L)

Check for
updates

ETTE: Efficient Tensor-Train-based Computing Engine for Deep
Neural Networks

Yu Gong”
Miao Yin®
Rutgers University
New Jersey, USA
yu.gong@rutgers.edu
miao.yin@rutgers.edu

Yang Sui
Rutgers University
New Jersey, USA
yang.sui@rutgers.edu

ABSTRACT

Tensor-train (TT) decomposition enables ultra-high compression
ratio, making the deep neural network (DNN) accelerators based on
this method very attractive. TIE, the state-of-the-art TT based DNN
accelerator, achieved high performance by leveraging a compact
inference scheme to remove unnecessary computations and mem-
ory access. However, TIE increases memory costs for stage-wise
intermediate results and additional intra-layer data transfer, leading
to limited speedups even the models are highly compressed.

To unleash the full potential of TT decomposition, this paper pro-
poses ETTE, an algorithm and hardware co-optimization framework
for Efficient Tensor-Train Engine. At the algorithm level, ETTE
proposes new tensor core construction and computation ordering
mechanism to reduce stage-wise computation and storage cost at
the same time. At the hardware level, ETTE proposes a lookahead-
style across-stage processing scheme to eliminate the unnecessary
stage-wise data movement. By fully leveraging the decoupled input
and output dimension factors, ETTE develops an efficient low-cost
memory partition-free access scheme to efficiently support the
desired matrix transformation.

We demonstrate the effectiveness of ETTE via implementing a 16-
PE hardware prototype with CMOS 28nm technology. Compared
with GPU on various workloads, ETTE achieves 6.5X — 253.1X
higher throughput and 189.2x — 9750.5% higher energy efficiency.
Compared with the state-of-the-art DNN accelerators, ETTE brings
1.1X — 58.3%, 2.6X — 1170.4%X and 1.8X — 2098.2% improvement on
throughput, energy efficiency and area efficiency, respectively.

*Both authors are co-first authors.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

ISCA '23, June 17-21, 2023, Orlando, FL, USA

© 2023 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 979-8-4007-0095-8/23/06...$15.00
https://doi.org/10.1145/3579371.3589103

Lingyi Huang
Rutgers University
New Jersey, USA
lingyi.huang@rutgers.edu

Chunhua Deng
ScaleFlux, Inc.
California, USA
chunhua.deng518@gmail.com

Jinqgi Xiao
Rutgers University
New Jersey, USA
jinqgi.xiao@rutgers.edu

Bo Yuan
Rutgers University
New Jersey, USA
bo.yuan@soe.rutgers.edu

CCS CONCEPTS

- Computer systems organization — Neural networks.

KEYWORDS

tensor decomposition, neural networks, low rank, accelerator

ACM Reference Format:

Yu Gong, Miao Yin, Lingyi Huang, Jingi Xiao, Yang Sui, Chunhua Deng,
and Bo Yuan. 2023. ETTE: Efficient Tensor-Train-based Computing En-
gine for Deep Neural Networks. In Proceedings of the 50th Annual Interna-
tional Symposium on Computer Architecture (ISCA °23), June 17-21, 2023,
Orlando, FL, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3579371.3589103

1 INTRODUCTION

Deep neural networks (DNNs) have been widely adopted in many
important artificial intelligent (AI) applications. Considering in
practice the sizes of large-scale neural networks typically need
to be reduced to fit for the edge and mobile applications[42-46,
56], model compression strategy has been popularly performed to
generate the low-cost and lightweight networks. To date, many
model compression techniques [1, 5, 6, 12, 15, 19, 20, 23, 26, 27, 35,
37, 38, 40, 50, 57, 59, 61]have been widely adopted for the practical
DNN deployment.

Among various compression techniques, tensor-train (TT) de-
composition is a very unique and attractive solution. Fundamentally
different from pruning and quantization, TT decomposition aims
to minimize the network structure-level redundancy via explor-
ing the low-tensor-rankness of the entire models. Rooted in the
mathematically rigid tensor theory, such low-tensor-rank-based
compression philosophy, by its nature, can provide very high com-
pression ratio. As reported in various NeurIPS/ICML/CVPR works
[14, 33, 34, 48, 51], TT decomposition enables 100X ~ 50000 size
reduction for LSTM and CNN models in video, audio and image do-
mains. Very recently, Al researchers further discover the promising
benefits of applying TT decomposition to the emerging large-scale
models. For instance, Meta [54] (best paper award in MLSys’21) per-
forms TT decomposition to their ultra-large DLRM models in the
recommendation systems, enjoying 100X model size reduction with
negligible performance loss. Amazon [55] (KDD’22) further applies
TT decomposition for compressing large embedded tables in graph

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579371.3589103&domain=pdf&date_stamp=2023-06-17

ISCA 23, June 17-21, 2023, Orlando, FL, USA.

neural networks, reducing the size by up to 81, 362%. Considering
the language models in NLP continues to scale, NLP researchers
also use TT decomposition to compress NLP transformers, bringing
more than 40X parameter reduction [39] (ICLR’22).

Such outstanding compression performance and unique com-
puting scheme of TT-format models, by their nature, call for the
efficient architectural support. More specifically, the accelerator
design of TT-oriented DNN is motivated by three main reasons.
First, the promising compression performance of TT decomposi-
tion, if properly supported by underlying hardware, can be trans-
lated to very high hardware performance and outperform the other
compression approaches (e.g., pruning) and their corresponding
accelerators. For instance, as reported in Fig. 11, our proposed TT
decomposed DNN accelerator shows significant performance im-
provement than sparsity-aware Transformer accelerators. Second,
because TT-format processing scheme has its own unique comput-
ing pattern and challenges, the micro-architecture of the existing
general-purpose GPU and DNN accelerators, which are designed
for uncompressed model and other compression formats such as
sparse DNNs, cannot well support the efficient execution of TT-
format models or fully unleash their potential. Third, because a
DNN weight layer, no matter its specific type, is mathematically a
tensor, TT decomposition, as a powerful tool directly operated on
tensor, unifies the computations of different DNN types in the same
format. Therefore, a TT-oriented accelerator naturally supports a
wide spectrum of DNN models, e.g., LSTM, Transformer, DLRM,
etc. As reported in Fig. 11, our proposed TT-oriented hardware can
provide acceleration of different DNN types; while many existing
DNN accelerators are customized for a specific type.

To date the most representative TT-oriented accelerator is TIE
[9] (ISCA’19), and its architecture is further adopted in a DNN ASIC
chip [17] (ISSCC’21). By customizing dataflow and memory ac-
cess to TT-decomposed DNNs, TIE significantly improving energy
efficiency and execution speed than the straightforward implemen-
tation. However, TIE is still not an ideal hardware solution for
accelerating TT decomposed DNNs because of three limitations.
First, TIE only provides limited speedup for the highly compressed
TT-format models. The computational saving brought by TT de-
composition is not as promising as the storage reduction. In other
words, there exists a gap between the compression ratio and FLOPs
reduction ratio for a TT-format model. Consequently, though TIE
indeed eliminates the unnecessary computations that the straight-
forward design suffers, its necessary computational cost is still not
as low as the corresponding storage cost, limiting the practical
speedup it can achieve.

Second, TIE consumes increasing memory costs for intermediate
results. To be specific, when TIE executes a TT decomposed FC
or CONV layer, it essentially splits the entire computation into
multiple stages, where the output size of each stage can be much
larger than the size of the final output of this layer. For instance,
for the VGG-FC7 layer evaluated in TIE, the final output is only a
length-4096 vector; while the intermediate outputs of its stage-wise
computations are six 1024-by-16 matrices. Because now the intra-
layer results have much larger sizes than the inter-layer results,
on-chip memory cost significantly increases, degrading original
ultra-low storage benefits brought by TT decomposition.

Yu Gong, Miao Yin, Lingyi Huang, Jinqi Xiao, Yang Sui, Chunhua Deng, and Bo Yuan

Third, TIE causes additional intra-layer data transfer. In general,
for a d-stage TT decomposed layer, the intermediate results output
from each stage need to be written to the memory and then read
out again for d times; while for the uncompressed layer only one-
time read/write access to the output data is needed. In other words,
though TIE indeed significantly reduces the data movement for
model weights, it meanwhile brings additional memory access to
intermediates results. Evidently, such extra intra-layer data transfer
limits the overall improvement on energy efficiency.

To address these challenges and fully unleash the potential of
TT decomposition, this paper propose ETTE, an Efficient Tensor-
Train Engine for real-time low-power DNN acceleration. ETTE is
built on algorithm and hardware co-optimization to systemically
overcome the limitations of TIE. At the algorithm level, we first
analyze and identify the root cause for the drawbacks of the existing
TT-format DNN execution - the tensor core construction format
and computing order. Based on this key observation, we develop a
new tensor core construction mechanism and computing scheme,
simultaneously reducing the FLOP count and memory costs for
intermediate results. At the hardware level, we develop the corre-
sponding architecture to fully reap these algorithmic benefits. We
first propose a lookahead-style across-stage processing scheme to
eliminate the unnecessary stage-wise data movement. Built on the
top of smaller size of intermediate results, this new dataflow brings
very significant reduction in the intra-layer data transfer. Then we
develop a memory partition-free access scheme to efficiently realize
the complicated matrix transformation operation.

We implement a 16-PE ETTE design example with CMOS 28nm
technology. Operated on 1000MHz, this hardware prototype has
1.25mm? area consumption and 135.6mW power consumption.
Compared with GPU on various workloads, ETTE achieves 6.5x
— 253.1x higher throughput and 189.2x — 9750.5% higher energy
efficiency. Compared with the state-of-the-art DNN accelerators,
ETTE brings 1.1X - 58.3%, 2.6X — 1170.4X and 1.8X — 2098.2x im-
provement on throughput, energy efficiency and area efficiency,
respectively.

2 BACKGROUND
2.1 TT-format DNN Computation

In general, TT decomposition[33][57] aims to explore the structural
low-tensor-rankness of DNNs to remove model redundancy. To be
specific, given the weight matrix W € RI*© of a layer with input
vector x € R! and output vector y € RO where I =]—I‘é:1 I, and
0 =]_[Z:1 On, TT decomposition factorizes the original weight
matrix W into a set of small tensor cores {g,,};le with {Rn}g=1 as

TT-ranks, and the corresponding TT-format computation can be
performed as:

Y(ir,...,iq) =
D Gilin i) Galiz, ol - Galia jalX Givs - ja), @

Jisedd

where Y € RO1X02:-X0a apnd X € RI¥Io-Xld gre the reshaped
high-order tensor format of vector y and x, respectively. Meanwhile,

Gnlin, jn] represents the R,-by-Rp4+1 element matrix of the 4-order
gn e RRn—l XIpXOpXRy, .

ETTE: Efficient Tensor-Train-based Computing Engine for Deep Neural Networks

Transformation

Transformation

3
1
1

!

ISCA 23, June 17-21, 2023, Orlando, FL, USA.

Z ! ! i Tensor [=> s Tensorlization
o X
g Matrix izati
= o o - s = [l petensoriization
3 + T e ———————f—
) - - la X Ry
2 X . | | 7 04-1% Ry
g N ey s .
= X | s X x| Gq
i o fi = -
o =
= Il - L)Y
o~ I | GaUnfolding
) ~
3 I Stage d

1
Example of 3-order tensor TT |

Figure 1: Example computing scheme of TIE. The sizes of V;;, X "andY are Rov1 [1

P2 Galisial Gural: s X P

1

T-ETe

d

e L ;.‘:1 0y, H?zl Iiand H?:l Oj, respectively.

When J; and O; are close, the size of V},, can be much larger (R,+; times) than that of X "and Y.

2.2 TIE: Compact TT-format Computation

In general, using TT decomposition significantly reduces the model
size of DNN from]—]‘rfz1 1,0, to Zgzl 1,0, R, Ry+1. However, one
key drawback of the original TT-format computing scheme (Eq. 1)
is the challenging computational redundancy problem. As analyzed
in TIE, when the execution on TT-format layer is performed as the
multi-dimensional summation of the products of Gy, [in, jn] (see Eq.
1), it has to consume multiple times of consecutive multiplications
among the same Gp,[in, jn], causing massive amount of unneces-
sary computational redundancy. For instance, to execute FC6 layer
of VGG-16 model with d = 6 and R, = 4, the Eq. 1-based straightfor-
ward implementation consumes more than 1000x multiplications
over the theoretical minimum for calculating all Y(iy,...,ig)’s.

To overcome this challenge and improve computation efficiency,
TIE proposes and develops a compact TT-format computing scheme
that can eliminate all the unnecessary computational redundancy.
As indicated in Fig. 1, by fully paralleling the computations in-
volved with the same g~n, as the matricized G, the original re-
peated data fetching and multiplications with the same Gy [in, jn]
can now be avoided. To be specific, a customized transformation
mechanism for the data layout of the intermediate results (V) is
delicately designed to form a multi-stage consecutive matrix multi-
plication scheme. As verified by theoretical analysis, the number of
multiplications consumed by TIE matches the minimum computa-
tional cost for calculating all Y (i1, ...,i4)’s, leading to a redundant
computation-free processing scheme.

2.3 Limitations of TIE

While TIE efficiently eliminates the unnecessary redundant compu-
tations, it still has three main drawbacks. First, with the presence
of promising high compression ratio enabled by TT decomposi-
tion, the reduction in the necessary computation is not as high as
storage saving. For instance, for a TT-format VGG-FC6 layer with
[1,4,4,4,4,4,1] rank setting, which means 50972X compression ratio,
the compact computing scheme of TIE only brings 28.2x FLOPs
reduction. Even with the more aggressive compression effort, e.g.,
61021x model size reduction, the corresponding computation re-
duction only slightly increases to 30.0%. Evidently, such huge gap
between compression ratio and speedup ratio severely limits the
performance of TT-oriented DNN hardware.

Second, though TIE enjoys the benefit of low storage cost of
weight parameters, it consumes high memory overhead for inter-
mediate results. Specifically, as illustrated in Fig. 1, TIE executes one

DNN layer in a multi-stage processing manner. In such scenario, the
sizes of these intra-layer intermediate results from each stage, i.e.,
“Vy’s, are typically much larger than that of the transformed inter-
layer intermediate result (Y) of the current layer. To store those
intermediate results incurred by stage-wise computations, much
more on-chip memory resource has to be budgeted than before, and
in many cases such extra memory consumption even exceeds the
demand from weight parameters. For instance, the hardware imple-
mentation of TIE only needs 16KB weight SRAM for models; but it
consumes 768KB working SRAM to store larger-size intermediate
results.

Third, another even more challenging problem incurred by the
multi-stage processing scheme is the high data transfer for the
stage-wise intermediate results. Recall that in the conventional
DNN hardware there only exists inter-layer data movement for Y
and W; in addition to them, TIE also consumes the unique intra-
layer data movement for V,’s. In particular, consider 1) a d-stage
layer has d — 1 stage outputs ‘V,;’s and only one layer output Y;
and 2) as analyzed before, V}, typically has much larger size than
Y, such frequent stage-wise data transfers inevitably cause very
high overhead on memory access, significantly limiting the overall
energy efficiency.

3 ETTE: ALGORITHM
3.1 Analysis of Limited Performance of TIE

Before moving to the details of ETTE, we first analyze the cause of
the architectural limitations of TIE - insufficient speedup, interme-
diate results overhead, and extra data transfer. Essentially, all these
three drawbacks either completely or at least partially are incurred
by the phenomenon of large-size intermediate results (Vy,’s). Specifi-
cally, as illustrated in Fig. 1, at each computing stage-n TIE obtains
(Vn—l (the transformed Vj,—1) from memory, multiplies it with én,
and then stores the calculated V}, back to memory. Evidently, the
performance of TIE is very sensitive to the size of V}, - the larger
V, means more storage requirement, higher computational cost
and increasing memory access. Unfortunately, V}, in TIE is typi-
cally very huge, sometimes even several times larger than layer
input/output (X %) causing inefficient hardware performance.
Upon discovering this phenomenon, a naturally raised question
is why YV}, is so huge in TIE processing. In general, two underlying
factors, namely as tensor core construction format and tensor core

ISCA 23, June 17-21, 2023, Orlando, FL, USA.

computing order, jointly causes this problem. More specifically, the
construction format (e.g., order and shape) of tensor core G, which
is involved with the calculation of V,, as Vj, = (Vn_lén, has direct
impact on the size of V;,. Meanwhile, for a fixed left-to-right TT-
format execution on a series of Gy, the choice of the computing
sequence, which is essentially equivalent to the placement of each
Gn in the entire “train” of tensor cores, also plays an important role
for determining the overall costs.

3.2 New Computing Scheme of ETTE

Based on the above observation and analysis, next we develop
the efficient computing scheme for TT-format DNN via explor-
ing new tensor core construction format and computing order. To
that end, we first consider the generalized TT format, in which the
order of each factorized tensor core is not limited to 4. In other
words, a large matrix W € RT¥€ is decomposed to d tensor cores
Gn € RR,,XI]-"_1+1><...><Ijnkanilﬂ‘..Okan,,H, where I = n;i:al I,
0= Hg’;l Oy, jg = da and kg = dg. As shown in Fig. 2, here each
tensor core Gp, is now relaxed to having arbitrary order instead of
4. Notice that when performing the multi-stage computation over
these generalized TT cores, similar to the case for the 4-D G,, the
arbitrary-dimensional G, is also first flatten to 2-D format g], and
then it is multiplied with the transformed input V-1 to generate
the intermediate result V), for the current stage.

Within the framework of the generalized TT format, we next ex-
plore the cost-aware tensor core construction format and computing
order. Notice that because our ultimate goal is to reduce the incurred
computation/memory cost for the inference on the decomposed W,
the selection of d is also flexible as long as the information carried by
I; and O, is preserved in the G, after the factorization, i.e., the shape
of G, contains dimension factors I; and O,. Based on this observa-
tion, we propose to identify the efficient G, construction format
and computing order in a recursive way. More specifically, given
the original G, € RERnX L1 XLjn XOppy_y41---Oke XRnset \ghere p =
1,2, ...d, we factorize it to two new tensor cores and check the corre-
sponding computational cost change. Notice that such factorization
is essentially to explore different formats of G, since d, j, and
kp are set to general values. To maximize the scope of the to-be-
explored tensor core construction settings, the factorization process
can be repeated.

Factorize G, to Gy 2. As analyzed before, such G,-level fac-
torization does not alter the information preservation if all the
dimension factors of G,, are contained in the new tensor cores. For
simplicity, let A = {j—1+1,...,jptand B = {ky—1+1,...,kn}
denote the index of factor I, and O, of G, respectively, and A\l
and B\[represent the subsets where element [is excluded from A
and B, respectively. Then FLOPs saving can be obtained with two
factorization schemes:

Proposition #1: Factorizing Gp, to two new tensor cores, where Ap 1 €

’ /
RRaXIXR o B, | € RRAXOIXR gorves as left or right components,
respectively, reduces FLOP count.

Proor. The FLOPs of original computing scheme ((l7n =V, én)

at the stage-n can be calculated as:
da kn-1

FLOPorg = l_[I;]_I Ou(l—[I;]_I OuRan+l)~ (2)

i=jp+1 o=1 i€eA o0€B

Yu Gong, Miao Yin, Lingyi Huang, Jinqi Xiao, Yang Sui, Chunhua Deng, and Bo Yuan

Now consider to decompose a (jn — jn—1 +kn — kn—1 +2)-order G,
to a 3-order tensor core! and a (j, — ju_1 + kn — kn_1 + 1)-order
tensor core denoted as Gp, 2. Since the shape of a 3-order TT tensor
core must contain two rank values (as defined by TT), there exist
four possible factorization schemes:

Case-1. Factorize G, to Ay1 € RRn xIxR and Gn2 €
RR’ XLy X XX X XDy X0k, 11X+ XOky XRnt where | €
A. As shown in Fig. 3, in such case Ay is placed at the left
side of Gy, 2 after decomposition. Then the FLOP count for (17,, =

(Vn—lAn,lgn,Z is
da kn—1 , ,

FLOP = [| I [| Oo([[liRaR + [| i [| OoR Rus1). (3)

i=jp+1 o0=1 ieA icA\l o0€B

Comparing Eq. 3 and Eq. 2, it is seen that because [; > 2,
[Toer Oo > 2,and R < Ry, we have FLOP] < FLOP,y, indi-
cating computational saving.

Case-2. Factorize Gn to Ap; € RRXIXRma and g, €
RR,,xljnflﬂx»»»xz,_l><1,+1><---x1jnxokn_1+1x---xokn><R" In such case
Ap,1 is essentially placed at the right side of Gy, 2. Then the FLOP
count for Vy, = Vy_1Gn 24n1 is:

dA kn-1

FLOP? =]_[I;]_[oo(]_[I;]_[OoRuR +]_[OoR Rps1ly). (4)

i=jp+1 o=1 ieA o0€B oeB

J Since Rl’c’“ < I} and R, > 2, FLOPl1 <
[1:2, 41 L T155" Oo [licavi li(ITiea 1i [Toer OoRn)R < FLOP?,
FLOP count of Case-2 is higher than that of Case-1.

Case-3. Since the newly factorized 3-order tensor core can
also contain O, dimension factor instead of I;. In other words,
we can factorize Gy to Bp; € RRXOBea and G,, €
RRu XXX T X0k 1%+ X011 XOLa XX Oty XR 11 1oy case,
Bp,,1 is essentially placed at the right side of Gy, 2. Then the FLOP

count for V,, = V;_1Gn 2Bn1 is:

dA kn—l
FLOP? =]—[I; ﬂ Oo(l—[I,- ﬂ OoR,R + ﬂooR Rps1). (5)
i=jp+l o0=1 icA oeB\l o€k

Comparing Eq. 5and Eq. 2, 0; > 2, [[;ea i > 2 and R < Rpy1,
so Case-3 brings fewer FLOPs (FLOP13 < FLOPyyg).

Case-4. Factorize Gp to Bp1 € RRnXO xR and Gno €
RR' XL,y X XLy X0,y 41X+ X011 X011 X+ X0k, XRus1 - A< shown
in Fig. 3, By, 1 is placed at the left side of Gy, 2. Then the FLOP count
for (Vn = (andlgn,lén,z is

kn—
FLOP! = ﬁ I;]n_[1 ou(ﬂ L;O;RnR +]_[O,]_[IiR’RnH)_ ()

i=jn+1 o=1 icA o€B icA
Since Rps1 < O and R, > 2, FLOP? <

n;’jjnﬂ G115 Oo(ITien liO1RaR) < FLOPY, Case-4 has
more FLOP counts than Case-3 (FLOP;l > FLOP13). m]

Remark #1. Summarizing the four cases, it is seen that: 1) Case-1/3
have fewer FLOPs than original computing scheme; and 2) Case-2/4
have more FLOPs than Case-1/3. Hence in order to achieve the
guaranteed and higher FLOPs reduction, A, 1 or By 1 should be
placed at the left or right side of Gy 2.

1Based on the definition of TT formats, a tensor core must contain at least 3 dimensions.
So each time factorizing G, with a 3-order tensor core minimize the granularity of the
exploration for possible tensor core construction format, maximizing the searching
space.

ETTE: Efficient Tensor-Train-based Computing Engine for Deep Neural Networks

s 0 =01%x-X0g,

3 T 1 TT -

: Decomposiktion - 83
M S -

~ T

Il 1

R,
Gl c RR1><’1---’/1><01---0k1><R2

1
s
m
=

X

S

Unfolding

Rs
GZ c RRZXIH“ .,.l,zxoklﬂ..,ahzxkg

ISCA 23, June 17-21, 2023, Orlando, FL, USA.

$3 e 82 é,l'

Rgy1 =
Gy € RRaxjg_q+1--1jg*Okq_y+1-Oky*Ra+1

3 unfolding Unfolding
————— S . Rfalninlaiuiaty N
N) | T &
| 7| B g Qi ™
+ 1 = +
= S =

1
& R30p,41 - Op, 1
1

\

1

1

1

= Rg+10py_y+1 - Oap
= 1
1

1

1

1

Figure 2: General TT-format computing scheme without optimization on FLOPs and memory costs. Each G, is now relaxed as a
high-order tensor core (order can be larger than 4). Fig. 1 is essentially a special case of Fig. 2.

R

Rn+1 Gn ‘

Decompose =

Lj g1 4 X0ty 1 - O,

Figure 3: Factorize one new tensor core (Ap 1 or B, 1) from Gp,.
Here Case-1 and Case-3 can bring the guaranteed and higher
FLOPs reduction. Hence after factorization A, ; or B, ; must
be located at the left or right side of G, 2, respectively.

1 R
nh+1

p— PR
m’ %Rhu '%’ '

l_IlEA\H., l_[oEH\Hb !

R Case2
'l H
- :

""'” Rn+1 gt :

1

l

Figure 4: Recursively factorize one new tensor core (An’haﬂ
or B, p, 1) from G, . 1. Here A, ;’s and By, »’s have been placed
at the left and right side of G, ;,,; after previous recursive
factorization, i.e., intra-G,-level splitting. Again, Case-1 and
Case-3 can bring the guaranteed and higher FLOPs reduction.
Hence after current factorization A, _,; or B, ,, .; must be
located at the left or right side of G, .4, respectively.

Factorize G, j11 to Gp, 2. Proposition #1 shows that factoriz-
ing Gy, to two new tensor cores can bring computational saving in
some cases. Next we show that this also holds in general condition,
i.e., when G, has already been factorized to multiple tensor cores.

In general, suppose that G, has been factorized to (h + 1) compo-
nents with hq of Ay, hy of By, and one G, p41, Where i € Hyg,
o € Hy and h = h, + hy. Then FLOPs saving can be obtained with
the following scheme:

Proposition #2: Factorizing Gp p+1 to two new tensor cores, where
Apha+1 OF By p, 41 serves as left or right components, respectively,
reduces FLOP count.

Proor. Considering the generality of n, h, and hy, we aim to
use mathematical induction to prove the above conclusion. Since
the case of h = 0 has been verified in Proposition #1, we now show
the case of h + 1 holds if the case of h holds, i.e., all the previously
decomposed Ay, ; and B, ; are placed on the left and right side of
Gn h+1, respectively. Then, similar to the analysis in Proposition #1,
when decomposing G, p+1 to two new tensor cores, Fig. 4 shows
that there exist four possible cases, i.e., Case-1/2: A, 41 on the
left/right side of G, 19, Case-3/4: By, , 41 on the right/left side of
Gn,h+2- Then the FLOPs incurred by G, 12, Ap p,+1 and By, p, 11 is:

FLory = [L [] OoRyRpy (7)
icA\Hg, o€B\Hp
FLOP},, = [] LR,R + [OR'Byr (g
ieA\Hg, isA\\{Ha t} o0eB\Hp
FLoP,, = [| I [] OoR,R + Ool:R Ryys ()
icA\Hqg o0€B\H oeB\Hp
3 / /1’ ’ /
FLor, = [& OB, R + [OoR'Ryy (g
icA\Hg o0€B\{Hp.t} o€B\Hy

FLopy, = [nomR,R +] & O.R'R),,.

(11)
icA\Hq icA\{Hg,t} o0€B\Hp

Comparing Eq. 8 - Eq. 11 with Eq. 7 it is seen that, because I; > 2,

Ot 2 2, [Toer\Hy, Oo 2 2, [Toea\m, i = 2and R < R, we can

observe FLOP} < FLOP"”’ FLOP,, < FLOP., FLOP3 <

or h+1 h+1 h+1
FLOP, 9 and FLOPi31+1 < FLOP;. Case-1/3 bring guaranteed and
higher FLOPs reduction. O

Remark #2. The generality of Proposition #2 shows that the fac-
torization of G, 1 can be applied in a recursive way to further
reduce FLOP count. Finally, G,, 41 is decomposed to a group of
3-order Ay ; on the left side and a group of 3-order By, , on the right
side, bringing significant FLOPs reduction (as illustrated in Fig. 4).

From G, to {G,}. The above described factorization and split-
ting strategy for G, can be further extended to be applied to {Gn}.
In other words, each G, is decomposed to a sequence of A, ; and

ISCA 23, June 17-21, 2023, Orlando, FL, USA.

Ellmlnatlon Phase Expan5|on Phase

d‘+1 a,+z Rd‘ﬂi,; 1
3
b “” “g Bdﬂ
Y
#E -"'

& Tnp1XRyiq

0=0,.x0,

W € R1X0 '::) ” A1

Iy Xl

I

.

.
pmmm Ao
IniaX - 1q, |

1
1
1
. !
5 1
1
1
8
1
xRy |
1
1
|
Su
§|
a1
31
a,
’n+1>< ’rz,. i
1
1
. 1
)

2% la,

.
P S
lemﬂ,,_l
==Il
pX§
Ryia,
X O
n
A
H
H

0,%R s
ntdy nXRuiage1 & 0,%Rpsae1 | Ryt
Stage d, +n e s
| » Transformation |_J‘> TT D ition” "1: Elimi Phase §i: i Phasel

Figure 5: Extending the strategy in Fig. 4 for one G, to all
Gn’s. All A, i’s and B, ,’s factorized from different G,,’s are
placed at the left and right side, respectively, showing inter-
Gn-level splitting. During inference, the size of intermediate
result V), first decreases at the beginning d, stages where
Ap’s are multiplied with Vj,_; (i.e., Elimination Phase). Then,
the size of V, increases at the following dp stages where B,,’s
are multiplied with V.4, ; (i.e., Expansion Phase).

Bp,o to reduce the FLOPs for TT-format execution. Moreover, be-
cause the entire {G,} can be interpreted as a “mega” tensor, its
factorized tensor cores {Ay;} and {By,,} should also be split to
the “left" and “right" groups (as shown in Fig. 5). Notice that this
inter-Gy-level split strategy does not only reduce computational
cost (addressing the first drawback of TIE), but also saves memory
cost for intermediate results (addressing the second drawback of
TIE).

Proposition #3: Splitting {Ap,i} and {Bn,o} to two groups reduces
the storage costs of intermediate result V.

Proor. For original computing scheme as illustrated in Fig.
2, the size of the intermediate result at stage-n is sizeorg =

Ryt H?:j ki ngil Op. On the other hand, after applying the
computing scheme shown in Fig. 5, the size of the intermediate

result at stage n is either sizef,., = Rut1 ﬂ i or sizeB, , =

Rp+1 H
with the A,,,i or By, respectively. Evidently, both sizeZ, ., and
sizeB, are smaller than sizeorg, leading to lower storage cost of
intermediate result V},. m]

Oo, which represent the size of V), that is involved

Remark #3. When applying our proposed new TT-format execu-
tion scheme (shown in Fig. 5), the size of intermediate result V,

at stage-n first decreases, as revealed by sizefew = Rp+1 H?ﬁn I;

and then increases, as revealed by szzeﬁew = Rp41]_[" da O,. We
name these two different phases as elimination phase and expansion
phase, respectively.

Factorization/Computing Order for A, and By,. Following
prior TT works [34, 51, 53], given the target compression ratio,
ETTE selects {I,,}, {On} and {Ry, } to approach uniform distribution,
eg,makel; * Ih .., 01 ~ O2 ~ .., Ry ® R3 ~ ... as much as
possible. Under such setting, as long as 1) {A,} and {B,} are split
into two groups and 2) the computation involved with the entire
{Ap} is performed earlier than the entire { B, }, the change of FLOPs

Yu Gong, Miao Yin, Lingyi Huang, Jinqi Xiao, Yang Sui, Chunhua Deng, and Bo Yuan

incurred by different factorization/computing orders for specific
Aj’s and B;’s in Fig. 5 is not significant, since the shape of different
Aj’s are quite similar (also for different B;’s). For instance, for a
TT-decomposed VGG-FC6 with I, = [16, 14, 8, 14], Op, = [16, 16, 16]
and R, = [1,4,4,4,4, 4,4, 1], the different factorization/computing
orders only bring up to 10% FLOPs difference. Considering the
limited impact caused by different factorization/computing orders,
ETTEs simply performs consecutive computation with A;’s and B;’s
with descending order of their sizes, e.g., size(A1) > size(Az) > ...,
size(By) < size(Bg) < ..., avoiding the offline exhaustive search.

4 ETTE: HARDWARE ARCHITECTURE

Based on the proposed new computing scheme, in this section we
develop the corresponding ETTE hardware accelerator. Fig. 6 shows
the overall architecture. Here the datapath consists of a 1-D PE ar-
ray, where each of PE contains multiple multiplier and accumulator
(MAC) units. The inputs of datapath are from weight SRAM and acti-
vation SRAM via unitcasting and broadcasting manner, respectively.
Notice that the activation SRAM does not only store inter-layer
immediate results (activation), but also store intra-layer immedi-
ate results output from each stage. Also, two copies of activation
SRAM are used to serve as ping-pong buffer. Next, we describe two
architectural optimization on ETTE hardware accelerator.

| Weight SRAM I
(o v A — |
| PE Reg PE Reg PE Reg |
: #1 #2 Aﬁi #Npe :
y
L[| 2| ||| 2+P-® Q||
0 e | 1 R | R i | |
I HaCaS IIH A I-D+® :
[————— - P
¥ v v
| Activation SRAM 1 & 2 |

Figure 6: Overall Architecture of ETTE.

4.1 Optimizing Intra-layer Data Transfer

Recall that in addition to the normal layer-level data transfer for
?, TIE needs extra stage-level data transfer for V,, due to its multi-
stage processing scheme, which is also adopted by ETTE. Although
the computing scheme in ETTE can reduce the size of V;, (Proposi-
tion #3), because each layer in ETTE consists of d4 + dp stages, the
overall amount of stage-wise data movement is still considerable.

To further alleviate this challenging problem, we propose to op-
timize the intra-layer processing scheme to reduce the incurred
data transfer. Our key idea is that once a part of V;, in stage-n are
calculated on the fly, it is not stored back to memory but remains
in the PE to serve for the calculation of V;41 in stage-(n + 1). Evi-
dently, such lookahead processing style can efficiently reduce the
data transfer for intermediate results via increasing their locality.
More specifically, considering this across-stage computing schedule
highly depends on the underlying computation pattern and data de-
pendency, which exhibit different behaviors in the elimination and
expansion phases, we next describe the corresponding processing
schemes in these two phases, respectively.

Elimination Phase-specific Schedule. Fig. 7 illustrates an
example when performing the lookahead-style schedule in the

ETTE: Efficient Tensor-Train-based Computing Engine for Deep Neural Networks

Time
19pJ10 uoneindwo)

Figure 7: Lookahead processing in the elimination phase.
Different numbers at the same stage represent the processing
order, and different tiles with the same numbers have data
dependency.

elimination phase of ETTE with d4 = 3. At stage-1, only one tile of
X is brought from memory and participates in the computation
for V;. The entries of this partially calculated V; are then directly
transformed to the corresponding part of V1, which continues
to be multiplied with Ay to generate one tile of V5. After that,
another tile of V5 is read from memory for the similar lookahead
computation of V5. As marked in Fig. 7, the tiles of V,, and A,
with data dependency across two stages are marked with the same
number. Therefore, because 1) each tile of V;, at stage-n is on-the-
fly calculated; and 2) it has data dependency with only one tile of
Vy+i at stage-(n + i), this tile of V}, can be then discarded without
data transfer once the next-stage computation consumes it.

It should be noted that this lookahead-style processing is not
limited to only cross two stages but can be applied to multiple
stages. In general, for a d4-stage elimination phase, such lookahead
computation can be maximally performed across d4 — 1 stages. This
is because as shown in Fig. 7, the calculation of Vy,, even for only

one entry, needs the entire information of q‘/dd ,—1 instead of part of
it. Meanwhile, multiple lookahead-style processing schedules can
co-exist in the same elimination phase. For instance, the processing
for d4 = 5 can be either first performed across 3 stages followed
by another 2-stage lookahead, or being performed across 2 stages
followed by another 3-stage lookahead. The design space for these
different processing schedules will be explored in Section 5.3.
Algorithm 1 describes the general lookahead-style processing
procedure in the elimination phase. Notice that the stage-wise
matrix transformation, which is essentially the mapping principle
from the entries of Vj, to (Vn, is also described here. The efficient

ISCA 23, June 17-21, 2023, Orlando, FL, USA.

| Rz |
| —/ | Coomommmmrme
I 1 [|® _) | g
{3 |
— .
| Wy, ——,] &

(A% Rgyir) =

| &7 B Va1 R 2|
| (Riy1 X 01Rypz) (1XOiRq,2) | %)
_________ Ty T £
Transformation ul B

7+7p o8e3s

J3pJo uonendwo)

1

£+7p a8ers

Figure 8: Lookahead processing in the expansion phase. Dif-
ferent numbers at the same stage represent the processing
order, and different tiles with the same numbers have data
dependency.

hardware mapping for such critical yet costly operation will be
discussed in Section 4.2.

Algorithm 1: The processing schedule of elimination phase
with lookahead computation.

input :X =I;xI;_ X...xI1,A1, ..., Ag,,
R=[Ri,Ra..., Ry 1]
output:Y
1 X = Reshape(X, [I1, —1]);
2 //Lookahead computation order in stage 1 tody — 1;
3 L=new[Rg,,Iq,];
4 fork=0tol;, —1do
s | V=X [Ty Ik Ty I (k= D)
6 for j=1tody — 1do
7 L V =Transform (Matmul (A;, V), j)
s | Lkl =V
9 Y =Transform (Matmul (A;zA, L), dp)//Stage da;

10 Function Transform(V, j):
1 V = Transpose(V) ;
12 h, w = size(V);

13 (V=new[h/Ij+1,Rj *Ij+1];
14 fori=0toh/ljy; —1do

15 T =new[1, Rj X Ij41] ;

16 for k =0toIj;; —1do

17 | Tlk#Rj:(k+1)#Rj] = V[i* s +k:]
18 "17[1'+ 1,:]=T;

v | V= Transpose((f/);

ISCA 23, June 17-21, 2023, Orlando, FL, USA.

Expansion Phase-specific Schedule. Fig. 8 shows an example
of applying the lookahead-style processing in the 3-stage expan-
sion phase. This example, together with the general processing
procedure described in Algorithm 2, shows that the lookahead com-
putation in the expansion phase exhibits two differences from its
counterpart in the elimination phase. First, because of the unique
computing pattern in the expansion phase, one tile of Vy [ytn 101 the
previous stage has data dependency with multiple tiles of V; i
in the later stages. Consequently, the intermediate results (Vd -1
cannot be simply discarded after the generation of one tile of Vy, ..
Instead, it has to be retained in the memory for the future use of
calculating another dependent tile of Vy, ,,,. Notice that though
this multi-dependency phenomenon prevents the reduction in data
transfer, the lookahead-style schedule can still reduce the memory
consumption for Vy, ,,. As indicated in Fig. 8, during the entire
phase for each stage only one tile of Vy,,, needs to be stored
in the on-chip memory. Notice that this benefit also exists in the
elimination phase. In a nutshell, the lookahead-style processing
reduces both memory consumption and data transfer for V;, in the
elimination phase; while it only reduces memory consumption of
Vi, +n in the expansion phase.

Second, unlike in the elimination phase, the lookahead-style
processing can be performed up to the last ((d4 + dp)-th) stage
of expansion phase. As illustrated in Fig. 8, the calculation of one
tile of Y in the stage-(da + dp) can be realized with using one tile
of Vg,+n in each of the previous stages. Therefore, the lookahead
computation is able to cover the last stage now. Consider multiple
across-stage processing schedules can also co-exist in the expansion
phase, including last stage into lookahead computation can further
increase the exploration space for performance optimization. In
addition, another promising benefit for this phenomenon is that
it unlocks the possibility of lookahead-style processing across the
adjacent layers. This is because each time the first stage of the
elimination phase in the next layer only needs one tile of input,
which can be just provided by the last stage of the current layer.
Consequently, the lookahead-style processing schemes of the two
adjacent layers can be possibly combined to further reduce data
transfer if needed. Notice that in this paper we do not focus on
exploiting this inter-layer optimization opportunity while leaving
it for future work.

The difference of lookahead-style processing in the two phases
can also be understood from the perspective of exploration priority.
Fig. 9 uses a depth-d tree to depict the computing procedure of
d-stage phase (d4 = dg = d = 3). Here the leaf (m, n), as the m-th
node at the n-the level of the tree, represents the m-th tile of ‘17,1_1
at the n-th stage that will be used for multiplication. Meanwhile,
similar to Fig. 7 and 8, the number associated with the arrow here
also denotes the computing sequence and data dependency between
the tiles. With such notation, it is clear that computing procedure
in the elimination and expansion phases explore this index tree in
the breadth-first and depth-first manners, respectively.

Difference from Layer Fusion. Readers who are familiar with
convolutional neural network (CNN) accelerators may find that the
proposed lookahead-style processing shares the similar philosophy
of layer fusion [2]. Both of these two techniques aim to reduce
the data transfer incurred by intermediate results via passing the

Yu Gong, Miao Yin, Lingyi Huang, Jinqi Xiao, Yang Sui, Chunhua Deng, and Bo Yuan

output of the current computation to the next one. However, our
proposed approach has three important differences. First, unlike
layer fusion that is specially designed for CNN, our method works
for a broad spectrum of DNN types, including MLP, RNN, trans-
formers and CNN. This is because after TT decomposition, both the
FC and CONV layers are unified in the same TT format. Second, our
processing schedule supports more complicated computing pattern,
e.g., stage-wise matrix transformation and two split computing
phases; while layer fusion can only work for transformation-free
and single-phase processing. More specifically, layer fusion takes
the kernel size as the unit to fuse layers in a pyramid-style process-
ing scheme; therefore when the matrix transformation is involved,
the fusion is not able to continue to the next layer until the entire
row or column is calculated, even most of the data is not used in
the next tile of calculation. Instead, our approach takes the I,R,
and Ry, ., as basic tiles for elimination and expansion phases in
a breadth-first and depth-first searching manner, respectively, as
shown in Fig. 9. The intermediate result of each tile is enough for
partially matrix transformation for the next layer. Third, there ex-
ists data overlapping in each tile of CNN computation, which need
additional computation or memory overhead; while our proposed
processing scheme has no overlapping as shown in Fig. 7 and 8.

Difference from TPU/TIE on Fully Storing Intermediate
Data. Modern DNN accelerators, e.g. TPU, use sufficient on-chip
SRAM to fully store intermediate data. Such strategy is also adopted
in TIE design. Though YV}, is also stored on chip in ETTE, the
key goal and benefit of the processing scheme in ETTE is very
different from TPU/TIE. First, the sufficient SRAM budgeted in
TPU/TIE can only reduce off-chip DRAM access, while the lookahead-
style processing in ETTE further reduces on-chip SRAM access.
As analyzed in Section 2.3 and the first paragraph of Section 4.1,
executing TT-decomposed models requires additional intra-layer
multi-stage processing, increasing the movement of intermediate
results. Using large SRAM can only avoid data access to DRAM,
but the data access to SRAM actually increases since V,, of stage-n
is entirely stored in SRAM and then it is fetched for stage-n+ 1. On
the other hand, the proposed lookahead-style processing calculate
part of V}, on the fly and store that small chunk of data in the
register for the following computation, reducing the data access to
SRAM. As reported in Fig. 12, lookahead-style processing schemes
can reduce data movement of V, by up to 3X. Second, lookahead-
style processing also reduces SRAM size. As shown in Fig. 1, the
inter-stage intermediate result Vj, can be Rp41X larger than inter-
layer result X "and Y, causing expensive memory cost when fully
buffered on chip. Though the proposed decomposition algorithm
reduces the huge V), lookahead-style processing further reduces
the required SRAM size by computing only one part of V,, and
passing it to next stages. As reported in Section 5, under the same
compression ratio for various workload, the activation SRAM size
of ETTE (256KB) is 3x smaller than TIE (768KB).

Difference from Loop Blocking. Both the proposed lookahead-
style processing and Loop blocking[4, 36] perform computation
at the granularity of data tile. However, lookahead computation
differs from loop blocking in two aspects. First, loop blocks adopts
an in-order processing style, making the computation of the current
stage fully complete first. On the other hand, lookahead scheme

ETTE: Efficient Tensor-Train-based Computing Engine for Deep Neural Networks

adopts out-of-order processing style via taking advantage of the
data dependency across different stages. Second, loop blocking
stores the whole YV, stage by stage; while lookahead-style process-
ing only stores one small part of V},. Since in TT-format model the
rank value Ry, is typically smaller than output size Oy, lookahead
computation requires smaller SRAM than loop blocking for storing
intermediate result. For instance, in expansion phase of VGG-FC6,
with O, = [16,16,16], R, = [1,4,4,4, 1] and 16-bit quantization,
the storage requirement for intermediate result in lookahead-style
processing is 8 Byte; while loop blocking-based scheme needs 2K
Byte budget (256% increase).

Algorithm 2: The processing schedule of expansion phase
with lookahead computation.

input :V =Y.Bi, ..., Bay, R = [Raysr, Ragez - s Riyrdp]
output:Z

1 foro; =0to O; — 1do

2 Y =Transform (Matmul (B [0y * Ry, 420 (01+1) % Rgy1a,:],
V), 1);

3 foro, =0to O, — 1do

4

[z}

for ogy =0to Oy, — 1do

6 V =Transform (Matmul
(Bag [0ag * Ray+dg+1 (0ag +1) * Ravdgrs il V),
dp);
dp dg _
7 Z12pz1 0n Hizpsy Okl =V

8 Function Transform(V, j):
9 V = Transpose(V) ;
10 h, w = size(V);

11 V =newl[h = W/RdA+j+l,RdA+j+1];

12 fori=0tohdo

13 T:neW[W/RdAJer:RdAﬁH]Z

14 for k = 0 to w/Ry,+j+1 do

15 L Tlk+1,:] = V[i,k*Ray4jr1: (k+1) % Rg,4ju1]
16 q}[i*w/RdAJrjﬂ 2 (i+1) * /R 1j41,:] = T;

17| V= Transpose((l;) ;

4.2 Optimizing Matrix Transformation

Memory Partition in TIE. As illustrated in Fig. 7 and 8, the ma-
trix transformation from V;,_; to Vj, is an important operation in
the computing scheme of ETTE to ensure functional validity. To
avoid memory access conflict, the conventional solution is to use
an extra copy of memory for storing intermediate results, causing
both area and power overhead. To address this problem, TIE adopts
memory partition technique to enable the simultaneous access to
the original conflicted data groups, realizing efficient matrix trans-
formation. However, this memory bank-based solution is not free.
This is because different workloads have different shapes (I, O,
and Rp), which bring various demands for the desired partition
granularity. Consequently, it becomes quite challenging to achieve
high reconfigurability in practice.

Memory Partition-free Solution. We develop a very efficient
memory read/write scheme to support matrix transformation used
in ETTE. Our key observation is that because of the unique com-
puting pattern of ETTE, its desired matrix transformation is much

ISCA 23, June 17-21, 2023, Orlando, FL, USA.

simpler than the counterpart in TIE. As illustrated in Fig. 9, a trans-
formation from V; € REBXO1R: o @ ¢ RO1BXER: s needed in
the stage-1 of TIE. This means that the dimension factors I and Oq
need to be switched after this transformation. On the other hand, for
ETTE, the corresponding transformation is from V; € REBXR: ¢4
YV, € REXER2 (elimination phase) and from Vy, ;5 € ROXO2Ra 43
to 476, 42 € RO102%Ra 43 (expansion phase); where only one factor
needs to be moved from one dimension to another. In principle,
this phenomenon essentially results from the decoupled I, and
Op in ETTE - because at each stage only one type of dimension
factor (I, or O,) now exists in the shape of Vj,, such switching-free
transformation pattern becomes very natural. By leveraging this
simplicity, we then develop the corresponding efficient memory
read and write schemes for matrix transformation used in ETTE.
As illustrated in Fig. 9, without performing any memory partition,
our proposed memory access scheme directly realizes the desired
matrix transformation in the elimination and expansion phases.

5 EVALUATION
5.1 Algorithmic Performance

Table 1 summarizes the algorithmic performance of ETTE across
various practical applications. It is seen that with similar com-
pression ratio, e.g., for video, image and audio tasks, ETTE can
bring much higher FLOPs reduction than original TT decomposi-
tion. Meanwhile, ETTE can also achieve both higher model size
reduction and FLOPs reduction than original TT with the similar
accuracy performance when compressing DNN models used in the
recommendation systems and NLP.

5.2 Hardware Performance

Experimental Setting. We model the behavior of ETTE via build-
ing a high-level functional simulator. A cycle-accurate RTL model
is then developed with Verilog via Visual Studio Code and synthe-
sized using Synposis Design Compiler with CMOS 28nm library.
The area and power consumption for non-memory part is reported
from synthesize results; and the hardware performance of memory
part is reported from Cacti.

Design Configuration. We implement a 16-PE design exam-
ple of ETTE hardware architecture. Each PE is equipped with 16
multipliers and accumulators (MACs) and the corresponding acti-
vation units. Thanks to the ultra-high compression capability of TT
decomposition, one copy of 128 KB weight SRAM and two copies
of 128 KB activation SRAM (totally 256 KB) are budgeted in this
design, which are sufficient for most TT-format DNN models. With
28nm CMOS technology, a 16-PE ETTE occupies 1.25mm? silicon
area and has 135.6mW power consumption under 1000 MHz clock
operating frequency.

Hardware Performance Comparison. Fig. 11 shows the per-
formance improvement of ETTE over other hardware solutions
on various DNN workloads (LSTM, Transformer, DLRM) for dif-
ferent applications (audio, video, language, recommendation sys-
tem). Compared with NVIDIA RTX 3090 GPU working on dense
models, ETTE achieves 36.2Xx — 253.1X higher throughput and
1204.2x — 8504.5% higher energy efficiency, respectively. Com-
pared with GPU running on TT-decomposed models, ETTE enjoys
6.5X — 63.3% throughput increase and 189.2x — 9750.5X energy

ISCA 23, June 17-21, 2023, Orlando, FL, USA.

Yu Gong, Miao Yin, Lingyi Huang, Jinqi Xiao, Yang Sui, Chunhua Deng, and Bo Yuan

0,

iEIimination Phase i Expansion Phase j} I{ TIE A

| 3
lird 2 el 011:/1\ 2. 04} Is
| S % 2 | !
! | ! Transformation
| izl 2.l | oxl 2..0; | :
N | AR
| iyl 2. llogl 2. 05 | . —
U =T = 1 . | %4
| @@ @ @ | - 1__ Transformation __
Lo oYY T Y TS I (Dl X01R,) mmmmmm)> (0415 %

| Transformation
|

—

Transformation

1
R2)

vy

Vi
Tll; X R,) e (15 XIR,)

VdA+2 Transformation

(0, x EQR@ +3)
0

R: Elimination ETTE Expansion "4+
{ Phase Phase
15 0y
ericd 0:Ryps3
| 1

I | >

Va2
(01041X Ry, 1+3)i

Figure 9: (Left) Interpretation of processing schedule in the elimination and expansion phases over the index tree. Here the
node (m, n), as the m-th node at the n-the level of the tree, represents the access to the m-th tile of V;,_; at the n-th stage. (Right)

Different movements of the dimension factors I;, and O,, in the matrix transformation of TIE and ETTE.

e B P
I readsresnave - Elimination Phase !
Rn+1 Write I
| Order |
| [1) XKxK...0001 I
|1n+1 Q XXxX...0002 |
e Xxxx...0003 |
I ___o__ xxxx...0004 I
| Vol ¢ |
h |
I T
| Expansion Phase o | ———
| Read ['dg+n+1

Order

XXxx...0001

ol

{[eTe

N

XXXX...0002

Xxxx...0003

XXXX...0004

Figure 10: Memory partition-free read/write for matrix trans-
formation in the elimination and expansion phases.

efficiency increase, respectively. Compared with the state-of-the-
art DNN accelerators, including TIE, sparsity-aware EIE, sparsity-
aware SpAtten[47], sparsity-aware LEOPARD[28], sparsity-aware
Centaur[25] and RecPipe[18], ETTE enjoys performance improve-
ment with 1.1x - 58.3x higher throughput, 2.6x - 1170.4X higher
energy efficiency and 1.8X — 2098.2X higher area efficiency, respec-
tively. Notice that unlike several DNN accelerators that customized
for a specific type of model, e.g., SpAtten and LEOPARD for NLP
transformer and Centaur and RecPipe for DLRM, ETTE can widely
support the acceleration of various DNN types, demonstrating its
generality.

5.3 Analysis & Discussion

Data Movement incurred by Vj,. As analyzed in Section 3.2 and
4.1, ETTE can reduce the data transfer of V}, via reducing its size
and access frequency. Fig. 12 shows the overall data movement
incurred by V,, on different workloads. It is seen that the pro-
posed new computing scheme, which essentially shrinks the size
of Vy, brings 83x — 2272X reduction in data movement. Then the
lookahead-style processing, which reduces memory access, further
enables additional 2X — 3% reduction in the amount of data transfer.
Overall, joint use of these two techniques brings 200X — 6667x
reduction in the data movement for V;,, significantly improving
energy efficiency.

Lookahead Strategy. As mentioned in Section 4.1, for the same
da-stage or dp-stage elimination or expansion phase, there exist

Method ‘ Acc. (%)\ PPL ‘ Params.| ‘ FLOPs|
VGG-FC on ImageNet (Image Classification)
Uncompressed 69.1 - -
Org. TT[33] (NeurIPS) 67.8 37732% 24.8%
ETTE (Ours) 68.1 38887 | 759.5%
Video LSTM on UCF-11 (Video Recognition)
Uncompressed 69.7 - -
Org. TT[51] (ICML) 79.6 17554 4.7%
ETTE (Ours) 89.0 17862X 237.3%
Video LSTM on Youtube Celebrities (Video Recognition)
Uncompressed 33.2 - -
Org. TT[51] (ICML) 755 17388% 2.7
ETTE (Ours) 88.3 17554x | 170.0%
Audio LSTM [62] on TIMIT (Speech Recognition)
Uncompressed 79.5 - -
Org. TT[29] 79.6 7315x 14.4x
ETTE (Ours) 79.6 9280% 448.5x
DLRM [32] on Kaggle (Recommendation System)
Uncompressed 78.8 - -
Org. TT[54] (MLSys) 78.68 174.8% 1.4%
ETTE (Ours) 78.68 179.1x 2.2%
Transformer-XL [7] on WikiText103 (Language Translation)
Uncompressed 24.34 - -
Org. TT[24] (EMNLP) 28.04 15.1x 0.93%
ETTE (Ours) 29.24 1686 7.3%
BERT [11] on GLUE (Language Understanding)
Uncompressed 82.7 - -
Org. TT[39] (ICLR) 80.0 47.78% 5.23%
ETTE (Ours) 79.8 1671.8X 44.79X

Table 1: Algorithmic performance of ETTE and original TT.

different lookahead-style processing schedules that have different
impacts on memory consumption and access frequency. To iden-
tify the best-suited lookahead strategy and maximize hardware
performance, we explore the design space of lookahead scheme in
both elimination and expansion phases. As illustrated in Fig. 13,
among different lookahead-style processing options, maximizing
lookahead effort, i.e., performing lookahead computation as much
as possible, is the best solution since it achieves the minimum mem-
ory consumption and data transfer for V}, in the elimination phase.
It is also seen that though in the expansion phase different looka-
head schemes have similar impact on memory access incurred by
Vp, maximizing the lookahead effort can still brings lowest memory
consumption for V.

ETTE: Efficient Tensor-Train-based Computing Engine for Deep Neural Networks ISCA 23, June 17-21, 2023, Orlando, FL, USA.

over RecPipe(Dense) [over Centaur(Sparse) [over EIE(Sparse) E over SpAtten(Sparse) & over LEOPARD(Sparse) @ over TIE(TT) B over GPU(Our TT) ® over GPU(Dense)
Throughput Improvement

Energy Efficiency Improvement Area Efficiency Improvement

10000

=
1

2 Q > . o N & W “l N NN S e g

S v @q} ceoé‘ \/\g‘o\ g & & g ‘g“ \\;»10 S ‘é,& éﬁ\@@,oé:‘\ :‘\caoép\,\ x‘°0<>f‘ »“"'*@

3 & >3 ¢ S ' @ N8 & 3 3 s RPN

& & & ¢ T e A S S W o

Figure 11: Hardware performance of different DNN hardware solutions. Here some accelerators are customized for a specific
DNN type (e.g., NLP transformer); while GPU, TIE and ETTE can widely support all the workloads. Area efficiency of GPU is

not reported because of the limited access to GPU area measurement.

s‘ 1 m Original mReordering mReordering+Lookahead
£
0.1
=2
28 0.01
NG
§ 0.0001 u |
z LSTM-UCF11 LSTM-YTC VGGFC-6 VGGFC-7 TIMIT-Concat. TIMIT-Proj.

Figure 12: Data movement of V;, before and after using pro-
posed computing scheme and lookahead-style processing.

1673 (D-Q2)-3)-(4)—s A 3.05 A
o ()-2-3,4) 304

_terd \AA - o

g 16145& ()-(2, 3)-(4) ~a Zow ()-(2)-3)

>"1647 1-(2,3,4) ~ 02

Sl 02O A — 23

ST @
g "l N\ A
Spp g At
11456 / (1,2-G:4) i /
s e o/ 2'9%_1‘ 02 03 0.4 0.5

Required Memory Size for V_ (KB) Required Memory Size for \/n (KB)

[

Lop — A

Memory Access for V_ (KB)
o %
© o
8 2

(1,2,3)

(a) Elimination Phase. (b) Expansion Phase.

Figure 13: SRAM access and size incurred by V,, with different
lookahead strategies on UCF11 (d4=4 and dg=3). (m; ... mj)
means the lookahead computation from stage-m; to stage-m;.

Scalability & Utilization. Fig. 14 illustrates the processing
throughput and multiplier utilization of ETTE with various PE
settings. Here each PE is equipped with 16 multipliers. As shown
in Fig. 14, ETTE shows high scalability performance. Also, it is
observed that increasing the number of PEs gradually decreases
utilization. This is because for a given shape of input matrix, it
becomes more challenging to make the number of PEs be the exact
factor of shape dimension with more PEs. Therefore proper trade-
off between desired throughput demand and high PE utilization is
needed. Our design sets PE amount as 16 to achieve good balance.

6 RELATED WORKS

DNN hardware accelerators have been extensively studied in re-
cent years [3, 4, 10, 13, 16, 31, 49]. In particular, different types
of compression model-oriented design, including sparse-aware
[8,21, 30, 41, 52] and quantization-aware [22, 60] architecture, have
been proposed in the literature. Among these existing solutions,

B Multiplier Utilization -=-Throughput

100

2

3 g
a 80 08 3
E R)
g 560 06 8
T % o
& Bao 043
® S e
g 220 02%
z 2
0 0 &

1 2 4 8 16 32
Number of PEs

Figure 14: Normalized Multiplier utilization and throughput
with different PEs on LSTM-YTC. Each PE has 16 multipliers.

TIE [9] is the state-of-the-art TT-oriented DNN accelerator. On the
algorithm aspect, TT decomposition has demonstrated its promis-
ing compression performance in several different practical DNN
applications. However, the key drawbacks of existing TT-format
DNN models are the insufficient reduction for computational costs
and data movement. To the best of our knowledge, to date only
[58] investigates to reduce the computation of TT-format CNN.
ETTE enjoys three main advantages over [58]. First, the solution
adopted in [58] focuses on accelerating TT-format CNNs, whose
model redundancy is typically quite limited for TT compression;
while ETTE aims for much broader spectrum of DNN types, in-
cluding large-scale MLP, RNN, Transformer, which are the most
commonly used scenarios for performing TT decomposition. Sec-
ond, the method proposed in [58] is heuristic without theoretical
guarantee; while ETTE can assure significant reduction of the com-
putational and memory costs with rigid mathematical derivation
and proof. Third, [58] is an algorithmic work that does not consider
multi-stage data movement and efficient matrix transformation;
while ETTE performs algorithm and hardware co-optimization to
address all the three challenges of existing TT-format DNNs.

7 CONCLUSION

This paper develops ETTE, an efficient TT engine for high-performance

DNN acceleration. By performing algorithm and hardware co-
optimization efforts, ETTE brings significant reduction in com-
putational cost, storage demand and data movement over the state-
of-the-art DNN hardware solutions.

ACKNOWLEDGMENTS

This work was partially supported by National Science Foundation
under Grant CCF-1937403 and CCF-1955909.

ISCA 23, June 17-21, 2023, Orlando, FL, USA.

REFERENCES

[1] Jorge Albericio, Alberto Delmas, Patrick Judd, Sayeh Sharify, Gerard O’Leary,

A

=
20,

[10]

[11]

[12

[13]

[14]

[15]

[16

[17

[18

[19

[20

[21]

Roman Genov, and Andreas Moshovos. 2017. Bit-pragmatic deep neural network
computing. In Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture. 382-394.

Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-layer
CNN accelerators. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 1-12.

Xuyi Cai, Ying Wang, Xiaohan Ma, Yinhe Han, and Lei Zhang. 2022. DeepBurning-
SEG: Generating DNN Accelerators of Segment-Grained Pipeline Architecture.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 1396-1413.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH
Computer Architecture News 44, 3 (2016), 367-379.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. A survey of model
compression and acceleration for deep neural networks. arXiv preprint
arXiv:1710.09282 (2017).

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Binarycon-
nect: Training deep neural networks with binary weights during propagations.
In Advances in Neural Information Processing Systems. 3123-3131.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. 2019. Transformer-xI: Attentive language models beyond a fixed-
length context. arXiv preprint arXiv:1901.02860 (2019).

Chunhua Deng, Yang Sui, Siyu Liao, Xuehai Qian, and Bo Yuan. 2021. GoSPA: an
energy-efficient high-performance globally optimized sparse convolutional neu-
ral network accelerator. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 1110-1123.

Chunhua Deng, Fangxuan Sun, Xuehai Qian, Jun Lin, Zhongfeng Wang, and Bo
Yuan. 2019. TIE: energy-efficient tensor train-based inference engine for deep
neural network. In Proceedings of the 46th International Symposium on Computer
Architecture. 264-278.

Chunhua Deng, Miao Yin, Xiao-Yang Liu, Xiaodong Wang, and Bo Yuan. 2019.
High-performance hardware architecture for tensor singular value decompo-
sition. In 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 1-6.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
2019. Hawq: Hessian aware quantization of neural networks with mixed-
precision. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 293-302.

Hongxiang Fan, Thomas Chau, Stylianos I Venieris, Royson Lee, Alexandros
Kouris, Wayne Luk, Nicholas D Lane, and Mohamed S Abdelfattah. 2022. Adapt-
able Butterfly Accelerator for Attention-based NNs via Hardware and Algorithm
Co-design. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 599-615.

Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, and Dmitry Vetrov.
2016. Ultimate tensorization: compressing convolutional and fc layers alike.
arXiv preprint arXiv:1611.03214 (2016).

Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen
Lin, Fengwei Yu, and Junjie Yan. 2019. Differentiable soft quantization: Bridg-
ing full-precision and low-bit neural networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 4852-4861.

Yu Gong, Miao Yin, Lingyi Huang, Chunhua Deng, and Bo Yuan. 2022. Algorithm
and Hardware Co-Design of Energy-Efficient LSTM Networks for Video Recog-
nition with Hierarchical Tucker Tensor Decomposition. [EEE Trans. Comput. 71,
12 (2022), 3101-3114.

Ruiqi Guo, Zhiheng Yue, Xin Si, Te Hu, Hao Li, Limei Tang, Yabing Wang, Leibo
Liu, Meng-Fan Chang, Qiang Li, et al. 2021. 15.4 a 5.99-t0-691.1 tops/w tensor-train
in-memory-computing processor using bit-level-sparsity-based optimization and
variable-precision quantization. In 2021 IEEE International Solid-State Circuits
Conference (ISSCC), Vol. 64. IEEE, 242-244.

Udit Gupta, Samuel Hsia, Jeff Zhang, Mark Wilkening, Javin Pombra, Hsien-
Hsin Sean Lee, Gu-Yeon Wei, Carole-Jean Wu, and David Brooks. 2021. RecPipe:
Co-designing models and hardware to jointly optimize recommendation quality
and performance. In MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture. 870-884.

Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. Advances in Neural Information
Processing Systems 28 (2015), 1135-1143.

Edward Hanson, Shiyu Li, Hai'Helen’ Li, and Yiran Chen. 2022. Cascading

structured pruning: enabling high data reuse for sparse DNN accelerators. In
Proceedings of the 49th Annual International Symposium on Computer Architecture.

Yu Gong, Miao Yin, Lingyi Huang, Jinqi Xiao, Yang Sui, Chunhua Deng, and Bo Yuan

[22

[23

[24

[26

[27

[29

[30

[31

[33

[34

[36

(37]

[38

[41

522-535.

Yifan Hao, Yongwei Zhao, Chenxiao Liu, Zidong Du, Shuyao Cheng, Xiaqing
Li, Xing Hu, Qi Guo, Zhiwei Xu, and Tianshi Chen. 2022. Cambricon-P: A
Bitflow Architecture for Arbitrary Precision Computing. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 57-72.

Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel pruning for accelerating
very deep neural networks. In Proceedings of the IEEE international conference on
computer vision. 1389-1397.

Oleksii Hrinchuk, Valentin Khrulkov, Leyla Mirvakhabova, Elena Orlova, and
Ivan Oseledets. 2020. Tensorized embedding layers. In Findings of the Association
for Computational Linguistics: EMNLP 2020. 4847-4860.

Ranggi Hwang, Taehun Kim, Youngeun Kwon, and Minsoo Rhu. 2020. Centaur: A
chiplet-based, hybrid sparse-dense accelerator for personalized recommendations.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 968-981.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
training of neural networks for efficient integer-arithmetic-only inference. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2704-2713.

Ching-En Lee, Yakun Sophia Shao, Jie-Fang Zhang, Angshuman Parashar, Joel
Emer, Stephen W Keckler, and Zhengya Zhang. 2018. Stitch-x: An accelerator
architecture for exploiting unstructured sparsity in deep neural networks. In
SysML Conference, Vol. 120.

Zheng Li, Soroush Ghodrati, Amir Yazdanbakhsh, Hadi Esmaeilzadeh, and Mingu
Kang. 2022. Accelerating attention through gradient-based learned runtime
pruning. In Proceedings of the 49th Annual International Symposium on Computer
Architecture. 902-915.

Mingshuo Liu, Miao Yin, Kevin Han, Shiyi Luo, Mingju Liu, Ronald F DeMara, Bo
Yuan, and Yu Bai. 2021. Algorithm and Hardware Co-Design Co-Optimization
Framework for LSTM Accelerator using Fully Decomposed Tensor Train. DAC
(Work-in-Progress) (2021).

Zhi-Gang Liu, Paul N Whatmough, Yuhao Zhu, and Matthew Mattina. 2022. S2TA:
Exploiting Structured Sparsity for Energy-Efficient Mobile CNN Acceleration. In
2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 573-586.

Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch,
Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, et al. 2022.
Software-hardware co-design for fast and scalable training of deep learning rec-
ommendation models. In Proceedings of the 49th Annual International Symposium
on Computer Architecture. 993-1011.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
for personalization and recommendation systems. arXiv preprint arXiv:1906.00091
(2019).

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov.
2015. Tensorizing neural networks. Advances in Neural Information Processing
Systems 28 (2015), 442-450.

Yu Pan, Jing Xu, Maolin Wang, Jinmian Ye, Fei Wang, Kun Bai, and Zenglin
Xu. 2019. Compressing recurrent neural networks with tensor ring for action
recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
4683-4690.

Huy Phan, Miao Yin, Yang Sui, Bo Yuan, and Saman Zonouz. 2023. CSTAR:
Towards Compact and STructured Deep Neural Networks with Adversarial Ro-
bustness. AAAI (2023).

Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-
vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. Sigma: A sparse
and irregular gemm accelerator with flexible interconnects for dnn training. In
2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 58-70.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European Conference on Computer Vision. Springer, 525-542.

Ao Ren, Zhe Li, Caiwen Ding, Qinru Qiu, Yanzhi Wang, Ji Li, Xuehai Qian, and
Bo Yuan. 2017. Sc-denn: Highly-scalable deep convolutional neural network
using stochastic computing. ACM SIGPLAN Notices 52, 4 (2017), 405-418.

Yuxin Ren, Benyou Wang, Lifeng Shang, Xin Jiang, and Qun Liu. 2022. Exploring
extreme parameter compression for pre-trained language models. arXiv preprint
arXiv:2205.10036 (2022).

Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, Youngeun Kwon,
and Stephen W Keckler. 2018. Compressing DMA engine: Leveraging activation
sparsity for training deep neural networks. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 78-91.

Jong Hoon Shin, Ali Shafiee, Ardavan Pedram, Hamzah Abdel-Aziz, Ling Li, and
Joseph Hassoun. 2022. Griffin: Rethinking Sparse Optimization for Deep Learn-
ing Architectures. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 861-875.

ETTE: Efficient Tensor-Train-based Computing Engine for Deep Neural Networks

[42] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. Pipelayer: A pipelined
reram-based accelerator for deep learning. In 2017 IEEE international symposium
on high performance computer architecture (HPCA). IEEE, 541-552.

[43] Mingcong Song, Jiagi Zhang, Huixiang Chen, and Tao Li. 2018. Towards efficient
microarchitectural design for accelerating unsupervised gan-based deep learning.
In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 66-77.

[44] Mingcong Song, Kan Zhong, Jiaqi Zhang, Yang Hu, Duo Liu, Weigong Zhang,

Jing Wang, and Tao Li. 2018. In-situ ai: Towards autonomous and incremental
deep learning for iot systems. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 92-103.

[45] Yang Sui, Miao Yin, Yi Xie, Huy Phan, Saman Aliari Zonouz, and Bo Yuan.

2021. Chip: Channel independence-based pruning for compact neural networks.

Advances in Neural Information Processing Systems 34 (2021), 24604-24616.

Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar Das,

Sasikanth Avancha, Ashok Jagannathan, Ajaya Durg, Dheemanth Nagaraj, Bharat

Kaul, Pradeep Dubey, et al. 2017. Scaledeep: A scalable compute architecture

for learning and evaluating deep networks. In Proceedings of the 44th Annual

International Symposium on Computer Architecture. 13-26.

Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spatten: Efficient sparse atten-

tion architecture with cascade token and head pruning. In 2021 IEEE International

Symposium on High-Performance Computer Architecture (HPCA). IEEE, 97-110.

Wengi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal.

2018. Wide compression: Tensor ring nets. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition. 9329-9338.

[49] Lizhi Xiang, Miao Yin, Chengming Zhang, Aravind Sukumaran-Rajam, P Sa-
dayappan, Bo Yuan, and Dingwen Tao. 2023. TDC: Towards Extremely Efficient
CNNs on GPUs via Hardware-Aware Tucker Decomposition. In Proceedings of
the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming. 260-273.

[50] Jingi Xiao, Chengming Zhang, Yu Gong, Miao Yin, Yang Sui, Lizhi Xiang, Ding-
wen Tao, and Bo Yuan. [n.d.]. HALOC: Hardware-Aware Automatic Low-Rank
Compression for Compact Neural Networks. AAAI ([n.d.]).

[46

[47

[48

[51] Yinchong Yang, Denis Krompass, and Volker Tresp. 2017. Tensor-Train Recurrent
Neural Networks for Video Classification. In International Conference on Machine
Learning. 3891-3900.

[52] Amir Yazdanbakhsh, Ashkan Moradifirouzabadi, Zheng Li, and Mingu Kang.

2022. Sparse Attention Acceleration with Synergistic In-Memory Pruning and

[53

[54

[55

[56

[57

[58

[60

[61

(62

]

]

ISCA 23, June 17-21, 2023, Orlando, FL, USA.

On-Chip Recomputation. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 744-762.

Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian Zhe, Xinqi Chu, and
Zenglin Xu. 2018. Learning compact recurrent neural networks with block-term
tensor decomposition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 9378-9387.

Chunxing Yin, Bilge Acun, Carole-Jean Wu, and Xing Liu. 2021. Tt-rec: Tensor
train compression for deep learning recommendation models. Proceedings of
Machine Learning and Systems 3 (2021), 448-462.

Chunxing Yin, Da Zheng, Israt Nisa, Christos Faloutsos, George Karypis, and
Richard Vuduc. 2022. Nimble GNN Embedding with Tensor-Train Decomposition.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 2327-2335.

Miao Yin, Huy Phan, Xiao Zang, Siyu Liao, and Bo Yuan. 2022. Batude: Budget-
aware neural network compression based on tucker decomposition. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 36. 8874-8882.

Miao Yin, Yang Sui, Siyu Liao, and Bo Yuan. 2021. Towards efficient tensor
decomposition-based dnn model compression with optimization framework. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
10674-10683.

Miao Yin, Yang Sui, Wanzhao Yang, Xiao Zang, Yu Gong, and Bo Yuan. 2022.
HODEC: Towards Efficient High-Order DEcomposed Convolutional Neural Net-
works. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 12299-12308.

Miao Yin, Burak Uzkent, Yilin Shen, Hongxia Jin, and Bo Yuan. 2023. GOHSP: A
Unified Framework of Graph and Optimization-based Heterogeneous Structured
Pruning for Vision Transformer. AAAT (2023).

Ali Hadi Zadeh, Mostafa Mahmoud, Ameer Abdelhadi, and Andreas Moshovos.
2022. Mokey: enabling narrow fixed-point inference for out-of-the-box floating-
point transformer models. arXiv preprint arXiv:2203.12758 (2022).

Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An accelerator for sparse
neural networks. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 1-12.

Tehseen Zia and Usman Zahid. 2019. Long short-term memory recurrent neural
network architectures for Urdu acoustic modeling. International Journal of Speech
Technology 22, 1 (2019), 21-30.

