM is a hot, magnetized (Bonafede et al. 2010),
weakly collisional, and turbulent (Schuecker et al. 2004;
Zhuravleva et al. 2014; Hitomi Collaboration et al. 2016) gas in
the plasma state where the thermal pressure greatly exceeds the
magnetic pressure (β≡ 8πP/B2∼ 10–100, P is the isotropic
thermal pressure and B the magnetic field strength). In these
conditions, departures from thermodynamic equilibrium, such
as pressure anisotropies, are easy to achieve. For example, slow
compression of the magnetic field increases particle kinetic
energy perpendicular to the magnetic field such that the
magnetic moment (or the magnetic flux through the particle
gyro-orbit) remains constant, leading to an excess of

perpendicular pressure P⊥ over parallel pressure P∥. However,
pressure anisotropy cannot grow unchecked. Pressure aniso-
tropies can easily destabilize microinstabilities such as mirror,
firehose, ion cyclotron (IC), and whistler (Schekochihin et al.
2005; Schekochihin & Cowley 2006). The backreaction of
these instabilities on the particles can maintain pressure
anisotropy near its marginally unstable value, and are thought
to play an important role in several aspects of ICM transport
and heating (Kunz et al. 2011; Berlok et al. 2021; Drake et al.
2021; Perrone & Latter 2022a, 2022b; Ley et al. 2023; Tran
et al. 2023).
In a similar vein, the solar wind and some regions of the

Earth’s magnetosheath and magnetosphere host plasmas that
are also collisionless and turbulent. Even when the plasma β is
lower than in the ICM (βi∼ 1–10, βe∼ 1) we can encounter
some similarities. In particular, the plasma is also pressure
anisotropic, and the same abovementioned microinstabilities
are found to be present, usually in their fully developed,
nonlinear stage (Bale et al. 2009). Particularly important to this
work is the presence of the mirror instability (Chandrasekhar
et al. 1958; Rudakov & Sagdeev 1961; Hasegawa 1969;
Southwood & Kivelson 1993; Kivelson & Southwood 1996;
Pokhotelov et al. 2002, 2004) and its interplay with the whistler
and (potentially) IC instabilities (Gary 1992; Gary &
Wang 1996). An example of this has been observed in these
space plasmas, and termed whistler lion roars.
Whistler lion roars are short bursts of right-handed polarized

waves, with frequencies below the electron-cyclotron frequency
(ωc,e) commonly observed in the Earth’s magnetosheath and
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magnetosphere (Smith et al. 1969; Tsurutani et al. 1982;
Baumjohann et al. 1999; Breuillard et al. 2018; Giagkiozis
et al. 2018; Kitamura et al. 2020; Zhang et al. 2021), therefore
identified as whistler waves. They have also been observed in
Saturn’s magnetosheath (Píša et al. 2018) and the solar wind.
They are observed in regions of locally low magnetic field
strength (magnetic troughs, or magnetic holes) of magnetic
fluctuations. These magnetic troughs are usually identified as
structures produced by mirror instability modes, which are able
to trap electrons with low parallel velocity within these regions,
due to the aforementioned invariance of magnetic moment
(Southwood & Kivelson 1993).

Several mechanisms have been proposed to explain the
excitation of whistler lion roars. They usually invoke the
pressure anisotropy P⊥,e> P∥,e that electrons generate while
trapped inside the magnetic troughs (P⊥,e and P∥,e are,
respectively, the electron pressure perpendicular and parallel
with respect to the local magnetic field B). Other mechanisms
have also been proposed involving counter-propagating
electron beams inside these regions, and butterfly distributions
in pitch-angle (Zhang et al. 2021; Jiang et al. 2022). As the
waves propagate out from the magnetic troughs, they are
thought to interact with electrons, regulating the number of
trapped electrons inside magnetic troughs and also the global
anisotropy of electrons in the magnetosheath. This way, there
would be a causal connection between an ion-scale mirror
instability with an electron-scale whistler instability at non-
linear stages, providing valuable insight into the interaction of
mirror modes with electrons.

The question arises as to whether a similar interplay can be
expected in the ICM. Such behavior would imply a more
complex scenario in which several microinstabilities would be
causally connected and coexisting with each other, and several
channels of turbulent energy dissipation would open, leading to
much richer dynamics.

Mirror instability and its consequences have been exten-
sively studied using particle-in-cell (PIC) simulations of
moderately and high-β plasmas, both hybrid (Kunz et al.
2014; Melville et al. 2016; Arzamasskiy et al. 2023) and fully
kinetic (Riquelme et al. 2015; Sironi & Narayan 2015;
Riquelme et al. 2016; Ley et al. 2023), up to nonlinear stages.
Consistent with early theoretical works (Southwood &
Kivelson 1993; Kivelson & Southwood 1996), it has been
demonstrated that mirror modes are efficient in trapping ions
inside regions of low magnetic field strength during their
secular growth (Kunz et al. 2014). When mirror modes reach
amplitudes of order δB/B∼ 1, they reach a saturated stage and
the ions eventually undergo scattering, allowing them to
escape. This trapping process is similar for electrons, and it has
been shown to have important consequences in the electron
viscosity and thermal conduction of the plasma (Riquelme et al.
2016; Roberg-Clark et al. 2016, 2018). Interestingly, Riquelme
et al. (2016) reported the observation of whistler waves in the
nonlinear, saturated stages of mirror modes in their simulations,
along with IC waves, although they did not pinpoint the cause
of the excitation.

In this work, we use PIC simulations to investigate the
nonlinear stages of the mirror instability at moderate and high
β, focusing on the abovementioned excitation of whistler and
IC waves. We observe that, indeed, both right-handed and left-
handed polarized, quasi-parallel-propagating waves are excited
at the end of the mirror’s secular growth and during its

saturated stage, and provide evidence for their excitation
mechanism associated with the pressure anisotropy electrons
and ions within magnetic troughs of mirror modes. The right-
and left-handed circular polarization of these waves leads to
their identification as electron-cyclotron (i.e., whistlers) and IC
waves. We also provide an additional discussion about their
nature. We describe the interaction of these waves with
electrons and ions, and their effect on the regulation of the
pressure anisotropy at late stages.
This paper is organized as follows. Section 2 describes our

simulation setup and the runs we perform. Section 3 shows our
simulation results starting from the excitation of the mirror
instability, an early whistler burst, and then the late excitation
of the electron and IC waves at nonlinear stages of the mirror
instability. We also detail the mechanism by which these
cyclotron waves are excited during the saturated stage of mirror
modes, by tracking ions and electrons throughout the
simulations. We also describe the subsequent interaction of
these waves with the ions and electrons at late stages. In
Section 4, we discuss the dependence of our results on the mass
ratio used in our simulations and show that they are fairly
insensitive to it. In Section 5, we present the results of
simulations at different initial ion plasma betas, and show these
cyclotron waves are also present at lower and higher betas as
well. Finally, we discuss the implication of our work in the
context of galaxy clusters and present our conclusions in
Section 6.

2. Simulation Setup

We perform fully kinetic, 2.5D PIC simulations using
TRISTAN-MP (Buneman 1993; Spitkovsky 2005), in which
we continuously shear a collisionless, magnetized plasma
composed of ions and electrons (Riquelme et al. 2012). The
magnetic field is initially spatially uniform and starts pointing
along the x-axis. A shear velocity field is imposed with
v sxŷ= - (red arrows in Figure 1), where x is the distance
along the x-axis and s is a constant shear rate. We solve the PIC
system of equations using shearing coordinates, as implemen-
ted in Riquelme et al. (2012). (The suitability of this approach
to studying ion Larmor scale phenomena is also discussed in
Riquelme et al. 2015.) The conservation of magnetic flux
implies that the y-component of the magnetic field B evolves as
dBy/dt=−sB0, whereas dBx/dt= 0 and dBz/dt= 0. The
action of the shear then continuously amplifies the magnetic

Figure 1. The evolution of the simulation domain. Panel (a): initially, the box
is straight, the magnetic field is initialized pointing in the x̂ direction and a
shear velocity field v sxŷ= - is imposed in the y-direction (red arrows). Panel
(b): the velocity field shears the box continuously throughout the simulation,
amplifying the magnetic field and changing its direction in the process due to
magnetic flux conservation.
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field strength such that its magnitude evolves as B t( ) =
B s t10

2 2+ .
In our simulations, ions and electrons are initialized with

Maxwell–Jüttner distributions (the relativistic generalization of
the Maxwell–Boltzmann distribution; Jüttner 1911) with equal
initial temperatures T Ti e

init init= , and k T m cB i i
init 2 between

0.01 and 0.02. The physical parameters of our simulations are
the initial temperature of ions and electrons (T Ti e

init init= ), the
initial ion plasma beta, i

initb , the mass ratio between ions and
electrons mi/me, and the ratio between the initial IC frequency
and the shear frequency, sc i,

initw , that we call the scale
separation ratio. The numerical parameters in our simulations
are the number of macroparticles per cell, Nppc, the plasma skin

depth in terms of grid point spacing, /c xp e p i,
2

,
2w w+ D , and

the domain size in terms of the initial ion Larmor radius,
/L RL i,

init, where /R vL i i c i,
init

th, ,
initw= and /v k T mth i B i i,

2 = . These
physical and numerical parameters are listed in Table 1. We fix

/c x 3.5p e p i,
2

,
2w w+ D = in the simulations presented in

Table 1.
In the majority of the paper, we discuss a representative,

fiducial simulation with mi/me= 8, 20i
initb = (thus, initb =

40i e
init initb b+ = ) and /s 800c i,

initw = (simulation b20m8w200
in Table 1, highlighted in boldface). We vary the above
parameters in a series of simulations, all listed in Table 1.
Importantly, given the available computational capabilities,
performing a simulation with a realistic mass ratio mi/me=
1836 becomes prohibitively expensive. Therefore, a range of
values of ion-to-electron mass ratio are presented in order to
ensure that our results do not strongly depend on this
parameter. The effects of varying these parameters are
discussed in Sections 4 and 5.

In the absence of a scattering mechanism and/or collisions,
the ion and electron magnetic moments p m B2j j j,

2 ( )m º ^ and

longitudinal action p dℓj j,∮ º are adiabatic invariants (p⊥,j

and p∥,j are the components of the momentum of a particle of
species j perpendicular and parallel to the local magnetic field,
respectively, and j= i, e), and therefore, are conserved as the
system evolves, provided that the variation of B is sufficiently
slow compared to the particle cyclotron frequencies; in our
case, s= ωc,j, where ωc,j= eB/mjc is the cyclotron frequency
of particles of species j, c is the speed of light, and e is the
magnitude of the electric charge.

The continuous amplification of the magnetic field B implies
that the particles’ adiabatic invariance drives a pressure
anisotropy in the plasma such that P⊥,j> P∥,j. In the very
early stages of the simulation, we expect the evolution of P⊥,j

and P∥,j to be dictated by double-adiabatic scalings (Chew et al.
1956). Soon after this stage, however, the pressure anisotropy
acts as a free energy source in the plasma and is able to excite
several kinetic microinstabilities after surpassing their excita-
tion thresholds, which are proportional to β−α, (α∼ 0.5–1)
(Hasegawa 1969; Gary & Lee 1994; Gary & Wang 1996).
These microinstabilities break the adiabatic invariants and act
upon the pressure anisotropy to regulate the anisotropy growth
in the nonlinear stages.
In our simulations, and given our initial physical

parameters (namely, P B8 20i i
init init 2initb pº = ), we expect

the dominant instability to be the mirror instability. Mirror
modes are purely growing (i.e., zero real frequency), with the
fastest growing modes propagating highly obliquely with
respect to the mean magnetic field. Their most unstable
wavenumbers satisfy k⊥RL,i∼ 1, where RL,i is the ion Larmor
radius. This instability presents Landau resonances with
particles of very small parallel momentum, p∥≈ 0, that
become trapped in between mirror modes, and contribute to
regulating the pressure anisotropy.
In addition to the mirror instability, we also observe wave

activity that we associate with the IC (Gary 1992) and whistler
(Gary & Wang 1996) instabilities at ion and electron scales,
respectively, during the late stages of our simulations. IC
modes are left-handed circularly polarized and have a real
frequency below the IC frequency ωc,i, with modes of
maximum growth rate propagating parallel to the mean
magnetic field B. Similarly, whistler modes are right-handed
circularly polarized and have a real frequency below the
electron-cyclotron frequency ωc,e, with modes of maximum
growth rate also propagating parallel to B. As we will see, this
wave activity is associated with the ion and electron trapping
processes that mirror modes generate.

3. Results

Figures 2 and 3 summarize the evolution of magnetic field
fluctuations and particle pressure anisotropy over time.
Figure 2 shows the fluctuations in the magnetic field

δB≡B− 〈B〉 (where 〈·〉 denotes a volume average over the
entire simulation domain) in its three different components at
two different times: t · s= 0.4 (first row, panels (a)–(c)) and at
t · s= 1.4 (second row, panels (d)– (f)). The black arrows in
panels (a)–(f) denote the direction of the mean magnetic field
〈B〉 at those particular times. The components of δB are defined
as parallel with respect to the main field 〈B〉 (δB∥, panels (b)
and (e)), perpendicular to 〈B〉 in the plane of the simulation
(δB⊥,xy, panels (a) and (d)) and perpendicular to 〈B〉 in the
direction out of the simulation plane (δBz, panels (c) and (f)).
Additionally, Figure 2(g) shows the evolution of the energy in
each of the three components of δB, normalized by B(t)2; B 2

d
(blue line), B xy,

2d ^ (red line), and Bz
2d (green line).

Figure 3(a) shows the evolution of the ion pressure
anisotropy P P Pi i i, ,D º -^ for run b20m8w800, and the
gray-dashed line shows the approximate instability threshold
for the mirror instability (Hasegawa 1969; Hellinger 2007). We
can see that the ion anisotropy surpasses the mirror threshold
very early in the simulation, and reaches its maximum value at
t · s≈ 0.5 (we will call this stage the anisotropy overshoot,

Table 1
Simulations and Their Physical and Numerical Parameters

Runs i
initb mi/me sc i,

initw
k T

m c
B

i
2 Nppc L RL i,

init

b20m8w800 20 8 800 0.02 600 54
b20m32w800 20 32 800 0.01 300 50
b20m64w800 20 64 800 0.01 200 40
b40m8w800 40 8 800 0.02 300 49
b2m8w800 2 8 800 0.02 300 68

Note. The physical parameters of the simulations are the initial ion plasma beta
P B8 ,i
init 2b pº where Pi

init is the initial ion pressure, the mass ratio between
ions and electrons mi/me, and the magnetization ωc,i/s. The numerical
parameters are the number of particles per cell Nppc and the domain size in
terms of the initial ion Larmor radius L RL i,

init. Our fiducial simulation is
highlighted in bold.
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Figure 2. First row: the different component of magnetic fluctuations δB = B − 〈B〉 for run b20m8w800 in the simulation domain at t · s = 0.4: δB⊥. Panel (a) is the
component perpendicular to the main field 〈B〉 in the x-y plane of the simulation, δB∥. Panel (b) is the component parallel to 〈B〉 and δBz. Panel (c) is the component
perpendicular to 〈B〉 in the direction out of the plane of the simulation. Second row: panels (d)–(f) show the same as panels (a)–(c), but at t · s = 1.4. Third row: the
evolution of the energy in the three components of the magnetic field fluctuations δB normalized to B(t)2, B 2

d (blue line), B xy,
2d ^ (red line), and Bz

2d (green line). The
gray-dashed lines indicate the time at which the fluctuations in the first and second rows are shown. An animated version of this figure is available in the HTML
version of this paper. The animation shows the evolution throughout the simulation of δB⊥, δB∥, and δBz as well as δE⊥, δE∥, and δEz, the electric field fluctuations (not
shown in the static figure), and panel (g). The evolution runs from t s⋅ = 0–2.0.

(An animation of this figure is available.)
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hereafter). We will show that this is consistent with the
beginning of the secular growth of mirror modes (Kunz et al.
2014; Riquelme et al. 2016). Figure 3(b) shows the same for

the electron pressure anisotropy, which we will show relaxes
by efficient scattering.

3.1. Evolution of Mirror Instability

Since mirror modes are highly oblique, their evolution is
well represented by the time trace of B 2

d shown in Figure 2(g).
We identify both a linear, exponentially growth phase until
t · s≈ 0.45, and a subsequent nonlinear, slower-growing
secular phase, consistent with the different evolutionary phases
of the ion and electron pressure anisotropies described above.
Besides the break in the evolution of the mirror mode at
t · s≈ 0.45, a second break in the secular growth occurs around
t · s= 0.6 followed by a shallower slope of growth. We will
show that this break coincides with the excitation of both
whistler and IC waves in B xy,

2d ^ and Bz
2d , implying that whistler

and IC waves, albeit smaller in amplitude, modulate the
evolution of mirror modes during nonlinear stages.

3.1.1. Linear, Exponentially Growing Mirror Phase

After an early Chew, Goldberger, Low (CGL; Chew 1956)
phase of the pressure anisotropy ΔPj ( j= i, e, see Figure 3),
Figure 2(g) shows the excitation of the mirror instability
starting at t · s≈ 0.35, mainly in the parallel component of the
magnetic fluctuations, δB∥ (blue line), consistent with theor-
etical expectations (Southwood & Kivelson 1993; Pokhotelov
et al. 2004). Figure 2(g) also shows that δB∥ grows first and it
has the largest amplitude throughout the entire simulation,
meaning that the mirror instability is indeed the dominant
instability.
Figure 2(b) (i.e., B 2

d ) shows the linear, exponentially growth
phase of mirror modes at t · s= 0.4, where small filamentary
structures of high local magnetic field amplitude start to emerge
and slowly grow, in between wider regions of low local
magnetic field amplitude. The obliqueness of the modes is
readily apparent, as well as the fact that the mirror-generated
magnetic fluctuations lie mainly in the (k, B) plane (they can be
seen in B xy,

2d ^ too, but not in Bz
2d , as expected from linear

theory; Pokhotelov et al. 2004). The oblique nature of mirror
modes can also be seen in Figure 4(a), where we show the
power spectrum in space of δB∥ at t · s= 0.4. The solid and
dashed lines represent the directions parallel and perpendicular
to the mean magnetic field 〈B〉, respectively. Therefore, we can
see that at t · s= 0.4, the power is mostly concentrated between
wavevectors  kR0.44 1.35L i,

init and angles of 52° θk
77°, where k B kBcosk

1( · )q º á ñ- is the angle between the
mirror modes’ wavevector and the mean magnetic field 〈B〉.
It should be emphasized that the IC wave activity only starts

at t · s= 0.6, and not before. There is no sign of an early
excitation of the IC instability competing with the mirror
instability for the available free energy in /P Pi i,D . Instead, at
earlier stages, only the mirror instability is excited, consistent
with our initial conditions of high beta ( 20i

initb = ), where the
mirror instability is expected to dominate (e.g., Riquelme et al.
2015).
The absence of IC waves early in the simulation

(0< t · s< 0.6) can clearly be seen in Figure 5(a), where we
show the power spectrum in time and space of δBz(ω,
k∥)+ iδB⊥,xy(ω, k∥) at early stages: 0.3< t · s< 0.5. This
particular combination of the two perpendicular components
of δB allows us to disentangle the parallel-propagating waves
(with respect to the main magnetic field 〈B〉, e.g., IC and

Figure 3. Panel (a): the evolution of the ion pressure anisotropy /P Pi i,D for
run b20m8w800 is shown as a solid green line. The green-dashed line shows
the double-adiabatic evolution of /P Pi i,D (Chew et al. 1956). The gray-dashed
line shows the approximate threshold for the mirror instability: 1/β∥,i
(Hasegawa 1969). The orange-dashed–dotted line shows the threshold for the
IC instability from Gary & Lee (1994) for γIC/ωc,i = 10−2 (γIC is the IC growth
rate). The red-dashed line shows the best fit to P P Ai i i i, ,

i
 bD = a from

t · s = 0.7–2.0, with Ai = 0.544 ± 0.003 and αi = 0.445 ± 0.003. Panel (b):
the evolution of the electron pressure anisotropy ΔPe/P∥,e is shown as a solid
orange line. The orange-dashed line shows the double-adiabatic evolution of
ΔPe/P∥,e. The blue-dashed line shows the best fit to P P Ae e e e, ,

e
 bD = a from

t · s = 0.7–2.0, with Ae = 0.036 ± 0.0002 and αe = 0.341 ± 0.003. The gray-
dashed line shows the linear threshold for the anisotropic whistler instability
from (Gary & Wang 1996) for growth rate γW/ωc,e = 0.01. (γW is the whistler
growth rate).
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whistlers), and also their left-handed and right-handed circular
polarizations (Ley et al. 2019; Tran et al. 2023). In this case,
the left-handed circularly polarized wave activity is shown for
ω> 0, whereas the right-handed circularly polarized wave
activity is shown for ω< 0. We can readily see that, apart from
the ω≈ 0 power consistent with mirror modes appearing in
δB⊥,xy, there is no left-handed polarized wave activity
throughout 0.3< t · s< 0.5, only right-handed polarized waves,
which corresponds to an early excitation of the whistler
instability, as we will see in Section 3.2.

3.1.2. Nonlinear, Secular Mirror Phase

At t · s≈ 0.45, we can clearly see the beginning of the
secular growth of the mirror instability, where the modes reach

nonlinear amplitudes, and keep growing but at a slower rate.
This evolution is consistent with previous works (Kunz et al.
2014; Riquelme et al. 2016).
Interestingly, the mirror secular growth is interrupted at

t · s≈ 0.6, and the slope of B 2
d breaks. This is also

approximately where the ion pressure anisotropy experiences
its fastest decline (Figure 3). Mirror modes continue to grow,
but at a much slower rate. This is consistent with the saturation
of energy in the subdominant components B xy,

2d ^ and Bz
2d (solid

red and green lines in Figure 2(g), respectively), which also
presents a distinct pattern of oscillations. This activity is clear
evidence of a new burst of waves with components mainly in
the direction perpendicular to δB, and we will see that they are

Figure 4. Panel (a): power spectrum in space of δB∥(kx, ky) at t · s = 0.4. The
wavenumbers kx, ky are normalized by the initial Larmor radius of the ions,
RL i,
init . The solid and dashed black lines represent the direction parallel and

perpendicular to the main magnetic field at that time, respectively. Panel (b):
power spectrum in space of δB∥(kx, ky) at t · s = 1.4. Note that the scale of color
bars in panels (a) and (b) are different.

Figure 5. Panel (a): the power spectrum of δBz(ω, k∥) + iδB∥,xy(ω, k∥) in the
entire simulation domain and between 0.3 < t · s < 0.5. The frequency is
normalized by the initial electron-cyclotron frequency ωc,e, and the wavevector
is normalized by the plasma frequency ωp,e over the speed of light c. The solid
black line shows the linear dispersion relation ωr(k) for the whistler instability
according to our linear dispersion solver, whereas the black-dashed line shows
its growth rate γ. Panel (b): the power spectrum in space of δBz(kx, ky) at
t · s = 0.4. The wavenumbers kx, ky are normalized to the initial Larmor radius
of the electrons, RL e,

init. The solid and dashed black lines represent the direction
parallel and perpendicular to the main magnetic field at that time.
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consistent with both electron-cyclotron waves (whistlers) and
IC waves excited by electron and ion populations, respectively,
that become trapped within mirror modes (see Section 3.3).

Figure 2(e) shows a late, nonlinear stage of the mirror
instability, at t · s= 1.4. At this time, the regions of high
magnetic field of mirror modes (e.g., red filamentary structures
seen in Figure 2(b)) have grown significantly and merged with
neighboring structures to form wider and sharper regions of
high local amplitudes (δB∥/B∼ 0.9), whose sizes are compar-
able to regions of low magnetic field. At this stage, most of the
power is concentrated in wavevectors  kR0.2 1.1L i,

init , and
angles 57° θk 85° (see Figure 4(b)).

After reaching its overshoot, the ion anisotropy starts to
decrease toward marginal stability. However, this decrease
stops around t · s≈ 0.65 at /P P 0.18i i,D » , well above the
approximate mirror threshold (gray-dashed line, Hasegawa
1969; Hellinger 2007). The anisotropy then reaches a marginal
stability level that is above the mirror threshold, similar to
some previous works using both hybrid and fully kinetic
simulations (Sironi & Narayan 2015; Melville et al. 2016; Ley
et al. 2023).

In order to better characterize the evolution of /P Pi i,D , we
fit a relation /P P Ai i i i, ,

i
 bD = a from 0.7� t · s� 2. (In our

simulations, the shear motion continuously amplifies B;
therefore, β∥,i also evolves.) As shown in Figure 3(a), our
best-fit parameters are Ai= 0.544± 0.003 and αi=−0.445±
0.003. The obtained exponent is consistent with the marginal
stability threshold given by the IC instability for lower βi (Gary
& Lee 1994). Indeed, the threshold for the IC instability,
P 0.53i i,

0.4
bD = - , is plotted as the orange-dashed–dotted line in

Figure 3(a) for γIC/ωc,i= 10−2 (Gary & Lee 1994), and we can
clearly see the similarity with our best-fit threshold, even at this
higher value of initial i,

init
b . This observation was also reported

in Sironi & Narayan (2015), and we will see that, indeed, we do
observe IC waves as part of the saturated phase of the mirror
instability that starts at t · s= 0.6. The presence of ion and
electron-cyclotron waves coexisting with mirror modes at late,
nonlinear stages of the mirror instability has been reported in
previous works (Sironi & Narayan 2015; Riquelme et al. 2016;
Ahmadi et al. 2018). In Section 3.3, we argue that a natural
explanation of the source of these cyclotron waves is the
pressure anisotropy of ions trapped within nonlinear mirror
modes.

3.2. First Whistler Burst: t · s≈ 0.4

Figure 3(b) shows the evolution of the electron pressure
anisotropyΔPe≡ P⊥,e− P∥,e for run b20m8w800. Initially, the
electrons develop their own pressure anisotropy alongside ions
and for the same reasons. The anisotropy follows double-
adiabatic (CGL) scaling (orange- dashed line) until t · s≈ 0.4,
when it has already reached a value significantly larger than the
theoretical threshold for the growth of whistler modes, marked
by gray-dashed lines (Gary & Wang 1996). Around this time,
the whistler instability starts to grow, as seen by the time trace
of Bz

2d in Figure 2(g), which is a rough proxy for whistler
waves, and also because there are no left-handed IC waves as
shown in Figure 5(a). At t · s≈ 0.45 the whistler modes saturate
and enter a regime of quasi-steady amplitude, which lasts until
t · s≈ 0.53. During this t · s≈ 0.4–0.53 period, ΔPe is rapidly
drawn down by frequent scattering, reaching a more slowly
decreasing regime between t · s≈ 0.53 and 0.6. The drawdown
of electron anisotropy happens at a time when the ion

anisotropy is still growing. This lasts until mirror modes are
sufficiently high amplitude to start trapping the elec-
trons (t · s= 0.6).
The presence of whistler modes at t · s= 0.4 can be seen

mainly in the perpendicular components of δB, namely, δB⊥,xy

and δBz, Figures 2(a) and (c), respectively. They propagate
quasi-parallel to the main magnetic field B in a fairly
homogeneous way inside the simulation domain. This quasi-
parallel propagation can also be seen in Figure 5(b), where we
show the power spectrum in space of δBz(kx, ky) at t · s= 0.4 for
run b20m8w800, and the solid and dashed black lines indicate
the directions parallel and perpendicular to the main magnetic
field 〈B〉 at t · s= 0.4. The power of δBz(kx, ky) is concentrated
at parallel propagation and wavevectors kR0.6 1L e,

init< < . This
whistler burst is the first instability that is observed in our
simulations, and before t · s= 0.4 the plasma response is still
consistent and well described by the double-adiabatic, CGL
scalings, as shown in Figure 3(b).
We show the whistler wave frequencies in the power

spectrum of δBz(ω, k∥)+ iδB⊥,xy(ω, k∥) in the interval of
0.3< t · s< 0.5 in Figure 5(a). We can see that the power is
localized in the region ω< 0, i.e., right-handed circularly
polarized waves, consistent with the whistler polarization, and
within frequencies of 0.02< ω/ωc,e< 0.05. As mentioned
above, no IC activity is present during this time period.
We also calculated the theoretical dispersion relation of the

anisotropic whistler instability using a linear dispersion solver
assuming an initial bi-Maxwellian distribution of electrons
(Tran et al. 2023), using the initial parameters and values of
T⊥,e, T∥,e directly from the simulations. The dispersion relation
ω(k) is shown as a solid black line in Figure 5(a), whereas the
instability growth rate is shown in black-dashed lines. We can
see that the power in right-handed circularly polarized waves is
consistent with the whistler dispersion relation.
This way, the early evolution of the electrons is determined

by an early burst of whistler modes associated with the initial
electron pressure anisotropy growth. We will see that, once
electrons start to become trapped in between mirror modes at
t · s≈ 0.6, another burst of whistler activity happens, this time
associated with the trapping process within mirror modes
during their secular and saturated phases.

3.3. Whistler and IC Excitations: t · s≈ 0.6

At the end of its secular growth, when mirror modes have
reached sufficiently high amplitudes, we simultaneously
observe right-handed and left-handed circularly polarized wave
activity, which we identify as whistler and IC waves,
respectively. We will see below (Section 3.3) that these
whistler and IC waves propagate mainly in regions of locally
low magnetic fields (magnetic troughs). The source of this
wave activity is identified to be the pressure anisotropic
population of ions and electrons mainly due to trapped particles
inside the magnetic troughs. The whistlers and IC waves then
pitch-angle scatter both the trapped and untrapped particles,
contributing to the regulation of the global anisotropy.
Figure 6 shows different spectral properties of the late burst

of waves excited from t · s≈ 0.6 onward. Figure 6(a) shows the
power spectrum in time of δBz(ω)+ iδB⊥,xy(ω) between
0.5< t · s< 1.1, so we can see both left-handed (solid blue
line) and right-handed (solid orange line) circular polarizations.
The power spectrum peaks at low frequencies, consistent with
the nature of the dominant mirror modes (mainly appearing in
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δB⊥,xy). Additionally, we can clearly see a secondary peak at
around ω∼ 0.2ωc,i, with a spread that goes from ω∼ 0.1ωc,i to
ω∼ 0.3ωc,i, in both left- and right-handed circular polariza-
tions. This constitutes the characteristic feature informing the
late burst of wave activity. This peak resembles observations of
whistler lion roars in the Earth’s magnetosheath (see, e.g.,

Figures 1 and 2 of Giagkiozis et al. 2018; and Figure 3 of
Zhang et al. 2021 for right-handed polarized waves.).
Figure 6(b) shows a spectrogram of δBz(ω)+ iδB⊥,xy(ω) in

frequency and time, in the range of 0.4< t · s< 1.3, with
positive frequencies representing left-handed circularly polar-
ized waves, and negative frequencies denoting right-handed
circularly polarized waves. Here we can also see the early burst
of whistler waves starting at t · s≈ 0.4 and peaking at
t · s≈ 0.45 (see Section 3.2), followed by the burst of both
left-handed and right-handed circularly polarized waves at
t · s≈ 0.53 and peaking at t · s≈ 0.65. This coincides with the
rise in amplitude of Bz

2d and δB⊥,xy (see Figure 2(g)), and the
waves are continuously maintained throughout the simulation
at around the same frequencies.
Finally, Figure 6(c) shows the power spectrum of δBz(ω,

k∥)+ iδB⊥,xy(ω, k∥) in time and space, at 0.5< t · s< 1.1.
Frequencies and wavenumbers are normalized by ωc,i and
ωp,i/c, respectively. Here we can also see the power at low
frequencies consistent with the dominance of mirror modes
appearing in δB⊥,xy. The burst of left- and right-handed
circularly polarized waves can be seen concentrated around
frequencies ω≈ 0.2ωc,i and ω≈−0.15ωc,i, respectively. Their
range in wavenumbers is 0.2 ck∥/ωp,i 0.5. Overall, the
power spectra of both left- and right-handed polarized waves
are very similar to those of IC and electron cyclotron whistlers,
and we will identify these waves as such from now on. In the
next section, we will confirm that the population of particles
that excites these waves have anisotropic distributions that are
IC and whistler unstable.
The morphology of IC and whistler waves can also be seen

in Figures 2(d) and (f). The short wavelength, wavepacket-like
structures are identified with whistler modes, which propagate
mainly through regions of low magnetic field strength of mirror
modes, as can be seen from δB⊥,xy (blue-shaded regions in
Figure 2(d)). The IC modes, on the other hand, are identified as
the longer wavelength, extended modes that can be seen in δBz

(Figure 2(f)). The IC modes seem to propagate through the
entire simulation box, given their ion-scale wavelength,
whereas whistler modes clearly propagate within the mirrors’
magnetic troughs. This also resembles magnetosheath’s
observations of whistler waves within magnetic troughs (e.g.,
Kitamura et al. 2020).
The peak frequencies observed in Figure 6 for both IC and

whistler waves can be understood in terms of their dispersion
relations. At high β and kRL,e∼ 1, and for quasi-parallel
propagation, the dispersion relation for whistler waves can be
written as (Stix 1992; Drake et al. 2021)

k d k d , 1W c e W e c i W i,
2 2

,
2 2 ( )w w w= =

where de= c/ωp,e and di= c/ωp,i are the electron and ion skin
depths, respectively. Knowing that d Ri L i i

2
,
2 b= , we can also

write

k R . 2W c i W L i i,
2

,
2 ( )w w b=

Similarly, at high β and kRL,i∼ 1, and for quasi-parallel
propagation, the IC wave dispersion relation is approximately
(Stix 1992)

k d , 3c i iIC , IC ( )w w=

Figure 6. Panel (a): the power spectrum of δBz(ω) + iδB⊥,xy(ω) as a function of
frequency. The frequencies are normalized by the initial IC frequency. The
power spectrum of left-handed circularly polarized waves (ω > 0) is shown as a
solid blue line, whereas the power spectrum corresponding to right-handed
circularly polarized waves (ω < 0) is shown as an orange line folded into
positive frequencies. Panel (b): spectrogram of δBz(ω) + iδB⊥,xy(ω) in
frequency and time, at 0.4 < t · s < 1.3. The frequency is normalized by the
initial IC frequency. Positive and negative frequencies correspond to left-
handed and right-handed circularly polarized waves, respectively. Panel (c): the
power spectrum of δBz(ω, k∥) + iδB⊥(ω, k∥) at 0.5 < t · s < 1.1. Frequencies
are normalized by the initial ion gyrofequency, and wavenumbers are
normalized by the initial ion skin depth. Here also, positive and negative
frequencies show left-handed and right-handed polarized waves, respectively.
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and we can also write

k R . 4c i L i iIC , IC , ( )w w b=

We can estimate kW, kIC by looking at the power spectrum of
any of the perpendicular components of the magnetic field
fluctuations. Figure 7 shows the power spectrum of δB⊥,xy(kx,
ky) at t · s= 0.9, where the solid and dashed white lines denote
the direction parallel and perpendicular to the mean magnetic
field B at that time, respectively. Apart from the power in the
perpendicular direction corresponding to the mirror modes, in
the power parallel to B (i.e., along the solid white line in
Figure 7) we can distinguish large wavenumbers centered at
k R k R, 0.75, 1.5y L i x L i,

init
,
init( ) ( )» - (and also at (−1.5, 0.75)),

corresponding to whistlers, and also smaller wavenumbers
centered at k R k R, 0.5, 0.7x L i y L i,

init
,
init( ) ( )» , corresponding to IC

waves.
The large wavenumber extent in kx, ky observed in Figure 7

gives us an approximate range of wavenumbers of
 k R1.5 3.2W L i,

init for whistlers, implying frequencies of
 0.1 0.5W c i,

initw w (as 20i
initb = ), consistent with the

frequencies observed in the negative half of Figure 6(c),
corresponding to right-handed polarized waves. Similarly, the
small wavenumber extent in kx, ky gives us a range of
wavenumbers of  k R0.4 1.1W L i,

init , implying frequencies of
 0.1 0.25IC c i,

initw w , also consistent with the frequencies in
the positive half of Figure 6(c), corresponding to left-handed
polarized waves.

3.4. 2D Particle Distributions

The specific time at which ion and electron-cyclotron wave
activity saturate, which coincides with the end of mirror
instability’s secular growth (t · s≈ 0.6), and the propagation of
whistler waves within regions of low magnetic field strength
provide a hint toward uncovering the mechanism by which the
whistler and IC waves are excited.

As a first step, we explore the evolution of the pressure
anisotropy of ions and electrons at the time at which the IC and
whistler waves are excited. At this time, mirror modes have
achieved high amplitudes, and created sharp regions of high
and low magnetic field strength, making the plasma spatially
inhomogeneous. This implies that, in general, the plasma β of
ions and electrons would not be the same at different locations
in the simulation domain, making the anisotropy thresholds for
the growth of the modes different in different regions. For this
reason, a more appropriate method would be to measure the 2D
distribution of pressure anisotropy, β∥ and δB∥/B, in the
simulation domain.
Figure 8 shows the distribution of ion and electron pressure

anisotropy as a function of ion β∥,i (panels (a)–(c)) and electron
β∥,e (panels (g)–(i)), respectively, and the distribution of δB∥/B
versus β∥,i (panels (d)–(f)) and electron β∥,e (panels (j)–(l)),
respectively. These distributions are shown at three different
times: the beginning of the simulation (t · s≈ 0, left column); the
end of the mirror’s secular growth and the beginning of ion and
electron-cyclotron wave activity (t · s= 0.6, middle column), and
a late stage well into the saturated regime of mirror instability
(t · s= 1.4, right column). In the top row of Figure 8 (i.e., panels
(a)–(c)), the gray-dashed line corresponds to the approximate
mirror instability threshold 1/β∥,i (Hasegawa 1969), the orange-
dashed–dotted line corresponds to the theoretical IC threshold
0.53 i,

0.4
b from Gary & Lee (1994) for γIC/ωc,i= 10−2, and the

solid black line represents the best-fit to the global ion anisotropy
derived in Section 3.1 (see Figure 3(a)). In the third row of
Figure 8 (panels (g)–(i)), the black-dashed–dotted line shows the
whistler instability threshold of 0.36 e,

0.55
b from Gary & Wang

(1996), for γW/ωc,e= 10−2.
Starting with the ions, we can see that, from a stable,

isotropic distribution at the very beginning of the simulation
(Figure 8(a)), the ions become anisotropic enough to surpass
both the mirror and the theoretical IC threshold from Gary &
Lee (1994), as well as our best-fit instability threshold, as
shown in Figure 8(b). At this point (t · s= 0.6), we start to
observe the excitation of IC waves that seem to interact with
the ions and start driving them toward a marginally stable state.
This can be seen in Figure 8(c), where the distribution becomes
bimodal, with one population of ions under both the IC
threshold and our best-fit threshold (centered at β∥,i∼ 5 and
P⊥,i/P∥,i∼ 1.2), meaning that they are driven toward marginal
stability with respect to the IC threshold. Interestingly, there
exists another ion population that is still unstable (centered at
β∥,i∼ 18 and P⊥,i/P∥,i∼ 1.4); therefore, IC waves could then
continue being excited even at this late stage. This could
explain the sustained amplitude observed in Bz

2d and B xy,
2d ^ in

Figure 2(g). Therefore, we can see that the unstable population
has a higher β∥,i, and the marginally stable population moves to
lower β∥,i.
For a similar value of P∥,i, the difference in the values of β∥,i

between the unstable and marginally stable populations should
imply a difference in the local magnetic field strength (recall
β∥,i= 8πP∥,i/B

2). This gives us a hint as to the location of the
unstable and marginally stable populations in the domain, as
mirror modes generate distinct regions of low and high
magnetic field strength.
As can be seen in Figures 8(d)–(f), the ions also separate into

two populations now in δB∥/B. Starting from zero magnetic
field fluctuations at the beginning (t · s≈ 0, Figure 8(d)), we see
how δB∥/B starts to grow at t · s= 0.6 (Figure 8(e)), until we

Figure 7. The power spectrum in space of δB⊥,xy(kx, ky) at t · s = 0.9. The
wavenumbers kx, ky are normalized by the initial ion Larmor radius RL i,

init. The
solid and dashed white lines represent, respectively, the directions parallel and
perpendicular to the main magnetic field at that time.
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Figure 8. Top row: the distribution of ion P⊥,i/P∥,i vs. β∥,i in the simulation domain at different times: t · s = 0.01 (left column), t · s = 0.6 (middle column), and
t · s = 1.4 (right column). The gray-dashed line represents the approximate mirror instability threshold 1/β∥,i (Hasegawa 1969), and the orange-dashed–dotted line
represents the IC instability threshold from Gary & Lee (1994) for γIC/ωc,i = 10−2 (γIC is the IC instability growth rate), and the solid black line represents our best-fit
threshold from Section 3.1 (see Figure 3(a)). Second row: the distribution of δB∥/B vs. ion β∥,i for the same three times as in the top row. Third row: the distribution of
electron P⊥,e/P∥,e vs. β∥,e in the simulation domain at the same three times as in the top row. The black-dashed–dotted line represents the whistler instability threshold
from Gary & Wang (1996). Fourth row: the distribution of δB∥/B vs. electron β∥,e for the same three times as in the top row. An animated version of this plot is
available in the HTML version of this paper. The animation shows the evolution throughout the simulation of P⊥,i/P∥,i vs. β∥,i and δB∥/B vs. ion β∥,i only for ions
(i.e., the top two rows of the static figure only). The evolution runs from t s 0 1.5⋅ = - .

(An animation of this figure is available.)
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clearly see the bimodal distribution at t · s= 1.4, separating the
two ion populations: the high-β∥,i population located in regions
of δB∥/B< 0 (i.e., low-B strength), and the low-β∥,i population
located in regions of δB∥/B> 0 (i.e., high-B strength).

We can therefore conclude that, after mirror modes develop
and the IC waves are excited (t · s 0.6), the ions separate into
two populations: one of low β∥,i, located mainly in high-B
strength regions, and marginally stable to IC waves, and the
second population with high-β∥,i, low-B strength regions, and
still unstable to IC waves. This suggests that the IC waves are
excited by the unstable ion populations in regions of low
magnetic field strength, and then interact with the ions in such a
way that the ions move to regions of high-B strength and low
β∥,i. In Sections 3.5 and 3.6 we will see that the population of
ions that contribute most to the anisotropy that destabilizes the
IC waves are the ones that become trapped within mirror
troughs.

In the case of the electrons, we can see a similar evolution.
From a stable, isotropic distribution at t · s≈ 0 (Figure 8(d)),
we can see how part of it now becomes whistler unstable at
t · s= 0.6 (Figure 8(e)), after which the excited whistler waves
interact with the electrons driving again part of the distribution
gradually toward marginal stability, also generating a bimodal
distribution similar to that of the ions. At t · s= 1.4
(Figure 8(f)), we can see that the electron population with low
β∥,e (centered at β∥,e∼ 5 and P⊥,e/P∥,e∼ 1) is marginally
stable with respect to the whistler threshold, whereas the
electron population with high β∥,e (centered at β∥,e∼ 18 and
P⊥,e/P∥,e∼ 1.2) is still unstable with respect to the whistler
threshold. This also implies that whistler waves can still be
excited at late stages in the simulation.

Analogously, the electrons also separate into two popula-
tions with respect to δB∥/B. Similarly to ions, we also see that
the population with low β∥,e is located in regions of δB∥/B< 0
(low-B strength), whereas the high-β∥,e population is located in
regions of δB∥/B> 0 (high-B strength). In this sense, we also
conclude that in the case of electrons, the unstable population is
located mainly in regions of low-B strength and high β∥,e,
where whistler waves are being excited, and the marginally
stable population is located mainly in regions of high-B field
and low β∥,e. This also suggests that whistler waves interact
with electrons so they move to regions of high-B strength. We
will also see in Sections 3.5 and 3.6 that the electrons that
contribute the most to the pressure anisotropy that destabilizes
whistler waves are the ones that become trapped within mirror
modes.

3.5. Physical Mechanism of Secondary IC/Whistler Excitation:
Trapped and Passing Particles

In this section, we study the evolution of the ions and
electrons that become trapped within mirror modes as part of
the mirror instability’s interaction with the particles. We
characterize the pressure anisotropy and distribution functions
of these populations at the moment of trapping, and provide
evidence that they are able to destabilize parallel-propagating
modes that ultimately allow them to escape the mirrors and
regulate the overall anisotropy.

As part of their evolution, and after reaching secular growth,
mirror modes start to trap particles of low parallel momentum
p∥,j ( j= i, e) in regions of low local magnetic field strength.
The trapped particles bounce between these regions and
conserve their magnetic moment in the process (Southwood

& Kivelson 1993; Kunz et al. 2014). In order to investigate the
relation between this trapping process and the excitation of
these late IC and whistler waves, we select and track a
population of ions and electrons throughout the evolution of the
simulation, and study the trapped and passing (i.e., untrapped)
subpopulations separately.
We select and track two populations of ions and two

populations of electrons having relatively small and large
parallel momentum at a particular time in the simulation. This
way, we make sure that we can capture particles that eventually
become trapped and others that remained passing. In our
fiducial simulation b20m8w800, the two populations of ions
that we track have parallel momentum of −0.12<
p∥,i/mic< 0.12 and 0.3395< p∥,i/mic< 0.3405 at t · s= 0.4.
Similarly, the two populations of electrons have −0.2<
p∥,e/mec< 0.2 and 0.4599< p∥,i/mic< 0.4601 at t · s= 0.4.
In order to study the behavior of the tracked particles when

the IC and whistler activity starts, we ask how many particles
become trapped and how many become passing during the
interval of time at which this activity happens, which we denote
by ΔτLR. To answer this, we look at Figure 2(g) and define
ΔτLR as the interval of time of 0.52< t · s< 0.62, which
covers the exponential growth that Bz

2d and B xy,
2d ^ undergo

before saturating. This interval of time also covers the majority
of the secular growth of mirror modes (see B 2

d ).
Having this time interval well defined, we now must define

the criterion by which we consider a particle to become trapped
and passing during ΔτLR, and for this, we look at the evolution
of their parallel momentum. Similarly to Ley et al. (2023), we
define a particle as trapped during ΔτLR if the median of its
parallel momentum over ΔτLR is smaller than 1 standard
deviation over ΔτLR. We then define a particle as passing if the
median of its parallel momentum over ΔτLR is greater than or
equal to 1 standard deviation over ΔτLR. This is a statement of
small variation of p∥,j over ΔτLR, which in turn is a proxy for
an oscillatory behavior of p∥,j, characteristic of a bouncing
particle between mirror points. We confirm that this simple
criterion gives excellent results in separating trapped from
passing particles.
Figure 9 shows the evolution of the parallel momentum of a

trapped and a passing ion (panels (a)) and a trapped and a
passing electron (panel (b)), where the vertical gray-dashed
lines indicate ΔτLR. In Figure 9(a), we can see the the
oscillation pattern in the evolution of the parallel momentum of
the trapped ion during ΔτLR and until t · s≈ 0.7, when it
escapes. The parallel momentum of the passing ion evolves
without major changes as the ion streams through the
simulation box. This behavior is consistent with previous
works using hybrid and fully kinetic simulations (Kunz et al.
2014; Riquelme et al. 2016).
In Figure 9(b), we can also see the oscillating pattern of the

parallel momentum of the trapped electron, indicating bouncing
inside mirror modes, which ends at t · s≈ 1.1, when it escapes.
The parallel momentum of the passing electron does not vary
significantly during ΔτLR, confirming that it was streaming
along field lines at least at that interval.
It is worth noting, however, what happens after ΔτLR. Our

criterion for identifying particles as trapped and passing was
only within ΔτLR, and after that period of time particles can
continue evolving into the saturated stage of mirror modes,
where they can escape, be trapped again, or continue streaming
unperturbed. Indeed, by looking at its parallel momentum, we
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can see that after escaping and streaming for a while, the
trapped ion shown in Figure 9(a) gets trapped again at
t · s≈ 1.1, bounces inside a mirror mode and escapes again at
t · s≈ 1.4. Similarly, we can also see that the trapped electron
shown in Figure 9(b) gets trapped again at t · s≈ 1.2 and seems
to stay trapped until the end of the simulation. Interestingly, the
passing electron also gets trapped at around t · s≈ 0.7, by
looking at its parallel momentum, and then escapes again at
t · s≈ 1.2. Therefore, in a statistical sense, we can consider the
particles as trapped and passing only over the particular period
of time ΔτLR that we chose, after which they can continue
evolving and turn into passing or trapped again, as long as the
mirror saturation persists in the simulation.

3.6. Physical Mechanism of Secondary IC/Whistler Excitation:
Distribution Functions

In this section, we look at the evolution of the pressure
anisotropy and distribution functions of trapped and passing
ions and electrons defined according to the criterion described
in Section 3.5. We see that during ΔτLR, both trapped ions and
trapped electrons contribute most of the pressure anisotropy
necessary to destabilize IC and whistler modes. We show that
these IC and whistler waves interact in a quasilinear fashion
with ions and electrons, respectively, and quickly regulate their
pressure anisotropy such that their distributions evolve to a
more isotropic state.

Figure 10(a) shows the evolution of the pressure anisotropy
of trapped and passing ions. We can see that the anisotropy of
trapped ions initially follows a double-adiabatic (CGL, blue-
dotted line) evolution until t · s≈ 0.5 (i.e., just starting ΔτLR),
when the mirror modes start to trap them. We can readily see
that during ΔτLR, the trapped ions develop a significant
anisotropy, peaking at around t · s≈ 0.55. The anisotropy is

quickly regulated and converges to the best-fit threshold that
we derived in Section 3.1 and show in Figure 3(a). Similarly,
the pressure anisotropy of passing ions evolves in a relatively
unperturbed fashion following CGL evolution (red-dotted line)

Figure 9. Panel (a): evolution of the parallel momentum of an individual
trapped ion (blue line) and passing ion (red line) for our fiducial simulation
b20m8w800. Panel (b): evolution of the parallel momentum of a trapped
electron (blue line) and passing electron (red line) for run b20m8w800. The
vertical gray-dashed lines in each panel indicate the time interval ΔτLR.

Figure 10. Panel (a): evolution of the pressure anisotropy of ions identified as
trapped (blue line) and passing (red line) during ΔτLR. The green-dashed line
indicates the best-fit threshold to ΔP∥,i/P∥,i shown in Figure 3(a), and the
dotted blue-gray and red lines show the corresponding double-adiabatic (CGL)
evolution of trapped and passing ions, respectively. Panel (b): evolution of the
pressure anisotropy of electrons identified as trapped (blue line) and passing
(red line) during ΔτLR. The dotted blue and red lines show the corresponding
CGL evolution of trapped and passing electrons, respectively.
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through the majority of ΔτLR, until t · s≈ 0.6, where it passes
from negative values (consistent with passing ions having
preferentially large parallel momentum) to a positive but, more
isotropic state consistent with the best-fit threshold from
Figure 3(a).

The behavior of the pressure anisotropy of trapped and
passing particles can be understood as follows. Mirror modes
interact resonantly with ions and electrons according to the
resonance condition ωM− k∥,Mv∥= 0, where ωM and k∥,M are
the frequency and parallel wavenumber of mirror modes,
respectively, and v∥ is the parallel velocity of the particle. The
very low frequency of mirror modes, ωM∼ 0, implies that the
resonant particles are the ones having very low v∥
(v∥< γM/k∥,M, where γM is the mirror growth rate (Southwood
& Kivelson 1993; Pokhotelov et al. 2002). These are the
particles that become trapped within mirror modes (Kivelson &
Southwood 1996). Consequently, all trapped particles have
very low parallel velocity, and as a whole, they should
naturally have a pressure anisotropy of P⊥,j> P∥,j ( j= i, e).
Similarly, all passing particles have large v∥, and therefore, they
have a pressure anisotropy of P∥,j> P⊥,j. In this sense,
Figure 10 is consistent with the trapping argument described
in Kivelson & Southwood (1996) (see their Figure 1).

The fact that both trapped and passing ions evolve into the
average level of ion anisotropy shown in Figure 3(a) shows that
their trapped or passing condition corresponds to a transient
state that passes after a time comparable to ΔτLR. Also, notice
that the anisotropy of the two populations (and for the whole
population for that matter) is significant enough to drive IC
waves unstable (see Section 3.3), and therefore, this can
provide evidence for the source of the IC waves that we see. If
this is the case, their interaction with ions is the source of the
quick regulation of the anisotropy that we see in Figure 10(a).
Interestingly, under this scenario, the regulation of the pressure
anisotropy of passing ions, which happens at the same time as
that of the trapped ions, should also be due to the interaction
with these IC waves, meaning that the IC waves interact with
both populations of trapped and passing ions simultaneously,
and therefore, regulate the global ion anisotropy. We confirm
that this is the case by looking at the evolution of the
distribution functions of trapped and passing ions.

In the case of electrons, we observe a similar evolution in
Figure 10(b). Initially, both trapped and passing electrons
detach from their respective CGL evolution (blue- and red-
dotted lines, respectively), and develop a significant anisotropy
ΔPe> 0, that peaks at t · s≈ 0.4. We also see that trapped
electrons detach from their CGL evolution much earlier than
passing electrons. This evolution then leads to the early burst of
whistler waves, which also quickly regulates and drives
anisotropies of both trapped and passing electrons toward a
more isotropic state (see Section 3.2). As expected, the
anisotropy of trapped electrons is higher than the one of the
passing electrons. After this process, and during ΔτLR, the
anisotropy of trapped electrons increases again, while that of
passing electrons continues to decrease. This way, we see that
trapped electrons build up a pressure anisotropyΔPe> 0 that is
also quickly regulated after ΔτLR, converging to an anisotropy
level similar to the one of the general electron populations. The
anisotropy ΔPe< 0 of the passing electrons also gets regulated
toward a similar anisotropy level during the same time. This
evolution of trapped electrons also suggests that they become
anisotropic enough to destabilize whistler waves, and therefore,

could be the source of the whistler activity observed
at t · s> 0.6.
It is worth noting that the evolution of B xy,

2d ^ and Bz
2d (see

Figure 2(g)) at late stages shows that the cyclotron wave
activity persists. It is then worth exploring whether the same
trapping process described during LRtD is active during the
saturated, nonlinear stage of the mirror instability, in addition
to the already studied secular growth spanned by ΔτLR. We
will see that this is indeed the case.
We use the same sample of tracked ions and electrons as

before, but we now define a new interval of time, ΔτNL, to
classify the particles as trapped and passing. Now let ΔτNL
span the interval of 1.35< t · s< 1.45, in order to match the
time shown in the third column of Figure 8. We use the same
criterion as before, namely, that a particle will be trapped/
passing when the median of its parallel momentum over ΔτNL
is smaller/greater than or equal to 1 standard deviation over
ΔτNL.
Figure 11 shows the evolution of the pressure anisotropy of

trapped and passing ions (panel 11(a)) and trapped and passing
electrons (panel 11(b)) identified during the interval ΔτNL. In
the case of the ions, we can see that the evolution of the
pressure anisotropy of both trapped and passing ions follows a
very similar trend throughout the linear phase of the mirror
instability, and part of its secular growth as well. At t · s≈ 0.6,
the two curves start to separate from each other, and the
pressure anisotropy of the passing ions starts to slightly
decrease, whereas the pressure anisotropy of trapped ions sticks
in the best-fit threshold until t · s≈ 1.0, to then start to increase
as it approaches ΔτNL. Similar to the earlier interval ΔτLR, the
pressure anisotropy of passing ions decreases and reaches its
minimum point at t · s≈ 1.4, while the pressure anisotropy of
trapped ions increases, and reaches its maximum point at
around the same time. Note that the anisotropy peaks of both
trapped and passing ions are now smaller than during ΔτLR,
but significant enough to still be able to excite IC waves, that
then interact with the ions and regulate their pressure
anisotropies. The smaller peaks can be due to a lower amount
of free energy available in the system than at earlier times, as a
significant amount of pitch-angle scattering has been under-
gone already.
In the case of electrons, a similar trend is observed. In

Figure 11(b), the pressure anisotropy of both trapped (solid
blue line) and passing (solid red line) electrons have a very
similar initial behavior. They both respond similarly to the
early whistler burst, to then separate their evolution around
t ·≈ 0.6. At this point, the anisotropy of passing electrons starts
to decrease, while the anisotropy of trapped electron increases.
Again, the peak anisotropy of both trapped and passing
electrons is reached at t · s≈ 1.4, and peaks at a relatively
smaller value than during ΔτLR, but also significant enough to
be able to excite whistler waves. These waves then interact
with electrons and regulate their anisotropies, analogous to the
ion case.
We can then conclude that even at later times, as long as

there is enough free energy available in the system, the trapping
process of both ions and electrons is able to contribute to the
pressure anisotropy to excite IC and whistler waves, respec-
tively, even at later stages. We argue that this process happens
continuously, with different populations of particles under-
going trapping and untrapping processes at any specific interval
of time during the late stages of the mirror instability.
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Figure 12 shows the distribution functions of trapped and
passing ions and electrons at three different times, t · s= 0.57,
0.61, and 0.75, spanning ΔτLR and also part of mirror’s

saturated stage. In the following, we describe the evolution of
each population.
The distribution of trapped ions (Figures 12(a)–c)) shows a

clear loss-cone-like form at t · s= 0.57 (all outside the loss
cone), meaning that all ions classified as trapped are effectively
trapped in mirror troughs. At this time, trapped ions have
reached their maximum pressure anisotropy according to
Figure 10(a).
Once IC waves are excited, they interact with both trapped

and passing ions via pitch-angle scattering in a quasilinear
fashion (Kennel & Engelmann 1966). This diffusion process
happens along paths of constant particle’s energy in the frame
moving with the waves (see, e.g., Squire et al. 2022):

v v k const. 5j j,
2

,
2( ) ( ) w+ - =^

We plot these contours in solid white lines in each plot of
Figure 12 as v v k v v const.j j j j,

2
,

2
,

2
,
2( )  w+ - » + =^ ^ , as in

a high-β scenario, the phase velocity of an IC wave offers a
small correction of order v v 1A th i, b= . Additionally, the IC
waves in our simulations are destabilized in both parallel and
antiparallel directions to B. We can see that the relaxation of
the distribution function of trapped ions by the quasilinear
interaction with IC waves agrees very well with these paths, by
looking at t · s= 0.61 and 0.75.
The distribution of passing ions (Figures 12 (d)–(f)) shows,

on the one hand, a concentration of ions at low perpendicular
velocities and relatively large parallel velocities, and it looks
fairly symmetric in v∥. This is consistent with having untrapped
ions mainly streaming along the mean magnetic field in both
directions. On the other hand, the population of large parallel
velocity is also shown at v∥/c≈ 0.3 (see Section 3.5).
Interestingly, the passing ions also interact quasilinearly with
IC waves, and this is particularly evident in the evolution of
passing ions. Indeed, we can clearly see how the large parallel
velocity population of passing ions evolves along the contours
of constant particle energy with excellent agreement at
t · s= 0.61 and 0.75. We can understand the evolution of this
population by looking at the gyroresonance condition

k v . 6i c i, , ( ) w w- = 

If we look at the peak power at positive frequencies in the
power spectrum shown in Figure 6(c), we can estimate the
frequency and wavenumber at which most of the power of IC
waves resides: 0.2c i,

initw w » , and ck 0.15p i,
init

 w »  . From
Equation (6) we can estimate then the parallel velocity of the
ions interacting gyroresonantly with these IC waves:

v

c ck m c k T

1

2
, 7

i c i

p i i B i i

, ,
init

,
init 2 init 1 2 init 1 2( )( ) ( )

( )




w w

w b
=

which gives v∥,i/c≈ 0.36 and v∥/c≈− 0.24, which falls in the
range of the large parallel velocity population. The quasilinear
evolution also happens with the population with a smaller
parallel velocity.
The population of trapped electrons (Figures 12(g)–(i))

shows a very similar evolution to that of trapped ions; the loss-
cone-like distribution is also apparent. The evolution of this
distribution is also consistent with a quasilinear interaction now
between the electron and whistler waves, driving the distribu-
tion toward isotropy along paths of constant particle energy, as
can be seen at later times in Figure 12.

Figure 11. Panel (a): evolution of the pressure anisotropy of ions identified as
trapped (blue line) and passing (red line) during ΔτNL. The green-dashed line
indicates the best-fit threshold to ΔP∥,i/P∥,i shown in Figure 3(a), and the
dotted blue-gray and red lines show the corresponding double-adiabatic (CGL)
evolution of trapped and passing ions, respectively. Panel (b): evolution of the
pressure anisotropy of electrons identified as trapped (blue line) and passing
(red line) during ΔτNL. The blue- and red-dotted lines show the corresponding
CGL evolution of trapped and passing electrons, respectively.
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Figure 12. The distribution function f (v∥,j, v⊥,j) of trapped and passing ions and electrons at three different times: t · s = 0.57 (first column starting from top),
t · s = 0.61 (second column), and t · s = 0.75 (third column). The distribution function ftrapped(v∥,i, v⊥,i) of the trapped ions is shown in the first row (starting from left),
fpassing(v∥,i, v⊥,i) for the passing ions are shown in the second row, ftrapped(v∥,e, v⊥,e) for the trapped electrons are shown in the third row, and fpassing(v∥,e, v⊥,e) for the
passing electrons are shown in the fourth row. In all the plots, the solid white curves denote contours of constant particle energy in the frame moving with the waves:
v v k v v const.j j j j,
2

,
2

,
2

,
2( )  w+ - » + =^ ^ ( j = i, e). An animation is available in the HTML version of this paper. The animation shows the evolution throughout

the simulation of the distribution of trapped ions and passing ions only (i.e., top two rows of the static figure) in the same format as shown in the static figure. The
evolution runs from t s 0 1.5⋅ = - .

(An animation of this figure is available.)
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Finally, the population of passing electrons (Figures 12(j)–
(l)) also shows a very similar evolution to that of the ions. The
populated loss-cone shape of the distribution is also apparent,
and we can see the quasilinear evolution of the distribution
function along constant particle energy contours at later times.

We have shown that once ions and electrons get trapped in
regions of low magnetic field strength of mirror modes, they
get sufficiently anisotropic to destabilize parallel-propagating
IC and whistler waves, respectively. During this process, both
trapped ions and trapped electrons develop loss-cone-like
distributions. Once excited, IC and whistler waves then interact
with both populations of trapped and passing ions and
electrons, respectively, in a quasilinear fashion, driving both
populations of trapped and passing ions and electrons toward a
more isotropic state. Consequently, this mechanism can
contribute to regulating the global anisotropy of ions and
electrons, and can thus be a pathway for particle escape and
consequent saturation of mirror modes (Kunz et al. 2014).

It is worth mentioning, however, that the sample of tracked
ions and electrons used to construct the trapped and passing
populations constitute a small fraction of the entire distribution;
moreover, the details about how ions and electrons can
destabilize IC and whistler waves, respectively, involve the
study of their entire distribution function, not only the trapped
or the passing fractions. What we can state is that trapped ions
and trapped electrons populations contribute most of the
positive anisotropy necessary to destabilize parallel-propagat-
ing IC and whistler waves, respectively, but the destabilization
of IC and whistler waves is produced by the combination of the
passing and trapped ions and electrons, which, as a whole, do
not obey loss-cone-like distributions.

In order to assess in more detail how the entire ion and
electron distribution functions in our simulations are suffi-
ciently unstable to IC and whistler waves, we can study the
growth rate of anisotropy-driven, parallel-propagating, circu-
larly polarized waves (e.g., Zweibel 2020)
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where n m4p j j,w p= is the plasma frequency of species j
( j= i, e), ωc,j= eB/mjc is the cyclotron frequency of species j,
p is the particle momentum, μ= p∥/p is the cosine of the pitch
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Instability is triggered when A> 0 in at least some region of
phase space. In the case of the whistler instability, we can plug
the whistler dispersion relation k RW c e W L e i,
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where we replaced the velocity v∼ vth,e, as the distribution is
mostly (but not entirely) thermal. Since the fastest growing
mode for whistler waves has kWRL,e∼ 1, and RL,e= vth,e/ωc,e,

we can simplify the above expression to
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as βe? 1 in our case, so we can neglect the contribution of μ.
Now, we can expand the distribution function in Legendre
polynomials in μ (e.g., Zweibel 2020; Ley et al. 2023),
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. Expanding up to the

P2 term (where P2(μ)= (3μ2− 1)/2 is the Legendre poly-
nomial of order 2), f (t, p, μ)= f0(t, p)+ f2(t, p)P2(μ) allows us
to separate f into its isotropic and anisotropic parts, given the
coupling of f2 with the pressure anisotropy
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Expanding f (t, p, μ) up to P2(μ) in Equation (11), we get
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Assuming that the f2 contribution is small (i.e., the deviations
from a thermal distribution due to pressure anisotropy are
small), the condition A> 0 implies
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Therefore, we obtain the important result that, in a high-β
plasma, the anisotropic part of the distribution, f2, need only be
a small fraction of the isotropic part f0, of order 1/βe, to be able
to excite whistler waves. For IC waves, as the dispersion
relation is k RL i iIC IC ,w b= , the condition reads
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Using these results, we can construct f0 and f2 from our PIC
simulations and quantify the contribution of f2 relative to f0,
going beyond the tracked particles from which we constructed
the trapped and passing particles’ distribution functions.
The first step consists of reconstructing fe(t, p, μ) and fi(t, p,

μ). For this, we construct the histogram of a sample of 401,408
electrons in pe and μe= p∥,e/pe and 401,408 ions in pi and

/p pi i i,m = . In this sample, we do not distinguish between
trapped and passing particles at any given time. This is shown
in Figure 13 for t · s= 0.57, at the onset of the IC/whistler
activity.
We can see in Figure 13 that for both electrons

(Figure 13(a)) and ions (Figure 13(b)), the distribution looks
not very different from a thermal and isotropic distribution,
with the most noticeable difference shown in μ. In the case of
the ions, the distribution in μi looks more anisotropic than in
the case of electrons, consistent with Figure 3. The departures
from a thermal distribution will become more evident when we
decompose fe(t, p, μ) and fe(t, p, μ) into their f0 and f2 Legendre
decompositions.
We construct f0 and f2 from their definitions:
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where P0(μ)= 1, P2(μ)= (3μ2− 1)/2. We use fe(t, p, μ) and
fi(t, p, μ) shown in Figure 13 to perform the integration. In
order to obtain better statistics, we average over 50 snapshots
around each time, and the shaded regions show 1 standard
deviation around the mean value. The results are shown in
Figure 14 at t · s= 0.57.

We can see that there is a small but finite f2 contribution for
both ion and electron distribution functions. Moreover, the
estimation shown in Figure 14 shows that at t · s= 0.57 the
ratio |f2(pe)/f0(pe)| for electrons is comparable to or larger than
1/βe, and for the ions /f p f pi i2 0| ( ) ( )| is also comparable to or
larger than 1 ib . Therefore, the distribution function as a
whole has an f2 contribution that even when it is smaller than
the isotropic part f0, it is nonetheless large enough to destabilize
both whistlers and IC waves at t · s= 0.57, given the high
values of βe,βi. Recent works have emphasized this argument
in great detail (Bott et al. 2023).

Finally, we validate our Legendre decomposition procedure
and truncation up to the P2 term by two means. First, we
reconstruct the distribution function of both ions and electrons
using only their f0 and f2 terms, fe(t, p, μ)≈ f0(pe)+ f2(pe)P2(μe)
and f t p f p f p P, ,i i i i0 2 2( ) ( ) ( ) ( )m m» + . We show this in
Figure 13 at t · s= 0.57 as white contours. We can see that the
reconstructed distribution functions are consistent with the full
distributions of both ions and electrons, meaning that we are able
to capture the main features of the distributions with just the first
two terms of the Legendre expansion. Second, we calculate the
ion and electron pressure anisotropy using Equation (13) and
compare them with the pressure anisotropy shown in Figure 3.
This is shown in the Appendix, and we obtain very good
agreement.

4. Mass Ratio Dependence

In this section, we compare simulations with different mass
ratios: mi/me= 8, mi/me= 32, and mi/me= 64, but with the
same initial conditions for ions, as shown for runs b20m8w800,
b20m32w800,and b20m64w800 in Table 1, although with
somewhat different temperatures. We see that IC and whistler
waves’ signatures do appear in all three simulations, and thus,
they do not seem to present a strong dependence on mass ratio.
Figure 15 shows the evolution of B 2

d (panel (a)) and Bz
2d

(panel (b)) for the three runs with mass ratios: mi/me= 8, 32,
and 64 (runs b20m8w800, b20m32w800, and b20m64w800 in
Table 1). We can see a very consistent evolution of B 2

d in all
three runs, meaning that mi/me does not play a significant role
in the early evolution and saturation of the mirror instability.
Similarly, Bz

2d shows the same features in all three runs,
especially during mirrors’ secular growth and saturated stages
(t · s≈ 0.5 onward). The early peak in Bz

2d at t · s≈ 0.4
corresponding to the early whistler burst is also seen in the
three runs, but more prominently in the simulation with
mi/me= 8. This is possibly due to an enhancement of this wave
activity by the ions, which are able to weakly feel the presence
of whistlers, as the mass separation is not very large. This effect
disappears as the mass ratio increases, and the early whistlers
only affect the electrons. More importantly, for t · s> 0.5, all
three runs show a very similar evolution of Bz

2d .
Figure 16 shows the evolution of the pressure anisotropy of

ions (panel (a)) and electrons (panel (b)) for the same three
runs. In the case of the ions, we can see an overall evolution
that is very consistent in all three runs, both in the early and late
stages. We can see a smaller anisotropy overshoot for the
simulation with mi/me= 8 at t · s≈ 0.4, coincident with the
enhancement seen in Bz

2d , during the early whistler burst,
suggesting that ions can weakly interact with the whistlers
at this mass ratio, and consequently their anisotropy does
not reach the same overshoot as the rest of the runs.

Figure 13. Panel (a): the distribution fe of a sample of 401,408 electrons in pe and μe at t · s = 0.57. White contours show the reconstructed electron distribution
function from f0 and f2: fe(t, p, μ) ≈ f0(pe) + f2(pe)P2(μe). Panel (b): the distribution fi of a sample of 401,408 ions in pi and μi at t · s = 0.57. White contours show the
reconstructed ion distribution function from its Legendre expansion f0 and f2: f t p f p f p P, ,i i i i0 2 2( ) ( ) ( ) ( )m m» + . The similarity between the white contours and the
distribution reconstructed from the data shows that f is well represented by just the first two terms in the Legendre expansion.
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Notwithstanding the foregoing, we can see how all three runs
display a very similar pressure anisotropy evolution afterward,
which is also well described by the best-fit threshold
Pi i

0.45bD µ - shown in Figure 3.
In the case of the electron pressure anisotropy ΔPe, we can

also see a similar evolution overall in Figure 16(b). The
overshoot at t · s≈ 0.4 is larger for decreasing mass ratios,
possibly due to the fact that the whistler amplitude required for
efficient scattering decreases as mi/me increases, as explained
above. This means that, after ΔPe/Pe,∥ has surpassed the
threshold for efficient growth of the whistler modes, the
simulations with larger mi/me take shorter times to reach the
necessary whistler amplitude to efficiently scatter the electrons.
This implies that the overshoot decreases for higher mass
ratios. During late stages, we can see a very similar evolution
of ΔPe in all three runs, which is even more evident for

mi/me= 32 and 64 (orange and green curves in Figure 16(a)),
which essentially lie on top of each other.
Finally, Figure 17 shows the power spectrum of δBz(ω,

k∥)+ iδB⊥,xy(ω, k∥) for the simulation with mi/me= 32
(Figure 17(a)) and with mi/me= 64 (Figure 17(b)). Here we
also see a very similar power distribution at both mass ratios,
showing both left-handed and right-handed polarized waves
(positive and negative frequencies, respectively). The peak

Figure 14. Panel (a): the first two terms in the Legendre expansion of the
electron distribution function fe(t, p, μ): f0(pe) (blue line), and f2(pe) (orange
line) at t · s = 0.57. Both f0 and f2 are averaged over 50 adjacent snapshots
(equivalent toΔt · s ≈ 0.03). f0 is multiplied by 0.1 for better visualization. The
shaded regions represent 1 standard deviation around the mean. The lower plot
shows the ratio f2/f0 (solid red line), and the red-shaded region represents one
standard deviation around its mean. The solid blue line represents the value of
1/βe at t · s = 0.57. Panel (b): f pi0 ( ) (blue line), and f pi2 ( ) (orange line) from
the Legendre expansion of fi(t, p, μ) at t · s = 0.57, averaged over 50 adjacent
snapshots. f0 is multiplied by 0.1 for better visualization. Shaded regions
represent 1 standard deviation around the mean. The lower plot shows the ratio
f2/f0 (solid red line), and the red-shaded region represents 1 standard deviation
around its mean. The solid blue line represents the value of 1 ib at
t · s = 0.57.

Figure 15. Panel (a): the energy in δB∥, the parallel component of the magnetic
field fluctuations δB, for three simulations with different mass ratios: mi/
me = 8 (run b20m8w8, blue line), mi/me = 32 (run b20m32w8, orange line),
and mi/me = 64 (run b20m64w8, green line). Panel (b): the energy in δBz, the
perpendicular component of δB out of the plane of the simulation in the
same runs.

Figure 16. Panel (a): evolution of the ion pressure anisotropy for three
simulations with different mass ratios: mi/me = 8 (run b20m8w8, blue line),
mi/me = 32 (run b20m32w8, orange line), and mi/me = 64 (run b20m64w8,
green line). The red-dashed line indicates the best fit of the threshold shown in
Figure 3(a), P Pi i i, ,

0.45
 bD µ - . Panel (b): same as in panel a but for the

electron pressure anisotropy in the same runs.
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power is also observed at the same frequencies and
wavenumbers as in Figure 6 for both polarizations.

This way, we can see that the linear and nonlinear evolution
of the mirror instability and the late IC and whistler evolution
are well captured in our simulations, and it does not strongly
depend on mass ratio.

5. Dependence on Initial Plasma β

We tested whether the IC and whistler waves’ activity is
present in simulations with 2i

initb = (i.e., total βinit= 4), and
40i

initb = (i.e., total βinit= 80), and compare them with our
fiducial simulation at 20i

initb = . We confirm that the mirror
instability can develop in all simulations, and both IC and
whistler waves do appear at nonlinear stages.

The power spectrum of δBz(ω, k∥)+ iδB⊥,xy(ω, k∥) is shown
in Figure 18 for the three runs with different initial i

initb , and we
can see that it is similar among the three i

initb cases. In all three
cases, we see the power concentrated at ω∼ 0 corresponding to
mirror modes. In addition, we also see a concentration of power
in right and left polarized waves, so both IC and whistler waves
are also present, although their peak frequency changes. For the

2i
initb = case, we see that the peak frequency is at

0.5c i,
initw w » , whereas in the 40i

initb = case, it shifts to
smaller values, 0.1c i,

initw w » . This shift in peak frequency can
also be explained by the IC and whistler dispersion relations
analogous to our discussion in Section 3.3.

Figure 19 compares the evolutions of B 2
d (i.e., mainly the

development of the mirror instability, panel (a)) and of Bz
2d

(i.e., the secondary IC and whistlers, panel (b)) for the three
runs with different initial i

initb (the other physical parameters
are the same, see Table 1). In all three cases, we can see an
exponential phase followed by the secular and saturated stages
characteristic of the mirror instability, which develops earlier
for higher initial βinit, consistent with the smaller anisotropy
threshold for the growth of the mirror instability at larger beta.
The amplitude of B 2

d at the saturated stage is comparable for
both the βinit= 20 and 40 runs, and is smaller for the βinit= 2
run, as also seen by previous works (e.g., Riquelme et al.
2015).

When we look at the evolution of Bz
2d in Figure 19(b), we

can see that for both the βinit= 20 and 40 runs, the evolution is
similar: both display an early whistler burst at t · s≈ 0.4, and an
IC/whistler excitation stage (t · s≈ 0.5 onward) at almost the
same amplitude. In the case of the βinit= 2 run, we can see that

the first exponential growth in Bz
2d at t · s≈ 0.6 is consistent

with an IC burst (see, e.g., Ley et al. 2019), after which we see
the typical oscillation pattern that the excitation of late IC and
whistler waves produces, from t · s≈ 0.8 onward, saturating at
an amplitude similar to that of the rest of the runs, and
displaying a very high-frequency oscillation.
In Figure 20, we compare the evolution of the ion and

electron pressure anisotropy plotted as a function of their
parallel plasma βi for the three simulations with different initial
βi. (As in all our simulations the mean magnetic field strength
is continuously increasing, so the particles’ βi decreases over
time, and therefore, the simulation evolves toward the left in
Figure 20.)
In the case of the ions (Figure 20(a)), we can see a similar

overshoot and subsequent regulation, but the overshoot occurs
at a lower anisotropy value for increasing βi. This is consistent
with the inverse βi dependence of the mirror instability
threshold: mirror modes are excited earlier at higher βi, and
therefore have relatively more time to regulate the anisotropy
before it reaches a higher overshoot. Interestingly, the saturated
stage of the ion pressure anisotropy is consistent with the
theoretical IC threshold from Gary & Lee (1994):
P P 0.53i i i, ,

0.40
 bD = - for γIC/ωc,i= 10−2 (see Figure 3(a)) in

all three runs, suggesting a universality in the threshold that
/P Pi i,D follows, as a consequence of the excitation of IC

waves during mirrors’ saturated stage. (In the case of the
40i

initb = run, however, it is more unclear whether it can
follow the abovementioned threshold at late stages, given the
short duration of this run.)
In the case of electrons (Figure 20(b)), we can also see that

the overshoot is reached at lower values of the pressure
anisotropy ΔPe/P∥,e for increasing initial beta, consistent with
an inverse-βi dependence now of the whistler instability
anisotropy threshold. It is interesting to note that after the
anisotropy overshoot, and during these late stages, the electron
pressure anisotropy tends to be significantly smaller than the
expectation from the threshold for the whistler instability in the
higher initial βi runs ( 20i

initb = and 40), irrespective of the
generation of pressure anisotropy that the continuous amplifi-
cation of the magnetic field produces as a consequence of the
shear motion in the simulation. Notice, however, that in low
magnetic field regions, the electron pressure anisotropy is
larger than the whistler threshold, and therefore, enough to
excite whistlers (Figure 8). This shows the key role played by
mirror-generated magnetic troughs in creating the conditions to
excite whistlers despite the fact that, globally, the pressure
anisotropy may not be enough to make these waves unstable.
On the other hand, in the 2i

initb = run, ΔPe/P∥,e continues to
weakly grow because of the continuous B amplification, and
this is done following a marginal stability state well described
by the threshold of the whistler instability ofΔPe/P∥,e∝ β−0.55

(Gary & Wang 1996), consistent with previous works at lower
β∥,e (Ahmadi et al. 2018).
The persistence of the late IC and whistler activity at

different initial plasma βi suggests that this phenomenon is a
natural consequence of the excitation of the mirror instability.
In other words, in a weakly collisional plasma with an initial
ion plasma βi sufficiently high to effectively excite the mirror
instability, the excitation of IC and whistler waves at its late,
saturated stages seems to be ubiquitous.

Figure 17. The power spectrum of δBz(ω, k∥) + iδB⊥(ω, k∥) at 0.5 < t · s < 0.7
for mi/me = 32 (run b20m32w800, left panel) and mi/me = 64 (run
b20m64w800, right panel). Positive and negative frequencies show the power
in left-handed and right-handed polarized waves, respectively. Note that the
color bar range is different for each figure.

19

The Astrophysical Journal, 965:155 (23pp), 2024 April 20 Ley et al.



6. Summary and Discussion

In summary, we have performed fully kinetic PIC simula-
tions of a collisionless plasma subject to a continuous
amplification of the background magnetic field to study the
nonlinear stages of the mirror instability and the ensuing
excitation of secondary IC and whistler instabilities, in
conditions where plasma pressure dominates over magnetic
pressure (high β). After mirror modes reach high amplitudes
and are able to trap ions and electrons within regions of low B,
we observe the excitation of subdominant left-handed polarized
IC and right-handed polarized whistler waves that persist
throughout the rest of the simulation, well into the nonlinear
stages of the mirror instability (see Section 3.3). The whistler
waves in our simulations seem to be consistent with the

observations of whistler lion roars in lower-β environments of
the Earth’s magnetosheath.
By tracking ions and electrons through the simulation, we

studied the excitation mechanism of both IC and whistler
waves. We characterized the population of tracked particles as
trapped and passing (i.e., untrapped) within mirror modes, and
followed the evolution of their distribution functions. We
observed that the trapped population of both ions and electrons
becomes highly anisotropic while trapped inside mirror modes,

Figure 18. The power spectrum of δBz(ω, k∥) + iδB⊥,xy(ω, k∥) for three runs with different initial ion beta: 2i
initb = (panel (a), run b2m8w800), 20i

initb = (panel (b),
run b20m8w800), and 40i

initb = (panel (c), run b40m8w800). Positive and negative frequencies show the power in left-handed and right-handed polarized waves,
respectively.

Figure 19. Panel (a): evolution of B 2
d for three simulations with different

initial ion beta: 2i
initb = (solid red line, run b2m8w800), 20i

initb = (solid
black line, run b20m8w800), and 40i

initb = (solid blue line, run b40m8w800).
Panel (b): evolution of Bz

2d for the same three simulations shown in panel (a).
Figure 20. Panel (a): ion anisotropy /P Pi i,D as a function of parallel ion beta,
β∥,i (with respect to the main magnetic field B) for three different simulations
with different initial ion beta: 2i

initb = (solid red line, run b2m8w800),
20i

initb = (solid black line, run b20m8w800), and 40i
initb = (solid blue line,

run b40m8w800). The orange-dashed–dotted line shows the IC threshold of
P P 0.53i i i, ,

0.4
 bD = from Gary & Lee (1994) for γIC/ωc,i = 10−2. Panel (b):

electron anisotropy ΔPe/P∥,e as a function of parallel electron beta, β∥,e for the
same three simulations shown in panel (a). The gray-dashed line in this case
shows the threshold for the whistler instability, P P 0.36e e e, ,

0.55
 bD = - for the

growth rate of γ = 0.01ωc,e from Gary & Wang (1996).
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contributing most of the anisotropy that allows the plasma to
become unstable to IC and whistler waves, respectively. On the
other hand, the passing ions and electrons developed features
concentrated at small perpendicular and large parallel velo-
cities, and fairly symmetric with respect to v∥, with a clear
absence at small parallel velocities (see Section 3.6).

Once IC and whistlers are excited, they interact with both
trapped and passing populations of ions and electrons,
respectively, via gyroresonant pitch-angle scattering. As a
result of this interaction, both trapped ions and electrons reduce
their anisotropy and escape from magnetic troughs of mirror
modes, following the prediction of quasilinear theory. The
passing ion and electron populations evolve in a similar manner
(see Figure 12). Interestingly, this process is observed to
regulate the global anisotropy of ions and electrons in the
simulation, driving the ion pressure anisotropy toward the IC
instability threshold (Gary & Lee 1994), and the electron
pressure anisotropy toward a global anisotropy much smaller
than expected from the theoretical whistler threshold. Given
this low electron pressure anisotropy, the whistler excitation
can be explained by the fact that, within mirror-generated
magnetic troughs, the pressure anisotropy is locally larger than
the whistler threshold (Figure 8(i)). Thus, we interpret the
whistler-driven regulation of electron pressure anisotropy as a
local phenomenon, mainly produced by trapped electrons
within nonlinear mirror structures.

The excitation of the secondary IC and whistler waves is
maintained as long as mirror modes are present and growing,
even at late stages where mirror modes have become highly
nonlinear. This was also observed in simulations of lower and
higher initial plasma β. This way, IC and whistler waves could
be a concomitant feature of the nonlinear evolution of the
mirror instability, and provide an interesting physical connec-
tion between ion-scale instabilities and electron-scale physics.

In this work, we did not vary the scale separation ratio ωc,i/s.
In an environment like the ICM, turbulent eddies could drive
the plasma locally through shear motions at kinetic scales with
a wide range of frequencies s, and we typically expect larger
kinetic energy at low frequencies (i.e., higher ωc,i/s). For larger
values of ωc,i/s, previous works have shown that mirror modes
can develop comparatively earlier in the simulations, therefore,
having relatively more time to saturate, and reaching similar
amplitudes (Kunz et al. 2014; Melville et al. 2016; Riquelme
et al. 2016; Ley et al. 2023). In this sense, we would expect a
similar late excitation of IC and whistler waves once mirror
modes have reached a saturated stage.

The excitation of IC and whistler waves at saturated stages of
the mirror instability modulates its nonlinear evolution, and
therefore, could affect transport processes in the ICM in which
mirror modes come into play.

Particularly important is the pressure anisotropy regulation in
the context of collisionless heating and dissipation via magnetic
pumping in the ICM (Kunz et al. 2011; Ley et al. 2023). The
marginal stability level that the ion pressure anisotropy reaches
the saturated stage, Pi i,

0.45
bD µ (see Figure 3(a), also correctly

pointed out by Sironi & Narayan 2015) is larger than the usual
mirror threshold 1/β∥,i by a factor of i,

0.55
b~ , which directly

translates into an excess heating of the same order. Indeed,
given that β is estimated to be β∼ 10–100 in the ICM, and that
the heating rate is directly proportional to the pressure
anisotropy, this could imply a heating rate several times larger
than predicted from the mirror threshold, enhancing the

efficiency of the mechanism by draining more energy from
the turbulent motions that drive the pumping.
The structures of high and low magnetic fields that mirror

modes produce in the saturated stage seem to be persistent in
time, and its energy B 2

d does not decrease as long as the
amplification of the mean magnetic field B is maintained (see
Figure 2(g)). Even when this amplification is halted or
reversed, the decaying timescales of mirror modes are large
compared to the typical ion gyroperiod (Melville et al. 2016;
Ley et al. 2023). This implies that the trapping process of ions
and electrons also persists, along with the excitation of
secondary IC and whistlers. This source of whistler waves
can have interesting implications in the context of ICM thermal
conduction models like whistler-regulated MHD (Drake et al.
2021), as they can dominate the electron scattering in the
presence of mirror modes.
This source of whistler waves associated with mirror modes

can also influence the suppression of the effective heat
conductivity in the plasma even in the absence of heat fluxes
(Komarov et al. 2016; Riquelme et al. 2016; Roberg-Clark et al.
2016, 2018), and this can have consequences in larger-scale
instabilities such as the magneto-thermal instability (Balbus 2000;
Berlok et al. 2021; Perrone & Latter 2022a, 2022b).
Future work aimed toward 3D fully kinetic PIC simulations

would be required to have a full understanding of the
consequences of the mirror instability and secondary IC/
whistler excitation in these high-β plasmas.
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Appendix
Pressure Anisotropy Evolution from Legendre

Decomposition

The expansion of the electron distribution fe(t, p, μ) and ion
distribution fi(t, p, μ) in Section 3.6 was truncated at the P2(μ)
term, as we are interested in the coupling that the f2(p) has with
the pressure anisotropy

P t pvf t p p dp
2

5
, . A12

2( ) ( ) ( )òD = -

In order to make sure we are capturing the main features of
the ion and electron distribution functions shown in Figure 13
with this truncation, we calculate the ion and electron pressure
anisotropies using Equation (A1) and the respective f0 and f2
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coefficients we obtained, shown in Figure 14. We can then
compare with the pressure anisotropy shown in Figure 3,
obtained directly by averaging over the same sample of
401,408 particles. This is shown in Figure 21.

We can see that the anisotropy recovered from f0 and f2
matches the particle-averaged anisotropy very well, so the
majority of information about the distribution function is
indeed contained in only the first two terms of the Legendre
expansion.
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