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With the emergence of 10T applications, 5G, and edge computing, network resource allocation has shifted
toward the edge, bringing services closer to the end users. These applications often require communication
with the core network for purposes that include cloud storage, compute offloading, 5G-and-Beyond transport
communication between centralized unit (CU), distributed unit {DU) and core network, centralized network
monitoring and management, etc. As the number of these services increases, efficient and reliable connec-
tivity between the edge and core networks is of the essence. Wavelength Division Multiplexing (WDM)
is a well-suited technology for transferring large amounts of data by simultaneously transmitting several
wavelength-multiplexed data streams over each single fiber optics link. WDM is the technology of choice in
mid-haul and long-haul transmission networks, including edge-to-core networks, to offer increased transport
capacity.

Optical networks are prone to failures of components such as network fiber links, sites, and transmission
ports. A single network element failure alone can cause significant traffic loss due to the disruption of many
active data flows. Thus, fault-tolerant and reliable network designs remain a priority. The architecture called
“dual-hub and dual-spoke” is often used in metro area networks (MANs). A dual-hub, or in general a multi-hub
network, consists of a set of designated destination nodes (hubs) in which the data traffic from all other nodes
(the peripherals) should be directed to the hubs. Multiple hubs offer redundant connectivity to and from
the core or wide area network (WAN) through geographical diversity. The routing of the connections (also
known as lightpaths) between the peripheral node and the hubs has to be carefully computed to maximize
path diversity across the edge-to-core network. This means that whenever possible the established redundant
lightpaths must not contain a common Shared Risk Link Group (SRLG).

An algorithm is proposed to compute the most reliable set of SRLG disjoint shortest paths from any
peripheral to all hubs. The proposed algorithm can also be used to evaluate the overall edge-to-core network
reliability quantified through a newly introduced figure of merit.

1. Introduction

Supporting these and other edge-centric services requires robust
data transport communication between the edge (i.e., the peripheral

By leveraging function virtualization and software-defined network-
ing, the provisioning of network resources and services is evolving to
become user-experience-oriented. Edge computing, for instance, brings
compute resources closer to users, resulting in reduced network latency,
improved real-time performance, and enhanced security. Similarly,
in 5G technologies, network slicing is employed to allocate services
requiring low latency close to users, while latency-tolerant services may
be positioned in the cloud to optimize network resource efficiency and
utilization. Other applications, such as distributed training of large-
scale Al models across multiple network nodes exemplify the growing
importance of edge-centric computing.
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node) and the gateway (the hub) connecting to the core network. Tasks
such as data transfer and backup, network and device monitoring,
and centralized management all rely on high-volume communication
between the edge and the core. Furthermore, traditional multimedia
entertainment activities, network streaming media, and similar services
are expanding their reach to accommodate a large (mobile) user base,
resulting in record-high demands for data transport capacity in metro
networks.

Optical transport networks offer high data rates, signal low power
loss, long-distance connectivity, low-security risks, and small cable size
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compared to copper cables. In addition, Wavelength Division Multiplex-
ing (WDM) can increase the overall transport capacity of the currently
existing fiber plants by transmitting several concurrent and orthogonal
data signals, each signal being carried by one distinct wavelength or
channel in a single fiber medium [1,2]. Current technology allows each
fiber to carry tens of wavelengths where each wavelength can transmit
data at 400G, 800G, and even higher rates.

Moreover, the wavelength signals are protocol and bit-rate inde-
pendent, enabling multiple and diverse upper-layer solutions to be
supported by the same optical fiber network. Each wavelength signal
can support multiple data traffic flows using time division multiplexing
(TDM) or data packet switching (IPoverDWDM). Recently, open optical
networking early field deployments have been announced, enabling
network operators to seamlessly interconnect optical network devices
from multiple vendors while keeping a single network controller to
operate a wide range of optical devices [3]. This and other similar
open network architectures will further ameliorate operators’ ability to
flexibly upgrade their metro network transport capacity.

Higher transport capacity and protocol transparency imply that
each fiber cable most likely carries data traffic from several different
applications. As a result, a single fiber cable failure can cause loss
of data for multiple and different services leading to non-tolerable
interruption of service in most cases [4]. For example, in disaggregated
5G RAN architectures, both fronthaul and backhaul network resiliency
plays an important role in specific 5G use cases, such as ultra-reliable
low latency applications. The impact of fiber cable failures along with
an example of a related resiliency mechanism mitigating the ensuing
service disruption are discussed in [5]. Understandably, transport net-
work reliability is of the utmost importance to many existing and future
mobile services.

One of the best solutions to avoid or minimize traffic loss in the
presence of a fiber cable failure is to provide each service with a
working path that carries the service’s traffic and one or more re-
dundant (backup) paths that can replace the working path in the
presence of an outage [6-8]. The working and backup paths should
not be in the same Shared Risk Link Group (SRLG), or single point of
failure. This allows the network to ensure that the backup paths are not
disrupted by the same network outage that disrupts the working path.
In addition, to protect the service from multiple failures, the backup
paths must be SRLG-disjoint from each other, e.g., if N SRLG-disjoint
paths are allocated to a service, the service can then survive up to
N — 1 distinct outages. It is obvious that this approach improves the
network reliability but it also increases the network cost, as more SRLG-
disjoint network resources must be provisioned. Intuitively, there is a
trade-off between minimizing the protection cost and maximizing the
service reliability level as presented in [9,10] and [11] for optical edge
networks. The next paragraph provides a brief description of related
work published previously.

The authors in [12] propose an algorithm to compute the vertex-
disjoint paths in an undirected graph. The algorithm is proven to
complete in polynomial time with the number of disjoint paths set to
two (K = 2). Over time, the K > 2 vertex-disjoint shortest path problem
was proven to admit a polynomial run time [13,14]. Our approach
distinguishes itself from these prior studies as we specifically explore
link-disjoint solutions originating from a single node and terminating
at multiple destination nodes. Significant efforts have been dedicated
to identifying link-disjoint paths, with each study focusing on specific
conditions such as bounded computational cost and scalability [15],
dual link cost in the network [16], optimized parameter K for balanced
computational time and practical solutions [17], etc. While these prior
studies are practical and continue to hold great potential for many
applications, our goal is slightly different in that it specifically focuses
on identifying K link-disjoint paths heading to multiple destination
nodes (the hubs), while considering the crucial aspect of traffic load
balancing. We believe that combining concepts already presented in
these prior papers with our approach is beneficial to future research.

The focus of this study is to define a figure of merit for the design of
a highly reliable edge-to-core network, which is characterized by two or
more hubs. A multi-hub network is a network architecture with a set of
designated destination nodes (termed hubs) in which the traffic from all
the other nodes (termed peripherals) must be directed to the hubs. Each
hub offers connectivity to and from the core network independently
of the other hubs. Hubs are geo-diverse, thus reducing the risk that a
common event can disrupt all of the hubs at once.

An algorithm is proposed to compute an optimal topologically sorted
directed acyclic subgraph, from which multiple paths to the hubs opti-
mizing the reliability figure of merit can be obtained straightforwardly.
The following assumptions are made in this study. First, only fiber
link outages are considered, while network node outages are ignored.
Second, fiber links in the network have the same probability of being
affected by an outage. These two assumptions simplify the description
of the proposed figure of merit and optimization algorithm. However,
both figures of merit and optimization algorithms can be adjusted to
account for the relaxation of these two assumptions. Summarizing, the
two contributions of this work are:

« Introducing a new figure of merit, which rigorously defines the
achievable reliability and cost-effectiveness of optical edge-to-
core network connectivity in the presence of limited fiber diver-
sity availability.

Proposing an efficient algorithm that leverages optimal directed
acyclic subgraph to find the most reliable set of shortest SRLG-
disjoint paths from any peripheral node in the edge to all hubs
connecting to the core.

The algorithm also provides an optimal approach for selecting hub
locations, managing network fiber resources, and overall maximizing
reliability in multi-hub optical edge-to-core networks.

The rest of the paper is organized as follows. First, a multi-hub
optical edge-to-core network is defined. Then, we use disaggregated
5G RAN architecture as an example to show the importance of adding
resiliency to the transport network. We then define a figure of merit to
quantify the network reliability and introduce the algorithm that cal-
culates the most reliable set of K shortest paths. Finally, the feasibility
of the algorithm is demonstrated on a typical network topology.

2. Multi-hub edge-to-core optical transport network

Fig. 1 shows an abstraction of the edge-to-core optical transport
network! that interconnects a range of users — such as businesses,
banks, data centers, 5G RU/DU/CU, and edge applications — in a
geographic area that is serviced by the edge-to-core network. For exam-
ple, optical edge-to-core networks are the networks deployed in cities
providing connectivity to the users in each city. These networks are
also interconnected through the core network (e.g., WANs) to connect
users from different cities. In other words, each network should have
one or more designated network nodes connected to the core network,
which serve as network gateways to other transport networks. We refer
to these nodes as hubs and all other nodes as peripherals. An optical
edge-to-core network hosting multiple hubs is referred to as multi-hub.

Depending on the service requests, having more than one hub in
the network can not only increase service reliability but also improve
traffic load balance. To be more specific, it increases network reliability
by avoiding a single point of failure situation, e.g., if one of the hubs
fails, the traffic can still be switched in and out of the network through
the other still operational hubs. It also increases load balancing by
distributing the traffic across multiple hubs. The service requests can
demand both load balancing and protection for which there should
be more than one connection to each hub. In summary, for protected

! Throughout this study we use the term network to refer to the Edge-to-Core
Optical Transport Network.
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Fig. 1. Multi-hub edge to core optical transport network.

service requests between a peripheral node within the network as the
source node and a destination node outside the network, the corre-
sponding peripheral node must at least establish two circuits to each
hub.

In this study, we investigate the reliability of the multi-hub net-
work while accounting for the previously mentioned protected service
requirements and traffic load balancing.

3. Disaggregated 5G RAN and related transport network

In accordance with the 3GPP TS 38.300 specifications [18], the
5G disaggregated RAN architecture consists of gNB-CU, gNB-DU, and
RU, respectively. Disaggregation of the RAN effectively splits the RAN
protocol stack so that the individual components can be realized inde-
pendently. For instance, the gNB-CU centralizes the packet processing
functions, realizes them as virtualized network functions running on
commodity hardware, and places them in geographically centralized
telco edge cloud locations. The gNB-CU communicates with the Core
Network placed in the central cloud. Fig. 2 shows the disaggregated
RAN architecture where the gNB-CU is further split into gNB-CU-CP
and gNB-CU-UP. This RAN disaggregation has brought about many ad-
vantages, including the scalability of user plane operations, the ability
to design user planes, the capacity to maintain and upgrade individual
subsystems, etc. It also reduces the operational and maintenance costs
of the Mobile Network Operators (MNOs) by hosting the control and
user plane nodes in different geographical locations [19].

As shown in Fig. 2, Fronthaul refers to the link between the RU
and the gNB-vDU, Midhaul refers to the link between gNB-vDU and
the gNB-vCU, and Backhaul refers to the link between the gNB-vCU
and the Core Network. Depending on the 5G use cases — e.g., enhanced
Mobile Broadband (eMBB), Ultra Reliable Low-Latency Communication
(URLLC) or massive Machine Type Communication (mMTC) - the RAN
components can be placed closer to the cell site, edge cloud, or in the
central cloud. A typical deployment accounts for 100k RUs, 10k gNB-
DUs, 200 edge clouds, and 10 s of central clouds [20]. In summary,
the 5G transport network that provides connection service for the 5G
network must provide ultra-high bandwidth, ultra-low latency, flexible
and highly resilient network. For instance, a data plane link failure can
make the user-data traffic link unavailable, thereby disconnecting all
the connected mobile users. A study on enhancing the resiliency of 5G
disaggregated RAN is discussed in 3GPP TR 38.879 [21].

RU1 Fronthaul Fronthaul RU3

gNB gNB_
_wDU1 vDUZ

RU2 RU4

gNB- |
vCU-UP
Edge Cloud gNB-
vCU-CP

3

Disaggregated RAN

Backhaul

PCF AUSF
AMF  sMF UPF
: Central Cloud :

_\/__—\q
{/ Internet

\_/\_

Disaggregated Core

Fig. 2. Disaggregaled RAN architecture.

4. Network reliability model

In this section, we define a figure of merit chosen to measure the
network reliability level. Based on the description in Section 2, the
following constraints apply.

+ There are no service requests between two peripheral nodes. This
limits the peripherals to only be the source node for any service
request.

+ Peripheral nodes must at least establish two circuits to each hub.
In a network with H hubs there must be at least 2 x H circuits
established from the service request’s peripheral node to all hubs.

We evaluate the reliability of the multi-hub network, based on the
hubs’ reachability from any given peripheral node. Let us define reach-
ability as the number of fiber-disjoint paths from the peripheral to the
hubs. The ideal reliability for a peripheral is when all required paths for
the protected service request are fiber link-disjoint. This problem can be
easily solved with the network maximal flow algorithms such as Ford-
Fulkerson and Edmonds—Karp [22-25]. However, there are not always
enough network resources to satisfy this ideal reliability requirement.
For example, consider a protected service request that requires K fiber-
disjoint paths but the maximum number of fiber-disjoint paths from
its corresponding peripheral to the hubs is less than K. In this case,
defining the reliability based on the number of fiber-disjoint paths does
not provide enough information to assess reliability. To address this
issue, we redefine the reliability level by taking into account the shared
fiber links. In order to do so, we define a figure of merit that classifies
the fiber links based on the number of times they are selected by the
computed paths. Let us define the vector £ = [I;./,.....Ig], where [,
indicates the number of the fiber links that are assigned to exactly i
path(s) and K is the total number of paths required by the protected
service request. We refer to £ as the peripheral reliability vector with
respect to the network hubs.

The reliability vector is used to evaluate the reliability of any
routing algorithm used to compute the required paths between the
peripheral and all hubs. The ideal reliability for a peripheral node can
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now be described with a reliability vector whose all elements are zero
except the first one (I, > 0). However, as mentioned earlier, this is not
the case in most deployed networks due to a lack of network resources.
In this case the vector £ evaluates the reliability based on the number
of fiber links needed to be added to the network to reach the ideal
reliability, under the following assumptions. The cost of the fiber links
are equal and we can only add fiber links between adjacent nodes.
For example, let the peripheral reliability vector for a protected service
request demanding three paths to each hub in a two-hub network be
[13,3.4.0.0.0]. From the vector, we can conclude that /, =3 and /; = 4
fiber links are shared by i = 2 and i = 3 paths, respectively. In order
to reach the ideal reliability, for every fiber link that is shared by two
paths we need to add an extra fiber link (/; x | = 3) and for every
fiber link that is shared by three paths we need to add two extra fiber
links (/3 % 2 = 8). Therefore, by upgrading the network with 11 (3 + &)
additional fiber links between the proper nodes the ideal reliability is
reached. This means that the network meets the ideal reliability with
the cost of 11 fiber links. We refer to this cost as cost;;,.

K
COStigpm = Y, i X (= 1), (1)
i=l
where [, is the ith element in the vector £ and K is the total number
of paths required by the protected service request.

Given the vector £ as the reliability figure of merit, an objective
function can be defined to optimize it. This objective function is to
minimize the /;s starting from i = K to i = 1. This choice forces the
optimization algorithm to prefer sets of paths that do not excessively
rely on the same fiber link. For example, between the two solutions
£, =[6,3.2] and £, = [6,5. 1], the latter is preferred as only one (/5 = |
in £,) fiber link can disrupt three paths at once when failing, while
the former has two ({3 = 2 in £;). In the next section, we present
an algorithm that computes an optimal topologically sorted directed
acyclic subgraph, from which multiple routing solutions to the hubs
can be obtained straightforwardly. Any routing solution obtained from
the aforementioned subgraph is optimal with respect to the objective
function defined earlier.

5. Computing the most reliable K shortest paths

In this section, we present an algorithm that computes an optimal
topologically sorted directed acyclic subgraph from any given periph-
eral to all hubs. We refer to this subgraph as optimal directed acyclic
subgraph. From this subgraph, possible sets of routing solutions can be
obtained. We refer to each possible set of routing solutions as r, €
R. Every r; contains K most reliable shortest paths which optimize
the vector £ according to the objective function defined in the last
paragraph of Section 4.

The following steps summarize how the algorithm works.

1. Compute all shortest fiber-disjoint paths using Edmonds-Karp
algorithm [25].

2. If all K shortest fiber-disjoint paths are found, then the algorithm
stops and the result is the most reliable set of K shortest paths.

3. If less than K shortest paths are found in the previous step the
remaining paths must use at least one of the fiber links that are
already assigned to the disjoint paths found so far. Therefore, the
algorithm must compute the remaining non-disjoint paths in this
second step to optimize the vector £ according to the objective
function defined in Section 4.

In the rest of this section, we explain how the algorithm computes
the optimal directed acyclic subgraph. Table 1 lists the variables used to
describe the algorithm. Let the directed graph G(V, £, ) with V = |V|
vertices, // = |7{| hubs, and E = |£€| edges describe the optical network
with V nodes, H hubs, and E /2 bidirectional fiber links. Let us add an
extra vertex and H more edges to the graph (. We refer to the extra

Table 1
List of variables and their definitions.
Variable Definition
G(V.E.H) directed graph with |V| vertices, |H| hubs, and |£| edges
v set of vertices in graph G
v; vertex i in graph G, where v, € ¥
£ set of edges in graph G
el v;) the edge connecting v; to v; in graph G, where
elv, ) EL
H sel of vertices in graph G representing the hubs, where
HcVv
h, verlex assigned as the hub in graph G, where h, e H
r set of vertices in graph @ representing the peripherals,
where PcV-H
Pa vertex assigned as the peripheral in graph G, where
p.EP
Vs vertex added to graph G, where v, & V
Fosd set of edges added to graph G, where &' ¢ £
el v,,) edge added 1o graph G connecting b, to v . where
e (hy 0p) € E
elv;, v;) cost of the directed edge from v; Lo v;
fluop) flow of the directed edge from ¢; 1o v;
PR o) kth path from p, 10 v,
Epitsgp oy sel of edges in kth path from p, to v;,, where
Epirgp) SEUED
Table 2
Possible values for fiv,, ;).
flu,v) Definition
=0 the edge e(v;,v;) is used f(u;, v;) times
=10 the edge e(v,, v;) is not used
=0 the edge o v v;) is used | fv,, v;)| times
vertex as the sink node v, and the set of extra edges as £'. Each

extra edge ¢'(hy.v,,,,) C £ connects one of the hubs h; € H to v,,.
Note that the extra edges are only in the direction from the hubs to the
sink node. In the new graph we need to find the paths between any
peripherals p, € P and v,;,,. Every time a path is found, one of the
extra edges is used, e.g., if the extra edge ¢'(h,.v,,,,) is used n times,
we can conclude that n paths from the peripheral to the hub A, are
found. In order to find the same number of paths to all hubs, we need
to make sure that all of the extra edges are equally used.

Let e(v;, v;) and f(v;.v;) be the cost and the flow of the edge e(v;, v;),
respectively. f(v;.v,) indicates the number of times the edge (v, v;) is
chosen. Table 2 lists the possible flow values and their definition.

The initial value of the cost and the flow of edges in & are shown in
Egs. (2) and (3), respectively. Assuming that the shortest path metric
is based on hop-count, the initial cost values are initially set to one.

C(;_J".'_JJ)— | Ve(u,-,vj)eé'
elhy o) = 1. Ve(hyv4,) €E

{f(u,-,uJ )=0,  Ve(w,u)€E 5
Slhyvum) =0, Ve'(hy, v, €E

The algorithm calculates the shortest path a total of K iterations.
Let us refer to the shortest path calculated in the kth iteration as
P®(p,.v,,) and the edges along this path as Epwy,, ) Where k €
[1. K]. Note that these paths are not the final optimal paths, as the al-
gorithm may modify them in the forthcoming iterations. The algorithm
updates the flow and the cost of the edges selected by the shortest path
in each iteration. We explain how the algorithm updates the cost and
the flow values at each iteration next.

The flow value is used to keep track of the number of times each
edge is assigned to one or multiple paths and enables us to correctly
update the cost of the edge. To ensure flow skew symmetry (f(v;,v;) =
—f (L!_,.,;.")], every time an edge e(v;, v ;) is used its flow needs to be
incremented and the flow of the edge in the opposite direction (e(v;, v,))
needs to be decremented. The flow update applied to the edge in the

(63
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opposite direction also helps us to properly adjust its cost at a later step.
These updates for the edges in the direction of the computed path, the
opposite direction of the path, and the extra edge in the path are shown
in Egs. (4), (5), and (6), respectively.

Sy, vy = f(u,,u_,) + 1.

) “
Y e(u;. ﬂj) e (SJ’[‘“W,JJ‘M;.] né&),
S u)= flo,v)—1,
I J {5)
V &0, 0;) € Epmip, ) N E):
S Chy, Ugnp) = SRy Ogie) + 1, ©)

! o f
€ (hy Vyn) € (Epirp p, ) NE)-

Once the flow values of the edges are updated, their cost values can
be updated based on the updated flow values. The cost update for the
edges in the path is as in Eq. (7), the cost update for the edges in the
opposite direction of the path is as in Eq. (8), and the cost update for
the extra edge in the path is as in Eq. (9).

1 — f(u‘,uj_lzti

e(v;, 0;) = ¥/ 0et) = f(v.0;)>0 &
—yti e )= y

V iy — f(ui,L.J)-c(}.

V e(v. v)) € (Eptgy, 0 NE)-

1 — f(uj,ul)zll

(v, ;) = V000 = flvv:)>0
(1 tpe)1-1) ®)

-V bl = f(uj.u,]‘:(}.

V e(w;, 0)) € (Epmr(p, ) N ED:

e(hy, Ugr) = Vf{’fd:"m}.]‘

it Usink )

¢ (hy. Ugink) € (Epwiy, 1,y NE)-

The rationale behind the proposed equations is discussed in this
paragraph. Every time a hub h, is used in the path the cost value
of the extra edge ¢'(h,.v,;,,) multiplies by V. This cost update of the
extra edges guarantees that the hubs are equally reached. As shown in
Table 2, the flow of the edge e(v,.v 1) holds the information about the
edge utilization. The positive flow value indicates that the edge is used
by f(v;,v;) paths. The flow value of zero indicates that the edge is not
or should not be used. The negative flow value indicates that the edge
is not used for f(v;.v;) imes while the edge in the opposite direction
e(v;,v;) is used by f(v;,v;) paths. Recall that the goal of the algorithm
is to minimize the /;s in the vector £ starting from i = K toi = |. As
shown in Eq. (5) if an edge in one direction is chosen for a new path the
flow value of the edge in opposite direction must be decremented. Thus,
if the algorithm selects the edges with lowest negative flow values,
the positive flow values of the edges in the opposite direction are
decremented. Intuitively, the algorithm must always prefer the edges
with the most negative flow values when possible.

To instruct the algorithm to prefer these edges, the cost of them
must reflect their updated flow values as follows. The edges with
the negative flow values must have negative cost values, which make
them more appealing to the shortest path algorithm to select them.”
The edges with zero flow values are assigned cost values of one. The
edges with the positive flow values should have positive cost values
greater than one, which make them less appealing to the shortest path
algorithm to select them. This is done by updating the cost of the
edges in the path in both direction. In each iteration, when the edge
e(v.0;) is chosen, the cost of the edge in opposite direction, e(v;. ),
is set to c(v;,v;) = —c(y;, v;). This cost update makes the edge e(v;,v;)
more appealing to the shortest path by giving back the cost of the edge
e(u. v)) in the next iterations. The cost of the edge e(v;, v ;) must be a
relatively larger value depending on the f(v;,v;) and described next.

2 Since some of the edges have negative cost values, the Bellman—Ford or
similar algorithm must be used to compute the shortest path.

< If f(uv,, u;) > 0, then c{L-“AL.IJ.) = c(u;, v;) X v,
. I.ff(u,‘.v_,) =), then e(u,vp) =1,
- If S, v) <0, then elv, ) = e(y, vy) /V.

To clarify the cost update values for the edge e(v,.v;), assume the
graph & with V vertices is in initial state, meaning that all flow and cost
values are zero and one, respectively. If the edge e(v;, v;) is selected in
a path, its cost is updated to a proper larger value so the algorithm will
avoid selecting it in future iterations until all alternative paths with
lower costs are selected. Straightforwardly, the maximum cost of an
alternative path for e(v,. v ) is (V' —1). Thus, updating the c(v;. v ) from
one to V' guarantees that in the next iterations if the algorithm wants to
reach v; from v, the edge e(v;, v;) will not be selected until all possible
edges with lower cost values are selected.

The cost of the edge e(v;, v;) needs to be updated to “~1" meaning
that selecting this edge in the next iterations will give the cost of
the edge e¢(v;,v;) back. This negative cost update of —1 guarantees
that the graph will not contain any negative loop. By induction, the
same conclusion holds true when the edge is selected multiple times,
i.e., every time and edge is selected its cost must be increased by V
times, e.g., —V? becomes —V or ¥ becomes V. Note that there is an
exception when the flow value is zero at the time of updating the cost.
In this case the cost value should be reset to one.

Let us clarify this point with an example, assuming that e(v;, v;) is
selected for the first time in P™(p, v,,,) in kth iteration. Based on
the flow and the cost update equations reported earlier, the flow and
the cost values of the edge e(v;,v;) are f(v;,v;) = | and e(v;,v;) =V,
respectively, and the flow and the cost values of the edge e(v;.v;) are
f(v;.v;) = =1 and ¢(v;.v,) = -1, respectively. In the case of K
iteration, where k' > k, if e(v;.v,) is selected in P*)(p,.0v,,,,), then the
flow and the cost values of both edges e(v;. ;) and e(v ;- U;) Teset to zero
and one, respectively. This means that e(v;, v;) and e(v;, v,) are not used
in the first place (see the middle entry of Table 2). In other words, if
e(v;,v)) is excluded from P®(p,.v,,,), then the path is divided in to
two parts, the first part is from p, to ¢, {P]m) and the second part is
from v; to v, (sz]. The same logic holds true for excluding e(v;, 1)
from P*)(p,, v,,.) and it results in dividing it in to two parts, the first
part is from p, to v; (Pl{m) and the second part is from v, to v, (P:fm).
Then, P*®(p,.v,,,) and P*)(p  v,,,) can be swapped at the vertices v,
and v, to form two new paths as follows, POy P,:m and P* + P;“.

In summary, the flow and the cost values of the edges in graph &
hold the properties shown in Egs. (10) and (11), respectively.

sink

|f o)l = 1S (v o), ¥ elv; v)) € i
"-"(Ugt L‘j) ! = f(”‘" Lrj) = U
=¥ = f(v,v)>0

c(v,.v) (11)
% ~1/V < f(o.v)<0,

Voe(v,. v;) € £

When all initial K iterations are completed, the algorithm makes
use of the flow values to exclude from the graph the edges with the
flow values less than or equal to zero. The cost values of the remaining
edges are reset to one and their flow values remain unchanged. The
new graph is an optimal topologically sorted directed acyclic subgraph
between the peripheral and all hubs. As mentioned earlier, we refer to
this subgraph as optimal directed acyclic subgraph.

At this point, we can use any path computation algorithm?® for K
final iterations to find one set of routing solutions, r, € R. After
each iteration, the flow values of the edges selected in the path are

# The path computation algorithm in this step does not necessarily need to
be the shortest path algorithm as any path computation algorithm provides a
set of routing solutions which is optimal with respect to the objective function
defined earlier.
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Fig. 3. A directed graph with |V| =9 vertices and |£]| = 26 edges.

decremented. If the flow value of an edge becomes zero that edge must
be removed from the optimal directed acyclic subgraph.

The optimal directed acyclic subgraph can also be used to optimize
a secondary objective function. For example, the secondary objective
function can be maximizing the number of fiber-disjoint paths in a
set of routing solutions. Let us define a new graph called the path
dependency graph with K vertices, where each vertex represents one
of the best reliable K shortest paths. If the paths are not fiber-disjoint
their corresponding vertices in the path dependency graph become
connected with an edge. In order to maximize the number of fiber-
disjoint paths, the number of the edges in the path dependency graph
should be minimized. To achieve this goal, we need to update the cost
values of the edges in the optimal directed acyclic subgraph as shown
in Egs. (12) and (13).

(v v;) ==V W e(u,0) 3 f(o,0,)> 1 12)

e(upo) =—VE v e (hy 04) € E (13)

We then run the shortest path algorithm for K iterations on the
optimal directed acyclic subgraph to find K paths from p, to v,,,,. Let
us refer to the path computed in kth iteration as ’I.(PaT’ where k € [1, K]
and h, is the hub that is used to reach the v,;,,. In each iteration,
a new vertex representing the :r;:’ is added to the path dependency
graph. The flow of the selected edges in the shortest path in the optimal
directed acyclic subgraph is decremented and if it becomes zero the
corresponding edge is removed, except the extra edges. Note that the
negative cost for the edges used more than once instructs the algorithm
to put as many negative cost edges as possible in one path, hence
minimizing the number of the edges in the path dependency graph.
In other words, once two or more paths share at least one edge, they
cannot be considered as fiber-disjoint paths and any additional edge
that is shared by the two paths will not worsen this dependency.

In the last step, when all K paths are computed, the vertices of
the path dependency graph are classified based on ;. In a graph with
H hubs, there exists H groups of vertices where each contains a set
of paths to a distinct hub. Since the cost of the extra edges in the
optimal directed acyclic subgraph are set to the minimum possible
value (—V'5+1) it is possible that the hubs are not equally utilized.
For example, consider the case in which the hub A, is connected to
the hub h; through the edge e(h;. k) in the optimal directed acyclic
subgraph. In this case, it can shown that the shortest path algorithm
never selects the edge e(h,. h;) to be in the shortest path, thus, selecting
one more path to k; and one less path to /;. When this happens, any one
of the vertices in the h; group can be moved to the h; group, in which
case the edge e(h,.h ;) is added to the path associated to the moved
vertex. This procedure gives the algorithm the flexibility to increase or
decrease the dependency between the groups of vertices in the path
dependency graph based on the desired disjointedness criteria.

Next, we explain the algorithm using an example graph. Let the
graph shown in Fig. 3 represent an optical network with 9 nodes and

--efl--tbl:sink:l

.

-t
'y

Fig. 4. The (cost/ flow) update after the first iteration. The shortest path calculated in
this iteration is Emn, o) = [e(v3, 1), ey g ). elvg. vg). € (g, Ui -

"y
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Fig. 5. The (cost/ flow) update after the second iteration. The shortest path calculated
in this iteration is Epay,, ) = [e(0s, v5). evs, v7), ey, ), vy, vg), e(vg. 1y), € (g, Ui )]

13 bidirectional fiber links, where the peripheral is p, = vy, the hubs
are M = [vy. 0y], and the term (1/0) written on the edges indicates the
(cost/ flow) values of each edge. The sink vertex v, and the extra
edges & = [¢'(vg, Uy ). €'(Vg, Uy )] are shown with gray dashed circle
and arrows, respectively. In this example we want to find the best
reliable K shortest paths from ¢4 to the hubs vy and vy, where K = 4.
Therefore, four iterations are needed to find two paths to each of the
two hubs. Figs. 4-7 show the computed shortest path P*(p,, v,,,.) for
k € [1.4], and the cost and the flow updates of the edges after each
iteration. The computed shortest path in each iteration is highlighted
with the black colored edges.

In the first iteration, the first shortest path is computed using the
graph in Fig. 3. The shortest path computed in this iteration is through
the Epiny,, ) = [(03.04). e(vy. 1g), e(0, Ug). ¢'(vg. vy )], with the cost
of 3 to the hub vg. The (cost/flow) update is done after the path is
computed and it is shown in Fig. 4.

In the second iteration, the second shortest path is computed us-
ing the graph in Fig. 4. The shortest path computed in this itera-
tion is through the EPIZ}(:.‘}U_,.MU = [e(vy. v5), e(vs, 1,), (v, vg), e(vg, vg ),
(g, Ug), €' (g, Uy )], With the cost of 3 to the hub v,. In this iteration,
the shortest path algorithm prefers to use the edge e(vy. vy) due to its
negative cost (—1). As described earlier, the algorithm modifies the first
calculated shortest path in this iteration. The (cost/ flow) update in this
iteration is shown in Fig. 5. Note that the edges e(uv. vy) and e(vy. vg)
are reset to initial condition.

In the third iteration, the third shortest path is computed using the
graph in Fig. 5. The shortest path computed in this iteration is through
the Epeyy, 4, = [e(Vs.01). e(v1. 03). ey, vg). € (Uy, Uy )], With the cost
of 3 to the hub vg. The (cost/ flow) update in this iteration is shown in
Fig. 6. Note that after this iteration all edge-disjoint paths are found.
Therefore, in the next iteration some of the previously used edges will
be selected.
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Fig. 6. The (cost/flow) update after the third iteration. The shortest path calculated
in this iteration is Epuyg, .,y = [e(Us. 07), e(vy, 09), vy, vg). € (Vg U1

Fig. 7. The (cost/ flow) update after the fourth iteration. The shortest path calculated
in this iteration is Epay,, .,y = [e(vs, 04), e(vy, vg), e(ny, v5), e{vg, vg). ' (Dy, D).
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Fig. 8. Optimal directed acyclic subgraph.

In the fourth iteration, the fourth shortest path is computed us-
ing the graph in Fig. 6. The shortest path computed in this itera-
tion is through the £pm,, , ) = [e(U3.vy). ey, Ug). e(vg, Ug), e(vg. Ug),
e'(vg. v, )], with the cost of 20 to the hub v,. Since the algorithm
computes the shortest path and the used edges have higher cost values
(9), it then optimally selects the minimum number of the edges that are
used previously, e.g., in this case the edges e(vs. vy) and e(vy. vg). The
(cost/ flow) update in this iteration is shown in Fig. 7.

At this point, the optimal directed acyclic subgraph can be built by
excluding all the edges with the flow values less than or equal to zero
as shown in Fig. 8. Any path computation algorithm can be used for
K = 4 iterations to find a set (r, € R) of best reliable 4 shortest paths
between the peripheral vy and the hubs [vy, vg].

Let us also investigate the secondary objective function defined
earlier in this section. The cost values for the edges e(v4. v,) and e(vy. vg)
are updated to —9° using Eq. (12), and the cost values for the extra
edges ¢’ (vg, v,,) and €' (vg, v,,,;) are updated to —%° using Eq. (13). We

da"\
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Fig. 9. Path dependency graph.

then run the shortest path for K = 4 iterations and the shortest paths
are computed as follows.

(1)

* Ty = U3, 04, U, Ug,
@

* Ty, = U3, 04, U, Do),

(3
* W = [v3. 05, 5. 0],

-] Jri:} = [v5. 0. U5, 0],
where each path is shown with the sequence of the vertices from
peripheral to the two hubs.

The path dependency graph is shown in Fig. 9. The vertices are
classified according to vy and vy. The vy and vy groups are shown with
two dashed rectangles. It can be seen that the vy group has two more
vertices so one of the vertices needs to be moved to the group v,. In this
example, moving ;rf,;} makes the two groups fiber-disjoint but the paths
in the v, group dependent. Two other options are to move xfi‘ or ;rg‘
which both make the paths in both groups fiber-disjoint but the two
groups are dependent. Note that after the vertex is moved to the new
group, the remaining edges in the optimal directed acyclic subgraph
should be added to the moved path, e.g., the edge e(vy. vy) needs to be
added to one of the vertices in vy group after it is moved to vy group.
We can see that in this example, there are three different sets of best
reliable K = 4 shortest paths, all having the same optimized vector L.
The reliability vector obtained for this example is £ = [9.2,0,0] and the
cOStigoq = 2.

It is worth mentioning that since the algorithm is based on Bellman-—
Ford shortest path algorithm, the time complexity for computing K
edge disjoint shortest paths that are most reliable is O(K - |V| - |£]).
When applying cost increments in the order of ||, a numerical problem
may be encountered after many iterations (bounded by K). Solutions

to mitigate this issue will be investigated in the future.
6. Choosing reliable hub locations

In this section we discuss how the best reliable K shortest path
algorithm is applied to select of the most reachable locations for the
hubs in the network. We use the reliability vector £ obtained from the
algorithm to assess the hubs’ reachability. Let us refer to the reliability
vector of peripheral s (p,) as £, , and consider a network with E
directed fiber links and V nodes. We must choose H of the V nodes
to become the hubs. There are N = (V) possibile solutions. We refer
to the mth solution as ¥, where m € [1. N]. We then compute the
reliability vectors for all peripherals for each possible set of hubs 7/,
using the best reliable K shortest path algorithm.

In order to evaluate the hubs reachability from p,, we use two
different cost metrics, the cost;y(p,) as shown in Eq. (1) and the
cost, ;¢ (p,) shown in Eq. (14).

K
cost,rr (p,) = E.", x ED, a4
i=1
where E is the number of fiber links in the network. Eq. (14) evaluates
the reliability vector by assigning heavier weights on the elements on
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Fig. 10. Spanish network topology.

Table 3

Most reachable hubs for case of H =2 and K = 8.
Cosl melric Most reachable hubs Cost
COST gt L2, 726] 5.7143
costige) (24 Ol 104y By)s L85 03], [y, ), 10

[wgs vzl Logs vagls [og, vssls v, 0]

cost, ;. Ly, o) 2904
c'a.rr'g"}‘}"’ ([ | 6692

the right side of the vector. Therefore, a vector with smaller cost,  ( (p,)
value indicates there are fewer fiber links that are shared by multiple
paths. For example, if the reliability vectors for peripherals p, and
p, are £, = [14,4.0,0] and £, = [5210] then costyy, (p,) =
costiy, . (p,) = 4, cost,p ¢ (p) = [I4-|-—4E), and (:axtcff_(py) = (5+2E+ E?).

For each set of hubs 7/, we define the average and maximum
c05l,4,, as shown in Egs. (15) and (16), and the average and maximum
cost,r as shown in Egs. (17) and (18), respectively.

COSigpq) (pa )

ot ot (M) = _ (15)
deal F;}J 7
(:usIE:::I'J (M,,) = max(cost; g, (p,)). (16)
—_— cost,;r(p,)
cost, p (M) = Y — an
psEP P
coxti’}'}f"(ﬂm) = max(cost, ;¢ (py)), (18)

where m € [1. N], P € (V¥ — I,,) is the set of peripheral nodes, and V
is the set of all nodes in the network. Depending on the application we
can use one of the cost metrics shown in Egs. (15)-(18) to find the most
reachable set of hubs.

Finally, for any given cost metric the 7/, is most reachable if its cost
is minimum for all m € [1, N|. Next, we used this approach to find the
set of most reachable hubs in a mesh network based on the mentioned
cost metrics.

Fig. 10 shows the Spanish network topology which consists of V =
30 nodes and E = 2x 56 directed fiber links. We use the best reliable K
shortest path algorithm to find the most reachable set of hubs in this
network, based on the four cost metrics shown in Egs. (15)-(18).

Tables 3 and 4 show the results of the most reachable hubs for the
cases of H =2, K = §and H = 3, K =9, respectively. It can be seen
that some entries of the tables have more than one set of hubs which

Table 4
Most reachable hubs for case of H =3 and K = 9.
Cost metric Most reachable hubs Cost
ﬁidm} Logs 3y 23ls Loy 013, Ul L, D4y Unl, 6.5556
Logs 0y vy Loy, 0455 D) Loy, 04, 2,
L I ) O S |
“0“:::::" Loy Opas U ls Lo Uy, 3]s Logs 030 03], 9
Loy vy3e )y Logs Uyee U5 Lge 0y, U2k,
oy, s 03, Loy, 012, Unls Loy, 013, Unl,
Loy 43, v3ls [0y, O1gs 0l Ly, 140 O,
vy vi2s s 03, U4z, Unly Loa, 013, U],
[vas sy vl Loay Oyge v2ls Lo, 0y, 03]
m,”_ [ty 35 Bys)s Lgs By4e 0]y Loy, 05, 0]y 4988.7
Loy, 14 025]
cnﬂ:’;?'] [0y, 0430 vy L0y, 055, 03] 9601
Table 5
Run-time of the best reliable K shortest path algorithm.
H K Total run-lime Average run-time per
(s) H,, (ms)
2 8 3.3679 7.7
3 9 30.9371 7.6

means there are multiple solutions yielding the same reliability based
on the chosen cost criteria.

Table 5 shows the run-time of the algorithm for the two examples
shown in Tables 3 and 4. The third column shows the total run-time to
compute all best reliable K shortest paths for all peripherals for each
set of hubs and obtain their reliability vectors in seconds. The algorithm
runs for the total time of (V' — H)x N, where N = (;} The average run-
time per set of hubs is shown in the fourth column, and it indicates the
average run-time to compute all K paths from all peripherals to only
one set of hubs.

7. Summary

This work investigates the architecture of a multi-hub optical edge-
to-core transport network, focusing on improving its achievable re-
liability and traffic load balance by strategically locating destination
nodes (the hubs) and optically routing communication paths between
peripheral nodes and said hubs. A new figure of merit is proposed to
estimate the achievable network reliability by considering the number
of communication paths relying on the same common risk links (SRLG).
By defining this figure of merit as the objective function it is possible
to optimize connection reliability and traffic load balance while coping
with the limited fiber cable diversity found in typical edge-to-core
network topologies.

A key enabler of the proposed concept is the proposed algorithm
that efficiently computes an optimal topologically sorted directed acyclic
subgraph between peripheral and hub nodes. The subgraph serves as
a building block to further compute multiple optimal routing solutions
that meet the defined objective function, thus maximizing the achieved
network reliability, subject to the existing fiber-link topological con-
straints. Furthermore, this algorithm can be implemented in a network
planning tool to (1) choose the most reliable locations for the hubs
connecting to the core and (2) compute a set of pre-computed primary
and restoration paths that jointly meet the objective function. The pre-
computed paths can be stored in the path computation element of the
network controller to manage network fiber resources in real-time.

Looking ahead the proposed algorithm’s capabilities can be enriched
by considering additional design factors such as node or site disjoint-
ness, uneven fiber cable outage probabilities, and secondary objective
functions, e.g., minimizing signal end-to-end propagation time. The
ultimate goal is to design efficient routing algorithms that — building
upon the optimal acyclic subgraph — can compute communication paths
that satisfy additional objectives and constraints, therefore enhancing
the applicability and broader performance of the proposed concept.
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