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ABSTRACT

Tensor-train (TT) decomposition enables ultra-high compression

ratio, making the deep neural network (DNN) accelerators based on

this method very attractive. TIE, the state-of-the-art TT based DNN

accelerator, achieved high performance by leveraging a compact

inference scheme to remove unnecessary computations and mem-

ory access. However, TIE increases memory costs for stage-wise

intermediate results and additional intra-layer data transfer, leading

to limited speedups even the models are highly compressed.

To unleash the full potential of TT decomposition, this paper pro-

poses ETTE, an algorithm and hardware co-optimization framework

for Efficient Tensor-Train Engine. At the algorithm level, ETTE

proposes new tensor core construction and computation ordering

mechanism to reduce stage-wise computation and storage cost at

the same time. At the hardware level, ETTE proposes a lookahead-

style across-stage processing scheme to eliminate the unnecessary

stage-wise data movement. By fully leveraging the decoupled input

and output dimension factors, ETTE develops an efficient low-cost

memory partition-free access scheme to efficiently support the

desired matrix transformation.

We demonstrate the effectiveness of ETTE via implementing a 16-

PE hardware prototype with CMOS 28nm technology. Compared

with GPU on various workloads, ETTE achieves 6.5× – 253.1×
higher throughput and 189.2× – 9750.5× higher energy efficiency.
Compared with the state-of-the-art DNN accelerators, ETTE brings

1.1× – 58.3×, 2.6× – 1170.4× and 1.8× – 2098.2× improvement on
throughput, energy efficiency and area efficiency, respectively.
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1 INTRODUCTION

Deep neural networks (DNNs) have been widely adopted in many

important artificial intelligent (AI) applications. Considering in

practice the sizes of large-scale neural networks typically need

to be reduced to fit for the edge and mobile applications[42–46,

56], model compression strategy has been popularly performed to

generate the low-cost and lightweight networks. To date, many

model compression techniques [1, 5, 6, 12, 15, 19, 20, 23, 26, 27, 35,

37, 38, 40, 50, 57, 59, 61]have been widely adopted for the practical

DNN deployment.

Among various compression techniques, tensor-train (TT) de-

composition is a very unique and attractive solution. Fundamentally

different from pruning and quantization, TT decomposition aims

to minimize the network structure-level redundancy via explor-

ing the low-tensor-rankness of the entire models. Rooted in the

mathematically rigid tensor theory, such low-tensor-rank-based

compression philosophy, by its nature, can provide very high com-

pression ratio. As reported in various NeurIPS/ICML/CVPR works

[14, 33, 34, 48, 51], TT decomposition enables 100× ∼ 50000× size

reduction for LSTM and CNN models in video, audio and image do-

mains. Very recently, AI researchers further discover the promising

benefits of applying TT decomposition to the emerging large-scale

models. For instance, Meta [54] (best paper award in MLSys’21) per-

forms TT decomposition to their ultra-large DLRM models in the

recommendation systems, enjoying 100×model size reduction with

negligible performance loss. Amazon [55] (KDD’22) further applies

TT decomposition for compressing large embedded tables in graph

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579371.3589103&domain=pdf&date_stamp=2023-06-17
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neural networks, reducing the size by up to 81, 362×. Considering
the language models in NLP continues to scale, NLP researchers

also use TT decomposition to compress NLP transformers, bringing

more than 40× parameter reduction [39] (ICLR’22).

Such outstanding compression performance and unique com-

puting scheme of TT-format models, by their nature, call for the

efficient architectural support. More specifically, the accelerator

design of TT-oriented DNN is motivated by three main reasons.

First, the promising compression performance of TT decomposi-

tion, if properly supported by underlying hardware, can be trans-

lated to very high hardware performance and outperform the other

compression approaches (e.g., pruning) and their corresponding

accelerators. For instance, as reported in Fig. 11, our proposed TT

decomposed DNN accelerator shows significant performance im-

provement than sparsity-aware Transformer accelerators. Second,

because TT-format processing scheme has its own unique comput-

ing pattern and challenges, the micro-architecture of the existing

general-purpose GPU and DNN accelerators, which are designed

for uncompressed model and other compression formats such as

sparse DNNs, cannot well support the efficient execution of TT-

format models or fully unleash their potential. Third, because a

DNN weight layer, no matter its specific type, is mathematically a

tensor, TT decomposition, as a powerful tool directly operated on

tensor, unifies the computations of different DNN types in the same

format. Therefore, a TT-oriented accelerator naturally supports a

wide spectrum of DNN models, e.g., LSTM, Transformer, DLRM,

etc. As reported in Fig. 11, our proposed TT-oriented hardware can

provide acceleration of different DNN types; while many existing

DNN accelerators are customized for a specific type.

To date the most representative TT-oriented accelerator is TIE

[9] (ISCA’19), and its architecture is further adopted in a DNN ASIC

chip [17] (ISSCC’21). By customizing dataflow and memory ac-

cess to TT-decomposed DNNs, TIE significantly improving energy

efficiency and execution speed than the straightforward implemen-

tation. However, TIE is still not an ideal hardware solution for

accelerating TT decomposed DNNs because of three limitations.

First, TIE only provides limited speedup for the highly compressed

TT-format models. The computational saving brought by TT de-

composition is not as promising as the storage reduction. In other

words, there exists a gap between the compression ratio and FLOPs

reduction ratio for a TT-format model. Consequently, though TIE

indeed eliminates the unnecessary computations that the straight-

forward design suffers, its necessary computational cost is still not

as low as the corresponding storage cost, limiting the practical

speedup it can achieve.

Second, TIE consumes increasing memory costs for intermediate

results. To be specific, when TIE executes a TT decomposed FC

or CONV layer, it essentially splits the entire computation into

multiple stages, where the output size of each stage can be much

larger than the size of the final output of this layer. For instance,

for the VGG-FC7 layer evaluated in TIE, the final output is only a

length-4096 vector; while the intermediate outputs of its stage-wise

computations are six 1024-by-16 matrices. Because now the intra-

layer results have much larger sizes than the inter-layer results,

on-chip memory cost significantly increases, degrading original

ultra-low storage benefits brought by TT decomposition.

Third, TIE causes additional intra-layer data transfer. In general,

for a 𝑑-stage TT decomposed layer, the intermediate results output
from each stage need to be written to the memory and then read

out again for 𝑑 times; while for the uncompressed layer only one-
time read/write access to the output data is needed. In other words,

though TIE indeed significantly reduces the data movement for

model weights, it meanwhile brings additional memory access to

intermediates results. Evidently, such extra intra-layer data transfer

limits the overall improvement on energy efficiency.

To address these challenges and fully unleash the potential of

TT decomposition, this paper propose ETTE, an Efficient Tensor-

Train Engine for real-time low-power DNN acceleration. ETTE is

built on algorithm and hardware co-optimization to systemically

overcome the limitations of TIE. At the algorithm level, we first

analyze and identify the root cause for the drawbacks of the existing

TT-format DNN execution – the tensor core construction format

and computing order. Based on this key observation, we develop a

new tensor core construction mechanism and computing scheme,

simultaneously reducing the FLOP count and memory costs for

intermediate results. At the hardware level, we develop the corre-

sponding architecture to fully reap these algorithmic benefits. We

first propose a lookahead-style across-stage processing scheme to

eliminate the unnecessary stage-wise data movement. Built on the

top of smaller size of intermediate results, this new dataflow brings

very significant reduction in the intra-layer data transfer. Then we

develop a memory partition-free access scheme to efficiently realize

the complicated matrix transformation operation.

We implement a 16-PE ETTE design example with CMOS 28nm

technology. Operated on 1000MHz, this hardware prototype has

1.25mm2 area consumption and 135.6mW power consumption.

Compared with GPU on various workloads, ETTE achieves 6.5×
– 253.1× higher throughput and 189.2× – 9750.5× higher energy
efficiency. Compared with the state-of-the-art DNN accelerators,

ETTE brings 1.1× – 58.3×, 2.6× – 1170.4× and 1.8× – 2098.2× im-
provement on throughput, energy efficiency and area efficiency,

respectively.

2 BACKGROUND

2.1 TT-format DNN Computation
In general, TT decomposition[33][57] aims to explore the structural
low-tensor-rankness of DNNs to remove model redundancy. To be

specific, given the weight matrix𝑊 ∈ R𝐼×𝑂 of a layer with input

vector 𝑥 ∈ R𝐼 and output vector 𝑦 ∈ R𝑂 where 𝐼 =
∏𝑑

𝑛=1 𝐼𝑛 and

𝑂 =
∏𝑑

𝑛=1𝑂𝑛 , TT decomposition factorizes the original weight

matrix𝑊 into a set of small tensor cores {G𝑛}
𝑑
𝑛=1 with {𝑅𝑛}

𝑑
𝑛=1 as

TT-ranks, and the corresponding TT-format computation can be
performed as:

𝑌 (𝑖1, . . . , 𝑖𝑑 ) =∑
𝑗1,..., 𝑗𝑑

G1 [𝑖1, 𝑗1 ]G2 [𝑖2, 𝑗2 ], . . . , G𝑑 [𝑖𝑑 , 𝑗𝑑 ]𝑋 ( 𝑗1, . . . , 𝑗𝑑 ), (1)

where 𝑌 ∈ R𝑂1×𝑂2,...,×𝑂𝑑 and 𝑋 ∈ R𝐼1×𝐼2,...,×𝐼𝑑 are the reshaped

high-order tensor format of vector𝑦 and 𝑥 , respectively. Meanwhile,
G𝑛 [𝑖𝑛, 𝑗𝑛] represents the 𝑅𝑛-by-𝑅𝑛+1 element matrix of the 4-order
G𝑛 ∈ R𝑅𝑛−1×𝐼𝑛×𝑂𝑛×𝑅𝑛 .
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Figure 1: Example computing schemeof TIE. The sizes ofV𝑛 ,𝑋
′
and𝑌 are𝑅𝑛+1

∏𝑑
𝑖=𝑛+1 𝐼𝑖

∏𝑛
𝑗=1𝑂 𝑗 ,

∏𝑑
𝑖=1 𝐼𝑖 and

∏𝑑
𝑗=1𝑂 𝑗 , respectively.

When 𝐼𝑖 and 𝑂 𝑗 are close, the size ofV𝑛 can be much larger (𝑅𝑛+1 times) than that of 𝑋
′
and 𝑌 .

2.2 TIE: Compact TT-format Computation

In general, using TT decomposition significantly reduces the model

size of DNN from
∏𝑑

𝑛=1 𝐼𝑛𝑂𝑛 to
∑𝑑
𝑛=1 𝐼𝑛𝑂𝑛𝑅𝑛𝑅𝑛+1. However, one

key drawback of the original TT-format computing scheme (Eq. 1)

is the challenging computational redundancy problem. As analyzed

in TIE, when the execution on TT-format layer is performed as the

multi-dimensional summation of the products of G𝑛 [𝑖𝑛, 𝑗𝑛] (see Eq.
1), it has to consume multiple times of consecutive multiplications

among the same G𝑛 [𝑖𝑛, 𝑗𝑛], causing massive amount of unneces-
sary computational redundancy. For instance, to execute FC6 layer

of VGG-16 model with 𝑑 = 6 and 𝑅𝑛 = 4, the Eq. 1-based straightfor-
ward implementation consumes more than 1000× multiplications

over the theoretical minimum for calculating all 𝑌 (𝑖1, . . . , 𝑖𝑑 )’s.
To overcome this challenge and improve computation efficiency,

TIE proposes and develops a compact TT-format computing scheme

that can eliminate all the unnecessary computational redundancy.

As indicated in Fig. 1, by fully paralleling the computations in-

volved with the same G̃𝑛 , as the matricized G𝑛 , the original re-

peated data fetching and multiplications with the same G𝑛 [𝑖𝑛, 𝑗𝑛]
can now be avoided. To be specific, a customized transformation

mechanism for the data layout of the intermediate results (V𝑛) is

delicately designed to form a multi-stage consecutive matrix multi-

plication scheme. As verified by theoretical analysis, the number of

multiplications consumed by TIE matches the minimum computa-

tional cost for calculating all 𝑌 (𝑖1, . . . , 𝑖𝑑 )’s, leading to a redundant
computation-free processing scheme.

2.3 Limitations of TIE

While TIE efficiently eliminates the unnecessary redundant compu-

tations, it still has three main drawbacks. First, with the presence

of promising high compression ratio enabled by TT decomposi-

tion, the reduction in the necessary computation is not as high as

storage saving. For instance, for a TT-format VGG-FC6 layer with

[1,4,4,4,4,4,1] rank setting, which means 50972× compression ratio,

the compact computing scheme of TIE only brings 28.2× FLOPs
reduction. Even with the more aggressive compression effort, e.g.,

61021× model size reduction, the corresponding computation re-

duction only slightly increases to 30.0×. Evidently, such huge gap
between compression ratio and speedup ratio severely limits the

performance of TT-oriented DNN hardware.

Second, though TIE enjoys the benefit of low storage cost of

weight parameters, it consumes high memory overhead for inter-

mediate results. Specifically, as illustrated in Fig. 1, TIE executes one

DNN layer in a multi-stage processing manner. In such scenario, the

sizes of these intra-layer intermediate results from each stage, i.e.,

V𝑛 ’s, are typically much larger than that of the transformed inter-

layer intermediate result (𝑌 ) of the current layer. To store those
intermediate results incurred by stage-wise computations, much

more on-chip memory resource has to be budgeted than before, and

in many cases such extra memory consumption even exceeds the

demand from weight parameters. For instance, the hardware imple-

mentation of TIE only needs 16KB weight SRAM for models; but it

consumes 768KB working SRAM to store larger-size intermediate

results.

Third, another even more challenging problem incurred by the

multi-stage processing scheme is the high data transfer for the

stage-wise intermediate results. Recall that in the conventional

DNN hardware there only exists inter-layer data movement for 𝑌
and𝑊 ; in addition to them, TIE also consumes the unique intra-
layer data movement forV𝑛 ’s. In particular, consider 1) a 𝑑-stage
layer has 𝑑 − 1 stage outputs V𝑛 ’s and only one layer output 𝑌 ;
and 2) as analyzed before,V𝑛 typically has much larger size than

𝑌 , such frequent stage-wise data transfers inevitably cause very
high overhead on memory access, significantly limiting the overall

energy efficiency.

3 ETTE: ALGORITHM

3.1 Analysis of Limited Performance of TIE

Before moving to the details of ETTE, we first analyze the cause of

the architectural limitations of TIE – insufficient speedup, interme-

diate results overhead, and extra data transfer. Essentially, all these

three drawbacks either completely or at least partially are incurred

by the phenomenon of large-size intermediate results (V𝑛 ’s). Specifi-

cally, as illustrated in Fig. 1, at each computing stage-𝑛 TIE obtains

Ṽ𝑛−1 (the transformedV𝑛−1) from memory, multiplies it with G̃𝑛 ,

and then stores the calculatedV𝑛 back to memory. Evidently, the

performance of TIE is very sensitive to the size ofV𝑛 – the larger

V𝑛 means more storage requirement, higher computational cost

and increasing memory access. Unfortunately, V𝑛 in TIE is typi-

cally very huge, sometimes even several times larger than layer

input/output (𝑋
′
, 𝑌 ), causing inefficient hardware performance.

Upon discovering this phenomenon, a naturally raised question

is whyV𝑛 is so huge in TIE processing. In general, two underlying

factors, namely as tensor core construction format and tensor core



ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Yu Gong, Miao Yin, Lingyi Huang, Jinqi Xiao, Yang Sui, Chunhua Deng, and Bo Yuan

computing order, jointly causes this problem. More specifically, the

construction format (e.g., order and shape) of tensor core G𝑛 , which

is involved with the calculation ofV𝑛 asV𝑛 = Ṽ𝑛−1G̃𝑛 , has direct

impact on the size ofV𝑛 . Meanwhile, for a fixed left-to-right TT-

format execution on a series of G𝑛 , the choice of the computing

sequence, which is essentially equivalent to the placement of each

G𝑛 in the entire “train" of tensor cores, also plays an important role

for determining the overall costs.

3.2 New Computing Scheme of ETTE

Based on the above observation and analysis, next we develop

the efficient computing scheme for TT-format DNN via explor-

ing new tensor core construction format and computing order. To

that end, we first consider the generalized TT format, in which the

order of each factorized tensor core is not limited to 4. In other

words, a large matrix𝑊 ∈ R𝐼×𝑂 is decomposed to 𝑑 tensor cores

G𝑛 ∈ R𝑅𝑛×𝐼 𝑗𝑛−1+1×···×𝐼 𝑗𝑛 ×𝑂𝑘𝑛−1+1 ...𝑂𝑘𝑛 ×𝑅𝑛+1 , where 𝐼 =
∏𝑑𝑎

𝑖=1 𝐼𝑖 ,

𝑂 =
∏𝑑𝑏

𝑜=1𝑂𝑜 , 𝑗𝑑 = 𝑑𝐴 and 𝑘𝑑 = 𝑑𝐵 . As shown in Fig. 2, here each
tensor core G𝑛 is now relaxed to having arbitrary order instead of

4. Notice that when performing the multi-stage computation over

these generalized TT cores, similar to the case for the 4-D G𝑛 , the

arbitrary-dimensional G𝑛 is also first flatten to 2-D format G̃𝑛 , and

then it is multiplied with the transformed input Ṽ𝑛−1 to generate

the intermediate resultV𝑛 for the current stage.

Within the framework of the generalized TT format, we next ex-

plore the cost-aware tensor core construction format and computing

order. Notice that because our ultimate goal is to reduce the incurred

computation/memory cost for the inference on the decomposed𝑊 ,
the selection of𝑑 is also flexible as long as the information carried by
𝐼𝑖 and𝑂𝑜 is preserved in theG𝑛 after the factorization, i.e., the shape

of G𝑛 contains dimension factors 𝐼𝑖 and 𝑂𝑜 . Based on this observa-

tion, we propose to identify the efficient G𝑛 construction format

and computing order in a recursive way. More specifically, given

the original G𝑛 ∈ R𝑅𝑛×𝐼 𝑗𝑛−1+1×···×𝐼 𝑗𝑛 ×𝑂𝑘𝑛−1+1 ...𝑂𝑘𝑛 ×𝑅𝑛+1 where 𝑛 =
1, 2, ...𝑑 , we factorize it to two new tensor cores and check the corre-
sponding computational cost change. Notice that such factorization

is essentially to explore different formats of G𝑛 , since 𝑑 , 𝑗𝑛 and
𝑘𝑛 are set to general values. To maximize the scope of the to-be-
explored tensor core construction settings, the factorization process

can be repeated.

Factorize G𝑛 to G𝑛,2. As analyzed before, such G𝑛-level fac-

torization does not alter the information preservation if all the

dimension factors of G𝑛 are contained in the new tensor cores. For

simplicity, let A � { 𝑗𝑛−1 + 1, . . . , 𝑗𝑛} and B � {𝑘𝑛−1 + 1, . . . , 𝑘𝑛}
denote the index of factor 𝐼𝑎 and 𝑂𝑎 of G𝑛 respectively, and A\𝑙
and B\𝑙 represent the subsets where element 𝑙 is excluded from A
and B, respectively. Then FLOPs saving can be obtained with two

factorization schemes:

Proposition #1: FactorizingG𝑛 to two new tensor cores, where𝐴𝑛,1 ∈

R
𝑅𝑛×𝐼𝑙×𝑅

′

or 𝐵𝑛,1 ∈ R
𝑅𝑛×𝑂𝑙×𝑅

′

serves as left or right components,

respectively, reduces FLOP count.

Proof. The FLOPs of original computing scheme (Ṽ𝑛 = Ṽ𝑛−1G̃𝑛)
at the stage-𝑛 can be calculated as:

𝐹𝐿𝑂𝑃𝑜𝑟𝑔 =
𝑑𝐴∏

𝑖=𝑗𝑛+1

𝐼𝑖

𝑘𝑛−1∏
𝑜=1

𝑂𝑜 (
∏
𝑖∈A

𝐼𝑖
∏
𝑜∈B

𝑂𝑜𝑅𝑛𝑅𝑛+1 ) . (2)

Now consider to decompose a ( 𝑗𝑛 − 𝑗𝑛−1 +𝑘𝑛 −𝑘𝑛−1 + 2)-order G𝑛

to a 3-order tensor core1 and a ( 𝑗𝑛 − 𝑗𝑛−1 + 𝑘𝑛 − 𝑘𝑛−1 + 1)-order
tensor core denoted as G𝑛,2. Since the shape of a 3-order TT tensor

core must contain two rank values (as defined by TT), there exist

four possible factorization schemes:

Case-1. Factorize G𝑛 to 𝐴𝑛,1 ∈ R
𝑅𝑛×𝐼𝑙×𝑅

′

and G𝑛,2 ∈

R
𝑅
′
×𝐼 𝑗𝑛−1+1×···×𝐼𝑙−1×𝐼𝑙+1×···×𝐼 𝑗𝑛 ×𝑂𝑘𝑛−1+1×···×𝑂𝑘𝑛 ×𝑅𝑛+1 , where 𝑙 ∈

A. As shown in Fig. 3, in such case 𝐴𝑛,1 is placed at the left

side of G𝑛,2 after decomposition. Then the FLOP count for Ṽ𝑛 =
Ṽ𝑛−1𝐴𝑛,1G̃𝑛,2 is

𝐹𝐿𝑂𝑃11 =
𝑑𝐴∏

𝑖=𝑗𝑛+1

𝐼𝑖

𝑘𝑛−1∏
𝑜=1

𝑂𝑜 (
∏
𝑖∈A

𝐼𝑖𝑅𝑛𝑅
′
+

∏
𝑖∈A\𝑙

𝐼𝑖
∏
𝑜∈B

𝑂𝑜𝑅
′
𝑅𝑛+1 ) . (3)

Comparing Eq. 3 and Eq. 2, it is seen that because 𝐼𝑙 ≥ 2,∏
𝑜∈B𝑂𝑜 ≥ 2, and 𝑅

′
< 𝑅𝑛 , we have 𝐹𝐿𝑂𝑃

1
1 < 𝐹𝐿𝑂𝑃𝑜𝑟𝑔 , indi-

cating computational saving.

Case-2. Factorize G𝑛 to 𝐴𝑛,1 ∈ R
𝑅
′
×𝐼𝑙×𝑅𝑛+1 and G𝑛,2 ∈

R
𝑅𝑛×𝐼 𝑗𝑛−1+1×···×𝐼𝑙−1×𝐼𝑙+1×···×𝐼 𝑗𝑛 ×𝑂𝑘𝑛−1+1×···×𝑂𝑘𝑛 ×𝑅

′

. In such case
𝐴𝑛,1 is essentially placed at the right side of G𝑛,2. Then the FLOP

count for Ṽ𝑛 = Ṽ𝑛−1G̃𝑛,2𝐴𝑛,1 is:

𝐹𝐿𝑂𝑃21 =
𝑑𝐴∏

𝑖=𝑗𝑛+1

𝐼𝑖

𝑘𝑛−1∏
𝑜=1

𝑂𝑜 (
∏
𝑖∈A

𝐼𝑖
∏
𝑜∈B

𝑂𝑜𝑅𝑛𝑅
′
+
∏
𝑜∈B

𝑂𝑜𝑅
′
𝑅𝑛+1𝐼𝑙 ) . (4)

Since 𝑅𝑛+1 ≤ 𝐼𝑙 and 𝑅𝑛 ≥ 2 , 𝐹𝐿𝑂𝑃11 <∏𝑑𝐴
𝑖=𝑗𝑛+1

𝐼𝑖
∏𝑘𝑛−1

𝑜=1 𝑂𝑜
∏

𝑖∈A\𝑙 𝐼𝑖 (
∏

𝑖∈A 𝐼𝑖
∏

𝑜∈B𝑂𝑜𝑅𝑛)𝑅
′
< 𝐹𝐿𝑂𝑃21 ,

FLOP count of Case-2 is higher than that of Case-1.
Case-3. Since the newly factorized 3-order tensor core can

also contain 𝑂𝑜 dimension factor instead of 𝐼𝑖 . In other words,

we can factorize G𝑛 to 𝐵𝑛,1 ∈ R
𝑅
′
×𝑂𝑙×𝑅𝑛+1 and G𝑛,2 ∈

R
𝑅𝑛×𝐼 𝑗𝑛−1+1×···×𝐼 𝑗𝑛 ×𝑂𝑘𝑛−1+1×···×𝑂𝑙−1×𝑂𝑙+1×···×𝑂𝑘𝑛 ×𝑅

′

. In such case,
𝐵𝑛,1 is essentially placed at the right side of G𝑛,2. Then the FLOP

count for Ṽ𝑛 = Ṽ𝑛−1G̃𝑛,2𝐵𝑛,1 is:

𝐹𝐿𝑂𝑃31 =
𝑑𝐴∏

𝑖=𝑗𝑛+1

𝐼𝑖

𝑘𝑛−1∏
𝑜=1

𝑂𝑜 (
∏
𝑖∈A

𝐼𝑖
∏

𝑜∈B\𝑙

𝑂𝑜𝑅𝑛𝑅
′
+
∏
𝑜∈B

𝑂𝑜𝑅
′
𝑅𝑛+1 ) . (5)

Comparing Eq. 5 and Eq. 2, 𝑂𝑙 ≥ 2,
∏

𝑖∈A 𝐼𝑖 ≥ 2 and 𝑅
′
< 𝑅𝑛+1,

so Case-3 brings fewer FLOPs (𝐹𝐿𝑂𝑃31 < 𝐹𝐿𝑂𝑃𝑜𝑟𝑔).

Case-4. Factorize G𝑛 to 𝐵𝑛,1 ∈ R
𝑅𝑛×𝑂𝑙×𝑅

′

and G𝑛,2 ∈

R
𝑅
′
×𝐼 𝑗𝑛−1+1×···×𝐼 𝑗𝑛 ×𝑂𝑘𝑛−1+1×···×𝑂𝑙−1×𝑂𝑙+1×···×𝑂𝑘𝑛 ×𝑅𝑛+1 . As shown

in Fig. 3, 𝐵𝑛,1 is placed at the left side of G𝑛,2. Then the FLOP count

for Ṽ𝑛 = Ṽ𝑛−1𝐵𝑛,1G̃𝑛,2 is

𝐹𝐿𝑂𝑃41 =
𝑑𝐴∏

𝑖=𝑗𝑛+1

𝐼𝑖

𝑘𝑛−1∏
𝑜=1

𝑂𝑜 (
∏
𝑖∈A

𝐼𝑖𝑂𝑙𝑅𝑛𝑅
′
+
∏
𝑜∈B

𝑂𝑜

∏
𝑖∈A

𝐼𝑖𝑅
′
𝑅𝑛+1 ) . (6)

Since 𝑅𝑛+1 ≤ 𝑂𝑙 and 𝑅𝑛 ≥ 2, 𝐹𝐿𝑂𝑃31 <∏𝑑𝐴
𝑖=𝑗𝑛+1

𝐼𝑖
∏𝑘𝑛−1

𝑜=1 𝑂𝑜 (
∏

𝑖∈A 𝐼𝑖𝑂𝑙𝑅𝑛𝑅
′
) < 𝐹𝐿𝑂𝑃41 , Case-4 has

more FLOP counts than Case-3 (𝐹𝐿𝑂𝑃41 > 𝐹𝐿𝑂𝑃31 ). �
Remark #1. Summarizing the four cases, it is seen that: 1) Case-1/3

have fewer FLOPs than original computing scheme; and 2) Case-2/4

have more FLOPs than Case-1/3. Hence in order to achieve the

guaranteed and higher FLOPs reduction, 𝐴𝑛,1 or 𝐵𝑛,1 should be
placed at the left or right side of G𝑛,2.

1Based on the definition of TT formats, a tensor core must contain at least 3 dimensions.
So each time factorizing G𝑛 with a 3-order tensor core minimize the granularity of the
exploration for possible tensor core construction format, maximizing the searching
space.
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Figure 2: General TT-format computing scheme without optimization on FLOPs and memory costs. Each G𝑛 is now relaxed as a

high-order tensor core (order can be larger than 4). Fig. 1 is essentially a special case of Fig. 2.

Figure 3: Factorize one new tensor core (𝐴𝑛,1 or 𝐵𝑛,1) from G𝑛 .

Here Case-1 and Case-3 can bring the guaranteed and higher

FLOPs reduction. Hence after factorization 𝐴𝑛,1 or 𝐵𝑛,1 must

be located at the left or right side of G𝑛,2, respectively.

Figure 4: Recursively factorize one new tensor core (𝐴𝑛,ℎ𝑎+1
or 𝐵𝑛,ℎ𝑏+1) from G𝑛,ℎ+1. Here𝐴𝑛,𝑖 ’s and 𝐵𝑛,𝑜 ’s have been placed

at the left and right side of G𝑛,ℎ+1 after previous recursive

factorization, i.e., intra-𝐺𝑛-level splitting. Again, Case-1 and

Case-3 can bring the guaranteed and higher FLOPs reduction.

Hence after current factorization 𝐴𝑛,ℎ𝑎+1 or 𝐵𝑛,ℎ𝑏+1 must be

located at the left or right side of G𝑛,ℎ+𝑑 , respectively.

Factorize G𝑛,ℎ+1 to G𝑛,ℎ+2. Proposition #1 shows that factoriz-

ing G𝑛 to two new tensor cores can bring computational saving in

some cases. Next we show that this also holds in general condition,

i.e., when G𝑛 has already been factorized to multiple tensor cores.

In general, suppose that G𝑛 has been factorized to (ℎ + 1) compo-

nents with ℎ𝑎 of 𝐴𝑛,𝑖 , ℎ𝑏 of 𝐵𝑛,𝑜 and one G𝑛,ℎ+1, where 𝑖 ∈ H𝑎 ,

𝑜 ∈ H𝑏 and ℎ = ℎ𝑎 + ℎ𝑏 . Then FLOPs saving can be obtained with
the following scheme:

Proposition #2: Factorizing G𝑛,ℎ+1 to two new tensor cores, where

𝐴𝑛,ℎ𝑎+1 or 𝐵𝑛,ℎ𝑏+1 serves as left or right components, respectively,

reduces FLOP count.

Proof. Considering the generality of 𝑛, ℎ𝑎 and ℎ𝑏 , we aim to
use mathematical induction to prove the above conclusion. Since

the case of ℎ = 0 has been verified in Proposition #1, we now show
the case of ℎ + 1 holds if the case of ℎ holds, i.e., all the previously
decomposed 𝐴𝑛,𝑖 and 𝐵𝑛,𝑖 are placed on the left and right side of
G𝑛,ℎ+1, respectively. Then, similar to the analysis in Proposition #1,

when decomposing G𝑛,ℎ+1 to two new tensor cores, Fig. 4 shows

that there exist four possible cases, i.e., Case-1/2: 𝐴𝑛,ℎ𝑎+1 on the

left/right side of G𝑛,ℎ+2, Case-3/4: 𝐵𝑛,ℎ𝑏+1 on the right/left side of
G𝑛,ℎ+2. Then the FLOPs incurred by G𝑛,ℎ+2, 𝐴𝑛,ℎ𝑎+1 and 𝐵𝑛,ℎ𝑏+1 is:

𝐹𝐿𝑂𝑃
𝑜𝑟𝑔
ℎ

=
∏

𝑖∈A\H𝑎

𝐼𝑖
∏

𝑜∈B\H𝑏

𝑂𝑜𝑅
′

ℎ𝑅
′

ℎ+1, (7)

𝐹𝐿𝑂𝑃1ℎ+1 =
∏

𝑖∈A\H𝑎

𝐼𝑖𝑅
′

ℎ𝑅
′′
+

∏
𝑖∈A\{H𝑎,𝑡 }

𝐼𝑖
∏

𝑜∈B\H𝑏

𝑂𝑜𝑅
′′
𝑅
′

ℎ+1, (8)

𝐹𝐿𝑂𝑃2ℎ+1 =
∏

𝑖∈A\H𝑎

𝐼𝑖
∏

𝑜∈B\H𝑏

𝑂𝑜𝑅
′

ℎ𝑅
′′
+

∏
𝑜∈B\H𝑏

𝑂𝑜 𝐼𝑡𝑅
′′
𝑅
′

ℎ+1, (9)

𝐹𝐿𝑂𝑃3ℎ+1 =
∏

𝑖∈A\H𝑎

𝐼𝑖
∏

𝑜∈B\{H𝑏,𝑡 }

𝑂𝑜𝑅
′

ℎ𝑅
′′
+

∏
𝑜∈B\H𝑏

𝑂𝑜𝑅
′′
𝑅
′

ℎ+1, (10)

𝐹𝐿𝑂𝑃4ℎ+1 =
∏

𝑖∈A\H𝑎

𝐼𝑖𝑂𝑡𝑅
′

ℎ𝑅
′′
+

∏
𝑖∈A\{H𝑎,𝑡 }

𝐼𝑖
∏

𝑜∈B\H𝑏

𝑂𝑜𝑅
′′
𝑅
′

ℎ+1 . (11)

Comparing Eq. 8 - Eq. 11 with Eq. 7 it is seen that, because 𝐼𝑡 ≥ 2,

𝑂𝑡 ≥ 2,
∏

𝑜∈B\H𝑏 𝑂𝑜 ≥ 2,
∏

𝑜∈A\H𝑎 𝐼𝑖 ≥ 2 and 𝑅
′′
< 𝑅

′

𝑛 , we can

observe 𝐹𝐿𝑂𝑃1
ℎ+1

< 𝐹𝐿𝑂𝑃
𝑜𝑟𝑔
ℎ
, 𝐹𝐿𝑂𝑃1

ℎ+1
< 𝐹𝐿𝑂𝑃2

ℎ
, 𝐹𝐿𝑂𝑃3

ℎ+1
<

𝐹𝐿𝑂𝑃
𝑜𝑟𝑔
ℎ
and 𝐹𝐿𝑂𝑃3

ℎ+1
< 𝐹𝐿𝑂𝑃4

ℎ
. Case-1/3 bring guaranteed and

higher FLOPs reduction. �
Remark #2. The generality of Proposition #2 shows that the fac-

torization of G𝑛,ℎ+1 can be applied in a recursive way to further

reduce FLOP count. Finally, G𝑛,ℎ+1 is decomposed to a group of

3-order𝐴𝑛,𝑖 on the left side and a group of 3-order 𝐵𝑛,𝑜 on the right
side, bringing significant FLOPs reduction (as illustrated in Fig. 4).

From G𝑛 to {G𝑛}. The above described factorization and split-

ting strategy for G𝑛 can be further extended to be applied to {G𝑛}.

In other words, each G𝑛 is decomposed to a sequence of 𝐴𝑛,𝑖 and
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Figure 5: Extending the strategy in Fig. 4 for one G𝑛 to all

G𝑛 ’s. All 𝐴𝑛,𝑖 ’s and 𝐵𝑛,𝑜 ’s factorized from different G𝑛 ’s are

placed at the left and right side, respectively, showing inter-

G𝑛-level splitting. During inference, the size of intermediate

result V𝑛 first decreases at the beginning 𝑑𝐴 stages where

𝐴𝑛 ’s are multiplied withV𝑛−1 (i.e., Elimination Phase). Then,

the size ofV𝑛 increases at the following 𝑑𝐵 stages where 𝐵𝑛 ’s
are multiplied withV𝑛+𝑑𝐴−1 (i.e., Expansion Phase).

𝐵𝑛,𝑜 to reduce the FLOPs for TT-format execution. Moreover, be-
cause the entire {G𝑛} can be interpreted as a “mega" tensor, its

factorized tensor cores {𝐴𝑛,𝑖 } and {𝐵𝑛,𝑜 } should also be split to
the “left" and “right" groups (as shown in Fig. 5). Notice that this

inter-G𝑛-level split strategy does not only reduce computational

cost (addressing the first drawback of TIE), but also saves memory

cost for intermediate results (addressing the second drawback of

TIE).

Proposition #3: Splitting {𝐴𝑛,𝑖 } and {𝐵𝑛,𝑜 } to two groups reduces
the storage costs of intermediate result V𝑛 .

Proof. For original computing scheme as illustrated in Fig.

2, the size of the intermediate result at stage-𝑛 is 𝑠𝑖𝑧𝑒𝑜𝑟𝑔 =

𝑅𝑛+1
∏𝑑𝐴

𝑖=𝑗𝑛+1
𝐼𝑖
∏𝑘𝑛

𝑜=1𝑂𝑜 . On the other hand, after applying the

computing scheme shown in Fig. 5, the size of the intermediate

result at stage-𝑛 is either 𝑠𝑖𝑧𝑒𝐴𝑛𝑒𝑤 = 𝑅𝑛+1
∏𝑑𝐴

𝑖=𝑛 𝐼𝑖 or 𝑠𝑖𝑧𝑒
𝐵
𝑛𝑒𝑤 =

𝑅𝑛+1
∏𝑛−𝑑𝐴

𝑜=1 𝑂𝑜 , which represent the size of V𝑛 that is involved

with the 𝐴𝑛,𝑖 or 𝐵𝑛,𝑜 , respectively. Evidently, both 𝑠𝑖𝑧𝑒𝐴𝑛𝑒𝑤 and
𝑠𝑖𝑧𝑒𝐵𝑛𝑒𝑤 are smaller than 𝑠𝑖𝑧𝑒𝑜𝑟𝑔 , leading to lower storage cost of
intermediate resultV𝑛 . �

Remark #3.When applying our proposed new TT-format execu-

tion scheme (shown in Fig. 5), the size of intermediate result V𝑛

at stage-𝑛 first decreases, as revealed by 𝑠𝑖𝑧𝑒𝐴𝑛𝑒𝑤 = 𝑅𝑛+1
∏𝑑𝐴

𝑖=𝑛 𝐼𝑖 ,

and then increases, as revealed by 𝑠𝑖𝑧𝑒𝐵𝑛𝑒𝑤 = 𝑅𝑛+1
∏𝑛−𝑑𝐴

𝑜=1 𝑂𝑜 . We

name these two different phases as elimination phase and expansion

phase, respectively.

Factorization/Computing Order for 𝐴𝑛 and 𝐵𝑛 . Following
prior TT works [34, 51, 53], given the target compression ratio,

ETTE selects {𝐼𝑛}, {𝑂𝑛} and {𝑅𝑛} to approach uniform distribution,
e.g., make 𝐼1 ≈ 𝐼2 ≈ ..., 𝑂1 ≈ 𝑂2 ≈ ..., 𝑅2 ≈ 𝑅3 ≈ ... as much as
possible. Under such setting, as long as 1) {𝐴𝑛} and {𝐵𝑛} are split
into two groups and 2) the computation involved with the entire

{𝐴𝑛} is performed earlier than the entire {𝐵𝑛}, the change of FLOPs

incurred by different factorization/computing orders for specific

𝐴𝑖 ’s and 𝐵𝑖 ’s in Fig. 5 is not significant, since the shape of different
𝐴𝑖 ’s are quite similar (also for different 𝐵𝑖 ’s). For instance, for a
TT-decomposed VGG-FC6 with 𝐼𝑛 = [16, 14, 8, 14],𝑂𝑛 = [16, 16, 16]
and 𝑅𝑛 = [1, 4, 4, 4, 4, 4, 4, 1], the different factorization/computing
orders only bring up to 10% FLOPs difference. Considering the

limited impact caused by different factorization/computing orders,

ETTEs simply performs consecutive computation with𝐴𝑖 ’s and 𝐵𝑖 ’s
with descending order of their sizes, e.g., 𝑠𝑖𝑧𝑒 (𝐴1) ≥ 𝑠𝑖𝑧𝑒 (𝐴2) ≥ ...,
𝑠𝑖𝑧𝑒 (𝐵1) ≤ 𝑠𝑖𝑧𝑒 (𝐵2) ≤ ..., avoiding the offline exhaustive search.

4 ETTE: HARDWARE ARCHITECTURE

Based on the proposed new computing scheme, in this section we

develop the corresponding ETTE hardware accelerator. Fig. 6 shows

the overall architecture. Here the datapath consists of a 1-D PE ar-

ray, where each of PE contains multiple multiplier and accumulator

(MAC) units. The inputs of datapath are fromweight SRAM and acti-

vation SRAM via unitcasting and broadcasting manner, respectively.

Notice that the activation SRAM does not only store inter-layer

immediate results (activation), but also store intra-layer immedi-

ate results output from each stage. Also, two copies of activation

SRAM are used to serve as ping-pong buffer. Next, we describe two

architectural optimization on ETTE hardware accelerator.

Figure 6: Overall Architecture of ETTE.

4.1 Optimizing Intra-layer Data Transfer

Recall that in addition to the normal layer-level data transfer for

𝑌 , TIE needs extra stage-level data transfer forV𝑛 due to its multi-

stage processing scheme, which is also adopted by ETTE. Although

the computing scheme in ETTE can reduce the size ofV𝑛 (Proposi-

tion #3), because each layer in ETTE consists of 𝑑𝐴 + 𝑑𝐵 stages, the
overall amount of stage-wise data movement is still considerable.

To further alleviate this challenging problem, we propose to op-

timize the intra-layer processing scheme to reduce the incurred

data transfer. Our key idea is that once a part ofV𝑛 in stage-𝑛 are
calculated on the fly, it is not stored back to memory but remains

in the PE to serve for the calculation ofV𝑛+1 in stage-(𝑛 + 1). Evi-

dently, such lookahead processing style can efficiently reduce the

data transfer for intermediate results via increasing their locality.

More specifically, considering this across-stage computing schedule

highly depends on the underlying computation pattern and data de-

pendency, which exhibit different behaviors in the elimination and

expansion phases, we next describe the corresponding processing

schemes in these two phases, respectively.

Elimination Phase-specific Schedule. Fig. 7 illustrates an

example when performing the lookahead-style schedule in the
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Figure 7: Lookahead processing in the elimination phase.

Different numbers at the same stage represent the processing

order, and different tiles with the same numbers have data

dependency.

elimination phase of ETTE with 𝑑𝐴 = 3. At stage-1, only one tile of
𝑋

′
is brought from memory and participates in the computation

forV1. The entries of this partially calculatedV1 are then directly

transformed to the corresponding part of Ṽ1, which continues

to be multiplied with 𝐴2 to generate one tile of V2. After that,

another tile of Ṽ2 is read from memory for the similar lookahead

computation of V3. As marked in Fig. 7, the tiles of V𝑛 and 𝐴𝑛

with data dependency across two stages are marked with the same

number. Therefore, because 1) each tile ofV𝑛 at stage-𝑛 is on-the-
fly calculated; and 2) it has data dependency with only one tile of

V𝑛+𝑖 at stage-(𝑛 + 𝑖), this tile ofV𝑛 can be then discarded without

data transfer once the next-stage computation consumes it.

It should be noted that this lookahead-style processing is not

limited to only cross two stages but can be applied to multiple

stages. In general, for a 𝑑𝐴-stage elimination phase, such lookahead
computation can be maximally performed across 𝑑𝐴−1 stages. This

is because as shown in Fig. 7, the calculation ofV𝑑𝐴 , even for only

one entry, needs the entire information of Ṽ𝑑𝐴−1 instead of part of

it. Meanwhile, multiple lookahead-style processing schedules can

co-exist in the same elimination phase. For instance, the processing

for 𝑑𝐴 = 5 can be either first performed across 3 stages followed
by another 2-stage lookahead, or being performed across 2 stages

followed by another 3-stage lookahead. The design space for these

different processing schedules will be explored in Section 5.3.

Algorithm 1 describes the general lookahead-style processing

procedure in the elimination phase. Notice that the stage-wise

matrix transformation, which is essentially the mapping principle

from the entries ofV𝑛 to Ṽ𝑛 , is also described here. The efficient
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Figure 8: Lookahead processing in the expansion phase. Dif-

ferent numbers at the same stage represent the processing

order, and different tiles with the same numbers have data

dependency.

hardware mapping for such critical yet costly operation will be

discussed in Section 4.2.

Algorithm1: The processing schedule of elimination phase

with lookahead computation.

input :𝑋 = 𝐼𝑑 × 𝐼𝑑−1 × . . . × 𝐼1,𝐴1, . . ., ˜𝐴𝑑𝐴 ,

𝑅 = [𝑅1, 𝑅2, . . . , 𝑅𝑑𝐴+1]
output :𝑌

1 𝑋
′
= Reshape(𝑋 , [𝐼1, −1]);

2 //Lookahead computation order in stage 1 to 𝑑𝐴 − 1;

3 𝐿 = 𝑛𝑒𝑤 [𝑅𝑑𝐴 , 𝐼𝑑𝐴 ];

4 for 𝑘 = 0 to 𝐼𝑑𝐴 − 1 do

5 Ṽ = 𝑋
′
[:,
∏𝑑𝐴−1

𝑚=2 𝐼𝑚 ∗ 𝑘 :
∏𝑑𝐴−1

𝑚=2 𝐼𝑚 ∗ (𝑘 − 1)];

6 for 𝑗 = 1 to 𝑑𝐴 − 1 do

7 Ṽ = Transform (Matmul (𝐴 𝑗 , Ṽ), j)

8 𝐿[:, 𝑘] = Ṽ

9 𝑌 = Transform (Matmul ( ˜𝐴𝑑𝐴 , 𝐿), 𝑑𝐴)//Stage 𝑑𝐴;

10 Function Transform(V , 𝑗):
11 V = Transpose(V) ;
12 ℎ,𝑤 = size(V);

13 Ṽ = new[ℎ/𝐼 𝑗+1, 𝑅 𝑗 ∗ 𝐼 𝑗+1];

14 for 𝑖 = 0 to ℎ/𝐼 𝑗+1 − 1 do
15 𝑇 = new[1, 𝑅 𝑗 × 𝐼 𝑗+1] ;

16 for 𝑘 = 0 to 𝐼 𝑗+1 − 1 do
17 𝑇 [𝑘 ∗ 𝑅 𝑗 : (𝑘 + 1) ∗ 𝑅 𝑗 ] = V[𝑖 ∗ 𝐼 𝑗+1 + 𝑘, :]

18 Ṽ [𝑖 + 1, :] = 𝑇 ;

19 Ṽ = Transpose(Ṽ) ;
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Expansion Phase-specific Schedule. Fig. 8 shows an example

of applying the lookahead-style processing in the 3-stage expan-

sion phase. This example, together with the general processing

procedure described in Algorithm 2, shows that the lookahead com-

putation in the expansion phase exhibits two differences from its

counterpart in the elimination phase. First, because of the unique

computing pattern in the expansion phase, one tile ofV𝑑𝐴+𝑛 in the

previous stage has data dependency with multiple tiles ofV𝑑𝐴+𝑛+𝑖

in the later stages. Consequently, the intermediate results Ṽ𝑑𝐴+𝑛−1
cannot be simply discarded after the generation of one tile ofV𝑑𝐴+𝑛 .

Instead, it has to be retained in the memory for the future use of

calculating another dependent tile of V𝑑𝐴+𝑛 . Notice that though

this multi-dependency phenomenon prevents the reduction in data

transfer, the lookahead-style schedule can still reduce the memory

consumption for V𝑑𝐴+𝑛 . As indicated in Fig. 8, during the entire

phase for each stage only one tile of V𝑑𝐴+𝑛 needs to be stored

in the on-chip memory. Notice that this benefit also exists in the

elimination phase. In a nutshell, the lookahead-style processing

reduces both memory consumption and data transfer forV𝑛 in the

elimination phase; while it only reduces memory consumption of

V𝑑𝐴+𝑛 in the expansion phase.

Second, unlike in the elimination phase, the lookahead-style

processing can be performed up to the last ((𝑑𝐴 + 𝑑𝐵)-th) stage
of expansion phase. As illustrated in Fig. 8, the calculation of one

tile of 𝑌 in the stage-(𝑑𝐴 + 𝑑𝐵) can be realized with using one tile
ofV𝑑𝐴+𝑛 in each of the previous stages. Therefore, the lookahead

computation is able to cover the last stage now. Consider multiple

across-stage processing schedules can also co-exist in the expansion

phase, including last stage into lookahead computation can further

increase the exploration space for performance optimization. In

addition, another promising benefit for this phenomenon is that

it unlocks the possibility of lookahead-style processing across the

adjacent layers. This is because each time the first stage of the

elimination phase in the next layer only needs one tile of input,

which can be just provided by the last stage of the current layer.

Consequently, the lookahead-style processing schemes of the two

adjacent layers can be possibly combined to further reduce data

transfer if needed. Notice that in this paper we do not focus on

exploiting this inter-layer optimization opportunity while leaving

it for future work.

The difference of lookahead-style processing in the two phases

can also be understood from the perspective of exploration priority.

Fig. 9 uses a depth-𝑑 tree to depict the computing procedure of
𝑑-stage phase (𝑑𝐴 = 𝑑𝐵 = 𝑑 = 3). Here the leaf (𝑚,𝑛), as the𝑚-th

node at the 𝑛-the level of the tree, represents the𝑚-th tile of Ṽ𝑛−1

at the 𝑛-th stage that will be used for multiplication. Meanwhile,
similar to Fig. 7 and 8, the number associated with the arrow here

also denotes the computing sequence and data dependency between

the tiles. With such notation, it is clear that computing procedure

in the elimination and expansion phases explore this index tree in

the breadth-first and depth-first manners, respectively.

Difference from Layer Fusion. Readers who are familiar with

convolutional neural network (CNN) accelerators may find that the

proposed lookahead-style processing shares the similar philosophy

of layer fusion [2]. Both of these two techniques aim to reduce

the data transfer incurred by intermediate results via passing the

output of the current computation to the next one. However, our

proposed approach has three important differences. First, unlike

layer fusion that is specially designed for CNN, our method works

for a broad spectrum of DNN types, including MLP, RNN, trans-

formers and CNN. This is because after TT decomposition, both the

FC and CONV layers are unified in the same TT format. Second, our

processing schedule supports more complicated computing pattern,

e.g., stage-wise matrix transformation and two split computing

phases; while layer fusion can only work for transformation-free

and single-phase processing. More specifically, layer fusion takes

the kernel size as the unit to fuse layers in a pyramid-style process-

ing scheme; therefore when the matrix transformation is involved,

the fusion is not able to continue to the next layer until the entire

row or column is calculated, even most of the data is not used in

the next tile of calculation. Instead, our approach takes the 𝐼𝑛𝑅𝑛
and 𝑅𝑑𝐴+𝑛 as basic tiles for elimination and expansion phases in
a breadth-first and depth-first searching manner, respectively, as

shown in Fig. 9. The intermediate result of each tile is enough for

partially matrix transformation for the next layer. Third, there ex-

ists data overlapping in each tile of CNN computation, which need

additional computation or memory overhead; while our proposed

processing scheme has no overlapping as shown in Fig. 7 and 8.

Difference from TPU/TIE on Fully Storing Intermediate

Data.Modern DNN accelerators, e.g. TPU, use sufficient on-chip

SRAM to fully store intermediate data. Such strategy is also adopted

in TIE design. Though V𝑛 is also stored on chip in ETTE, the

key goal and benefit of the processing scheme in ETTE is very

different from TPU/TIE. First, the sufficient SRAM budgeted in

TPU/TIE can only reduce off-chip DRAMaccess, while the lookahead-

style processing in ETTE further reduces on-chip SRAM access.

As analyzed in Section 2.3 and the first paragraph of Section 4.1,

executing TT-decomposed models requires additional intra-layer

multi-stage processing, increasing the movement of intermediate

results. Using large SRAM can only avoid data access to DRAM,

but the data access to SRAM actually increases sinceV𝑛 of stage-𝑛
is entirely stored in SRAM and then it is fetched for stage-𝑛 + 1. On
the other hand, the proposed lookahead-style processing calculate

part of V𝑛 on the fly and store that small chunk of data in the

register for the following computation, reducing the data access to

SRAM. As reported in Fig. 12, lookahead-style processing schemes

can reduce data movement ofV𝑛 by up to 3×. Second, lookahead-

style processing also reduces SRAM size. As shown in Fig. 1, the

inter-stage intermediate resultV𝑛 can be 𝑅𝑛+1× larger than inter-

layer result 𝑋
′
and 𝑌̃ , causing expensive memory cost when fully

buffered on chip. Though the proposed decomposition algorithm

reduces the hugeV𝑛 , lookahead-style processing further reduces

the required SRAM size by computing only one part of V𝑛 and

passing it to next stages. As reported in Section 5, under the same

compression ratio for various workload, the activation SRAM size

of ETTE (256KB) is 3× smaller than TIE (768KB).

Difference fromLoopBlocking. Both the proposed lookahead-

style processing and Loop blocking[4, 36] perform computation

at the granularity of data tile. However, lookahead computation

differs from loop blocking in two aspects. First, loop blocks adopts

an in-order processing style, making the computation of the current

stage fully complete first. On the other hand, lookahead scheme
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adopts out-of-order processing style via taking advantage of the

data dependency across different stages. Second, loop blocking

stores the wholeV𝑛 stage by stage; while lookahead-style process-

ing only stores one small part ofV𝑛 . Since in TT-format model the

rank value 𝑅𝑛 is typically smaller than output size 𝑂𝑛 , lookahead

computation requires smaller SRAM than loop blocking for storing

intermediate result. For instance, in expansion phase of VGG-FC6,

with 𝑂𝑛 = [16, 16, 16], 𝑅𝑛 = [1, 4, 4, 4, 1] and 16-bit quantization,
the storage requirement for intermediate result in lookahead-style

processing is 8 Byte; while loop blocking-based scheme needs 2K

Byte budget (256× increase).

Algorithm 2: The processing schedule of expansion phase

with lookahead computation.

input : Ṽ = 𝑌 ,𝐵1, . . ., ˜𝐵𝑑𝐵 , 𝑅 = [𝑅𝑑𝐴+1, 𝑅𝑑𝐴+2, . . . , 𝑅𝑑𝐴+𝑑𝐵+1 ]

output :𝑍

1 for 𝑜1 = 0 to𝑂1 − 1 do

2 Ṽ = Transform (Matmul (𝐵1 [𝑜1 ∗ 𝑅𝑑𝐴+2 : (𝑜1 + 1) ∗ 𝑅𝑑𝐴+2, :],

V), 1);

3 for 𝑜2 = 0 to𝑂2 − 1 do
4 . . .

5 for 𝑜𝑑𝐵 = 0 to𝑂𝑑𝐵 − 1 do

6 Ṽ = Transform (Matmul

( ˜𝐵𝑑𝐵 [𝑜𝑑𝐵 ∗ 𝑅𝑑𝐴+𝑑𝐵+1 : (𝑜𝑑𝐵 + 1) ∗ 𝑅𝑑𝐴+𝑑𝐵+1, :], Ṽ),

𝑑𝐵 );

7 𝑍 [
∑𝑑𝐵
ℎ=1 𝑜ℎ

∏𝑑𝐵
𝑘=ℎ+1𝑂𝑘 ] = Ṽ

8 Function Transform(V , 𝑗):
9 V = Transpose(V) ;

10 ℎ, 𝑤 = size(V);

11 Ṽ = new[ℎ ∗ 𝑤/𝑅𝑑𝐴+𝑗+1, 𝑅𝑑𝐴+𝑗+1];

12 for 𝑖 = 0 to ℎ do

13 T = new[𝑤/𝑅𝑑𝐴+𝑗+1, 𝑅𝑑𝐴+𝑗+1] ;

14 for 𝑘 = 0 to 𝑤/𝑅𝑑𝐴+𝑗+1 do

15 𝑇 [𝑘 + 1, :] = V[𝑖, 𝑘 ∗ 𝑅𝑑𝐴+𝑗+1 : (𝑘 + 1) ∗ 𝑅𝑑𝐴+𝑗+1 ]

16 Ṽ [𝑖 ∗ 𝑤/𝑅𝑑𝐴+𝑗+1 : (𝑖 + 1) ∗ 𝑤/𝑅𝑑𝐴+𝑗+1, :] = 𝑇 ;

17 Ṽ = Transpose(Ṽ) ;

4.2 Optimizing Matrix Transformation

Memory Partition in TIE. As illustrated in Fig. 7 and 8, the ma-

trix transformation from Ṽ𝑛−1 toV𝑛 is an important operation in

the computing scheme of ETTE to ensure functional validity. To

avoid memory access conflict, the conventional solution is to use

an extra copy of memory for storing intermediate results, causing

both area and power overhead. To address this problem, TIE adopts

memory partition technique to enable the simultaneous access to

the original conflicted data groups, realizing efficient matrix trans-

formation. However, this memory bank-based solution is not free.

This is because different workloads have different shapes (𝐼𝑛 , 𝑂𝑛

and 𝑅𝑛), which bring various demands for the desired partition
granularity. Consequently, it becomes quite challenging to achieve

high reconfigurability in practice.

Memory Partition-free Solution.We develop a very efficient

memory read/write scheme to support matrix transformation used

in ETTE. Our key observation is that because of the unique com-

puting pattern of ETTE, its desired matrix transformation is much

simpler than the counterpart in TIE. As illustrated in Fig. 9, a trans-

formation from V1 ∈ R
𝐼2𝐼3×𝑂1𝑅2 to Ṽ1 ∈ R

𝑂1𝐼3×𝐼2𝑅2 is needed in

the stage-1 of TIE. This means that the dimension factors 𝐼2 and𝑂1
need to be switched after this transformation. On the other hand, for

ETTE, the corresponding transformation is fromV1 ∈ R
𝐼2𝐼3×𝑅2 to

Ṽ1 ∈ R
𝐼3×𝐼2𝑅2 (elimination phase) and fromV𝑑𝐴+2 ∈ R

𝑂1×𝑂2𝑅𝑑𝐴+3

to Ṽ𝑑𝐴+2 ∈ R
𝑂1𝑂2×𝑅𝑑𝐴+3 (expansion phase); where only one factor

needs to be moved from one dimension to another. In principle,

this phenomenon essentially results from the decoupled 𝐼𝑛 and
𝑂𝑛 in ETTE – because at each stage only one type of dimension

factor (𝐼𝑛 or𝑂𝑛) now exists in the shape ofV𝑛 , such switching-free

transformation pattern becomes very natural. By leveraging this

simplicity, we then develop the corresponding efficient memory

read and write schemes for matrix transformation used in ETTE.

As illustrated in Fig. 9, without performing any memory partition,

our proposed memory access scheme directly realizes the desired

matrix transformation in the elimination and expansion phases.

5 EVALUATION

5.1 Algorithmic Performance

Table 1 summarizes the algorithmic performance of ETTE across

various practical applications. It is seen that with similar com-

pression ratio, e.g., for video, image and audio tasks, ETTE can

bring much higher FLOPs reduction than original TT decomposi-

tion. Meanwhile, ETTE can also achieve both higher model size

reduction and FLOPs reduction than original TT with the similar

accuracy performance when compressing DNN models used in the

recommendation systems and NLP.

5.2 Hardware Performance

Experimental Setting.We model the behavior of ETTE via build-

ing a high-level functional simulator. A cycle-accurate RTL model

is then developed with Verilog via Visual Studio Code and synthe-

sized using Synposis Design Compiler with CMOS 28nm library.

The area and power consumption for non-memory part is reported

from synthesize results; and the hardware performance of memory

part is reported from Cacti.

Design Configuration.We implement a 16-PE design exam-

ple of ETTE hardware architecture. Each PE is equipped with 16

multipliers and accumulators (MACs) and the corresponding acti-

vation units. Thanks to the ultra-high compression capability of TT

decomposition, one copy of 128 KB weight SRAM and two copies

of 128 KB activation SRAM (totally 256 KB) are budgeted in this

design, which are sufficient for most TT-format DNN models. With

28nm CMOS technology, a 16-PE ETTE occupies 1.25mm2 silicon

area and has 135.6mW power consumption under 1000 MHz clock

operating frequency.

Hardware Performance Comparison. Fig. 11 shows the per-

formance improvement of ETTE over other hardware solutions

on various DNN workloads (LSTM, Transformer, DLRM) for dif-

ferent applications (audio, video, language, recommendation sys-

tem). Compared with NVIDIA RTX 3090 GPU working on dense

models, ETTE achieves 36.2× – 253.1× higher throughput and
1204.2× – 8504.5× higher energy efficiency, respectively. Com-
pared with GPU running on TT-decomposed models, ETTE enjoys

6.5× – 63.3× throughput increase and 189.2× – 9750.5× energy



ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Yu Gong, Miao Yin, Lingyi Huang, Jinqi Xiao, Yang Sui, Chunhua Deng, and Bo Yuan

o1: 1     2  …  

o2: 1     2  …  

o3: 1      2  …  

i1: 1       2   …   

i2: 1     2  …  

i3: 1    2  …  
①② ① ②

Figure 9: (Left) Interpretation of processing schedule in the elimination and expansion phases over the index tree. Here the

node (𝑚,𝑛), as the𝑚-th node at the 𝑛-the level of the tree, represents the access to the𝑚-th tile of Ṽ𝑛−1 at the 𝑛-th stage. (Right)

Different movements of the dimension factors 𝐼𝑛 and 𝑂𝑛 in the matrix transformation of TIE and ETTE.
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Figure 10: Memory partition-free read/write for matrix trans-

formation in the elimination and expansion phases.

efficiency increase, respectively. Compared with the state-of-the-

art DNN accelerators, including TIE, sparsity-aware EIE, sparsity-

aware SpAtten[47], sparsity-aware LEOPARD[28], sparsity-aware

Centaur[25] and RecPipe[18], ETTE enjoys performance improve-

ment with 1.1× – 58.3× higher throughput, 2.6× – 1170.4× higher
energy efficiency and 1.8× – 2098.2× higher area efficiency, respec-
tively. Notice that unlike several DNN accelerators that customized

for a specific type of model, e.g., SpAtten and LEOPARD for NLP

transformer and Centaur and RecPipe for DLRM, ETTE can widely

support the acceleration of various DNN types, demonstrating its

generality.

5.3 Analysis & Discussion

Data Movement incurred by V𝑛 . As analyzed in Section 3.2 and

4.1, ETTE can reduce the data transfer ofV𝑛 via reducing its size

and access frequency. Fig. 12 shows the overall data movement

incurred by V𝑛 on different workloads. It is seen that the pro-

posed new computing scheme, which essentially shrinks the size

ofV𝑛 , brings 83× – 2272× reduction in data movement. Then the

lookahead-style processing, which reduces memory access, further

enables additional 2× – 3× reduction in the amount of data transfer.

Overall, joint use of these two techniques brings 200× – 6667×

reduction in the data movement for V𝑛 , significantly improving

energy efficiency.

Lookahead Strategy. As mentioned in Section 4.1, for the same

𝑑𝐴-stage or 𝑑𝐵-stage elimination or expansion phase, there exist

Method Acc. (%)\ PPL Params.↓ FLOPs↓

VGG-FC on ImageNet (Image Classification)

Uncompressed 69.1 – –
Org. TT[33] (NeurIPS) 67.8 37732× 24.8×
ETTE (Ours) 68.1 38887× 759.5×

Video LSTM on UCF-11 (Video Recognition)

Uncompressed 69.7 – –
Org. TT[51] (ICML) 79.6 17554× 4.7×
ETTE (Ours) 89.0 17862× 237.3×

Video LSTM on Youtube Celebrities (Video Recognition)

Uncompressed 33.2 – –
Org. TT[51] (ICML) 75.5 17388× 2.7×
ETTE (Ours) 88.3 17554× 170.0×

Audio LSTM [62] on TIMIT (Speech Recognition)

Uncompressed 79.5 – –
Org. TT[29] 79.6 7315× 14.4×
ETTE (Ours) 79.6 9280× 448.5×

DLRM [32] on Kaggle (Recommendation System)

Uncompressed 78.8 – –
Org. TT[54] (MLSys) 78.68 174.8× 1.4×
ETTE (Ours) 78.68 179.1× 2.2×

Transformer-XL [7] on WikiText103 (Language Translation)

Uncompressed 24.34 – –
Org. TT[24] (EMNLP) 28.04 15.1× 0.93×
ETTE (Ours) 29.24 1686× 7.3×

BERT [11] on GLUE (Language Understanding)

Uncompressed 82.7 – –
Org. TT[39] (ICLR) 80.0 47.78× 5.23×
ETTE (Ours) 79.8 1671.8× 44.79×

Table 1: Algorithmic performance of ETTE and original TT.

different lookahead-style processing schedules that have different

impacts on memory consumption and access frequency. To iden-

tify the best-suited lookahead strategy and maximize hardware

performance, we explore the design space of lookahead scheme in

both elimination and expansion phases. As illustrated in Fig. 13,

among different lookahead-style processing options, maximizing

lookahead effort, i.e., performing lookahead computation as much

as possible, is the best solution since it achieves the minimum mem-

ory consumption and data transfer forV𝑛 in the elimination phase.

It is also seen that though in the expansion phase different looka-

head schemes have similar impact on memory access incurred by

V𝑛 , maximizing the lookahead effort can still brings lowest memory

consumption forV𝑛 .
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Figure 11: Hardware performance of different DNN hardware solutions. Here some accelerators are customized for a specific

DNN type (e.g., NLP transformer); while GPU, TIE and ETTE can widely support all the workloads. Area efficiency of GPU is

not reported because of the limited access to GPU area measurement.
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Figure 12: Data movement of 𝑉𝑛 before and after using pro-

posed computing scheme and lookahead-style processing.
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Figure 13: SRAMaccess and size incurred byV𝑛 with different

lookahead strategies on UCF11 ( 𝑑𝐴=4 and 𝑑𝐵=3). (𝑚𝑖 . . .𝑚 𝑗 )

means the lookahead computation from stage-𝑚𝑖 to stage-𝑚 𝑗 .

Scalability & Utilization. Fig. 14 illustrates the processing

throughput and multiplier utilization of ETTE with various PE

settings. Here each PE is equipped with 16 multipliers. As shown

in Fig. 14, ETTE shows high scalability performance. Also, it is

observed that increasing the number of PEs gradually decreases

utilization. This is because for a given shape of input matrix, it

becomes more challenging to make the number of PEs be the exact

factor of shape dimension with more PEs. Therefore proper trade-

off between desired throughput demand and high PE utilization is

needed. Our design sets PE amount as 16 to achieve good balance.

6 RELATEDWORKS

DNN hardware accelerators have been extensively studied in re-

cent years [3, 4, 10, 13, 16, 31, 49]. In particular, different types

of compression model-oriented design, including sparse-aware

[8, 21, 30, 41, 52] and quantization-aware [22, 60] architecture, have

been proposed in the literature. Among these existing solutions,

Figure 14: Normalized Multiplier utilization and throughput

with different PEs on LSTM-YTC. Each PE has 16 multipliers.

TIE [9] is the state-of-the-art TT-oriented DNN accelerator. On the

algorithm aspect, TT decomposition has demonstrated its promis-

ing compression performance in several different practical DNN

applications. However, the key drawbacks of existing TT-format

DNN models are the insufficient reduction for computational costs

and data movement. To the best of our knowledge, to date only

[58] investigates to reduce the computation of TT-format CNN.

ETTE enjoys three main advantages over [58]. First, the solution

adopted in [58] focuses on accelerating TT-format CNNs, whose

model redundancy is typically quite limited for TT compression;

while ETTE aims for much broader spectrum of DNN types, in-

cluding large-scale MLP, RNN, Transformer, which are the most

commonly used scenarios for performing TT decomposition. Sec-

ond, the method proposed in [58] is heuristic without theoretical

guarantee; while ETTE can assure significant reduction of the com-

putational and memory costs with rigid mathematical derivation

and proof. Third, [58] is an algorithmic work that does not consider

multi-stage data movement and efficient matrix transformation;

while ETTE performs algorithm and hardware co-optimization to

address all the three challenges of existing TT-format DNNs.

7 CONCLUSION

This paper develops ETTE, an efficient TT engine for high-performance

DNN acceleration. By performing algorithm and hardware co-

optimization efforts, ETTE brings significant reduction in com-

putational cost, storage demand and data movement over the state-

of-the-art DNN hardware solutions.
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