
An End-to-End DPDK-Integrated Open-Source 5G Standalone Radio Access Network:
A Proof of Concept

Abhishek Bhattacharyya1, Shunmugapriya Ramanathan2,∗, Andrea Fumagalli2, Koteswararao Kondepu1

Abstract

The fifth-generation mobile networks are designed to accommodate billions of users worldwide with numerous appli-
cations and different service level requirements by providing significantly high data rates and availability with reduced
latency. These requirements can be achieved by exploiting Next Generation - Radio Access Network (NG-RAN) ar-
chitectures. One such famous architecture is Cloud Radio Access Network, whose Next Generation NodeB functions
are physically decoupled into different entities — Radio Unit, Distributed Unit, and Central Unit. The Central Units
are connected to the 5G Core Network, and all the components are likely to be virtualized and run on the commercial
off-the-shelf hardware in the micro/macro data centers.

However, the inherent drawbacks of traditional kernel-based networking approaches, including context switches,
interrupt handling, and memory copies, pose significant challenges in achieving the above challenges faced by the 5G
mobile network operators. To address these overheads in the Kernel packet processing, Kernel bypass techniques like
Data Packet Development Kit (DPDK) must be incorporated into the 5G architecture. In this work, we present the
DPDK framework integrated into the publicly available open-source OpenAirInterface software modules. The design and
implementation features are incorporated into the 5G radio access network modules, namely DU and CU, and the core
network module, User Plane Function (UPF). The measurements taken in the 5G network show performance improvement
when deploying the DPDK techniques over the network interface in the 5G midhaul and backhaul communication.
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1. Introduction

5G technology has the potential to revolutionize a wide
range of industries and enable various usage scenarios due
to its enhanced speed, capacity, low latency, and reliabil-
ity. Some of the key 5G usage scenarios are Enhanced Mo-
bile Broadband (eMBB), massive Machine-Type Commu-
nication (mMTC) and Ultra-Reliable Low Latency Com-
munication (URLCC). eMBB is one of the most common
and straightforward use cases for 5G. It offers significantly
faster download and upload speeds than 4G LTE, making
it ideal for streaming high-definition video, online gaming,
and other data-intensive applications. In mMTC, 5G can
support many low-power, low-data-rate devices simultane-
ously. This makes it suitable for connecting a wide range
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of IoT devices, such as smart meters, sensors, and wear-
able devices, which require long battery life and efficient
use of network resources. URLLC applications require
near-instantaneous response times, such as autonomous
vehicles, remote surgery, and industrial automation, which
benefit from 5G low latency and high reliability. URLLC
ensures that data is transmitted and received with mini-
mal delay.

Network Functions Virtualization (NFV) and
Software-Defined Networking (SDN) are two key en-
ablers that play an essential role in the 5G network
deployment. NFV technology involves virtualizing net-
work functions traditionally performed by specialized
hardware commodities. It decouples the network function
from the proprietary specialized hardware by virtualizing
it and allows the software-based virtualized instance
to run on the commercial off-the-shelf (COTS) servers.
With the advances in general-purpose computing hard-
ware, it is now feasible to run virtualized LTE and 5G
network functions on the COTS servers. This feature
provides tremendous benefits to telecommunication
service providers, where multiple instances of virtualized
5G functions can run on the same high-volume server
simultaneously, leading to higher flexibility, scalability,
and cost efficiency. However, in the COTS server, a
significant number of considerations need to be taken
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into account to match the carrier-grade performance
and reliability features of the highly optimized custom
hardware platform.

When 5G Virtualized Network Functions (VNFs) are
deployed on Virtual Machines (VMs) hosted in a cloud in-
frastructure, the amount of network traffic handled by a
single server is expected to increase significantly. So when
multiple VNFs run simultaneously, processing a significant
number of packets per second may lead to performance
challenges. As a result, the performance of the VNFs han-
dling the client’s requests depends hugely on the system’s
architecture features, such as memory access, task resource
allocation, network I/O, etc. Considering the significance
and importance of I/O performance in cloud infrastruc-
ture, various software and hardware optimizations are re-
quired to enhance the system’s performance to improve
the performance and efficiency of I/O (Input/Output) op-
erations.

In addition, there are some inherent drawbacks of tra-
ditional packet processing when a packet arrives at the
Network Interface Card (NIC). These drawbacks are in
the form of severe performance bottlenecks faced by tra-
ditional network stacks due to the limitation of the hard-
ware platform in the process of sending and receiving pack-
ets —- remains one of the significant challenges that need
to be addressed. Various overheads in the form of con-
text switches, locking mechanisms on shared data struc-
tures, interrupt handling, and memory copies have caused
modern-day high-performance NICs to fail to achieve the
desired line rate. Therefore, acceleration techniques be-
comes very necessary in 5G networks to achieve the desired
level of QoS required by billions of users worldwide. Var-
ious software acceleration techniques are proposed in the
literature that can enhance network performance. Data
Plane Development Kit (DPDK) [1] is one such acceler-
ation technique that bypasses the typically feature-rich –
thus bulky – networking stacks realized in an operating
system (OS) kernel, dropping unneeded features. DPDK
is one of the most common kernel bypass techniques that
provides a set of data plane libraries for implementing user
space poll-mode drivers and making the communication
between NIC and applications in user space possible with-
out kernel involvement and eliminating kernel overheads,
as discussed above.

In our proposed work, we incorporated one of the well-
known DPDK frameworks named Accelerated Network
Stack (ANS) to accelerate communications in the 5G User
Plane (UP), which is responsible for the proper flow of
data packets from the User Equipment (UE) to the Data
Networks (DN). We aim to optimize user data communi-
cations on the 5G midhaul User Plane tunnel between DU
and CU components and the backhaul User Plane tunnel
between CU and UPF components to achieve the lowest
possible end-to-end latency. This is beneficial consider-
ing the critical latency requirements imposed by various
5G use cases. The detailed paper contributions are high-
lighted as follows: (i)designing and integrating the DPDK

framework on the publicly available open-source OpenAir-
Interface (OAI) Radio Access Network and Core Network
on the 5G midhaul and backhaul user data traffic commu-
nication; (ii) Control User Plane Separation (CUPS) im-
plementation in the open source OAI to make end-to-end
DPDK integration successful; (iii) Two different designs
are considered based on the CUPS architectures defined
in 3GPP 38.401, where multiple DUs are connected to a
single CU on User Plane. Thus, there is a strong need
for acceleration at the User Plane. This paper provides
midhaul DPDK-based acceleration as a proof-of-concept
to address the acceleration at the User Plane. In addition,
the paper provides insights and design challenges on end-
to-end DPDK acceleration; (iv) The paper also provides
extensive experimental evaluation by considering the real-
time video transmission impact on the design implementa-
tion and also the impact of different network parameters —
Throughput, Latency, Jitter, and Packet loss. (v) The ob-
tained results are compared with Kernal-based implemen-
tation and observed the performance improvements when
deploying the DPDK-based techniques over the network
interface in both midhual and backhaul communication.

2. Related Work

In the past extensive research and studies have been
done in the field of DPDK for achieving enhanced perfor-
mance. [2] developed UDPDK, a DPDK-based middle-
ware to address the critical shortcomings of existing kernel-
based networking solutions to achieve high-performance
networking. Experimental results on the testbed showed
that by incorporating the UDPDK framework in their ap-
plications they can achieve a reduction of 69% in the over-
all end-to-end latency. Some well-known DPDK frame-
works exist in literature (mTCP, F-Stack, etc) which are
discussed in Section 3.1. In [3], a DPDK-based NFV ar-
chitecture is presented where monolithic VNFs are disag-
gregated into lightweight “micro” VNFs, enabling a finer-
grained resource allocation and reducing redundancy in
the network stack. Authors in [4] are able to obtain a la-
tency reduction of nearly an order of magnitude by the
adoption of DPDK in-game servers. They showed how
latencies can be reduced by using the packet processing
framework DPDK to replace the operating system’s net-
work stack. In [5] authors are able to achieve a significantly
higher packet throughput performance using Single Root
I/O VIrtualization (SR-IOV) and DPDK in unison com-
pared to the traditional processing with the Native Linux
Kernel network stack.

In the field of Long Term Evolution (LTE) and 5G
networks, researchers started exploring the usefulness of
DPDK to evaluate performance improvements. In [6], the
authors investigated USRP Hardware Driver (UHD) driver
with DPDK in a Software Defined Radio (SDR) based en-
vironment and applicable to SDRs using UHD and an In-
tel NIC to transfer radio samples between the SDR and
the host computer. The results presented using the iperf3
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network performance application showed performance im-
provements when a Kernel bypass framework like DPDK is
used to facilitate data transfer over the network interface
between the SDR application and the radio hardware.

To the best of our knowledge, prior research has not
demonstrated the integration of DPDK frameworks within
open-source repositories that implement the 3GPP 5G
protocol stacks, such as OpenAirInterface (OAI). This pa-
per presents a comprehensive integration of the renowned
DPDK-ANS framework into the OAI repository, encom-
passing the DU, CU, and CN components. Our find-
ings reveal a significant performance boost, with increased
throughput and decreased latency, compared to the con-
ventional Kernel-based implementations of the 5G proto-
col stack.

3. Background

3.1. DPDK Overview
Data Plane Development Kit (DPDK) is an open-

source software project managed by the Linux Founda-
tion [1]. DPDK consists of a set of libraries and user space
poll mode drivers for faster packet processing and pro-
vides the framework and Application Programmable In-
terfaces(APIs) for high-speed networking applications. As
shown in Fig. 1, DPDK process packets in the user-space
without involving the kernel network stack by a bypass
mechanism, thus eliminating the overheads involved in ker-
nel packet processing. One such overhead is the interrupt
mechanism which happens when there is a context switch
from kernel space to user space and vice versa. When a
packet is received by the Network Interface Card (NIC),
it passes to the receive queue or RX. From there, it gets
copied to the main memory via Direct Memory Access
(DMA) mechanism. Afterwards, the system needs to be
notified of the new packet and pass the data into a spe-
cially allocated buffer which is dynamically allocated by
the Linux Kernel for each packet that is received by the
network. To perform the aforementioned operation, Linux
Kernel uses an interrupt mechanism to perform a context
switch from user space to kernel space for every packet
which arrives in the system for a kernel read operation.
Once the processing is done, the packet needs to be trans-
ferred to the user space which involves a context switch
back from the kernel space to user space. The two main
advantages of using DPDK: (i) to eliminate this context
switching back and forth leading to minimized overheads
compared to the Linux Kernel; (ii) to eliminate the need
for dynamic allocation of memory buffers when a packet
arrives and also eliminates the need for packet copy be-
tween kernel and user space. This is achieved by making
the network card interact with DPDK special drivers and
libraries without involving kernel overhead.

3.2. DPDK Framework
There are various high-performance user-space net-

work stacks developed on top of high-performance low-
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Figure 1: Kernel vs DPDK Mode

level frameworks like DPDK or netmap and, sometimes
relying on code “borrowed” from widespread operating
systems like Linux or FreeBSD. mTCP [7] is one such
highly scalable user-level TCP stack designed for scala-
bility on multicore systems. F-Stack [8] is another open-
source high-performance network stack based on DPDK
which provides ultra-high network performance that the
network card can achieve under full load supporting a mil-
lion number of connections. This framework also provides
an Epoll/Kqueue interface that allows various kinds of ap-
plications to easily use F-Stack. Another well-known pop-
ular stack named FD.io [9] Transport Layer Development
Kit (TLDK) includes a set of libraries for L4 protocol pro-
cessing (UDP, TCP etc) for both IPV4 and IPV6. It is
maintained to support the development of Vector Packet
Processing (VPP), a high-performance software switch.
Since it is highly focused to meet VPP requirements, its
API is not meant to be compatible with POSIX sockets,
limiting its applicability. SeaStar [10] is another event-
driven framework with its own TCP/IP stack allowing us
to write non-blocking, asynchronous code in a relatively
straightforward manner. The Linux TCP/IP stack is also
ported to the DPDK platform in IPAugenblick [11] hav-
ing POSIX-like API, which relies on a background pro-
cess to act as a glue component between poll-managed
devices and applications. However, this project has not
seen any active development since 2016. Accelerated Net-
work Stack (ANS) [12] is one of the most popular native
TCP/UDP and IP protocol stack that provides a user-
space TCP/UDP stack for use with Intel DPDK. UD-
PDK [2] is another UDP stack developed on top of DPDK
similar to ANS but lacking in the ability to provide non-
blocking API (such as epoll, event) support. 5G user plane
relies on UDP and therefore our initial focus is limited to
ANS, UDPDK, TLDK in FD.io frameworks that support
UDP/IP stack over DPDK.
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4. Design

4.1. 5G User Plane and GTP-U Tunnel
Fig. 2 shows 5G RAN User Plane Protocol Stack that

uses GPRS Tunneling Protocol (GTP-U) for carrying the
Protocol Data Units (PDUs) for the end-users. In 4G LTE
and 5G system, to provide mobility to the UE and cope
with the resulting network topology dependencies, the UE
uplink and downlink IP packets are routed through a GTP
tunnel. Tunnel Endpoint Identifier (TEID) values are mu-
tually exchanged between the base station and UPF to
ensure the proper flow of data traffic. As shown in Fig. 2,
the 5G User Plane uses UDP for the transport layer pro-
tocol that is placed in the GTP header. For instance,
considering the UE uplink communication, the IP data
packet is first encapsulated at the gNB_vDU by adding
its IP/UDP/GTP header and transmitted in the GTP tun-
nel to reach the gNB_vCU. The gNB_vCU replaces the
outer header with its IP/UDP/GTP header and sends it
to the User Plane Function (UPF). The UPF decapsulates
the outer header and passes the original UE IP data packet
to the Internet/Packet Data Network (PDN). The GTP-U
communication, along with the UDP/GTP header addi-
tion is illustrated in Fig. 3. The OAI software modules
(gNB_vCU, gNB_vDU and UPF) implement the above-
mentioned data plane connectivity by using the Linux Ker-
nel module. Our design strategy involves using DPDK
with higher layer user-space stack to enable the GTP user
plane communication for a better performance.
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Figure 2: 5G RAN User Plane Protocol Stack

4.2. DPDK Integration with Open Source Stack (OAI) 5G:
Challenges Encountered

The following section lists the integration challenges
faced by the user-space stack selection (for DPDK) and
integrating with the 5G standalone module (i.e., OAI 5G
RAN, SRS 5G RAN).

• Socket IO Event Notification: 5G user plane uses
the UDP socket programming for communication
among the modules, namely gNB_vDU, gNB_vCU
and UPF. There are several ways to handle the event
notification between the server and the client. Epoll
is a Linux kernel system that calls for a scalable I/O
event notification mechanism [13]. The traditional
select and poll based system calls operate in O(n)
time complexity to poll for the IO events. For a

demanding application (i.e., 5G network stack) that
has a larger number of watched file descriptors, epoll
based event notification mechanism provides a bet-
ter performance improvement. The epoll operators
in O(1) [14] time complexity by monitoring multiple
file descriptors to check if any I/O event is possible
on any of them. The open-source 5G modules make
use of epoll based event notification for the GTP
user data communication. From the available open-
source UDP over DPDK user-space stacks namely
ANS, UDPDK and TLDK, TLDK are not compli-
ant with the traditional BSD Socket based API. And,
UDPDK does not support epoll based event notifica-
tion. Since ANS over DPDK works on both TCP and
UDP-based communication and supports the epoll
event notification, we selected ANS over DPDK for
integration with the 5G stack.

• CMake/Make Build System : CMake is cross-
platform free and open-source software for build au-
tomation, testing, packaging and installation of soft-
ware by using a compiler-independent method [15].
CMake is driven by the CMakeLists.txt files writ-
ten for a software project. CMakeLists.txt file con-
tains a set of directives and instructions describing
the project’s source files and targets (executable, li-
brary, or both). The open-source 5G stack (OAI,
SRS 5G) uses CMakeLists.txt file to compile and
build the executable files. In contrast, ANS over
DPDK uses Makefile to build the executable files
from the source files — which have to include nu-
merous Makefiles [16].
Our challenge comes in the way of integrating Make-
file from ANS to CMakeList in OAI 5G to use the
ANS API calls for the GTP-based UDP communica-
tion.
We started with the integration of ANS header and
library files to the OAI CMakeLists.txt. As the first
step of integrating the DPDK-ANS APIs in the OAI,
it is required to initialize the DPDK-ANS Socket by
the function call anssock_init. But when the ANS
socket initialization API was called, it led to un-
successful initialization of DPDK tail Queues. Tail
queues are data structures used by DPDK to manage
different types of objects efficiently and are a funda-
mental part of DPDK’s runtime environment used
to store and manage its data structures. The root
cause of this problem was primarily due to CMake-
Lists.txt not being able to include the dependant
DPDK Makefiles which generates .map files along
with the target executable for the proper functioning
of the DPDK ANS libraries. To overcome this issue,
we developed our own Makefile to create our target
executable for gNB-CU and gNB-DU which was ear-
lier created by the CMakeLists.txt file in OAI. With
the proposed Makefile, we are able to include other
numerous dependant DPDK Makefiles in our custom
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Figure 3: GTP Tunnel Uplink data traffic

Makefile to generate the .map executables along with
our gNB target executables.

• Control/User Plane Separation : Control/User Plane
Separation (CUPS) was another challenge we faced
while integrating DPDK libraries into our publicly
available open-source OAI software. The OAI uses a
single interface for transferring both Control Plane
and User Plane-oriented messages between the gNB-
CU and gNB-DU sides. But our focus is to accelerate
the User Plane communications using DPDK and let
the signalling/control oriented messages use the tra-
ditional in-kernel networking stack. To achieve this,
two different interfaces for the Control Plane and
User Plane oriented message transfer are needed so
that the Control Plane interface is bound to the ker-
nel drivers using the traditional kernel stack and the
User Plane is bound to DPDK poll mode drivers
(VFIO). To achieve the aforementioned objective,
CUPS related code changes are contributed by us
at gNB-CU and gNB-DU sides, respectively.

The architecture with these dual interfaces is used
for implementing the DPDK (as shown in Fig. 6).
To make CUPS integration successful, the follow-
ing contributions are introduced in the OAI source
code: (i) Port Number and IP address: Port Num-
ber is used to create socket file descriptors for con-
trol plane-oriented message transfers. IP Address
specifies the address for these socket file descriptors.
These parameters are incorporated in the configura-
tion file of OAI and code modifications are made
in the gnb_config.c and gnb_paramdef.h to allow
communication between the gNB-CU and gNB-DU

for the signaling messages. The gNB-CU and gNB-
DU leverage these configuration parameters to cre-
ate a socket for signaling-oriented message trans-
fer. Specifically, the function send_sctp_init_req
in the F1AP file is responsible for creating this
socket. (ii) gNB-CU modifications: For acceler-
ating data transfer using DPDK, the existing pa-
rameters from the configuration file are utilized.
These sockets are distinct from the signaling-oriented
ones and optimized for efficient User Plane com-
munication. (iii) gNB-DU modifications: Similar
steps are followed for the gNB-DU side, albeit with
some variations. In the f1ap_du_task.c file, the
two parameters defined in the files gnb_config.c and
MACRLC_nr_paramdef.h are used. The function
responsible for creating sockets in the gNB-DU is
send_sctp_association_req. This subsection high-
lighted the CUPS implementation specifically re-
lated to the DPDK, however, the detailed informa-
tion on CUPS design and implementation is dis-
cussed extensively in [17].

4.3. General Design
Fig. 4 shows the GTP User Plane data communication

in the uplink direction. Once the UE is attached after
the RRC connection setup, a default radio bearer (tunnel)
is created exclusively for the UE internet communication.
When the UE sends an IP packet to the internet, a se-
quence of actions is performed in various modules with our
emphasis on the GTP tunnel part, as simplified below.

• In the gNB_vDU module:
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1. PHY layer receives the UE message.
2. After the internal processing by the MAC and

RLC layers, it encapsulates the UE message in
a GTP header, as detailed in Sec. 4.1.

3. In the interprocess communication and syn-
chronization handling, the RLC task sends the
message to the GTPV1u handler through the
message queue

4. GTPV1u handler receives the encapsulated
message in the gtp message queue

5. GTPV1u handler sends the message to the
gNB_vCU through a tunnel as an exter-
nal event. The tunnel is identified by the
corresponding Tunnel End Pointer Identifier
(TEID).

• In the gNB_vCU module:

1. GTPV1u handler receives the message from the
gNB_vDU module as an external event (from
the tunnel).

2. GTPV1u handler sends the message to the
PDCP layer through the message queue.

3. PDCP layer prepares the GTP header informa-
tion and informs the GTPV1u handler to for-
ward the message to the 5G Core Network.

4. GTPV1u handler sends the message to the
5G_CN through a tunnel as an external event.

• In the 5G_CN module:

1. The UPF of 5G_CN receives the GTP message
from the gNB_vCU module.

2. It decapsulates the original UE message from
the GTP header.

3. Sends the UE message to the Internet.

Similarly, to send an IP message from Internet to the UE,
the following sequence of actions will be performed in the
downlink direction as shown in Fig. 5.

• In the 5G_CN module:

1. The UPF receives the message from the Inter-
net.

2. It encapsulates the Internet message into the
GTP header with the TEID information.

3. It sends the message to the gNB_vCU through
the GTP tunnel.

• In the gNB_vCU module:

1. The GTPV1u handler receives the GTP mes-
sage from the 5G_CN.

2. It forwards the message to the PDCP layer.
3. The PDCP layer changes the GTP header infor-

mation and sends it back to GTPV1u handler.
4. The GTPV1u handler sends the message to the

gNB_vDU through the GTP tunnel.

• In the gNB_vDU module:

1. The GTPV1u handler receives the GTP mes-
sage from the gNB_vCU module.

2. It forwards the message to the RLC layer.
3. The RLC layer decapsulates the GTP message.
4. After the internal layers processing, the Inter-

net message is sent to the UE.

In this GTP user data communication, the gNB_vCU
plays a critical role in receiving GTP messages either from
the gNB_vDU and/or from the 5G_CN UPF. There-
fore, the GTPV1u handler will always be in a blocking
call to check for any external event from gNB_vDU and
5G_CN UPF. Two design strategies are considered to re-
alize DPDK based 5G user data communication.

The following subsections describe the considered
DPDK designs, namely Hybrid DPDK Model and End-
to-End DPDK Model.

4.3.1. Design 1 — Hybrid DPDK Model
In this model, we envisioned the DPDK integration

in the midhaul interface (the GTP F1-U tunnel) be-
tween the gNB_vDU and gNB_vCU modules. This
model is referred as hybrid since for the same user-plane,
the gNB_vCU communicates with the gNB_vDU using
the DPDK APIs using DPDK poll mode driver and the
gNB_vCU communicates with the 5G_CN UPF using
the Kernel APIs using Kernel network driver. This hybrid
model acts as a proof of concept of DPDK integration in
the 5G midhaul interface.

The gNB_vCU design complexity involves the
GTPV1u handler polling for vDU messages using the
DPDK API call and polling for CN messages using the
different Kernel API call. Therefore, a single blocking-
based epoll mechanism will not work in this hybrid mod-
ule. This hybrid model is envisioned using the timed-based
epoll wait mechanism since the GTP message could be re-
ceived from either of the two adjacent modules for the
vCU. The GTPv1U handler module is designed as follows
in the hybrid mode:

1. Timeout Configuration Option - wait time to receive
GTP tunnel messages from the neighboring modules

• kernel epoll_wait timeout addition -

• ANS over DPDK epoll_wait timeout addition

2. If EPOLL_IN is enabled in kernel epoll_wait, re-
ceive the GTP message from the CN through the
kernel API receive command.

3. If EPOLL_IN is enabled in ANS DPDK epoll_wait,
receive the GTP message from the distributed net-
work (gNB_vDU) through ANS API receive com-
mand.

4. When receiving an internal event from the message
queue, check the destination address of the GTP
message

8



• If the destination address matches with the
5G_CN address, send the GTP message
through the kernel API send command.

• If the destination address matches with the
gNB_vDU address, send the GTP message
through ANS API send command.

Note that the interprocess communication uses the
semaphore based epoll_wait and it will be based on the
kernel system call for the communication across multiple
tasks within the same module.

4.3.2. Design 2 — End-to-End DPDK Model
In this model, we envisioned the DPDK integration for

both the midhaul interface (the GTP F1-U tunnel) and the
backhaul interface ( the GTP NG-U tunnel). This model
is called end-to-end since all three modules (gNB_vDU,
gNB_vCU and the 5G CN UPF) have the DPDK inte-
gration enabled for the GTP tunnel communication. As
shown in Figs. 4 and 5, both the GTP tunnels in the
midhaul and backhaul network communicate using the
DPDK poll mode drivers to accelerate the packet process-
ing improvement to a greater extent. In this design, the
ANS over DPDK integration is made in all three mod-
ules with the GTP socket programming communication
changes along with the CMakeFile changes. The UPF in
the 5G CN communicates with the SMF using the stan-
dard kernel API calls and with the CU socket using the
DPDK API calls. To achieve this separation, two separate
interfaces are created in the UPF container — one for SMF
communication and another for CU communication. As
mentioned in sec. 4.3.1, the interprocess communication
still makes use of kernel system call for the semaphore-
based epoll_wait, since these messages are internal and
will not interact with the NIC card for any performance
optimization.

5. Implementation

The design in Section 4.3 is implemented by extending
OAI 3 — an open-source software implementation of the
5G Standalone project. OAI project implements the 3GPP
technology on the general purpose x86 computing hard-
ware combined with the software-defined radio cards. .
Our proof-of-concept implementation is open-source avail-
able in Box4. Most of the DPDK support-related code
changes in userspace are done in the GTPv1-U (GPRS
Tunneling Protocol v1 - User) folder. GTPv1-U exchanges
user data over GTP tunnels between network nodes. It
uses User Datagram Protocol (UDP) with the IPv4/IPv6
support. The version history file lists changes applied to
all other files to achieve DPDK integration support.

3https://gitlab.eurecom.fr/oai/openairinterface5g
4https://app.box.com/folder/225989759397

5.1. GTP Tunnel with DPDK Integration between DU and
CU - Hybrid Mode

In the hybrid mode, the DPDK integration is real-
ized only on the midhaul User Plane communication. The
CU code changes are incorporated to communicate in the
DPDK mode with the DU and in the kernel mode with the
CN module as shown in Algorithm 1. The gtp_interface
module in the gtpv1U is altered to provide this hybrid sup-
port based on the IP Address and Port Number parame-
ters read from the configuration file (see line 1). After get-
ting the peer Port information, the Port Number is checked
whether it matches with the DU or the CN Port (see lines
4-6). If the peer Port is matched with the DU Port, then
by using DPDK ANS APIs — create epoll file descriptors,
create and bind sockets for UDP communication, and then
add the sockets to them (see lines 7-9). Otherwise, the con-
ventional kernel-based ones for CN ports are created (see
lines 11-13). Finally, the socket_create_status is assigned
to the output staus variable (see line 15).

Algorithm 1 UDP ServerSocket Initialization
1: Input: peerAddress Info
2: Output: status
3: Function Name: udpServerSocket
4: Read the DUIP and DUPort details from the config

file
5: Get the peerPort from peerAddress structure
6: if peerPort == DUPort then
7: Create anssock epoll
8: Create and bind ans socket for UDP communicate
9: Create EPOLLIN event and add the ans socket to

the EPOLL_CTL_ADD
10: else
11: Create kernel epoll
12: Create and bind kernel socket for UDP communi-

cate
13: Create EPOLLIN event and add the kernel socket

to the EPOLL_CTL_ADD
14: end if
15: status = socket_create_status

After the socket initialization, whenever a mes-
sage from the PDCP layer, the function call
gtpv1uCreateAndSendMsg is invoked (see in line 3)
as described in Algorithm 2. Upon triggering the func-
tion, the DU IP address and DU port details are obtained
from the configuration file (see line 4), and checks to
select either DPDK-based UDP tunnel or Kernel-based
UDP tunnel (see line 5). If the peer IP and Port is of
DU then DPDK ANS API calls are used for sending the
packets (see line 6) otherwise Kernel-based API calls are
used (see line 8). Finally, the send_status is assigned to
the output status variable (see line 10).

The gtpv1uTask function call as stated in Algorithm 3
is based on the epoll wait mechanism. The function call
iteratively checks if the IntertaskInterface_event is true
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Algorithm 2 GTPV1U Send Message
1: Input: peerIP, peerPort, teid, msg
2: Output: status
3: Function Name: gtpv1uCreateAndSendMsg
4: Read the DUIP and DUPort details from the config

file
5: if peerIP == DUIP AND peerPort == DUPort

then
6: anssock_send command is initiated on the tunnel
7: else
8: kernel_send command is initiated on the tunnel
9: end if

10: status = send_status

— the type of message received from the PDCP layer (see
lines 4-6). If the type of the message is GTPSendMsg, then
the CU calls GTPV1U Send Message Function (defined in
Algorithm 2) to send packets to either DU/CN (see lines
7-8). Otherwise, the CU waits to receive messages from ei-
ther DU/CN.. As stated above, our implementation added
the timer values for each event wait in the configuration
file. Based on the timer configured, the CU gtpv1uTask
function waits for that predetermined period on the net-
work nodes (see line 11). After a designated period, when
the CU sends data packets to either CN/DU, subsequently
calls either the Kernel-based APIs to receive and process
UDP packets from CN (see lines 12-14), or the ANS DPDK
APIs to handle UDP packets received from DU (see lines
16-18). The steps outlined in lines 8-16 accomplish the
desired functionality and procedure for receiving and pro-
cessing these packets accordingly.

Note that similar types of functional changes in the
send and receive are performed on the DU side of the gtp
code to support the DPDK-based midhaul GTP commu-
nication.

5.2. GTP Tunnel with DPDK Integration among DU, CU
and CN — End-to-End DPDK Mode

In the end-to-end DPDK mode, the DPDK integration
is realized on both the midhaul and backhaul user data
communication. The UPF module in the CN is modified
to accommodate DPDK-based GTP tunnel communica-
tion with the CU module. The docker build command
builds the docker container image for the UPF module.
The CU module interacts with both DU and UPF of the
CN using ANS DPDK communication. In the CU mod-
ule, Algorithms 1-3 are modified in the GTPv1u task to
accommodate the socket creation, bind, send, and receive
using the ANS DPDK libraries running in the user space
to communicate with DU and UPF. In the UPF module,
the GTPv1u task uses the ANS DPDK API calls for the
UDP communication, as mentioned below. After read-
ing the IP and port details from the yaml file, it creates
and binds kernel socket for Control Plane communication
with the SMF and ANS DPDK socket for GTP User Plane

Algorithm 3 GTPV1U Receive Message
1: Input: None
2: Output: None
3: Function Name: gtpv1uTask
4: while true do
5: if IntertaskInterface_event is TRUE then
6: Check the msg-type received from PDCP layer
7: if msg-type is GTPSendMsg then
8: Call GTPV1U Send Message Function
9: end if

10: end if
11: Read the Kernel_timeout and DPDK_timeout

from the configuration file
12: Wait for CN messages with the kernel_timeout
13: if Kernel_epoll_events then
14: Call Kernel_receive command and process the

received message
15: end if
16: wait for DU messages with the DPDK_timeout
17: if DPDK_epoll_events then
18: Call anssock_receive command and process the

received message
19: end if
20: end while

communication with the CU (see lines 4-6). Once the In-
tertaskInterface_event is true, UPF checks the message
type received. If it is of type GTPU, then GTPU ANS
DPDK Send Message Call is called else Kernel Send Mes-
sage Call is called (see lines 9-14). Otherwise, the UPF
module waits for a predefined amount of time based on
the Kernel_timeout and DPDK_timeout values config-
ured (see line 17-19). If the DPDK_epoll_events is en-
abled it calls ANS DPDK API to receive the message else
it receives and processes the message using the normal
Kernel-based API (see lines 20-23).

6. Performance Evaluation

6.1. Experimental Setup
This section reports the experimental setup for testing

the end-to-end connectivity in our DPDK-enabled UTD
lab testbed. The testbed shown in Fig. 6 includes a User
Equipment, a gNB-DU, a gNB-CU, and a 5G CN com-
ponent. These 5G RAN and CN components are imple-
mented using the OAI software packages. The radio func-
tionality is implemented using an RF simulator but can
also be extended using software-defined radio boards such
as NI B210 or USRP N310 with a Faraday cage. The
OAI 5G-NR provides different split options as defined in
[18], and we make use of option 2 split between gNB-DU
and gNB-CU, with the Control and User Plane separa-
tion. The F1-U interface and the N3 interface in Fig. 6
are connected using a switch to have the same CU NIC
communicate with the DU and the UPF NICs of the User
Plane.
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Figure 6: Experimental Setup

Algorithm 4 UDP_GTPU l4 stack
1: Input: None
2: Output: None
3: Functions Name: create_socket, udp_read,

send_to
4: Read the IP and Port details from the yaml file
5: Create and bind Kernel socket for SMF communica-

tion
6: Create and bind ANS DPDK socket for GTP user

plane communication
7: Enable DPDK epoll event
8: while true do
9: if IntertaskInterface_event is TRUE then

10: Check the msg-type received
11: if msg-type is GTPU then
12: Call GTPU ANS DPDK Send Message Call
13: else
14: Call Kernel Send Message Call
15: end if
16: end if
17: Set the Kernel_timeout and DPDK_timeout
18: Wait for SMF messages with the kernel receive
19: Wait for CU messages with the DPDK_timeout
20: if DPDK_epoll_events then
21: Call anssock_receive command
22: end if
23: Process the received message
24: end while

The implemented 5G Core Network (CN) compo-
nents include: Unified Data Repository (UDR), Unified
Data Management (UDM), Authentication Server Func-
tion (AUSF), Network Repository Function (NRF), Access
and Mobility Management Function (AMF), Session Man-
agement Function (SMF), and User Plane Function (UPF)
(i.e., SPGW-U). For the backhaul interface to support the
DPDK mode, the UPF module is updated to enable the
GTP-U communication using ANS-DPDK API calls with
the gNB-CU module. These functions are deployed as mul-
tiple docker containers using the OAI 5G CN. The system
configuration details and 5G network parameters are re-
ported in Table 1 and Table 2.

Table 1: System Configuration
Description UTD Lab
Product APEX S3
CPU 16-core Intel® Core™ i7
Intel Architec-
ture

Skylake

RAM 32GB DDR5
Memory 500GB SSD
Kernel NIC
Drivers

ixgbe, e1000e

DPDK Driver VFIO
OAI RAN Develop version
OAI CN v1.2.1

6.2. Use-case Scenario
Video traffic is one of the most essential use case sce-

narios in the 5G network, exerting a substantial influence
on resource consumption and network efficiency. For in-
stance, live video streaming has gained significant trac-
tion recently, especially during the coronavirus pandemic.
One of the most essential applications of video streaming
is Online Learning, which requires streaming video and
audio to deliver content to online learners without buffer-
ing and packet loss and at a higher bit rate. To mimic
this type of traffic, our study uses UDP transmission of
video files from the CN to the UE using the open-source,
cross-platform multimedia player VLC application whose
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Table 2: 5G Network Parameters
Description Value
NR Release 3GPP Release 16
NR Band Band 78
NR Frequency 3.6 GHz
RAN type 5G standalone gNB
CU/DU split Option 2
Physical Resource Block
(PRB)

106

Radio Channel Band-
width

40 MHz

Midhaul Capacity 10 Gbps Ethernet
Backhaul Capacity 1 Gbps Ethernet
UE OAI based 5G SA UE

settings are shown in Table 3. Video streaming is started
at the CN once the end-to-end connection is established
and GTP tunnel is created from UE to the CN. The con-
tent bitrate of the video application running in the UE is
monitored in two different scenarios - one in ANS-DPDK
enabled testbed and the other in the Kernel one.

Table 3: Codec Configuration in the VLC
Description CloudLab
Video Codec MPEG-4-V
Video resolution 320x240 px
Buffer dimensions 320x256 px
Frame rate 15 fps
Audio Codec ADTS
Audio bit rate 128 kbps
Communication UDP
Audio Sample rate 48000 Hz
Stream output muxer caching 1500 ms

6.3. Results
This section reports the experimental data collected

from the UTD lab testbed. Each experiment is repeated
ten times evaluating performance metrics such as through-
put, jitter, packet loss, round trip time, CPU utilization on
midhaul, backhaul, and end-to-end 5G network on DPDK
and Kernel mode totaling three hundred trials. Results are
reported with the mean value along with the 95% confi-
dence interval accounting for the stochastic variations due
to the network, I/O, and processing delays. Experiments
with ANS use DPDK version 18.11 and the DPDK im-
plementation of the Virtual Function I/O driver, and for
the Kernel POSIX socket API, the device driver used was
ixgbe. ANS application is started as the primary process
and OAI code is started as a secondary process to initiate
the ANS API calls.

6.4. Midhaul Performance Analysis - Hybrid Mode
In the 5G standalone testbed, three interfaces are con-

figured in the CU application, accounting for Control

Plane communication with the DU, User Plane communi-
cation with the DU and AMF communication with the CN.
In this hybrid mode, DU Control Plane and AMF commu-
nication calls are initiated using the kernel API calls. For
the midhaul performance evaluation, the results are cap-
tured by initiating the User Plane tunnel communication
in the kernel mode. Then, the next set of results is cap-
tured with the User Plane tunnel communication with the
ANS DPDK API calls. Both scenarios are tested with the
10G Network Interface Card for the User Plane communi-
cation.

Figure 7: 5G Midhaul Throughput Comparison between POSIX
Socket and ANS-DPDK

Figure 8: 5G Midhaul RTT Comparison between POSIX Socket and
ANS-DPDK

Fig. 7 reports the throughput results captured in the
midhaul User Plane tunnel communication between the
DU and CU. The packet size refers to the size of the eth-
ernet frame transmitted on the end-to-end 5G network,
and the throughput values are computed on the midhaul
communication by varying the packet size. The through-
put result shows that ANS-DPDK outperforms Kernel,
achieving, on average, up to about 182.236% throughput
improvement. Fig. 8 reports the RTT results captured in
the midhaul communication and the result clearly shows
that ANS-DPDK RTT reduction is 95.963% when com-
pared to that of Kernel based posix call accounting for
faster user data communication.
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Figure 9: 5G Midhaul Packet Loss Comparison between POSIX
Socket and ANS-DPDK

In addition, parameters such as packet loss and jitter
are measured to check the system’s performance. All the
experiments are repeated for ten trials, and the average
result is considered. Packet loss occurs when the network
packet fails to reach the destination, causing information
data loss. One of the several causes of packet loss would
be network congestion, where the network is operating at
higher capacity, and it was simulated in this experiment.
Jitter measures the inconsistency of the data packet arrival
rate. Higher Jitter would cause the packets to be received
out of order or discarded, resulting in packet loss.

Figs. 9 and 10 show the packet loss and jitter calcu-
lated in the midhaul interface for varying network load.
The maximum transmission unit (MTU) is set to 1500
bytes in both the Kernel and ANS-DPDK mode. MTU
is the largest packet size, specified in octets that can be
sent in a packet-based network. As shown in Figs. 9 and
10, the network load increases, the jitter value increases
for the Kernel mode. The jitter value is comparatively
lower in the DPDK mode and stays in the same range
for the change in the network load, thereby reducing the
packet loss. During the experiment, it is noted that the
packet loss is not linear with the UDP tunnel communi-
cation, which is unreliable, and therefore, the drops are
unpredictable. Similar patterns of UDP packet loss in the
kernel are observed in [19]. However, in all our trials, it
is noted that the packet loss percentage is lower in ANS-
DPDK mode than in the Kernel mode.

To analyze the CPU utilization behavior, the Linux
top command was run in batch mode. The top command
will show the real-time running processes and their corre-
sponding threads to view the system resource utilization.
Only the threads involved in the OAI CU communication
and those that produce more than one percent of CPU uti-
lization are listed in Table 4. The default Linux scheduling
is performed without any CPU affinity for the OAI CU ap-
plication. The ANS application is started with the CPU
Core 3. It is observed that the OAI CU application uses
three CPU cores to schedule the work in the kernel mode.
In the DPDK mode, the ANS utilizes one CPU core, so

Figure 10: 5G Midhaul Jitter Comparison between POSIX Socket
and ANS-DPDK

overall, four CPU cores are used for running the applica-
tion.

Table 4 clearly shows that the CPU utilization is lower
for the Task_GTP_v1_U, ru_thread and nrsoftmodem
threads in the ANS-DPDK mode. It is because of the
kernel bypass support provided by the DPDK which al-
lows the thread to perform other intertask_interface op-
erations. On the contrary, the ans_io thread utilizes the
cpu — lcore 3 —- effectively upto 99.7% in the ANS-
DPDK mode. The ANS-DPDK IO framework uses the
CPU affinity to assign threads to the lcore 3 for the consid-
ered receive port. It uses the poll mode driver to configure
the device and to check for any messages received, consti-
tuting higher CPU utilization. Also, for all the threads,
the memory utilization is higher in ANS-DPDK mode be-
cause, in the user space, ANS-DPDK uses the memory
pool from the Non-Uniform-Memory-Access (NUMA) for
its I/O operations.

6.4.1. End-User Performance Analysis — End-to-End
Mode

In this setup, DPDK is integrated for both the midhaul
interface connecting gNB-vCU and gNB-vDU (the GTP
F1-U tunnel) and the backhaul interface connecting gNB-
vCU and UPF (the GTP NG-U tunnel) on a 5G standalone
testbed. Four interfaces are created in the configuration
file on the CU side, accounting for the Control Plane com-
munication with the DU, User Plane communication with
the DU, Control Plane communication with AMF, and
User Plane communication with UPF of the CN. In this
End-to-End mode, DU Control Plane and AMF commu-
nication calls are initiated using the kernel API calls same
as in the hybrid mode. In contrast, DU User Plane and
UPF communication calls are created using ANS DPDK
API calls in the DPDK-enabled setup and kernel API calls
in the kernel-enabled one. Due to the hardware and ANS
limitations, a switch with the Gigabit ethernet port is con-
figured for the same CU interface to communicate with the
DU and the UPF of the user data traffic. This switch con-
figuration setup generates the midhaul and backhaul traffic
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Table 4: CPU and Memory Utilization for the OAI CU application

OAI CU Posix API ANS-DPDK API

[Thread Name] % CPU % Memory % CPU % Memory

Task_GTP_V1_U 95.3 1.8 94.7 1.9

ru_thread 79 1.8 68.1 1.9

nr-softmodem 15.7 1.8 9.6 1.9

Tpool0_-1 15.3 1.8 15.3 1.9

Tpool1_-1 15 1.8 15 1.9

Tpool2_-1 2.3 1.8 1.7 1.9

Tpool3_-1 2.3 1.8 1.7 1.9

Tpool4_-1 2.3 1.8 1.7 1.9

Tpool5_-1 2.3 1.8 1.7 1.9

Tpool6_-1 2.3 1.8 1.7 1.9

Tpool7_-1 2.3 1.8 1.7 1.9

pdcp_timer 0.7 1.8 0.7 1.9

ans_io - - 99.7 -

Table 5: End-to-End Iperf Comparison between Kernel and DPDK

Iperf direction Bandwidth (Mbps)
Kernel DPDK

Uplink 13.37 13.67
Downlink 9.98 10.01

Table 6: End-to-End Throughput Comparison for Packet Sizes in
Kernel and DPDK

Packet Size Throughput
(Bytes) Kernel (Mbps) DPDK (Mbps)

64 6.49 6.64
128 8.06 8.09
256 9.07 9.1
512 9.93 9.98
1024 9.98 10.01

at 1 Gbps speed, even though the NIC capacity is 10 Gbps
at the midhaul network. For the End-to-End performance
evaluation, the results are captured by initiating the user
plane tunnel communication both in the kernel mode and
in the DPDK mode.

Fig. 11 shows the RTT results captured end-to-end and
the result indicates that there is RTT reduction in the
ANS-DPDK based setup than that of Kernel-based one,
accounting for a comparatively faster user data communi-
cation. Table. 5 reports the iperf results captured in both
the uplink and downlink direction from UE to CN and vice
versa once the end-to-end connectivity is established. The
table shows that ANS-DPDK setup shows a marginal im-

provement over the Kernel one. Only a limited bandwidth
improvement is noticed because of the radio channel band-
width constraint and configured switch speed. Increasing
the radio channel bandwidth and the switch speed will cor-
respondingly increase the bandwidth. DPDK performance
improvements can more visible when the incoming packets
reach the NIC threshold.

Table. 6 reports the throughput results captured end-
to-end from the UE to the GTP tunnel interface of the
CN (i.e the UPF). The packet size refers to the size of the
ethernet frame transmitted end-to-end on the 5G network,
and the throughput values are computed by varying the
packet size. The throughput result shows that the ANS-
DPDK enabled setup performs better than the Kernel one.
The results will become similar to the midhaul throughput
result as shown in Fig. 7 once the radio channel bandwidth
increases and the incoming data packets reach the NIC
threshold. This increase in data flow makes the Kernel
mode reach its bottleneck, whereas the DPDK mode han-
dles the traffic efficiently, making the DPDK mode ideal
for the 5G use cases. The bottleneck scenario is interpreted
in Fig. 7 for the GTP midhaul communication.

Figure 11: 5G End-User RTT Comparison between POSIX Socket
and ANS-DPDK

6.4.2. End-User Application Performance Analysis
Fig. 12 reports the content bitrate results captured in

two different testbeds namely the ANS-DPDK and the
Kernel-enabled one. The results highlight that there is an
increase in the content bitrate in the case of ANS-DPDK
enabled setup compared to the traditional Kernel-based
one. The high bitrate for the video application running in
DPDK enabled testbed can be attributed to the Kernel by-
pass technique eliminating the underlying overheads and
challenges like a significant amount of context switching,
which occurs in the traditional Kernel packet processing.
It should be noted that by increasing the radio channel
bandwidth with the high speed application, the efficiency
of the DPDK enabled mode can further increase and be-
come more apparent than the Kernel-based mode.
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Figure 12: 5G End-User Video Streaming Content Bit Rate

7. Conclusion and Future Work

In this paper, we presented a solution to enable end-
to-end open-source 5G deployment with the DPDK fea-
ture incorporated on the commercial off-the-shelf (COTS)
hardware suitable for various vertical use cases like Indus-
try 4.0, Smart Cities, Healthcare, etc. Different network
performance metrics are discussed, while abstracting the
underlying hardware complexity. Our solutions are veri-
fied both in the midhaul and backhaul GTP tunnel traffic
for the user data plane with the considered two design
models. Our obtained results show the improvement in
crucial network parameters such as latency, throughput,
packet loss and jitter over the ANS-DPDK framework on
the OpenAirInterface software components.

The possible subject of future work involves the study
of the data plane development kit involving low latency
applications that facilitate the development of high-speed
data plane use cases for the 5G user plane. Our exper-
imentation reveals that DPDK-related performance im-
provements are particularly noted on heavily loaded net-
work applications. We focus on increasing the midhaul
and backhaul user data traffic with the increased number
of UE connections and improving the radio channel band-
width. In addition, the resiliency feature for the DPDK-
supported containerized radio access network components
also comes under the scope of our study.

APPENDIX: List of abbreviations

AMF Access and Mobility Management Function in 5G
Core Netork

AUSF Authentication Server Function in 5G Core Ne-
tork

CU Central Unit in the Next Generation base station

DPDK Data Plane Development Kit, a set of libraries
used for implementing UserSpace drivers for the Net-
work Interface Controllers

DU Distributed Unit in the Next Generation base station

gNB-vCU virtualized Central Unit in the Next Genera-
tion base station

gNB-vDU virtualized Distributed Unit in the Next Gen-
eration base station

GTP GPRS Tunneling Protocol that carries the general
packet radio service

MAC Medium Access Control in LTE/5G protocol stack

NRF Network Repository Function in 5G Core Network

OAI OpenAirInterface, an open-source wireless technol-
ogy platform for the LTE/5G system

PDCP Packet Data Convergence Protocol in LTE/5G
protocol stack

PDU Protocol Data Unit, a single unit of information
transmitted among peer entities of a computer net-
work

PHY Physical Layer in LTE/5G protocol stack

RLC Radio Link Control in LTE/5G protocol stack

SMF Session Management Function in 5G Core Netork

TEID Tunnel Endpoint Identifier transferred among end-
points for communication amongst them

UDM Unified Data Management in 5G Core Network

UDR Unified Data Repository in 5G Core Network

UPF User Plane Function in 5G Core Network

USRP Universal Software Radio Peripheral, a software-
defined radio device

VLC VideoLAN Client, an open-source free multimedia
player
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