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The singular subspaces perturbation theory is of fundamental importance
in probability and statistics. It has various applications across different fields.
We consider two arbitrary matrices where one is a leave-one-column-out sub-
matrix of the other one and establish a novel perturbation upper bound for the
distance between the two corresponding singular subspaces. It is well suited
for mixture models and results in a sharper and finer statistical analysis than
classical perturbation bounds such as Wedin’s theorem. Empowered by this
leave-one-out perturbation theory, we provide a deterministic entrywise anal-
ysis for the performance of spectral clustering under mixture models. Our
analysis leads to an explicit exponential error rate for spectral clustering of
sub-Gaussian mixture models. For the mixture of isotropic Gaussians, the rate
is optimal under a weaker signal-to-noise condition than that of Löffler et al.
(2021).

1. Introduction. The matrix perturbation theory [4, 37] is a central topic in probabil-
ity and statistics. It plays a fundamental role in spectral methods [11, 19], an umbrella term
for algorithms involving eigendecomposition or singular value decomposition. It has a wide
range of applications including principal component analysis [1, 8], covariance matrix esti-
mation [15], clustering [30, 34, 35, 41], and matrix completion [14, 28], throughout different
fields such as machine learning [5], network science [2, 32], and genomics [20].

Perturbation analysis for eigenspaces and singular subspaces dates back to seminal works
of Davis and Kahan [12] and Wedin [44]. Davis-Kahan theorem provides a clean bound for
eigenspaces in terms of operator norm and Frobenius norm, and Wedin further extends it
to singular subspaces. In recent years, there has been growing literature in developing fine-
grained ℓ∞ analysis for singular vectors [2, 15] and ℓ2,∞ analysis for singular subspaces
[3, 7, 10, 25], which often lead to sharp upper bounds. For clustering problems, they can be
used to establish the exact recovery of spectral methods, but are usually not suitable for low
signal-to-noise ratio regimes where only partial recovery is possible.

In this paper, we consider a special matrix perturbation case where one matrix differs
from the other one by having one less column and investigate the difference between two
corresponding left singular subspaces. Consider two matrices

Y = (y1, . . . , yn−1) ∈ R
p×(n−1) and Ŷ = (y1, . . . , yn−1, yn) ∈R

p×n,(1)

where Y is a leave-one-column-out submatrix of Ŷ with the last column removed. Let Ur and
Ûr include the leading r left singular vectors of Y and Ŷ , respectively. The two corresponding
left singular subspaces are span(Ur) and span(Ûr ), where the former one can be interpreted
as a leave-one-out counterpart of the latter.
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We establish a novel upper bound for the Frobenius norm of Ûr Û
T
r −UrU

T
r to quantify the

distance between the two singular subspaces span(Ur) and span(Ûr ). A direct application of
the generic Wedin’s theorem leads to a ratio of the magnitude of perturbation (I − UrU

T
r )yn

to the corresponding spectral gap σr − σr+1. We go beyond Wedin’s theorem and reveal
that the interplay between UrU

T
r yn and (I − UrU

T
r )yn plays a crucial role. Our new upper

bound is a product of the aforementioned ratio and a factor determined UT
r yn, informally

(see Theorem 2.1 for a precise statement),

∥∥Ûr Û
T
r − UrU

T
r

∥∥
F � ‖(I − UrU

T
r )yn‖

σr − σr+1
× a factor from UT

r yn.

When this factor is smaller than some constant, it results in a sharper upper bound than
Wedin’s theorem. The derived upper bound is particularly suitable for mixture models where
the contributions of UT

r yn are well controlled, and consequently provides a key toolkit for
the follow-up statistical analysis on spectral clustering.

Spectral clustering is one of the most popular approaches to group high-dimensional data.
It first reduces the dimensionality of data by only using a few of its singular components
and then applies a classical clustering method, such as k-means, to the data of reduced di-
mension. It is computationally appealing and often delivers remarkably good performance,
and has been widely used in various problems. In recent years there has been growing
interest in theoretical properties of spectral clustering, noticeably in community detection
[2, 17, 18, 23, 24, 31, 33, 34, 47]. In spite of various polynomial-form upper bounds in terms
of signal-to-noise ratios for the performance of spectral clustering, sharper exponential error
rates are established in literature only for a few special scenarios, such as Stochastic Block
Models with two equal-size communities [2]. Spectral clustering is also investigated in mix-
ture models [1, 6, 13, 26, 30, 36, 43]. For isotropic Gaussian mixture models, [26] shows
spectral clustering achieves the optimal minimax rate. However, the proof technique used in
[26] is very limited to the isotropic Gaussian noise and it is unclear whether it is possible to be
extended to either sub-Gaussian distributed errors or unknown covariance matrices. Spectral
clustering for sub-Gaussian mixture models is studied in [1], but only under special assump-
tions on the spectrum and geometry of the centers. It requires eigenvalues of the Gram matrix
of centers to be all of the same order and sufficiently large, which rules out many interesting
cases.

We study the theoretical performance of the spectral clustering under general mixture mod-
els where each observation Xi is equal to one of k centers plus some noise εi . The spectral
clustering first projects Xi onto ÛT

1:rXi where Û1:r includes the leading r left singular vectors
of the data matrix, and then performs k-means on this low-dimensional space. Building upon
our leave-one-out perturbation theory, we provide a deterministic entrywise analysis for the
spectral clustering. We demonstrate that the correctness of Xi’s clustering is determined by
ÛT−i,1:rεi , where Û−i,1:r is the leave-one-out counterpart of Û1:r that uses all the observations

except Xi . The independence between Û−i,1:r and εi enables us to derive explicit error risks
when the noises are randomly generated from certain distributions. Specifically:

1. For sub-Gaussian mixture models, we establish an exponential error rate for the per-
formance of the spectral clustering, assuming the centers are separated from each other and
the smallest nonzero singular value is away from zero. Compared to [1], our assumptions on
the spectrum and geometric distribution of the centers are weaker. In addition, we obtain an
explicit constant 1/8 in the exponent, which is sharp when the noises are further assumed
to be isotropic Gaussian. To remove the spectral gap condition, we propose a variant of the
spectral clustering where the number of singular vectors used is selected adaptively.
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2. For Gaussian mixture models with isotropic covariance matrix, we fully recover the
results of [26]. Empowered by the leave-one-out perturbation theory, our proof adopts a com-
pletely different approach and is much shorter compared to that of [26]. In addition, the
signal-to-noise ratio condition of [26] is improved.

3. For a two-cluster symmetric mixture model where coordinates of the noise εi are inde-
pendently and identically distributed, we provide a matching upper and lower bound for the
performance of the spectral clustering. This sharp analysis provides an answer to the opti-
mality of the spectral clustering in this setting: it is in general suboptimal and is optimal only
if each coordinate of εi is normally distributed.

Organization. The structure of this paper is as follows. In Section 2, we first establish a
general leave-one-out perturbation theory for singular subspaces, followed by its application
in mixture models. In Section 3, we use our leave-one-out perturbation theory to provide the-
oretical guarantees for the spectral clustering under mixture models. We discuss extensions
and potential caveats of our analysis in Section 4. The proofs of main results in Section 2 and
Section 3 are given in Section 5 and in Section 6, respectively. All other proofs can be found
in the Supplementary Material [46].

Notation. For any positive integer r , let [r] = {1,2, . . . , r}. For two scalars a, b ∈ R, de-
note a ∧ b = min{a, b}. For two matrices A = (Ai,j ) and B = (Bi,j ), we denote 〈A,B〉 =∑

i,j Ai,jBi,j to be the trace product, ‖A‖ to be its operator norm, ‖A‖F to be its Frobenius
norm, and span(A) to be the linear space spanned by columns of A. If both A, B are sym-
metric, we write A ≺ B if B − A is positive semidefinite. For scalars x1, . . . , xd , we denote
diag(x1, . . . , xd) to be a d ×d diagonal matrix with diagonal entries being x1, . . . , xd . For any
integers d,p ≥ 0, we denote 0d ∈ R

d to be a vector with all coordinates being 0, 1d ∈ R
d to

be a vector with all coordinates being 1, and Od×p ∈ R
d×p to be a matrix with all entries be-

ing 0. We denote Id×d and Id to be the d × d identity matrix and we use I for short when the
dimension of clear according to context. Let Od×p = {V ∈ R

d×p : V T V = I } be the set of
matrices in R

d×p with orthonormal columns. We denote I{·} to be the indicator function. For
two positive sequences {an} and {bn}, an � bn, an = O(bn), bn � an all mean an ≤ Cbn for
some constant C > 0 independent of n. We also write an = o(bn) when lim supn→∞ an

bn
= 0.

For a random variable X, we say X is sub-Gaussian with variance proxy σ 2 (denoted as
X ∼ SG(σ 2)) if EetX ≤ exp(σ 2t2/2) for any t ∈ R. For a random vector X ∈ R

d , we say X

is sub-Gaussian with variance proxy σ 2 (denoted as X ∼ SGd(σ 2)) if uT X ∼ SG(σ 2) for any
unit vector u ∈ R

d .

2. Leave-one-out singular subspace perturbation analysis. Classical singular sub-
space perturbation theory examines the relationship between the singular spaces of two ma-
trices of the same dimension. However, prevailing upper bounds, such as those given by
Wedin’s theorem, often achieve tightness only in worst-case scenarios. They can be subopti-
mal, especially in situations like the one considered in this paper where one matrix is short of
one column relative to the other.

In the domains of statistics and data science, it is common to work with data matrices
wherein columns represent independent and identically distributed observations. Intuitively,
when the number of observations is large, omitting a single observation should have minimal
impact on the singular subspace. This intuition can guide entrywise perturbation analyses
for spectral methods. As a case in point, the efficacy of spectral clustering under mixture
models can largely be attributed to the perturbation of ÛT

1:rXi , where Xi represents the ith
observation and Û1:r encompasses the leading r left singular vectors of the data matrix. Di-
rectly analyzing ÛT

1:rXi is cumbersome due to the inherent dependence between Û1:r and
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Xi . To disentangle this dependence, a logical strategy is to substitute Û1:r with its leave-
one-out counterpart, Û−i,1:r , which is formed using all observations except Xi . The resulting
independence between Û−i,1:r and εi facilitates a more precise characterization of the tail
probabilities of ÛT−i,1:rXi . This, in turn, yields a more defined bound on spectral clustering’s

performance. Such an analytical approach presumes that Û1:r and its leave-one-out version
Û−i,1:r are sufficiently similar.

With this foundation laid, in this section, we focus on establishing a comprehensive leave-
one-out perturbation theory for singular subspaces.

2.1. General results. Consider two matrices as in (1) such that they are equal to each
other except that Ŷ has an extra last column. Let the singular value decomposition (SVD) of
these two matrices be

Y = ∑
i∈[p∧(n−1)]

σiuiv
T
i and Ŷ = ∑

i∈[p∧n]
σ̂i ûi v̂

T
i ,

where σ1 ≥ · · · ≥ σp∧(n−1) and σ̂1 ≥ · · · ≥ σ̂p∧n. Consider any r ∈ [p ∧ (n − 1)]. Define

Ur := (u1, . . . , ur) ∈ O
p×r and Ûr := (û1, . . . , ûr ) ∈O

p×r

to include the leading r left singular vectors of Y and Ŷ , respectively. Since Y can be viewed
as a leave-one-out submatrix of Ŷ without the last column yn, Ur can be interpreted as a
leave-one-out counterpart of Ûr .

The two matrices Ur , Ûr correspond to two singular subspaces span(Ur), span(Ûr ), re-
spectively. The difference between these two subspaces can be captured by sin � distances,
‖sin �(Ûr,Ur)‖ or ‖sin �(Ûr ,Ur)‖F, where

�(Ûr,Ur) := diag
(
cos−1(α1), cos−1(α2), . . . , cos−1(αr)

)
with α1 ≥ α2 ≥ · · · ≥ αr ≥ 0 being the r singular values of ÛT

r Ur . It is known (see Lemma 1
of [9]) that ‖Ûr Û

T
r − UrU

T
r ‖F = √

2‖sin �(Ûr,Ur)‖F. Throughout this section, we will
focus on establishing sharp upper bounds for ‖Ûr Û

T
r − UrU

T
r ‖F, the Frobenius norm of the

difference between two corresponding projection matrices UrU
T
r and Ûr Û

T
r .

Since the augmented matrix Y ′ := (Y,UrU
T
r yn) ∈ R

p×n concatenated by Y and UrU
T
r yn

has the same leading r left singular subspace and projection matrix as Y , a natural idea is
to relate ‖Ûr Û

T
r − UrU

T
r ‖F with the difference Ŷ − Y ′. The classical spectral perturbation

theory such as Wedin’s theorem [9, 45] leads to that if σr − σr+1 > 2‖(I − UrU
T
r )yn‖, then

∥∥Ûr Û
T
r − UrU

T
r

∥∥
F ≤ 2

√
2‖(I − UrU

T
r )yn‖

σr − σr+1
.(2)

See Proposition E.1 in the Supplementary Material for its proof. The upper bound in (2)
requires the spectral gap σr − σr+1 is away from zero. It also indicates the magnitude of the
difference ‖Ŷ − Y ′‖ = ‖(I − UrU

T
r )yn‖ plays a crucial role. In spite of its simple form, (2)

comes from generic spectral perturbation theories not specifically designed for the setting (1).
In the following Theorem 2.1, we provide a deeper and finer analysis for ‖Ûr Û

T
r −

UrU
T
r ‖F, utilizing the fact that Ŷ and Y differ by only one column and exploiting the in-

terplay between UrU
T
r yn and (I − UrU

T
r )yn.

THEOREM 2.1. If

ρ := σr − σr+1

‖(I − UrUT
r )yn‖ > 2,(3)
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we have

∥∥Ûr Û
T
r − UrU

T
r

∥∥
F ≤ 4

√
2

ρ

√√√√ r∑
i=1

(
uT

i yn

σi

)2
.(4)

Theorem 2.1 gives an upper bound on ‖Ûr Û
T
r −UrU

T
r ‖F essentially a product of ρ−1 and

some quantity determined by {σ−1
i uT

i yn}i∈[r]. Since (σ−1
i uT

i yn)
2 ≤ σ−2

r (uT
i yn)

2 for each
i ∈ [r], (4) leads to a simpler upper bound

∥∥Ûr Û
T
r − UrU

T
r

∥∥
F ≤ 4

√
2

ρ

‖UrU
T
r yn‖

σr

.(5)

The condition (3) in Theorem 2.1 can be understood as a spectral gap assumption as it
needs the gap σr − σr+1 to be larger than twice the magnitude of the perturbation ‖(I −
UrU

T
r )yn‖. This condition can be slightly weakened into σ 2

r −σ 2
r+1 −‖(I −UrU

T
r )yn‖2 > 0,

though resulting in a more involved upper bound. See Theorem 5.1 in Section 5.1 for details.
We are ready to have a comparison of our result (4) and (2) from Wedin’s theorem. Under

the assumption (3), the upper bound in (2) can be written equivalently as 2
√

2ρ−1. As a
result, the comparison is about the magnitude of (

∑
i∈[r](σ−1

i uT
i yn)

2)1/2. If it is smaller than
1/2, then (4) gives a sharper upper bound than (2). To further compare these two bounds,
consider the following examples.

EXAMPLE 1. When UT
r yn = 0 and (3) is satisfied, (4) gives the correct upper bound 0,

Ûr Û
T
r = UrU

T
r . On the contrary, (2) gives a nonzero bound 2

√
2/ρ−1. To be more concrete,

let Y = σ1(p
−1/21p)((n − 1)−1/21n−1)

T be a rank-one matrix and yn be some vector or-
thogonal to 1p . Then if σ1 > 2‖yn‖, we have û1 = u1 = p−1/21p up to sign. (4) gives the
correct answer ‖û1û

T
1 − u1u

T
1 ‖F = 0 as uT

1 yn = 0, while (2) leads to a loose upper bound
2
√

2‖yn‖/σ1.

EXAMPLE 2. Let Y be a matrix with two unique columns such that yj is equal to either
θ or −θ for all j ∈ [n − 1] and for some vector θ ∈ R

p . Then Y is a rank-one matrix with
σ1 = ‖θ‖√n − 1. Let yn = θ +ε. As long as ‖θ‖√n − 1 > 2‖ε‖, we have ‖û1û

T
1 −u1u

T
1 ‖F ≤

4
√

2ρ−1(‖θ‖ + ‖ε‖)/σ1 from (4). If we further assume ‖θ‖ = 1 and ε ∼ N (0, Ip) with
p � n, we have ‖û1û

T
1 − u1u

T
1 ‖F �

√
p/nρ−1 = o(ρ−1) with high probability. In contrast,

(2) only gives 2
√

2ρ−1.

In the next section, we consider mixture models where the magnitude of (
∑

i∈[r](σ−1
i uT

i ×
yn)

2)1/2 is well controlled and (4) leads to a much sharper upper bound compared to (2).
Regarding the sharpness of the bound in Theorem 2.1, it’s worth noting that in Example 1

above, our theorem accurately derives an upper bound of 0, showcasing its optimality in
that specific context. To further demonstrate the optimality of our theorem, consider a more
intricate example.

EXAMPLE 3. Consider a rank-one matrix Y = 1p1T
n−1 where σ1 = √

(n − 1)p and u1 =
p−1/21p . Now, define yn = 1p + sw, wherein s represents a scalar and w is a unit vector
orthogonal to 1p . This means that yn matches each column of Y for s = 0 and introduces
an orthogonal perturbation for s �= 0. Given that ρ = σ1/s = √

(n − 1)p/s and uT
1 yn = √

p,
it follows from Theorem 2.1 that ‖û1û

T
1 − u1u

T
1 ‖F ≤ 4

√
2s/((n − 1)

√
p). Since Ŷ is of

rank-two, we can express û1 as û1 = √
1 − α2u1 + αw where |α| ≤ 1. Note that ûT

1 Ŷ =



SINGULAR SUBSPACE PERTURBATION AND SPECTRAL CLUSTERING 2009

(
√

(1 − α2)p1T
n−1,

√
(1 − α2)p + αs) and ‖ûT

1 Ŷ‖2 = (1 − α2)np + α2s2 + 2
√

(1 − α2)pαs.

For small s, we can approximate α (by maximizing ‖ûT
1 Ŷ‖2 over α) as s/(n

√
p). Since α

is also small, we have ‖û1û
T
1 − u1u

T
1 ‖F ≈ α

√
1 − α2‖u1w

T + wT u1‖F = √
2α

√
1 − α2 ≈√

2s/(n
√

p). A comparison with the upper bound deduced from Theorem 2.1 underscores
that the theorem captures the correct rate s/(n

√
p), albeit with a multiplicative constant.

However, the sharpness of Theorem 2.1 in diverse settings or under different conditions
remains an area needing further investigation.

The leave-one-out singular subspace perturbation analysis established in this paper shares
conceptual similarities with the leave-one-out technique grounded in random matrix the-
ory and used in the ℓ∞ or ℓ2,∞ perturbation analysis [2, 11]. On a high level, for a ma-
trix X with an eigenvector u, the goal of the ℓ∞ analysis is to derive an upper bound for
‖u‖∞ = maxi |ui |, where {ui} represents the coordinates of u. To aid in this task, the leave-
one-out technique introduces an auxiliary matrix, formed by excluding the ith column, Xi ,
of X, and the corresponding eigenvectors u−i . It approximates ui by a quantity involving
both Xi and u−i , leveraging the independence between them. Our approach aligns with this
principle but subsequent analysis distinctly sets it apart. While both methods involve the
difference between u and u−i , the ℓ∞ analysis predominantly uses it as a stepping stone
towards ‖u‖∞, dealing with it by a direct application of Wedin’s theorem. In contrast, our
methodology focuses on establishing a sharp bound for this difference. This distinction en-
ables us to characterize the tail probabilities of ui rather than just a general ℓ∞ bound and
paves the way for a more fine-grained investigation into the performance of spectral meth-
ods.

We conclude this section by mentioning that our current analytical framework might ex-
tend to scenarios wherein a matrix has multiple columns left out relative to another. Intu-
itively, as columns can be removed sequentially, Theorem 2.1 (or its more concise vari-
ant, (5)) can be invoked in a successive manner. This iterative application can provide
an upper bound on the discrepancy between the two singular subspaces in question. A
more intricate way to consider would be a direct extension of the proof of Theorem 2.1.
Given that this theorem fundamentally revolves around the dynamics between UrU

T
r yn and

(I − UrU
T
r )yn, its generalization is likely to encompass similar, yet more expansive, interac-

tions.

2.2. Singular subspace perturbation in mixture models. The general perturbation theory
presented in Theorem 2.1 is particularly suitable for analyzing singular subspaces of mixture
models.

Mixture Models. We consider a mixture model with k centers θ∗
1 , θ∗

2 , . . . , θ∗
k ∈ R

p and a
cluster assignment vector z∗ ∈ [k]n. The observations X1,X2, . . . ,Xn ∈ R

p are generated
from

Xi = θ∗
z∗
i
+ εi,(6)

where ε1, . . . , εn ∈ R
p are noises. The data matrix X := (X1, . . . ,Xn) ∈R

p×n can be written
equivalently in a matrix form

X = P + E,(7)

where P := (θ∗
z∗

1
, θ∗

z∗
2
, . . . , θ∗

z∗
n
) is the signal matrix and E := (ε1, . . . , εn) is the noise matrix.

Define β := 1
n/k

mina∈[k] |{i : z∗
i = a}| such that βn/k is the smallest cluster size.
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We are interested in the left singular subspaces of X and its leave-one-out counterparts.
For each i ∈ [n], define X−i to be a submatrix of X with its ith column removed,

X−i := (X1, . . . ,Xi−1,Xi+1, . . . ,Xn) ∈R
p×(n−1).(8)

Let their SVDs be X = ∑
j∈[p∧n] λ̂j ûj v̂

T
j and X−i = ∑

j∈[p∧(n−1)] λ̂−i,j û−i,j v̂
T−i,j , where

λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p∧n and λ̂−i,1 ≥ λ̂−i,2 ≥ · · · ≥ λ̂−i,p∧(n−1). Note that the signal matrix P is
at most rank-k. Then for any r ∈ [k], define

Û1:r := (û1, û2, . . . , ûr ) ∈ O
p×r and Û−i,1:r = (û−i,1, . . . , û−i,r ) ∈O

p×r

to include the leading r left singular vectors of X and X−i , respectively. We are interested in
controlling the quantity ‖Û1:r ÛT

1:r − Û−i,1:r ÛT−i,1:r‖F for each i ∈ [n].
In Theorem 2.2, we provide upper bounds for ‖Û1:κÛT

1:κ − Û−i,1:κÛT−i,1:κ‖F for all i ∈ [n]
where κ ∈ [k] is the rank of the signal matrix P . In order to have such a uniform control
across all i ∈ [n], we consider the spectrum of the signal matrix P . Let λ1 ≥ λ2 ≥ · · · ≥ λp∧n

be the singular values of P and κ be the rank of P such that κ ∈ [k], λκ > 0, and λκ+1 = 0.

THEOREM 2.2. Assume βn/k2 ≥ 10. Assume

ρ0 := λκ

‖E‖ > 16.(9)

For any i ∈ [n], we have
∥∥Û1:κÛT

1:κ − Û−i,1:κÛT−i,1:κ
∥∥

F ≤ 128

ρ0

(√
kκ

βn
+ ‖Û−i,1:κÛT−i,1:κεi‖

λκ

)
.(10)

Theorem 2.2 leverages the mixture model structure (6) that the signal matrix P has only k

unique columns with each appearing at least βn/k times. The assumption βn/k2 ≥ 10 helps
ensure that spectrum and singular vectors of P do not change significantly if any column of
P is removed. We require the condition (9) so that λ̂−i,κ − λ̂−i,κ+1 > 2‖Û−i,1:κÛT−i,1:κXi‖
holds for each i ∈ [n], and hence Theorem 2.1 can be applied uniformly for all i ∈ [n].
The upper bound (10) is a product of ρ−1

0 and a sum of two terms. The second term
‖Û−i,1:κÛT−i,1:κεi‖/λκ can be trivially upper bounded by ‖E‖/λκ ≤ ρ−1

0 . The first term√
kκ/(βn) = o(1) if βn/k2 � 1, for example, when β is a constant and k � √

n. Then
(10) leads to ‖Û1:κÛT

1:κ − Û−i,1:κÛT−i,1:κ‖F � o(1)ρ−1
0 + ρ−2

0 , superior to the upper bound

(2) obtained from the direct application of Wedin’s theorem of order ρ−1
0 .

Theorem 2.2 studies the perturbation for the leading κ singular subspaces where κ is the
rank of P . In the following Theorem 2.3, we consider an extension to ‖Û1:r ÛT

1:r − Û−i,1:r ×
ÛT−i,1:r‖F where r is not necessarily κ .

THEOREM 2.3. Assume βn/k2 ≥ 10. Assume there exists some r ∈ [k] such that

ρ̃0 := λr − λr+1

max{‖E‖,
√

k2

βn
λr+1}

> 16.(11)

For any i ∈ [n], we have
∥∥Û1:r ÛT

1:r − Û−i,1:r ÛT−i,1:r
∥∥

F ≤ 128

ρ̃0

(√
kr√
βn

+ ‖Û−i,1:r ÛT−i,1:rεi‖
λr

)
.(12)
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In Theorem 2.3, r ∈ [k] is any number such that (11) is satisfied. When r is chosen to
be κ , (11) is reduced to (9), and (12) leads to the same upper bound as (10). When r < κ ,
λr+1 is nonzero and in (11) it needs to be smaller than the spectral gap λr − λr+1 after some
scaling factor. To provide some intuition on the condition (11) when r < κ , let the SVD of
the signal matrix P be P = ∑

j∈[p∧n] λjujv
T
j and define U1:r := (u1, u2, . . . , ur) ∈ O

p×r

and U(r+1):κ := (ur+1, ur+2, . . . , uκ) ∈ O
p×(κ−r). Then the data matrix (7) can be written

equivalently as

X = P ′ + E′, where P ′ := U1:rUT
1:rP and E′ := E + U(r+1):κUT

(r+1):κP .(13)

Since it is still a mixture model, Theorem 2.2 can be applied. Nevertheless, the condition
(9) essentially requires λr/(‖E‖ + λr+1) > 16 as ‖E′‖ ≤ ‖E‖ + ‖U(r+1):κUT

(r+1):κP‖ =
‖E‖ + λr+1, which is stronger than the condition (11). In order to weaken the requirement
on the spectral gap into (11), we study the contribution of U(r+1):κUT

(r+1):κP towards to the
leading r singular subspaces perturbation of E. It turns out that its contribution is roughly√

k2/(βn)λr+1 instead of λr+1, due to the fact that U(r+1):κUT
(r+1):κP has at most k unique

columns with each one appearing at least βn/k times.
Theorem 2.2 and Theorem 2.3 require βn/k2 be sufficiently large. Further in the paper,

results such as Lemma 3.3 need an even stronger condition wherein βn/k4 should be large.
We acknowledge that these dependencies on k appear nonoptimal. The current formulations
stem from challenges faced during our analysis, resulting in these inherent dependencies. We
hope to explore more optimal dependency in future research.

3. Spectral clustering for mixture models.

3.1. Spectral clustering and polynomial error rate. Recall the definition of the mixture
model in (6) and also in (7). The goal of clustering is to estimate the cluster assignment vector
z∗ from the observations X1,X2, . . . ,Xn. Since the signal matrix P is of low rank, a natural
idea is to project the observations {Xi}i∈[n] onto a low dimensional space before applying
classical clustering methods such as variants of k-means. This leads to the spectral clustering
presented in Algorithm 1.

Algorithm 1: Spectral Clustering

Input: Data matrix X = (X1, . . . ,Xn) ∈ R
p×n, number of clusters k, number of

singular vectors r

Output: Cluster assignment vector ẑ ∈ [k]n
1 Perform SVD on X to have

X =
p∧n∑
i=1

λ̂i ûi v̂
T
i ,

where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p∧n ≥ 0 and {ûi}p∧n
i=1 ∈ R

p , {v̂i}p∧n
i=1 ∈ R

n. Let
Û1:r := (û1, . . . , ûr ) ∈ R

p×r .
2 Perform k-means on the columns of ÛT

1:rX. ,(
ẑ, {ĉj }j∈[k]

)= argmin
z∈[k]n,{cj }j∈[k]∈Rr

∑
i∈[n]

∥∥ÛT
1:rXi − czi

∥∥2
.(14)
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In (14), the dimensionality of each data point ÛT
1:rXi is r , reduced from original dimen-

sionality p. This is computationally appealing as r can be much smaller than p. The second
step of Algorithm 1 is the k-means on the columns of ÛT

1:rX, which is equivalent to perform-
ing k-means onto the columns of Û1:r ÛT

1:rX ∈ R
p×n, define θ̂a = Û1:r ĉa for each a ∈ [k]. It

can be shown that (see Lemma 4.1 of [26])(
ẑ, {θ̂j }j∈[k]

)= argmin
z∈[k]n,{θj }j∈[k]∈Rp

∑
i∈[n]

∥∥Û1:r ÛT
1:rXi − θzi

∥∥2
,(15)

due to the fact that Û1:r has orthonormal columns. As a result, in the rest of the paper, we
carry out our analysis on ẑ using (15).

Before characterizing the theoretical performance of the spectral clustering ẑ, we give the
definition of the misclustering error which quantifies the distance between an estimator and
the ground truth z∗. For any z ∈ [k]n, its misclustering error is defined as

ℓ
(
z, z∗) := min

φ∈


1

n

∑
i∈[n]

I
{
zi = φ

(
z∗
i

)}
,

where 
 := {φ : φ is a bijection from [k] to [k]}. The minimization of 
 is due to that the
cluster assignment vector z∗ is identifiable only up to a permutation of the labels [k]. In
addition to β that controls the smallest cluster size, another important quantity in this clus-
tering task is the separation among the centers. Define � to be the minimum distance among
centers,

� := min
a,b∈[k]:a �=b

∥∥θ∗
a − θ∗

b

∥∥.
As we will see later, � determines the difficulty of the clustering task and plays a pivotal role.

In Proposition 3.1, a rough upper bound is provided on the misclustering error ℓ(ẑ, z∗)
that takes a polynomial expression (17). Notably, Proposition 3.1 is deterministic with no
assumption on the distribution or the independence of the noises {εi}i∈[n]. In fact, the noise
matrix E can be an arbitrary matrix as long as the data matrix has the decomposition (7) and
the separation condition (16) is satisfied. In addition, it requires no spectral gap condition.
Proposition 3.1 is essentially an extension of Lemma 4.2 in [26] which is only for the Gaus-
sian mixture model and needs r = k. We include its proof in Appendix E for completeness.
Recall κ denotes the rank of the signal matrix P .

PROPOSITION 3.1. Consider the spectral clustering ẑ of Algorithm 1 with κ ≤ r ≤ k.
Assume

ψ0 := �

β−0.5kn−0.5‖E‖ ≥ 16.(16)

Then ℓ(ẑ, z∗) ≤ β/(2k). Furthermore, there exists one φ ∈ 
 such that ẑ satisfies

ℓ
(
ẑ, z∗)= 1

n

∣∣{i ∈ [n] : ẑi �= φ
(
z∗
i

)}∣∣≤ C0k‖E‖2

n�2 ,(17)

and

max
a∈[k]

∥∥θ̂φ(a) − θ∗
a

∥∥≤ C0β
−0.5kn−0.5‖E‖,(18)

where C0 = 128.

Proposition 3.1 provides a starting point for our further theoretical analysis. In the follow-
ing sections, we are going to provide a sharper analysis for the spectral clustering ẑ beyond
the polynomial rate stated in (17), with the help of singular subspaces perturbation established
in Section 2.
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3.2. Entrywise error decompositions. In this section, we are going to develop a fine-
grained and entrywise analysis on the performance of ẑ. Proposition 3.1 points out that there
exists a permutation φ ∈ 
 such that nℓ(ẑ, z∗) = |{i ∈ [n] : ẑi �= φ(z∗

i )}| ≤ nβ/(2k). Since the
smallest cluster size in z∗ is at least βn/k, such permutation φ is unique. With φ identified,
ẑi �= φ(z∗

i ) means that the ith data point Xi is incorrectly clustered in ẑ, for each i ∈ [n].
The following Lemma 3.1 studies the event ẑi �= φ(z∗

i ) and shows that it is determined by the
magnitude of ‖Û1:r ÛT

1:rεi‖.

LEMMA 3.1. Consider the spectral clustering ẑ of Algorithm 1 with κ ≤ r ≤ k. Assume
(16) holds. Let φ ∈ 
 be the permutation such that ℓ(ẑ, z∗) = 1

n
|{i ∈ [n] : ẑi �= φ(z∗

i )}|. Then
there exists a constant C > 0 such that for any i ∈ [n],

I
{
ẑi �= φ

(
z∗
i

)}≤ I
{(

1 − Cψ−1
0
)
� ≤ 2

∥∥Û1:r ÛT
1:rεi

∥∥}.(19)

To understand Lemma 3.1, recall that in (15) ẑ is obtained by k-means on {Û1:r ÛT
1:rXi}i∈[n].

Since we have the decomposition Û1:r ÛT
1:rXi = Û1:r ÛT

1:rθ∗
z∗
i
+ Û1:r ÛT

1:rεi for each i ∈ [n],
the data points {Û1:r ÛT

1:rXi}i∈[n] follow a mixture model with centers {Û1:r ÛT
1:rθ∗

a }a∈[k] and
noises {Û1:r ÛT

1:rεi}i∈[n]. In the proof of Lemma 3.1, we can show these k centers preserve the
geometric structure of {θ∗

a }a∈[k] with minimum distance around �. Intuitively, if ‖Û1:r ÛT
1:rεi‖

is smaller than half of the minimum distance, Û1:r ÛT
1:rXi is closer to Û1:r ÛT

1:rθ∗
z∗
i

than any

other centers, and thus z∗
i can be correctly recovered.

While Lemma 3.1 lays foundational understanding, it alone is not sufficient for deriving
explicit expressions for the performance of spectral clustering when the noises {εi}i∈[n] are
assumed to be random. The entrywise upper bound (19) shows that the event ẑi �= φ(z∗

i ) is
determined by the ‖Û1:r ÛT

1:rεi‖, but the fact that Û1:r ÛT
1:r depends on εi makes any follow-up

probability calculations challenging. The key to make use of Lemma 3.1 is our leave-one-out
singular subspace perturbation theory, particularly, Theorem 2.2. To decouple the dependence
between Û1:r ÛT

1:r and εi , we replace the former quantity by its leave-one-out counterpart
Û−i,1:r ÛT−i,1:r . Take r to be κ . Note that∥∥Û1:κÛT

1:κεi

∥∥≤ ∥∥Û−i,1:κÛT−i,1:κεi

∥∥+ ∥∥Û1:κÛT
1:κ − Û−i,1:κÛT−i,1:κ

∥∥
F‖εi‖.(20)

The perturbation ‖Û1:κÛT
1:κ − Û−i,1:κÛT−i,1:κ‖F is well controlled by Theorem 2.2, which

shows the second term on the RHS of the above display is essentially O(ρ−2
0 )‖Û−i,1:κ ×

ÛT−i,1:κεi‖. This leads to the following Lemma 3.2 on the entrywise clustering errors.

LEMMA 3.2. Consider the spectral clustering ẑ of Algorithm 1 with r = κ . Assume
βn/k2 ≥ 10, (9), and (16) hold. Let φ ∈ 
 be the permutation such that ℓ(ẑ, z∗) = 1

n
|{i ∈

[n] : ẑi �= φ(z∗
i )}|. Then there exists a constant C such that for any i ∈ [n],
I
{
ẑi �= φ

(
z∗
i

)}≤ I
{(

1 − C
(
ψ−1

0 + ρ−2
0
))

� ≤ 2
∥∥Û−i,1:κÛT−i,1:κεi

∥∥}.
Consequently, if the noises {εi}i∈[n] are random, the risk of ẑ satisfies

Eℓ
(
ẑ, z∗)≤ n−1

∑
i∈[n]

EI
{(

1 − C
(
ψ−1

0 + ρ−2
0
))

� ≤ 2
∥∥Û−i,1:r ÛT−i,1:rεi

∥∥}.

Lemma 3.2 needs three conditions. The first one βn/k2 ≥ 10 is on the smallest cluster
sizes and can be easily satisfied if both β , k are constants. The second condition (9) is a
spectral gap condition on the smallest nonzero singular value λκ . The third one is for the
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separation of the centers �. With all the three conditions satisfied, Lemma 3.2 shows that the
entrywise clustering error for Xi boils down to ‖Û−i,1:κÛT−i,1:κεi‖. When the noises {εj }j∈[n]
are assumed to be random and independent of each other, the projection matrix Û−i,1:κÛT−i,1:κ
is independent of εi for each i ∈ [n], a desired property crucial to our follow-up investigation
on the risk Eℓ(ẑ, z∗). When {Xi}i∈[n] are generated randomly, as discussed in subsequent sec-
tions, Lemma 3.2 leads to explicit expressions for the performance of the spectral clustering.

The key towards establishing Lemma 3.2 is Theorem 2.2. Without Theorem 2.2, if the
classical perturbation theory such as Wedin’s theorem is used instead, then in order to ob-
tain similar upper bounds in Lemma 3.2, the second term on the RHS of (20) needs to be
much smaller than �. This essentially requires maxi∈[n] ‖εi‖2 � λκ�, in addition to (9) and
(16). As we will show in the next section, for sub-Gaussian noises, this additional condition
requires p logn �√

n in regimes where Lemma 3.2 only needs p � n.

3.3. Sub-Gaussian mixture models. In this section, we investigate the performance of the
spectral clustering ẑ for mixture models with sub-Gaussian noises. Theorem 3.1 assumes that
each noise εi is an independent sub-Gaussian random vector with zero mean and variance
proxy σ 2 and establishes an exponential rate for the risk Eℓ(ẑ, z∗).

THEOREM 3.1. Consider the spectral clustering ẑ of Algorithm 1 with r = κ . Assume
εi ∼ SGp(σ 2) independently with zero mean for each i ∈ [n]. Assume βn/k2 ≥ 10. There
exist constants C,C′ > 0 such that under the assumption that

ψ1 := �

β−0.5k(1 +
√

p
n
)σ

> C(21)

and

ρ1 := λκ

(
√

n + √
p)σ

> C,(22)

we have

Eℓ
(
ẑ, z∗)≤ exp

(
−(

1 − C′(ψ−1
1 + ρ−2

1
)) �2

8σ 2

)
+ exp

(
−n

2

)
.

Under this sub-Gaussian setting, standard concentration theory shows that the noise matrix
E has its operator norm ‖E‖ � σ(

√
n + √

p) with high probability (see Lemma E.1). Under
this event, (21) and (22) are sufficient conditions for (9) and (16), respectively. The risk in
Theorem 3.3 has two terms, where the first term takes an exponential form of �2/(8σ 2) and
the second term exp(−n/2) comes from the aforementioned event of ‖E‖. The first term is
the dominating one, as long as �2/σ 2, which can be interpreted as the signal-to-noise ratio, is
smaller than n/2. In fact, �2/σ 2 � logn is the most interesting regime as otherwise ẑ already
achieves the exact recovery (i.e., ẑ = z∗) with high probability, since E{ℓ(ẑ, z∗) = 0} = o(1).

Theorem 3.1 makes a substantial improvement over Proposition 3.1. Using the aforemen-
tioned high-probability event on ‖E‖, (17) only leads to Eℓ(ẑ, z∗) � (1 + √

p/n)2σ 2/�2 +
exp(−n/2) which takes a polynomial form of the �2/σ 2. On the contrary, Theorem 3.1 pro-
vides a much sharper exponential rate.

Our leave-one-out singular subspace perturbation theory and its consequence Lemma 3.2
provide the key toolkit towards Theorem 3.1. Since ÛT−i,1:κ is independent of εi , we have

ÛT−i,1:κεi ∼ SGκ(σ 2) being another sub-Gaussian random vector. This makes it possible to

control the tail probabilities of ‖Û−i,1:κÛT−i,1:κεi‖2 = ‖ÛT−i,1:κεi‖2 which is a quadratic form
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of sub-Gaussian random vectors. Without using our perturbation theory, if the classical per-
turbation bounds such as Wedin’s theorem is used instead, the previous section shows that
maxi∈[n] ‖εi‖2 � λκ� is additionally needed to obtain results similar to Lemma 3.2. This
equivalently requires λκ�/(σ 2p logn) � 1. When �/σ , k, β are constants, this additional
condition essentially requires p logn � √

n. In contrast, Theorem 3.1 only needs p � n.
Theorem 3.1 gives a finite-sample result for the performance of spectral clustering in sub-

Gaussian mixture models. In the following Corollary 3.1, by slightly strengthening conditions
(21) and (22), we immediately obtain an asymptotic error bound with the exponent being
(1 − o(1))�2/(8σ 2).

COROLLARY 3.1. Under the same setting as in Theorem 3.1, if ψ1, ρ1 → ∞ is further
assumed, we have

Eℓ
(
ẑ, z∗)≤ exp

(
−(

1 − o(1)
) �2

8σ 2

)
+ exp

(
−n

2

)
.

If �/σ ≥ (1 + c)2
√

2 logn is further assumed where c > 0 is any constant, ẑ achieves the
exact recovery, EI{ℓ(ẑ, z∗) �= 0} = o(1).

In the exponents of Theorem 3.1 and Corollary 3.1, we are able to obtain an explicit con-
stant 1/8. In addition, we obtain an explicit constant 2

√
2 for the exact recovery in Corol-

lary 3.1. These constants are sharp when the noises are further assumed to be isotropic Gaus-
sian, as we will show in Section 3.5.

The recent related paper by [1] develops a ℓp perturbation theory and applies it to the
spectral clustering for sub-Gaussian mixture models. It obtains exponential error rates but
with unspecified constants in the exponents and under special assumptions on the spectrum
and geometric distribution of the centers. It first assumes both β and k are constants. Let
G ∈ R

k×k be the Gram matrix of the centers such that Gi,j = θ∗T
i θ∗

j for each i, j ∈ [k]. It

further requires λ̄I ≺ G ≺ cλ̄I for some constant c > 1, all k eigenvalues of G are of the same
order. It implies that the maximum and minimum distances among centers are comparable.
This rules out many interesting cases such as all the centers are on one single line. In addition,
[1] needs λ̄/σ → ∞. Equivalently it means that the leading k singular values λ1, λ2, . . . , λk of
the signal matrix P not only are all of the same order, but also λk/(

√
nσ) � max{1,

√
p/n}.

As a comparison, we allow collinearity of the centers such that the rank of G (and P ) can be
smaller than k. We allow the singular values λ1, λ2, . . . , λκ not of the same order as long as the
smallest one satisfies (22), which can be equivalently written as λκ/(

√
nσ) � max{1,

√
p/n}.

The distances among the centers are also not necessarily of the same order as long as the
smallest distance satisfies (21). Hence, our conditions are more general than those in [1].

The spectral gap condition (22) ensures that singular vectors corresponding to small
nonzero singular values are well behaved. It is not needed in Section 3.4 where we propose
a variant of spectral clustering with adaptive dimension reduction. It can also be dropped in
Section 3.5 when the noise is isotropic Gaussian. When the mixture model is symmetric with
two components (e.g., the model considered in Section 3.6), the signal matrix P is rank-one.
Hence, (22) is also no longer needed as it can be directly implied from (21).

3.4. Spectral clustering with adaptive dimension reduction. The theoretical analysis for
the spectral clustering ẑ of Algorithm 1 presented in Lemma 3.2 and Theorem 3.1 requires
the use of all the κ singular vectors where κ is the rank of the signal matrix P . Nevertheless,
not all singular components are equally useful towards the clustering task and the importance
of an individual singular vector can be characterized by its corresponding singular value. This
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Algorithm 2: Spectral Clustering with Adaptive Dimension Reduction

Input: Data matrix X = (X1, . . . ,Xn) ∈ R
p×n, number of clusters k, threshold T

Output: Clustering label vector z̃ ∈ [k]n
1 Perform SVD on X same as Step 1 of Algorithm 1.
2 Let r̂ be the largest index in [k] such that the difference between two neighboring

singular values is greater than T , ,

r̂ = max
{
a ∈ [k] : λ̂a − λ̂a+1 ≥ T

}
.(23)

Let Û1:r̂ := (û1, . . . , ûr̂ ) ∈R
p×r̂ .

3 Perform k-means on the columns of ÛT
1:r̂X. ,

(
z̃, {c̃j }kj=1

)= argmin
z∈[k]n,{cj }kj=1∈Rr̂

∑
i∈[n]

∥∥ÛT
1:r̂Xi − czi

∥∥2
.(24)

motivates us to propose the following algorithm where the number of singular vectors used
is carefully picked.

Algorithm 2 is a variant of Algorithm 1 with the number of singular vectors selected by
(23), where r̂ is the largest integer such that the empirical spectral gap λ̂r̂ − λ̂r̂+1 is greater or
equal to some threshold T . The criterion in (23) for choosing r̂ has two purposes. Firstly, it
ensures the presence of a desirable spectral gap. More crucially, it is intended to encompass
important singular vectors while disregarding those that are noisy or of lesser relevance. This
is illuminated by an implication from (23) that λ̂r̂+1 ≤ λ̂k+1 + kT and that the significance of
a singular vector can be characterized by the magnitude of its associated singular value. To
illustrate this further, let us compare our approach with an alternative selection mechanism
that simply choose an arbitrary index from {a ∈ [k] : λ̂a − λ̂a+1 ≥ T } instead of the largest
one. While such a criterion would indeed ensure a spectral gap, it is possible that λ̂r̂+1 and
subsequent singular values remain large, suggesting that the corresponding singular vectors
are of importance. Omission of these pivotal vectors from the clustering algorithm would
result in a decline in its performance.

The choice of the threshold T is crucial. When T is small, r̂ might be even bigger than
the rank κ . When T � ‖E‖, it guarantees that the singular values of the signal matrix P

satisfy λr̂ − λr̂+1 � T and λr̂+1 � T . When T is too large, the singular subspace Û1:r̂ misses
singular vectors such as ûr̂+1 whose importance scales with λr̂+1 that can not be ignored.
This in turn deteriorates the clustering performance of z̃. A rule of thumb for the threshold T

is that T/‖E‖ is at least of constant order. It is allowed to grow but not faster than φ̃0 defined
in (25). The precise description of the choices of T needed is given below in Lemma 3.3,
which provides an entrywise analysis of z̃ analogous to Lemma 3.2.

LEMMA 3.3. Consider the estimator z̃ from Algorithm 2. Assume βn/k4 ≥ 400. Let φ ∈

 be the permutation such that ℓ(ẑ, z∗) = 1

n
|{i ∈ [n] : ẑi �= φ(z∗

i )}|. Define

ψ̃0 := �

β−0.5k2n−0.5‖E‖(25)

and ρ̃ := T/‖E‖. Assume 256 < ρ̃ < ψ̃0/64. There exist constants C, C′ such that if ψ̃0 > C,
then

I
{
ẑi �= φ

(
z∗
i

)}≤ I
{(

1 − C′(ρ̃ψ̃−1
0 + ρ̃−1))� ≤ 2

∥∥Û−i,1:r ÛT−i,1:rεi

∥∥}.



SINGULAR SUBSPACE PERTURBATION AND SPECTRAL CLUSTERING 2017

Consequently, we have

Eℓ
(
ẑ, z∗)≤ n−1

∑
i∈[n]

EI
{(

1 − C′(ρ̃ψ̃−1
0 + ρ̃−1))� ≤ 2

∥∥Û−i,1:r ÛT−i,1:rεi

∥∥}.
With a proper choice of the threshold T , Lemma 3.3 only poses requirements on the

smallest cluster size βn/k and the minimum separation among the centers �. Compared
to Lemma 3.2 and Theorem 3.1, it removes any condition on the smallest nonzero singular
value such as (9) or (22). In addition, it requires no knowledge on the rank κ . Note that under
the conditions of Lemma 3.3, r̂ defined in (23) always exists (see Lemma B.1).

With Lemma 3.3, we have the following exponential error bound on the performance of z̃

on sub-Gaussian mixture models, analogous to Theorem 3.1 and Corollary 3.1 for ẑ.

THEOREM 3.2. Consider the estimator z̃ from Algorithm 2. Assume εi ∼ SGp(σ 2) in-
dependently with zero mean for each i ∈ [n]. Assume βn/k4 ≥ 400. There exist constants
C,C′,C1,C2 > 0 such that under the assumption that

ψ2 := �

β−0.5k2(1 +
√

p
n
)σ

> C

and ρ2 := T/(σ (
√

n + √
p)) satisfies C1 ≤ ρ2 ≤ ψ2/C2, we have

Eℓ
(
z̃, z∗)≤ exp

(
−(

1 − C′(ρ2ψ
−1
2 + ρ−1

2
)) �2

8σ 2

)
+ exp

(
−n

2

)
.

If ψ2, ρ2 → ∞ and ρ2/ψ2 = o(1) are further assumed, we have

Eℓ
(
z̃, z∗)≤ exp

(
−(

1 − o(1)
) �2

8σ 2

)
+ exp

(
−n

2

)
.

3.5. Isotropic Gaussian mixture models. In this section, we consider the isotropic Gaus-
sian mixture models where the noises are sampled from N (0, σ 2Ip) independently. As a
special case of the sub-Gaussian mixture models, Theorem 3.1 can be directly applied. Nev-
ertheless, the isotropic Gaussian noises make it possible to remove the spectral gap condition
(22). In addition, we study the performance of the spectral clustering ẑ from Algorithm 1 with
exactly the leading k singular vectors, regardless of κ , the rank of matrix P . As a result, it
requires no knowledge on κ and needs no adaptive dimension reduction such as Algorithm 2.
We have the following theorem on its performance.

THEOREM 3.3. Consider the spectral clustering ẑ of Algorithm 1 with r = k. Assume

εi
iid∼ N (0, σ 2Ip) for each i ∈ [n]. Assume βn/k4 ≥ 100 and

�

k3.5β−0.5(1 + p
n
)σ

→ ∞.(26)

We have

Eℓ
(
ẑ, z∗)≤ exp

(
−
(

1 − C

(
�

k3.5β−0.5(1 + p
n
)σ

)−0.25) �2

8σ 2

)
+ 2e−0.08n,(27)

where C > 0 is some constant.

Theorem 3.3 shows that asymptotically Eℓ(ẑ, z∗) ≤ exp(−(1 − o(1))�2/(8σ 2)) +
2 exp(−0.08n) where the first term dominates when �2/σ 2 = o(n). The minmax lower
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bound for recovering z∗ under the given model is established in [27]: infẑ sup(θ∗
1 ,...,θ∗

k ),z∗ Eℓ(ẑ,

z∗) ≥ exp(−(1 + o(1))�2/(8σ 2)) as long as �2/σ 2 � log(kβ−1). This immediately implies
that the considered estimator is minimax optimal. Theorem 3.3 also implies ẑ achieves the
exact recovery E{ℓ(ẑ, z∗) �= 0} = o(1) when �/σ ≥ (1 + c)2

√
2 logn for any small constant

c > 0. When �/σ ≤ (1 − c)2
√

2 logn, no algorithm is able to recover z∗ exactly with high
probability according to the minimax lower bound.

It is worth mentioning that Theorem 3.3 requires no spectral gap condition such as (9) or
(22). The purpose of such conditions is to ensure that singular vectors of X are well con-
trolled, especially those corresponding to small nonzero singular values of the signal matrix
P . When the noises are isotropic Gaussian, the distribution of each right singular vector v̂j is
well behaved for any j ∈ [p∧n]. Lemma 4.4 of [26] shows that each (I −V1:κV T

1:κ)v̂j is Haar
distributed on the sphere spanned by (I − V1:κV T

1:κ), where V1:κ := (v1, v2, . . . , vκ) ∈ O
n×κ

is the right singular subspace of the signal matrix P . Theorem 3.3 is about the singular sub-
space Û1:k . In its proof, we decompose it into Û1:r and Û(r+1):k , for some index r ∈ [κ] with
sufficiently large spectral gap λr − λr+1 so that the contribution of Û1:r can be precisely
quantified following similar arguments used to establish Lemma 3.3 and Theorem 3.1. The
contribution of each ûj where j ∈ {r + 1, . . . , k} is eventually connected with properties of
the corresponding right singular vector v̂j , particularly, the distribution of (I − V1:κV T

1:κ)v̂j .
These two sources of errors together lead to the upper bound (27).

The performance of Algorithm 1 with r = k under the same isotropic Gaussian mixture
model is the main topic of [26] which derives a similar upper bound for Eℓ(ẑ, z∗) assum-
ing �/(β−0.5k10.5(1 + p/n)) → ∞. The key technical tool used in [26] is spectral operator
perturbation theory of [21, 22] on the difference between empirical singular subspaces and
population ones, which works for the Gaussian noise case and it is not clear whether it is
possible to be extended to other distributions including sub-Gaussian distributions. In this
paper, the proof of Theorem 3.3 is completely different, using Theorem 2.3 on the difference
between empirical singular subspaces and their leave-one-out counterparts. We not only re-
cover the main result of [26] with a much shorter proof, but also improve the dependence of
k. Despite that Theorem 3.3 needs an extra condition βn/k4 ≥ 100, it only requires k3.5 to
satisfy (26), while [26] needs k10.5 instead which is a stronger condition.

3.6. Lower bounds and suboptimality of spectral clustering. In the above sections, we
focus on quantifying the performance of spectral clustering under mixture models. An inter-
esting question is whether the spectral clustering is optimal. When the noise is the isotropic
Gaussian, Theorem 3.3 matches with the minimax rate assuming (26) holds, showing that
the spectral clustering is indeed optimal in this case. It remains unclear whether the spectral
clustering is optimal or not when the noise is beyond the isotropic Gaussian model.

To answer this question, in this section we consider a two-cluster symmetric mixture model
where the centers are proportional to 1p and the noises have i.i.d. entries. This setup makes
it possible to apply the central limit theorem to characterize the performance of the spectral
clustering with sharp upper and lower bounds, as 1T

pεi is asymptotically normal for each
i ∈ [n] when p is large.

A two-cluster symmetric mixture model. Consider a mixture model (6) with two clusters
such that

θ∗
1 = −θ∗

2 = δ1p, and {εi,j }i∈[n],j∈[p]
iid∼ F,(28)

for some δ ∈ R and some distribution F , where {εi,j }j∈[p] are entries of εi for each i ∈ [n].
Under the above model (28), we have k = 2, � = 2

√
pδ and the largest singular value

λ1 = δ
√

np. Since the signal matrix P is rank-one (i.e., κ = 1) with u1 = (1/
√

p)1p , a
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natural idea is to cluster using the first singular vector only. Define(
ž, {čj }2

j=1
)= argmin

z∈[2]n,{cj }2
j=1∈R

∑
i∈[n]

(
ûT

1 Xi − czi

)2
.(29)

The performance of the spectral estimator ž will be the focus in this section. Note that ûT
1 X =

λ̂1v̂
T
1 where v̂1 is the leading right singular vector of X, so ž equivalently performs clustering

on {v̂1,i}i∈[n], the entries of v̂1. This is closely related to the sign estimator {sign(v̂1,i )}i∈[n],
which estimates the cluster assignment by the signs of {v̂1,i}i∈[n].

Since ž is exactly the spectral clustering ẑ of Algorithm 1 with r = 1, Theorem 3.1 can
be directly applied when noises are sub-Gaussian and yields the following result. Under the
model (28), assume that F is a SG(σ 2) distribution with zero mean and βn > 40. There exist
constants C,C′ > 0 such that under the assumption that

ψ3 := �

β−0.5(1 +
√

p
n
)σ

> C,

we have Eℓ(ž, z∗) ≤ exp(−(1 − C′ψ−1
3 )�2/(8σ 2)) + exp(−n/2).

The special structure of (28) makes it possible to derive a sharper upper bound than the one
above and a matching lower bound on the performance of ž with some additional assumption
on the distribution F . Instead of directly using Lemma 3.2 (which leads to Theorem 3.1 and
then the above upper bound), we can further connect the clustering error with uT

1 εi where
uT

1 εi = p−1/2∑p
j=1 εi,j is approximately normally distributed when p is large. On the other

hand, the structure of (28) enables us to have a lower bound for I{ẑi �= φ(z∗
i )} that is in an

opposite direction of Lemma 3.2. See Lemma D.1 for details. The key technical tool used
is Theorem 2.2 on the perturbation |û1û

T
1 − û−i,1û

T−i,1| for all i ∈ [n]. These together give
a sharp and matching lower bound for Eℓ(ž, z∗) where the clustering error is essentially
determined by � and the variance σ̄ 2.

THEOREM 3.4. Consider the model (28). For any ξ ∼ F , assume Eξ = 0, Var(ξ) = σ̄ 2,
and ξ ∼ SG(σ 2) where σ ≤ Cσ̄ for some constant C > 0. Assume βn > 40. Then there exist
constants C′,C′′,C′′′ > 0 such that if ψ3 ≥ C′, we have

Eℓ
(
ž, z∗)≤ exp

(
−(1 − C′′ψ−1

3 )2�2

8σ̄ 2

)
+ exp

(−C′′√p
)+ exp

(
−n

2

)
,

and Eℓ
(
ž, z∗)≥ exp

(
−(1 + C′′′ψ−1

3 )2�2

8σ̄ 2

)
− exp

(−C′′′√p
)− exp

(
−n

2

)
.

In Theorem 3.4, the term exp(−C′′√p) is due to the normal approximation of uT
1 εi and

decays when the dimensionality p increases. The term exp(−n/2) is due to a high-probability
event on ‖E‖. If additionally �/σ̄ � max{p1/4, n1/2} is assumed, Theorem 3.4 concludes
asymptotically

Eℓ
(
ž, z∗)= exp

(
−(1 + c)�2

8σ̄ 2

)
,(30)

for some small constant c.
The upper and lower bounds in Theorem 3.4 give a sharp characterization of the perfor-

mance of ž. To answer the question of whether it is optimal or not, we need to establish the
minimax rate for the clustering task under the model (28). Since the model (28) is essentially
about a testing between two parametric distributions, the optimal procedure is the likelihood
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ratio test. According to the classical asymptotics theory [39], the likelihood ratio behaves like
a normal random variable as p → ∞ under some regularity conditions. This leads to an error
rate determined by � and the Fisher information.

LEMMA 3.4. Consider the model (28). Assume the distribution F has a positive,
continuously differentiable density f with mean zero and finite Fisher information I :=∫
(f ′/f )2f dx. Assume � is a constant. We have

C1 exp
(
− �2

8I−1

)
≤ lim

p→∞ inf
z

sup
z∗∈[2]n

Eℓ
(
z, z∗)≤ C2 exp

(
− �2

8I−1

)
,(31)

for some constants C1,C2 > 0.

With Lemma 3.4, the question of whether ž is optimal or not boils down to a comparison of
the variance σ̄ 2 and the inverse of the Fisher information I−1. Due to the fact that I−1 ≤ σ̄ 2

and the equation is true if and only if F is a normal distribution, we have the following
conclusion.

THEOREM 3.5. Consider the model (28). Assume all the assumptions needed in The-
orem 3.4 and Lemma 3.4 hold. Then the spectral clustering ž is in general suboptimal, it
fails to achieve the minimax rate (31). It is optimal if and only if the noise distribution F is
N(0, σ̄ 2).

Theorem 3.5 establishes the suboptimality of the spectral clustering ž under the model
(28). Though ž achieves an exponential error rate, it has a fundamentally suboptimal exponent
involving σ̄ 2 instead of I−1. This is due to the fact ž clusters data points based on Euclidean
distances, whereas the optimal procedure uses the likelihood ratio test. Only when the noise is
normally distributed, the likelihood ratio test is equivalent to a comparison of two Euclidean
distances, leading to the optimality of ž in the Gaussian case. Even though that Theorem 3.5
is only limited to the model (28), the above reasoning suggests the spectral clustering is
generally suboptimal under mixture models beyond (28) unless the noise follows a Gaussian
distribution.

4. Discussion.

4.1. Potential applications of leave-one-out singular subspace perturbation analysis. In
this paper, we have primarily applied the developed leave-one-out singular subspace perturba-
tion toolkit to study the performance of spectral clustering in the context of mixture models.
However, it is important to highlight that this toolkit holds promise for various other applica-
tions that exhibit low-rank structures and require entrywise analysis. Examples of such appli-
cations include low-rank matrix denoising, matrix completion, factor analysis, biclustering,
and more.

To illustrate the versatility of our approach, consider a simple scenario where the data
matrix W is approximately rank-one and can be expressed as W = λuvT + E. Here, λ is
a scalar, and u and v are unit vectors. Let λ̂, û, v̂ be the leading singular value, left sin-
gular vector, and right singular vector of W . Specifically, v̂i , the ith coordinate of v̂, can
be expressed as v̂i = ûT Wi/λ̂ = (λûT u/λ̂)vi + ûT εi/λ̂, where Xi and εi represent the ith
column of X and E, respectively. Under suitable regularity conditions, we can observe that
the first term, (λûT u/λ̂)vi , is well controlled, leaving the perturbation of v̂i to be predomi-
nantly determined by the second term, ûT εi/λ̂, which can be approximated as ûT εi/λ. Since
|ûT εi | = ‖ûûT εi‖, we can leverage Theorem 2.1 to establish a connection between |ûT εi |



SINGULAR SUBSPACE PERTURBATION AND SPECTRAL CLUSTERING 2021

and ‖û−i û
T−iεi‖ = |ûT−iεi |, where û−i represents the leading left singular vector of the data

matrix with the ith column removed. Importantly, the independence between û−i and εi can
be exploited to analyze the magnitude of |ûT−iεi |, facilitating an entrywise perturbation analy-
sis for v̂i . This demonstrates the potential broader applicability of our leave-one-out singular
subspace perturbation analysis beyond spectral clustering and mixture models.

4.2. Extension to eigenspace perturbation. In this paper, we primarily focus on the anal-
ysis of singular subspace perturbations. However, it is worth considering the potential exten-
sion of our findings to eigenspace perturbation scenarios. Let us consider two symmetric ma-
trices, Y ∈ R

(n−1)×(n−1) and Ŷ ∈ R
n×n. Here, Ŷ is obtained from Y by removing the last row

and column of Ŷ . For simplicity, we assume that Ŷn,n = 0. We introduce a vector yn ∈ R
n−1

such that the last row and column of Ŷ can be represented as (yT
n ,0) and (yT

n ,0)T , respec-
tively. Let the leading eigenspaces of Y and Ŷ be denoted as Ur ∈ R

(n−1)×r and Ûr ∈ R
n×r ,

respectively. In contrast to the singular subspace analysis, we note that Y and Ŷ have different
dimensionalities. To address this, we consider an augmented matrix Ũr = (UT

r ,0)T ∈ R
n×r .

Analyzing ‖Ũr Ũ
T
r − UrU

T
r ‖F leads us to follow a similar proof strategy as employed in

Theorem 2.1. However, extending the proof from Theorem 2.1 to cover ‖Ũr Ũ
T
r − UrU

T
r ‖F

appears to be nontrivial and potentially challenging.
The reason for this challenge lies in the perturbation between Ũr Ũ

T
r and UrU

T
r that not

only involves the last column but also the last row of Ŷ . In particular, the contribution of
the last row (yT

n ,0) to the upper bound of ‖Ũr Ũ
T
r − UrU

T
r ‖F remains unclear, as it is not

accounted for in the current analysis presented in Theorem 2.1. Hence, we defer the analysis
of eigenspace perturbations to future research endeavors, recognizing the need for a more
comprehensive and specialized treatment of this aspect.

4.3. Approximated solution to k-means. Solving the k-means problem exactly, as de-
tailed in (14), can be computationally challenging, particularly for large datasets. To enhance
practicality, one might opt for an approximate solution to k-means, where the solution’s ob-
jective value remains within a factor of (1 + ε) of the global minimum. It’s worth noting,
however, that such an approximate solution may lack a property intrinsic to the global min-
imizer in (14): ẑi = argmina∈[k] ‖ÛT

1:rXi − ĉa‖2 for every i ∈ [n], which is critical to our
theoretical analysis. To circumvent this issue, we can use a strategy delineated in Section 2.5
of [26]. This approach, devised for addressing a similar problem for spectral clustering under
Gaussian mixture models, executes an additional step of Lloyd’s algorithm after obtaining
the (1 + ε) solution. As evidenced by Theorem 2.2 in [26], the theoretical analysis for this
augmented method closely mirrors that of the original. The cost of having the approximate
solution is the need for a slightly more stronger signal-to-noise condition. In our context, this
means Theorem 3.1 would remain valid, albeit with ψ1 carrying an extra

√
1 + ε factor in its

denominator.

4.4. High-dimensional regime p � n. In the context where k, β , σ are constants, Corol-
lary 3.1 and Theorem 3.3 demand the conditions �/(1 +√

p/n) → ∞ and �/(1 +p/n) →
∞ respectively. In the low-dimensional scenario, where p � n, these conditions can be equiv-
alently expressed as � → ∞ recognized as optimal. Nevertheless, in the high-dimensional
case p � n, these conditions are deemed suboptimal. For a two-component symmetric
isotropic Gaussian mixture model, [9] demonstrates that spectral clustering remains consis-
tent as long as �/(p/n)1/4 → ∞. More recently, for sub-Gaussian mixture models, under
this condition, exponential misclustering errors are obtained in [16] through semi-definite
programming (SDP) and in [1, 30] through a variant of spectral clustering that employs the
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leading eigenvectors of a hollowed gram matrix H(XT X) ∈ R
n×n, where H(·) is the hollow-

ing operator that zeros out all diagonal entries of a square matrix. In addition, it is suggested
in [1] that hollowing is crucial for spectral clustering in high-dimensional and heteroscedas-
tic scenarios. It provides counterexamples showing that the leading eigenvectors of XT X

can be asymptotically orthogonal to their population counterparts. In contrast, those of the
hollowed matrix H(XT X) remain consistent. Our more stringent conditions, as compared to
�/(p/n)1/4 → ∞, stem from challenges inherent in our analysis, possibly related to our use
of the gram matrix, as opposed to H(XT X).

4.5. Explicit error rate of spectral clustering under other mixture models. As our anal-
ysis in this paper establishes an explicit error rate under sub-Gaussian mixture models, a
natural question is whether our analysis framework can be extended to other mixture models.
A key observation is that the clustering error bound in Lemma 3.2 imposes no specific as-
sumptions on the noise distribution {εi}, allowing for potential applicability to a wide range
of mixture models. However, this flexibility comes with challenges. Lemma 3.2 highlights
that the clustering error is intimately tied to the tail probabilities of ‖ÛT−i,1:κεi‖. While the

independence between Û−i,1:κ and εi is advantageous, the lack of explicit expressions for
Û−i,1:κ poses difficulties when dealing with other noise distributions.

When εi follows a sub-Gaussian distribution, existing concentration inequalities can be
applied to analyze the norm of ÛT−i,1:κεi , providing a sharp upper bound as in Theorem 3.1.
However, in scenarios where εi is assumed to follow a specific distribution, such as a centered
Bernoulli random vector with success probability q decreasing as n grows (as encountered in
community detection tasks), issues arise. Despite modeling εi as SGp(1), the correct variance
is q , leading to a loose upper bound for spectral clustering performance. Directly analyzing
‖ÛT−i,1:κεi‖ becomes challenging in such cases due to the lack of explicit expressions for

Û−i,1:κ and uncertainties about the behavior of its entries. It is important to acknowledge
that our current analysis framework has limitations when confronted with these complexities.
Future research in this direction may involve exploring novel techniques or adapting exist-
ing methodologies to handle non-sub-Gaussian noise distributions more effectively, thereby
establishing sharp analysis for spectral clustering under diverse mixture models.

4.6. Unknown k or σ . In this paper, we assume k, the number of clusters, is known. If k is
unknown, one can employ existing methodologies, as found in the literature [29, 38, 40, 42],
to estimate its value prior to applying our spectral clustering method. Our theoretical results
maintain their validity, given that k is accurately estimated, albeit with an added term account-
ing for the estimation error of k. However, while such methods have empirically demonstrated
decent performance, their theoretical performances are not fully understood, especially in
contexts where both p, n are large. Regarding σ , the noise level in sub-Gaussian mixture
models, both Algorithm 1 and Algorithm 2 require no prior knowledge of σ . However, in
Theorem 3.2, the threshold T is needed to satisfy a condition involving σ . More generally,
in Lemma 3.3, T/‖E‖ needs to be bounded away from 0. To endow the algorithm with en-
hanced adaptability, one possible approach is to consider λ̂k+1, the (k + 1)th largest singular
value of the data matrix, as a surrogate of ‖E‖. The intuition is that when entries of the noise
matrix E are independent and identically distributed, asymptotic behavior of its singular val-
ues can be characterized using random matrix theory, building a connection between ‖E‖
and its leading singular values. Further investigation is beyond the scope of this paper.

5. Proof of main results in Section 2. In this section, we give the proofs of Theorem 2.1
and Theorem 2.2. The proof of Theorem 2.3 is included in the Supplementary Material [46]
due to page limit.
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5.1. Proof of Theorem 2.1. Before giving the proof of Theorem 2.1, we first present and
prove a slightly more general perturbation result, Theorem 5.1, which only requires σ 2

r −
σ 2

r+1 −‖(I −UrU
T
r )yn‖2 > 0 instead of assuming ρ > 2. We defer the proof of Theorem 2.1

to the end of this section, which is an immediate consequence of Theorem 5.1.

THEOREM 5.1. If σ 2
r − σ 2

r+1 − ‖(I − UrU
T
r )yn‖2 > 0, we have

∥∥Ûr Û
T
r − UrU

T
r

∥∥
F ≤ 2

√
2σr‖(I − UrU

T
r )yn‖

σ 2
r − σ 2

r+1 − ‖(I − UrUT
r )yn‖2

√√√√ r∑
i=1

(
uT

i yn

σi

)2
.

PROOF. Decompose yn into yn = θ + ε with θ := UrU
T
r yn and ε := (I − UrU

T
r )yn.

Then we have uT
i θ = uT

i yn for each i ∈ [r].
Throughout the proof, we denote

α2 = ∥∥Ûr Û
T
r − UrU

T
r

∥∥2
F.

Denote d = p ∧ (n − 1). If p ≤ n − 1, we have d = p and denote U := (u1, . . . , up) ∈ R
p×p

which is an orthogonal matrix. If p > n − 1, we let U ∈ R
p×p be an orthogonal matrix

with the first p ∧ (n− 1) columns being u1, . . . , up∧(n−1). In both cases, we have U being an
orthogonal matrix. Then Ûr can be written as Ûr = UB̂ for some B̂ = (B̂i,j ) ∈ R

p×r . Let B̂i,·
be the ith row of B̂ for each i ∈ [p]. Define b2

i = 1−‖B̂i,·‖2 for each i ∈ [r] and b2
i = ‖B̂i,·‖2

for each i > r . Then we have

α2 = ∥∥Ûr Û
T
r

∥∥2
F + ∥∥UrU

T
r

∥∥2
F − 2

〈
Ûr Û

T
r ,UrU

T
r

〉
= 2k − 2

∥∥UT
r Ûr

∥∥2
F = 2k − 2

∑
i∈[r]

∑
j∈[r]

B̂2
i,j(32)

= 2
∑
i∈[r]

b2
i = 2

p∑
i=r+1

b2
i ,

where in the last equation we use the fact that ‖B̂‖2
F = r .

Note that Ûr Û
T
r Ŷ is the best rank-r approximation of Ŷ . We have∥∥(I − Ûr Û

T
r

)
Ŷ
∥∥2

F ≤ ∥∥(I − UrU
T
r

)
Ŷ
∥∥2

F.

Due to the fact Ŷ = (Y, yn), we have∥∥(I − Ûr Û
T
r

)
Y
∥∥2

F + ∥∥(I − Ûr Û
T
r

)
yn

∥∥2 ≤ ∥∥(I − UrU
T
r

)
Y
∥∥2

F + ∥∥(I − UrU
T
r

)
yn

∥∥2
,

which implies

(33)
∥∥(I − Ûr Û

T
r

)
Y
∥∥2

F − ∥∥(I − UrU
T
r

)
Y
∥∥2

F ≤ ∥∥(I − UrU
T
r

)
yn

∥∥2 − ∥∥(I − Ûr Û
T
r

)
yn

∥∥2
.

We are going to simplify terms in (33).
(Simplification of the LHS of (33)). Recall the decomposition Y = ∑

i∈[d] σiuiv
T
i . Since

(I − UrU
T
r )Y =∑d

i>r σiuiv
T
i , we have ‖(I − UrU

T
r )Y‖2

F =∑d
i>r σ 2

i . Since

UT Y = UT

(∑
i∈[d]

σiuiv
T
i

)
=

⎛
⎜⎜⎜⎝

σ1v
T
1

. . .

σdvT
d

0p−d

⎞
⎟⎟⎟⎠= diag(σ1, . . . , σd,0p−d)

⎛
⎜⎜⎜⎝

vT
1

. . .

vT
d

O(p−d)×n

⎞
⎟⎟⎟⎠ ,
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we have∥∥(I − Ûr Û
T
r

)
Y
∥∥2

F = ∥∥U (
I − UT ÛrÛ

T
r U

)
UT Y

∥∥2
F

=

∥∥∥∥∥∥∥∥∥
(
I − B̂B̂T )diag(σ1, . . . , σd,0p−d)

⎛
⎜⎜⎜⎝

vT
1

. . .

vT
d

O(p−d)×n

⎞
⎟⎟⎟⎠
∥∥∥∥∥∥∥∥∥

2

F

= tr
(

diag(σ1, . . . , σd,0p−d)
(
I − B̂B̂T )diag(σ1, . . . , σd,0p−d)

×
(
Id×d

O(p−d)×(p−d)

))
,

where in the last equation we use the following facts: (1) for any two square matrices of the
same size A, D, we have ‖AD‖2

F = tr(DT AT AD) = tr(AT ADDT ); (2) B̂ has orthogonal
columns such that (I − B̂B̂T )2 = I − B̂B̂T ; and (3) {v1, . . . , vd} ∈ R

n−1 are orthogonal
vectors. Since the diagonal entries of B̂B̂T are {‖B̂i,·‖2}i∈[p], we have

∥∥(I − Ûr Û
T
r

)
Y
∥∥2

F = tr
(
diag(σ1, . . . , σd,0p−d)

(
I − B̂B̂T )diag(σ1, . . . , σd,0p−d)

)

=
d∑

i=1

σ 2
i

(
1 − ‖B̂i,·‖2

F
)
.

Then we have

LHS of (33) =
r∑

i=1

σ 2
i

(
1 − ‖B̂i,·‖2

F
)−

d∑
i>r

σ 2
i ‖B̂i,·‖2

F

=
r∑

i=1

σ 2
i b2

i −
d∑

i>r

σ 2
i b2

i ≥
r∑

i=1

σ 2
i b2

i − σ 2
r+1

α2

2
,

where we use
∑d

i>r b2
i ≤∑p

i>r b2
i = α2/2 from (32) in the last inequality.

(Simplification of the RHS of (33)). Recall that Ûr = UB̂ . We decompose it into B̂ =
(B̂T

1 , B̂T
2 )T where B̂1 ∈R

r×r are the first r rows and B̂2 ∈R
(p−r)×r . We have

RHS of (33) = yT
n

(
I − UrU

T
r

)
yn − yT

n

(
I − Ûr Û

T
r

)
yn

= yT
n

(
Ûr Û

T
r − UrU

T
r

)
yn

= yT
n U

(
B̂1B̂

T
1 − Ir×r B̂1B̂

T
2

B̂2B̂
T
1 B̂2B̂

T
2

)
UT yn.

Define B̂⊥ ∈ R
p×(p−r) to be the matrix such that (B̂, B̂⊥) ∈R

p×p is an orthonormal matrix.
We can further decompose it into B̂⊥ = (B̂⊥T

1 , B̂⊥Y
2 )T where B̂⊥

1 ∈ R
r×(p−r) including the

first r rows and B̂⊥
2 ∈ R

(p−r)×(p−r). Since (B̂, B̂⊥) has orthogonal columns, we have

(
B̂1, B̂

⊥
1
)(

B̂1, B̂
⊥
1
)T = B̂1B̂

T
1 + B̂⊥

1 B̂⊥T
1 = Ir×r ,

and (B̂1, B̂
⊥
1 )(B̂2, B̂

⊥
2 )T = Or×(p−r), which implies

B̂1B̂
T
2 = −B̂⊥

1 B̂⊥T
2 .
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We also decompose the matrix U =: (Ur,U⊥). Then

RHS of (33) = yT
n (Ur,U⊥)

(
−B̂⊥

1 B̂⊥T
1 −B̂⊥

1 B̂⊥T
2

−B̂⊥
2 B̂⊥T

1 B̂2B̂
T
2

)
(Ur,U⊥)T yn

= −yT
n UrB̂

⊥
1 B̂⊥T

1 UT
r yn − 2yT

n UrB̂
⊥
1 B̂⊥T

2 UT⊥yn + yT
n U⊥B̂2B̂

T
2 UT⊥yn

≤ −∥∥B̂⊥T
1 UT

r yn

∥∥2 + 2
∥∥B̂⊥T

1 UT
r yn

∥∥∥∥B̂⊥T
2

∥∥∥∥UT⊥yn

∥∥+ ∥∥B̂T
2
∥∥2∥∥UT⊥yn

∥∥2
.

Note that ‖B̂⊥T
2 ‖ ≤ 1 and ‖B̂T

2 ‖2 ≤ ‖B̂T
2 ‖2

F =∑p
i>r ‖B̂i,·‖2 = α2/2 which is by (32). We also

have ∥∥UT⊥yn

∥∥= ‖ε‖.
Since ‖B̂⊥

1 ‖2
F =∑r

i=1(1 −‖B̂i,·‖2) = α2/2 according to (32), we have ‖B̂⊥
1 ‖ ≤ α/

√
2. Thus,

using UT
r ε = 0, we have ∥∥B̂⊥T

1 UT
r yn

∥∥= ∥∥B̂⊥T
1 UT

r θ
∥∥.

Then,

RHS of (33) ≤ 2
∥∥B̂⊥T

1 UT
r θ

∥∥‖ε‖ + α2

2
‖ε‖2.

To simplify ‖B̂⊥T
1 UT

r θ‖, denote wi = uT
i θ and si = |wi |/σi for each i ∈ [r]. Recall that

uT
i θ = uT

i yn for each i ∈ [r]. We have

si =
∣∣∣∣u

T
i yn

σi

∣∣∣∣, ∀i ∈ [r].
We then have

∥∥B̂⊥T
1 UT

r θ
∥∥=

∥∥∥∥∥
r∑

i=1

wiB̂
⊥
i,·

∥∥∥∥∥≤
r∑

i=1

|wi |
∥∥B̂⊥

i,·
∥∥=

r∑
i=1

siσi |bi | ≤ ‖s‖
√√√√ r∑

i=1

σ 2
i b2

i ,

where we denote the ith row of B̂⊥
1 as B̂⊥

i,· and we use the fact that ‖B̂⊥
i,·‖2 = 1−‖B̂i,·‖2 = b2

i

for each i ∈ [r]. As a result,

RHS of (33) ≤ 2‖s‖
√√√√ r∑

i=1

σ 2
i b2

i ‖ε‖ + α2

2
‖ε‖2.

(Combining the above simplifications for (33).) From the above simplifications on the LHS
and RHS of (33), we have

r∑
i=1

σ 2
i b2

i − σ 2
r+1

α2

2
≤ 2‖s‖

√√√√ r∑
i=1

σ 2
i b2

i ‖ε‖ + α2

2
‖ε‖2.

Define t =
√∑r

i=1 σ 2
i b2

i . Then after arrangement, the above display becomes

t2 − 2‖s‖‖ε‖t ≤ σ 2
r+1

α2

2
+ α2

2
‖ε‖2.

Note that the function t2 − 2‖s‖‖ε‖t is increasing as long as t ≥ t0 where we define t0 :=
‖s‖‖ε‖. On the other hand, from (32), we have the domain t ≥ ασr/

√
2. We consider the

following two scenarios.
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If ασr/
√

2 ≤ t0, we have

α ≤
√

2t0

σr

=
√

2‖s‖‖ε‖
σr

.(34)

If ασr/
√

2 > t0, we have

t2 − 2‖s‖t ≥ α2σ 2
r

2
− √

2‖s‖‖ε‖ασr .

Hence, we have an inequality of α:

α2σ 2
r

2
− √

2‖s‖‖ε‖ασr ≤ σ 2
r+1

α2

2
+ α2

2
‖ε‖2,

which can be arranged into

α

2

(
σ 2

r − σ 2
r+1 − ‖ε‖2)≤ √

2‖s‖σr‖ε‖.

Hence, under the assumption σ 2
r − σ 2

r+1 − ‖ε‖2 > 0, we have

α ≤ 2
√

2σr‖s‖‖ε‖
σ 2

r − σ 2
r+1 − ‖ε‖2

.(35)

Since 2σ 2
r > σ 2

r − σ 2
r+1 − ‖ε‖2, the upper bound in (34) is strictly below that in (35). Hence,

(35) holds for both scenarios. The proof is complete. �

PROOF OF THEOREM 2.1. Since we assume ρ > 2, we have

σ 2
r − σ 2

r+1 − ∥∥(I − UrU
T
r

)
ε
∥∥2 ≥ σr(σr − σr+1) − (σr − σr+1)

2/4

≥ σr(σr − σr+1)/2 = ρσr

∥∥(I − UrU
T
r

)
ε
∥∥/2.

Together with Theorem 5.1, we obtain the desired bound. �

PROOF OF THEOREM 2.2. Consider any i ∈ [n]. In order to apply Theorem 2.1, we need
to verify that the spectral gap assumption (3) is satisfied, define

ρ−i := λ̂−i,κ − λ̂−i,κ+1

‖(I − Û−i,1:κÛT−i,1:κ)Xi‖
.

We need to show ρ−i > 2. In the following, we provide a lower bound for the numerator
λ̂−i,κ − λ̂−i,κ+1.

Define λ−i,1 ≥ λ−i,2 ≥ · · · ≥ λ−i,p∧(n−1) to be singular values of P−i , the leave-one-out
counterpart of the signal matrix P where

P−i := (
θ∗
z∗

1
, . . . , θ∗

z∗
i−1

, θ∗
z∗
i+1

, . . . , θ∗
z∗
n

) ∈R
p×(n−1).(36)

We are interested in the value of λ−i,κ . Recall that λκ is the κ th largest singular value of P

which is rank-κ . Since P has k unique columns {θ∗
a }a∈[k], its left singular vectors uj ∈ � for

each j ∈ [k] where � := span({θ∗
a }a∈[k]). Note that each θ∗

a appears at least βn/k times in
the columns of P . Then P−i also has these k unique columns with each appearing at least
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βn/k − 1 times. This concludes that P−i has the same leading left singular vector space as
P . We then have

λ2−i,κ = min
w∈�:‖w‖=1

∥∥wT P−i

∥∥2 = min
w∈�:‖w‖=1

∑
j∈[n]:j �=i

(
wT θ∗

z∗
j

)2

≥
βn
k

− 1
βn
k

min
w∈�:‖w‖=1

∑
j∈[n]

(
wT θ∗

z∗
j

)2 =
(

1 − k

βn

)
min

w∈�:‖w‖=1

∥∥wT P
∥∥2(37)

≥
(

1 − k

βn

)
λ2

κ .

We also have λ−i,κ+1 = 0 as P−i is rank-κ .
Next, we are going to analyze λ̂−i,κ and λ̂−i,κ+1, the κ th and (κ + 1)th largest singular

values of X−i . Recall the SVD of X−i in Section 2.2. Define

E−i := (ε1, . . . , εi−1, εi+1, . . . , εn) ∈ R
p×(n−1),(38)

so that X−i = P−i + E−i . By Weyl’s inequality, we have |λ−i,κ − λ̂−i,κ |, |λ−i,κ+1 −
λ̂−i,κ+1| ≤ ‖E−i‖ ≤ ‖E‖. Then we have

λ̂−i,κ ≥ λ−i,κ − ‖E‖ ≥
√

1 − k

βn
λκ − ‖E‖(39)

and

λ̂−i,κ − λ̂−i,κ+1 ≥ λ−i,κ − λ−i,κ+1 − 2‖E‖ ≥
√

1 − k

βn
λκ − 2‖E‖.(40)

Next, we study ‖(I − Û−i,1:κÛT−i,1:κ)Xi‖. Since Û−i,1:κÛT−i,1:κX−i is the best rank-κ ap-
proximation of X−i , we have∥∥Û−i,1:κÛT−i,1:κX−i − X−i

∥∥≤ ‖P−i − X−i‖ = ‖E−i‖,
where we use the fact that P−i is rank-κ . Then by the triangle inequality, we have∥∥(I − Û−i,1:κÛT−i,1:κ

)
P−i

∥∥
= ∥∥Û−i,1:κÛT−i,1:κP−i − P−i

∥∥
≤ ∥∥Û−i,1:κÛT−i,1:κ(P−i − X−i)

∥∥+ ∥∥Û−i,1:κÛT−i,1:κX−i − X−i

∥∥+ ‖X−i − P−i‖
≤ 3‖E−i‖.

Using the fact P−i is rank-κ again, we have∥∥(I − Û−i,1:κÛT−i,1:κ
)
P−i

∥∥
F ≤ √

κ
∥∥(I − Û−i,1:κÛT−i,1:κ

)
P−i

∥∥≤ 3
√

κ‖E−i‖ ≤ 3
√

κ‖E‖.
Since P−i has at least βn/k − 1 columns being exactly θ∗

z∗
i
, we have

∥∥(I − Û−i,1:κÛT−i,1:κ
)
θ∗
z∗
i

∥∥≤ ‖(I − Û−i,1:κÛT−i,1:κ)P−i‖F√
βn
k

− 1
≤ 3

√
κ‖E‖√

βn
k

− 1
,(41)

and consequently,

(42)

∥∥(I − Û−i,1:κÛT−i,1:κ
)
Xi

∥∥≤ ∥∥(I − Û−i,1:κÛT−i,1:κ
)
θ∗
z∗
i

∥∥+ ∥∥(I − Û−i,1:κÛT−i,1:κ
)
εi

∥∥
≤ 3

√
κ‖E‖√

βn
k

− 1
+ ‖E‖.
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From (40) and (42), we have

ρ−i ≥
√

1 − k
βn

λκ − 2‖E‖
‖E‖ + 3

√
κ‖E‖√
βn
k

−1

≥ ρ0

8
> 2,(43)

where the last inequality is due to the assumption ρ0 > 16 and βn/k2 ≥ 10.
The next thing to do is to study {ûT−i,aXi}a∈[κ]. Denote the columns of P−i and E−i as

{(P−i )·,j }j∈[n−1] and {(E−i )·,j }j∈[n−1], respectively. Define S := {j ∈ [n − 1] : (P−i )·,j =
θ∗
z∗
i
}. Then, for any a ∈ [κ], by the SVD of X−i , we have

ûT−i,aθ
∗
z∗
i
= 1

|S|
∑
j∈S

ûT−i,a(P−i )·,j = 1

|S|
∑
j∈S

ûT−i,a(X−i )·,j + 1

|S|
∑
j∈S

ûT−i,a(E−i )·,j

= 1

|S|
∑
j∈S

λ̂−i,a(v−i,a)j + 1

|S| û
T−i,a

(∑
j∈S

(E−i )·,j
)
.

Hence, by Cauchy–Schwarz inequality and the fact that ‖v−i,a‖ = 1, we have

∣∣ûT−i,aθ
∗
z∗
i

∣∣≤ λ̂−i,a

√|S|
|S| +

√|S|‖E−i‖
|S| ≤ λ̂−i,a√

βn
k

− 1
+ ‖E‖√

βn
k

− 1
.(44)

Since |ûT−i,aXi | ≤ |ûT−i,aθ
∗
z∗
i
| + |ûT−i,aεi |, we have

|ûT−i,aXi |
λ̂−i,a

≤ 1√
βn
k

− 1
+ 1

λ̂−i,a

( ‖E‖√
βn
k

− 1
+ ∣∣ûT−i,aεi

∣∣)

≤ 1√
βn
k

− 1
+ 1

λ̂−i,κ

‖E‖√
βn
k

− 1
+ 1

λ̂−i,κ

∣∣ûT−i,aεi

∣∣.
Consequently,√√√√∑

a∈κ

(
ûT−i,aXi

λ̂−i,a

)2
≤

√
κ√

βn
k

− 1
+ 1

λ̂−i,κ

‖E‖√κ√
βn
k

− 1
+ 1

λ̂−i,κ

∥∥Û−i,1:κÛT−i,1:κεi

∥∥,
where we use the fact ‖Û−i,1:κÛT−i,1:κεi‖ = ‖ÛT−i,1:κεi‖ = (

∑
i∈[κ](ûT−i,aεi)

2)1/2.
Lastly, by Theorem 2.1, we have∥∥Û1:κÛT

1:κ − Û−i,1:κÛT−i,1:κ
∥∥

F

≤ 4
√

2

ρ−i

( √
κ√

βn/k − 1
+ 1

λ̂−i,κ

( √
κ‖E‖√

βn/k − 1
+ ∥∥Û−i,1:κÛT−i,1:κεi

∥∥)).

Since βn/k2 ≥ 10 and ρ0 > 16 are assumed, we have λ̂−i,κ ≥ λκ/2 by (39). Then together
with (43), the above display can be simplified into

∥∥Û1:κÛT
1:κ − Û−i,1:κÛT−i,1:κ

∥∥
F ≤ 32

√
2

ρ0

(
2
√

kκ√
βn

+ 2‖Û−i,1:κÛT−i,1:κεi‖
λκ

)

≤ 128

ρ0

(√
kκ√
βn

+ ‖Û−i,1:κÛT−i,1:κεi‖
λκ

)
.

This concludes the proof of Theorem 2.2. �
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6. Proof of main results in Section 3. In this section, we include proofs of Lemma 3.1,
Lemma 3.2, and Theorem 3.1. The proofs of all other results of Section 3 are included in the
Supplementary Material [46] due to page limit.

6.1. Proofs of Lemma 3.1 and Lemma 3.2.

PROOF OF LEMMA 3.1. For simplicity, we denote Û to be short for Û1:r throughout the
proof. From (15), we know ẑi must satisfy

ẑi = argmin
a∈[k]

∥∥Û ÛT Xi − θ̂a

∥∥,
where {θ̂a}a∈[k] satisfies (18) according to Proposition 3.1. Hence, we have

I
{
ẑi �= φ

(
z∗
i

)}= I

{
min

a∈[k]:a �=φ(z∗
i )

∥∥Û ÛT Xi − θ̂a

∥∥≤ ∥∥Û ÛT Xi − θ̂φ(z∗
i )

∥∥}.
Consider a fixed a ∈ [k] such that a �= φ(z∗

i ). Note that for any vectors x, y, w of same
dimension, if ‖x − y‖ ≤ ‖x − w‖, then we must have ‖y − w‖/2 ≤ ‖x − w‖. Hence, we
have

I
{∥∥Û ÛT Xi − θ̂a

∥∥≤ ∥∥Û ÛT Xi − θ̂φ(z∗
i )

∥∥}
= I

{
1

2
‖θ̂φ(z∗

i )
− θ̂a‖ ≤ ∥∥Û ÛT Xi − θ̂φ(z∗

i )

∥∥}

≤ I

{
1

2
‖θ̂φ(z∗

i )
− θ̂a‖ ≤ ∥∥Û ÛT εi − θ̂φ(z∗

i )

∥∥+ ∥∥Û ÛT θ∗
z∗
i
− θ̂φ(z∗

i )

∥∥}

≤ I
{‖θ̂φ(z∗

i )
− θ̂a‖ − 2

∥∥θ∗
z∗
i
− θ̂φ(z∗

i )

∥∥≤ 2
∥∥Û ÛT εi − θ̂φ(z∗

i )

∥∥},
where we use the fact that Xi = θ∗

z∗
i
+ εi and ‖Û ÛT θ∗

z∗
i
− θ̂φ(z∗

i )
‖ ≤ ‖θ∗

z∗
i
− θ̂φ(z∗

i )
‖. Since

θ̂φ(z∗
i )

− θ̂a = θ̂φ(z∗
i )

− θ∗
z∗
i
+ θ∗

z∗
i
− θ∗

φ−1(a)
+ θ∗

φ−1(a)
− θ̂a , we have

I
{∥∥Û ÛT Xi − θ̂a

∥∥≤ ∥∥Û ÛT Xi − θ̂φ(z∗
i )

∥∥}
≤ I

{∥∥θ∗
z∗
i
− θ∗

φ−1(a)

∥∥− ∥∥θ̂φ(z∗
i )

− θ∗
z∗
i

∥∥− ∥∥θ∗
φ−1(a)

− θ̂a

∥∥
− 2

∥∥θ∗
z∗
i
− θ̂φ(z∗

i )

∥∥≤ 2
∥∥Û ÛT εi

∥∥}(45)

≤ I

{∥∥θ∗
z∗
i
− θ∗

φ−1(a)

∥∥− 4 max
b∈[k]

∥∥θ∗
b − θ̂φ(b)

∥∥≤ 2
∥∥Û ÛT εi

∥∥}

≤ I

{(
1 − 4C0β

−0.5kn−0.5‖E‖
�

)
� ≤ 2

∥∥Û ÛT εi

∥∥},

where in the last inequality, we use the fact that maxb∈[k] ‖θ∗
b − θ̂φ(b)‖ ≤ C0β

−0.5kn−0.5‖E‖
from Proposition 3.1 and minb,b′∈[k]:b �=b′ ‖θ∗

b − θ∗
b′‖ = �. Since the above display holds for

each a ∈ [k] not φ(z∗
i ), we have

I
{
ẑi �= φ

(
z∗
i

)}≤ I

{(
1 − 4C0β

−0.5kn−0.5‖E‖
�

)
� ≤ 2

∥∥Û ÛT εi

∥∥}

= I
{(

1 − 4C0ψ
−1
0
)
� ≤ 2

∥∥Û ÛT εi

∥∥},
where in the last inequality we use the definition of ψ0 in (16). �
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PROOF OF LEMMA 3.2. For simplicity, throughout the proof we denote Û and Û−i to be
short for Û1:κ and Û−i,1:κ , respectively. We have the following decomposition for Û ÛT εi :∥∥Û ÛT εi

∥∥≤ ∥∥Û−i Û
T−iεi

∥∥+ ∥∥Û ÛT − Û−i Û
T−i

∥∥
F‖εi‖.

Using the fact that ‖εi‖ ≤ ‖E‖ and Theorem 2.2, after rearrangement, we have∥∥Û ÛT εi

∥∥≤ 128k‖E‖√
nβρ0

+
(

1 + 128‖E‖
ρ0λk

)∥∥Û−i Û
T−iεi

∥∥
= 128ψ−1

0 ρ−1
0 � +

(
1 + 128

ρ2
0

)∥∥Û−i Û
T−iεi

∥∥.
In Lemma 3.1 we establish (19). From there, we have

I
{
ẑi �= φ

(
z∗
i

)}≤ I

{(
1 − Cψ−1

0
)
� ≤ 256ψ−1

0 ρ−1
0 � + 2

(
1 + 128

ρ2
0

)∥∥Û−i Û
T−iεi

∥∥}

≤ I
{(

1 − C′(ψ−1
0 + ρ−2

0
))

� ≤ 2
∥∥Û−i Û

T−iεi

∥∥},
for some constant C′ > 0, where in the last inequality we use the assumption ρ0 > 16
from (9). The upper bound on Eℓ(ẑ, z∗) is an immediate consequence as Eℓ(ẑ, z∗) =
n−1∑

i∈[n]EI{ẑi �= φ(z∗
i )}. �

6.2. Proofs of Theorem 3.1. PROOF OF THEOREM 3.1. For simplicity, we denote Û−i

to be short for Û−i,1:κ throughout the proof. Define ψ := ψ−1
1 + ρ−2

1 . Then ψ < 2/C.
Since E is a random matrix with independent sub-Gaussian columns, we have

P
(‖E‖ ≤ 8σ(

√
n + √

p)
)≥ 1 − e−n/2,(46)

by Lemma E.1. Denote F to be this event. Under F , as long as ψ1, ρ1 ≥ 128, we have both
(16) and (9) hold. Let φ ∈ 
 satisfy ℓ(ẑ, z∗) = n−1∑

i∈[n] I{ẑi �= φ(z∗
i )}. Consider a fixed

i ∈ [n]. Then from Lemma 3.2, we have

I
{
ẑi �= φ

(
z∗
i

)}
I{F} ≤ I

{
(1 − C1ψ)� ≤ 2

∥∥Û−i Û
T−iεi

∥∥}I{F}
≤ I

{
(1 − C1ψ)� ≤ 2

∥∥Û−i Û
T−iεi

∥∥},
where C1 > 0 is some constant that does not depend on C. Then

Eℓ
(
ẑ, z∗)≤ EI

{
F�}+Eℓ

(
ẑ, z∗)

I{F}
≤ e−n/2 + n−1

∑
i∈[n]

EI
{
(1 − C1ψ)� ≤ 2

∥∥Û−i Û
T−iεi

∥∥}.(47)

Since εi ∼ SGp(σ 2) and it is independent of Û−i Û
T−i , we can apply concentration inequalities

for ‖Û−i Û
T−iεi‖ from Lemma E.2. Define t = (1 − C2ψ)�2/(8σ 2) where C2 = C1 + 16.

Since C2 does not depend on C, we can let C > max{4C2,128} such that 1 − C2ψ > 1/2.
Then we have k/t ≤ 16k2σ 2/�2 ≤ 16ψ2

1 where we use the fact that �
kσ

> ψ−1
1 from (21) as

β ≤ 1. Then we have

σ 2(κ + 2
√

κt + 2t) = 2σ 2t

(
1

2

κ

t
+
√

κ

t
+ 1

)
≤ 2σ 2t

(
8ψ2

1 + 4ψ1 + 1
)≤ 2σ 2t (1 + 8ψ1)

≤ (1 − C2ψ)�2/
(
8σ 2)(1 + 8ψ) ≤ (1 − C1ψ)�2/

(
8σ 2),

where we use that ψ1 < 1/128 and ψ < 1/64 as we let C > 128. Then from Lemma E.2, we
have

EI
{
(1 − C1ψ)� ≤ 2

∥∥Û−i Û
T−iεi

∥∥}≤ exp(−t) = exp
(
−(1 − C2ψ)

�2

8σ 2

)
. �
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SUPPLEMENTARY MATERIAL

Supplement to “Leave-one-out singular subspace perturbation analysis for spectral
clustering” (DOI: 10.1214/24-AOS2418SUPP; .pdf). In the supplement [46], we first pro-
vide the proof of Theorem 2.3 in Appendix A, followed by the proofs of results of Section 3.4
in Appendix B. The proof of Theorem 3.3 is given in Appendix C. The proofs of results of
Section 3.6 are given in Appendix D. Auxiliary lemmas and propositions and their proofs are
included in Appendix E.
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