2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA) | 979-8-3503-9313-2/24/$31.00 ©2024 |EEE | DOI: 10.1109/HPCA57654.2024.00043

2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

MOPED: Efficient Motion Planning Engine with
Flexible Dimension Support

Lingyi Huangf, Yu Gongf, Yang Suif, Xiao Zangf, and Bo Yuanf
Rutgers University, New Jersey, USAY
{lingyi.huang, yu.gong, yang.sui, xiao.zang } @rutgers.edu, bo.yuan@soe.rutgers.edu

Abstract—Motion planning aims to compute the high-quality
and collision-free robotic trajectory. To solve the planning prob-
lems defined in varying dimensional sizes, motion planners,
especially sampling-based, are typically computation intensive be-
cause of the costly kernel operations, and computation inefficient
due to the inherent sequential processing scheme, hindering their
efficient deployment.

To address these challenges and enable real-time highly effi-
cient motion planning, this paper proposes MOPED, an algorithm
and hardware co-design for sampling-based motion planning
engine with flexible dimension support. At the algorithm level,
MOPED proposes a two-stage processing scheme to reduce the
frequency and unit cost of collision check. It also fully leverages
the spatial information and unique property of planning process
to enable low-cost approximated neighbor search. At the hard-
ware level, MOPED proposes a correctness-ensured speculative
processing scheme to overcome the serialization problem. It also
develop a multi-level caching strategy to reduce data movement
and resolve resource conflict.

We demonstrate the effectiveness of MOPED via implementing
a design example with CMOS 28nm technology via synthesiz-
ing. Compared with the baseline motion planning processors,
MOPED brings significant improvement on throughput, energy
efficiency and area efficiency.

I. INTRODUCTION

Motion planning aims to find an optimal/near-optimal tra-
jectory from the start configuration to the goal configuration
without colliding with any obstacles. As a fundamental and
core task in the robotic system, motion planning plays a critical
role to secure the successful missions of robots in various op-
erational environments. In practice, many real-world scenarios,
e.g., navigation in the complex indoor/outdoor environments
and manipulation in robot-aided surgery, highly require real-
time motion planning. However, due to its nature of inten-
sive computations, generating high-quality collision-free path
with short response time, especially for planning problems
defined in the high-dimensional configuration space, is very
challenging. For instance, many state-of-the-art CPU/GPU-
based planners still need tens or even hundreds of seconds
[3], [11], [31], [53], [67], [82] to find the movement trajectory
for robotic arms with high degree-of-freedom (DoF), bringing
challenging operational costs.

Motivated by this severe performance challenge, in this
paper we study efficient hardware acceleration for RRT*
[44], the seminal and fundamental sampling-based motion
planner. Different from search-based motion planner (e.g.,
A*) that typically only works in the low-dimensional (2D/3D)
configuration space, RRT* and its variants can solve both low

and high-dimensional planning problems (e.g., 2-13 DoF) in an
asymptotically optimal way. Because of this critical capability,
to date RRT*-family are widely used in tremendous practical
applications, such as arm manipulation, drone navigation,
game development and bioinformatics [2], [6], [17], [89].

As an approach randomly building a space-filling tree,
RRT#* is inherently computation intensive and inefficient be-
cause of three reasons. First, it requires extensive collision
checks. As indicated in many prior works [4], [60], collision
check, which aims to examine the potential intersection be-
tween the robot body and environmental obstacles, consumes
a large portion of the overall planning time. In particular,
because RRT* has to check the possible collisions incurred
by the planned movement at different processing stages after
each new sampling, the computing demand from performing
collision check is even more significant.

Second, RRT* also suffers costly neighbor search. Neighbor
search is well known for its potential high computational
cost with the presence of large search scope and high di-
mensionality. Unfortunately, because 1) RRT* always enlarges
the search scope for the nearest neighbor as more sampled
points are continuously added into the exploration tree; and
2) the distance calculation consumed in the neighbor search
is performed in the configuration space, which is typically of
high dimension, the cost incurred by searching the neighbor
is very significant in RRT*. Moreover, the exploration scheme
also requires multiple stages of neighbor search after each new
sampling, further increasing computational burden.

Third, the computing procedure of RRT* is highly sequen-
tial. As a tree growing-based approach, RRT#*, by its nature,
exhibits serial processing pattern and strong data dependency
between different computing stages. More specifically, every
time after a new sampling in the configuration space occurs,
the corresponding collision checks and neighbor searches must
be finished first before the planner begins another round of
sampling. Such inherent inter-sampling data dependency, con-
sequently, hinders the potential sampling-level parallelism of
the entire RRT* processing, thereby limiting the performance
improvement brought by hardware acceleration.

To address these challenges and enable real-time highly
efficient motion planning in different dimensional settings,
this paper proposes MOPED, an algorithm and hardware co-
design towards efficient motion planning engine with flexible
dimension support. At the algorithm level, we first develop
a two-stage processing scheme to reduce the frequency and

2378-203X/24/$31.00 ©2024 IEEE 483
DOI 10.1109/HPCA57654.2024.00043
Authonized licensed use limited to: Rutgers University Libranes. Downloaded on January 12,2025 at 18:44:34 UTC from IEEE Xplore. Restrictions apply.



unit cost of collision check, alleviating the corresponding
computational burden. We then propose to fully leverage
the spatial information and the unique property of RRT*
process to perform only necessary and approximated neighbor
search, significantly reducing the operational cost without
compromising path quality. A low-cost (O(1)) tree insertion
scheme is also developed to enable low-overhead and more
balanced tree structure. At the hardware level, we first build
the architectural engine to support the low-cost computing
scheme. We then develop a correctness-ensured speculative
processing scheme to enable sampling-level parallelism. We
also propose to explore multi-level caching opportunities to
reduce data movement and resolve resource conflict.

We synthesize an MOPED design example using CMOS
28nm technology. With 1000MHz operating frequency, the
0.62mm?-area MOPED prototype consumes 137.5mW power.
Compared with baseline motion planning processors, MOPED
achieves significant improvement on throughput, energy effi-
ciency and area efficiency. .

II. BACKGROUND

A. Motion Planning

Sampling-based Motion Planning. Motion planning prob-
lem can be solved from different perspectives, such as graph
searching [24], [30], [50], [51], [68], tree exploring [22], [23],
[41], [44], [46], [64], [87], learning from data [11], [63], [82],
[84], [85], optimal control [22], [44] and factor graph [16],
[35], [57]. Among them, sampling-based motion planners,
e.g., RRT* [44] and its variants, are popular and effective
approaches that can solve the planning problems defined in
the configuration space with various sizes of dimension. By
randomly sampling the configuration space to build a space-
filling tree, sampling-based planners aim to find the desired
collision-free paths via grows the exploration tree towards
connecting the start and goal configurations. To date, because
1) they work well when the dimensions of configuration space
scale, ie., avoiding “curse of dimensionality” problem that
search-based planners (e.g., A*) suffer; and 2) they provide
probabilistic completeness guarantees in an asymptotically
optimal way, sampling-based planners have been widely in
many real-world applications.

Collision Check and Bounding Box. A very important
kernel operation in the planning process is collision check,
which aims to examine that, given the planned movement,
whether there exist potential intersections between the robot
and obstacles. More specifically, consider in practice both the
robot and obstacle can have complex shapes and varying orien-
tations, the geometries of the robotic body and environmental
obstacles are typically represented via using bounding boxes.
As shown in Fig. 1, using such representation can transform
the collision check between two potentially irregular shapes to
between two regular rectangles, simplifying the examination
process. To date the most commonly used bounding method
is Oriented Bounding Boxes (OBBs) [18], which encodes both
the shape and orientation information of the object in the

484

workspace, bringing tight-fitting and more accurate represen-
tation of the geometries of the objects [72]. Such benefit leads
to significant reduction in the potential false-positive collision
detection, improving the path quality, i.e., shorter path cost.

B. Rapidly-Exploring Random Trees (RRT*)

RRT* is the seminal and fundamental sampling-based mo-
tion planning approach, serving as the basis for many of its
variants [1], [7], [10], [13], [22], [39], [42], [47], [73], [83].
The key idea of RRT* is to expand the exploration tree and
refine the growth of the tree in an alternating way. More
specifically, as illustrated in Fig. 2, at the Tree Extension stage
the RRT#* planner first randomly samples the configuration
space, and then finds the nearest neighbor z,.qres: Of the
sampled point Zrand (i.e., a robot state in the configuration
space) among all the nodes in the current exploration tree.
After that the RRT* performs steering operation to decide
a point Tpe. located at the line connecting Tnearest and
Trand- Here the steering operation represents the impact of
kinematic/dynamic constraints, e.g., the maximum movement
the robotic may execute each time, and hence Zpe. , instead
of T,,n4, is the potential next configuration state the robot
may have. To verify the movement from 2, cqrest 10 Tnew 18
collision free, a collision check for such potential movement
is performed. If the check is clear, ., will be added to the
exploration tree as a new node, and its nearest neighbors in
the tree will also be searched. Then, at the Tree Refinement
stage RRT* aims to find the best edge involved with .,
to minimize the path cost. To that end, it calculates all the
path costs incurred by adding different x,,.,,-involved edges
to the exploration tree, and identifies the one candidate which
is collision free with the lowest cost. After that, both the
exploration tree and path cost are updated and the next round
of sampling begins. As proved in [44], with sufficient iterations
the exploration tree will connect the start and goal states with
low path cost, exhibiting probabilistic completeness.

C. Performance Challenge of RRT*

The above processing mechanism of RRT#*, though en-
abling the capability of solving motion planning problem
with varying dimensional sizes, causes the entire planning
procedure being very computation intensive and inefficient.
More specifically, we argue that the following three challenges
hinder the computing efficiency of RRT*. First, it requires
extensive costly collision checks. This is because every time
when RRT* finds a potential movement, the corresponding
collision checks between the robot and all obstacles, during
the entire movement course, have to be clear to verify the
legality. Even worse, such exhaustive collision check process
is required in both Tree Extension and Refinement stages of
RRT#*, further increasing computational burden. In addition,
the unit cost for each single collision check query is high.
According to Separating Axis Theorem (SAT) [25], the colli-
sion check between two OBB-represented objectives requires
to verify the existence of a separating axis among 15 potential
axes (for 3D) that are derived from the geometric information

Authonized licensed use limited to: Rutgers University Libranes. Downloaded on January 12,2025 at 18:44:34 UTC from IEEE Xplore. Restrictions apply.



Tree Extension Stage ' 1
9’#«*:
(.
Fig. 1: Oriented g ! _r p
bounding box Rend ring 1Colision Check | Nelghbor Search  Parent Checking + Rewiring
(OBB) for check Fig. 2: Processing scheme of RRT*.
collision.

of the two OBBs; and the verification process for each axis
consists of calculating dot products. Consequently, frequent
query and pricey unit cost jointly make collision check become
a very time-consuming operation (see Fig. 3).

Second, even with few obstacles that can ease the difficulty
of collision check, RRT* is still computation intensive because
of the costly neighbor search, an operation that suffers rapidly
increasing complexity when the search scope or dimension-
ality scales. Unfortunately, for RRT* planning both of these
two conditions occur. To be specific, because the neighborhood
search is performed on all the nodes in the exploration tree,
as the tree continues to grow, the search scope increases
monotonically. Consider in RRT* the sampling operation can
be repeated up to 500,000 times [44], the search cost in the
later growing stage will become very significant. Meanwhile,
because all the nodes are defined in the configuration space
that can be of high dimension, the corresponding cost for
distance calculation also linearly increases as the dimension
scales — a typical working scenario for RRT*. Even worse,
because neighbor search process is required twice, the incurred
computational complexity has to be further doubled.

Third, RRT* exhibits inherent sequential processing pattern.
As illustrated in Fig. 2, the exploration tree gradually grows as
the sampling continues, and the collision check and neighbor
search in next round of sampling cannot be activated until
all the operations in the current round finishes. Essentially,
such sampling-level serialization is the natural outcome of
the primary mission of motion planner — finding a sequence
of movement without collision. To achieve this goal, the
decision on each movement must be made in a sequential man-
ner, thereby hindering the potential performance improvement
brought by applying parallel processing.

III. MOPED: ALGORITHM DESIGN

To address the above analyzed challenges, we propose
MOPED, an algorithm and hardware co-design to enable
efficient motion planning with varying dimensional sizes. In
this section we describe the algorithmic efforts first.

A. Two-Stage Processing for Low-Cost Collision Check

Recall that as profiled in Fig. 3, collision check, in most
scenarios, contributes the largest portion of the computational
costs consumed by RRT*. Therefore, the first step of our
algorithmic optimization is to reduce the complexity of this
bottleneck operation. To this end, we develop a two-stage
processing mechanism to enable low-cost collision check,
reducing both the frequency and unit cost of collision check
query. As illustrated in Fig. 4, our key idea is to first use

485

Il Collision Check [T Neighbor Search [T Others.

Tree Refinement Stage

20 MO DraTE k3% gt e
Fig. 3: Breakdown of computa-
tional costs for RRT*.

the pre-known hierarchical spatial information to avoid many
unnecessary collision check and only perform low-cost coarse-
grained collision check if needed; and then at the second stage
more accurate collision check is performed in a fine-grained
way to optimize path quality. Next, we describe this two-stage
processing scheme in detail.

First-Stage Processing. The main purpose of first-stage
processing is to filter the unnecessary collision check. Here
the existence of “unnecessary collision check” is based on the
observation that, because of robot’s location and motion con-
straints (e.g., speed and scope), the potential collision between
a robot and obstacle typically only occurs at certain region of
workspace per each planned movement. For instance, when a
robot is located in the north area of workspace, its collision
with the obstacles located in the south region or out of its
single movement range, obviously, is very unlikely. Therefore,
many collision checks between the robot and obstacles can be
potentially avoided, saving computational costs.

Based on this observation, a question then naturally arises:
How can we determine which collision checks are unnec-
essary? To answer this question, we propose to use R-free
[27], a hierarchical tree data structure, to store the spatial
information of obstacles. A key feature of R-tree is that it can
group the nearby objects and represent the group at the lower
level using minimum bounding box at the higher level (see
Fig. 4). In other words, the spatial hierarchical information is
naturally preserved in the R-tree data structure, thereby sig-
nificantly facilitating identifying unnecessary collision check.
More specifically, as illustrated in Fig. 4, when the collision
between robot and node D in R-tree is free, it is evident that
the robot cannot collide with any obstacles in the rectangle
region that node D represents. Therefore, the corresponding
collision checks between the robot and all the obstacles in that
region (child nodes of node D), are unnecessary and can be
skipped, improving processing efficiency.! In general, the R-
tree search process starts from the root node. Then each time
the possible intersections, which are between AABB-format
bounding boxes of non-leaf nodes at level-i and OBB-format
bounding box of robot, are examined via using Separating Axis
Theorem (SAT). If there is no intersection for one level-i node,
meaning collision free, its child nodes at level-(i+1) will not
be further visited; otherwise the exploration continues for the
corresponding child nodes. This search process continues till

'Building R-tree is based on bulk-loading method, e.g., sort-tile-recursive
(STR) algorithm [48]. Here tree construction for collision check is an offline
process before planning activities occur, not affecting runtime performance;
while constructing R-tree for neighbor search is online and consumes costs.
See Section II-C for details.

Authonized licensed use limited to: Rutgers University Libranes. Downloaded on January 12,2025 at 18:44:34 UTC from IEEE Xplore. Restrictions apply.



Second Sta =
B = >\ OBB-OBB Only {Fine-grained) Path Cost=4 (@ start Succeed
AABB ! = [oll B B~ o
peley) |, ! g ] o
Py, ' k ﬁ
J N— | = (=]
"/ . ~ N \--:.‘5 i [=2]
/ ) AKTE S
i '; = =
1 : o e T T i =-
\ | F ' /. R:Tree [[# lrobot Mation @
M _,m':" =T caugmm« -
- K;} Cdlslmchmk E
OBB ; OBE-AABB o
o) AP 2 coet e 2
u,:(cos A8 shld@ Collision Check E !
u,; (.smi&ﬂosdl? vt Stage: o collision Free < —
S Skip U Check -
& 088 BT Ty Shok ey [ otislr (Obstade | " Eajjed

Fig. 4: Two-stage processing scheme. R-tree-based first-stage process-
ing skips unnecessary collision checks, and all first-stage checks are
OBB-AABB. Only second-stage processing performs OBB-OBB check.

all the leaf nodes have been either skipped or visited.

In addition to reducing the frequency of collision check, our
proposed first-stage processing also lowers the unit cost per
query. More specifically, because R-tree data structure requires
that the bounding method for its node must be Axis-Aligned
Bounding Boxes (AABB), the collision check between the tree
node and robot, when needed, is in the format of AABB-OBB
(obstacle-robot), which is much more computational efficient
than OBB-OBB type (details referred to Fig. 11). Consider
all the nodes in R-tree are AABB-bounded, the unit cost per
collision check occurred at the first stage is very low, further
reducing the computational cost.

Second-Stage Processing. Compared with OBB, AABB
bounding method suffers loss-fitting and less accurate repre-
sentation of the geometry of object. Therefore, when AABB-
OBB collision check is clear, it indeed means no collision;
but if the check is not clear, it does not necessarily mean the
collision occurs. Though the robot can still aggressively mark
this condition as collision and adjust the planned movement,
such false-positive problem will affect the path quality, e.g.,
causing higher path cost, or even fail the entire planning task
in the small/narrow passage scenario. Notice that path cost
is a very important performance metric for motion planning.
In general, higher path cost means the robot has to consume
much more energy and time to move and act. Because the
actuation part of robot typically needs much higher power than
the computing part, e.g., 86% (propellers) vs 5% (processors)
of the total allocated power budget for small-size UAVs [76],
reducing path cost, even in a small amount, can potentially
bring huge energy saving for the overall robot system.

To address this challenge and achieve high path quality,
we propose to perform fine-grained collision check as the
second-stage processing. As shown in Fig. 4, for the identified
collision between AABB-format obstacle (leaf node of R-tree)
and OBB-format robot, we will then represent obstacle using
more accurate OBB format to further perform OBB-OBB
collision check. In general, OBB bounding method provides
more compact encapsulation of an object than AABB. This

486

Fig. 5: Using OBB obstacle represen-
tation can bring lower path cost and
higher success rate.

closing-fitting representation of obstacles minimizes overes-
timation in the spatial extent of obstacles, enabling more
precise computation of potential paths. Therefore, compared
with planning method using OBB-AABB checker, using OBB-
OBB checker can 1) find paths with lower path costs; and 2)
find actually collision-free paths that OBB-AABB marks as
collision (false-positive) (see Fig. 5).

Notice that though OBB-OBB check is costly per query,
the required amount has been significantly reduced because
of the filtering effect brought first-stage processing. There-
fore the overall computational costs incurred by second-stage
processing is still very low. Fig. 6 (experimental setting
refers to Section V) shows compares the required computation
incurred by collision check before and after using the two-
stage processing scheme. It is seen that our proposed approach
enables more than 20 times saving, significantly alleviating the
computational burden for this bottleneck operation.

B. Steering-Informed Neighbor Search

With the order-of-magnitude cost reduction for collision
check, neighbor search now becomes the new performance
bottleneck. Therefore our next step of algorithmic effort is to
optimize neighbor search operation in motion planning. To that
end, because the success of efficient neighbor search is based
on the proper extraction and use of spatial information, which
can be efficiently encoded by tree structure in an organized
way, we propose a novel data structure, steering-informed
minimal-bounding-rectangle tree (SI-MBR-Tree) for motion
planning-oriented neighbor search.

Skipping Neighbor Search using SI-MBR-Tree More
specifically, as illustrated in Fig. 7, SI-MBR-Tree serves to
store the spatial hierarchical information of nodes (robot state)
in the RRT* exploration tree (referred as EXP-free). Here
each leaf node of SI-MBR-Tree corresponds to one high-
dimensional node of EXP-tree, and each non-leaf node of SI-
MBR-Tree represents a minimum bounding box that contains
all of its child nodes. Because such hierarchical representation
implicitly encodes the information of spatial distance, e.g.,

Authonized licensed use limited to: Rutgers University Libranes. Downloaded on January 12,2025 at 18:44:34 UTC from IEEE Xplore. Restrictions apply.



mOriginal @Two-Stage Processing Scheme

b) Second Neighbor Search

Original

Cost of Collison Check
3 3

Normalized Computational

107
p
20 W50 Dro0® ok 300 o7 e

Proposed

Fig. 6: Reduced computational cost of

Q) -
[ “Tree. A
]’]
D ..

collision check brought by two-stage

Collision Check

teighbors h (Skipped)

processing scheme.

Fig. 7: Using SI-MBR-Tree and approximated neighborhood to reduce compu-
tational cost of neighbor search.

the leaf nodes of node C in Fig. 7 are closer to each other
than to the leaf nodes of node B, using SI-MBR-Tree enables
efficient neighbor search. For instance, when the distance of
the query blue point to the non-leaf node B of SI-MBR-
Tree (as a minimum bounding rectangle (MBR)), measured as
the minimum distance (MINDIST) [14] between a point and
rectangle (see Fig. 11 for detailed calculation), is greater than
the distance to the current nearest neighbor, all the distance
calculation between the query node and the leaf nodes of
node B can be skipped. This is because according to its
definition, MINDIST between the query and an MBR gives the
shortest possible distance to any leaf node within that MBR,
and hence MINDIST effectively serves as a representative
minimum distance for all enclosed leaf nodes to the query
point. Therefore, if the MINDIST to a non-leaf node’s MBR
is larger than the distance to a previously identified nearest
neighbor, the entire sub-tree under that node can be skipped,
as any leaf node within that sub-tree will inherently be more
distant than the current nearest neighbor.

In general, the search process over SI-MBR-Tree starts
at its root node and traverses the entire tree. When the
descendants of the node being visited are leaf nodes, the
Euclidean distances between these leaf nodes and the query
point are calculated. If any of these distances is shorter than
that of the current identified nearest neighbor, the nearest
neighbor is updated accordingly. On the other hand, in the
case that the node being visited does not have child leaf nodes,
the MINDIST between the query point and the MBR of its
child nodes is calculated. If the MINDIST for any child node
is shorter than the distance to the current identified nearest
neighbor, that node will be further explored as it might contain
a nearer leaf node. These qualifying child nodes have their
MINDISTs sorted, and the node with the shortest distance is
visited first. Once this node and all its descendants have been
fully explored, the child node with the next shortest MINDIST
will be visited. However, if during this process the MINDIST
for any unexplored child node exceeds the distance to the
current nearest neighbor, that child and all its descendants
will be skipped. The entire search process finishes once all
leaf nodes have either been visited or skipped.

Steering-Informed Approximated Search. A key rationale
of using SI-MBR-Tree-based neighbor search for motion plan-

487

ning is that it can fully leverage the unique characteristic of
RRT* processing scheme, and hence open up the opportunities
of using approximated but performance-preserved neighbor
search to bring more computational saving. To be specific,
recall that two times of neighbor search are required in each
round of sampling: the first is to identify the nearest node in
EXP-tree (Z,eqrest) for the newly sampled point Trand, and
the second is to find the neighborhood of the node steered from
Tpearest tOWards T,.,n4. In such scenario, because 1) the newly
determined point z,.,, (pink node in Fig. 7) is steered from
the nearby T,cqres: (One green node in Fig. 7); and 2) the
neighborhood of z,.4res: has been explicitly represented as
non-leaf node C, we can simply approximate the nearby points
of ... as the neighbors of 2,,carest, fUrther eliminating the
need of the neighbor search. Notice that this approximation is
essentially enabled by joint use of unique characteristics of SI-
MBR-Tree and RRT*. To be specific, the building procedure
of SI-MBR-Tree (details refer to III-C) can inherently group
the geometrically nearby leaf nodes within the same non-leaf
node. Meanwhile, the steering operation in RRT* typically
only brings short distance between ', cqrest and Ty eq,, making

it very likely that 2,,cqres¢ Shares the same neighbors of z,,c,,-
mIOriginal NSEIProposed NS MOriginal NS ClProposed NS

B B

B

Normalized Path Cost
8
Normalized Computational
Cost of NS

og

W oD ek T oz e soi"’"wﬂw'*”w ape?
Fig. 8: (Left) Approximated neighbor search (NS) does not
affect path quality. (Right) It reduces computational cost.

Two Remaining Concerns. Although this SI-MBR-Tree-
based approximation can significantly reduce the computa-
tional cost of neighbor search in motion planning, it also
brings two new concerns to be addressed. First, it is not
clear that whether using the neighborhood of Zncarest , the
approximation of the neighborhood of z,.,, , may affect the
overall path cost or not, a critical performance metric to
evaluate a motion planner. Ideally, such approximation should
push the Pareto front instead of making trade-off between
computational and path costs. Second, building SI-MBR-Tree
in neighbor search is online and dynamic — all the nodes in the
EXP-tree are incrementally obtained via sequential sampling

Authonized licensed use limited to: Rutgers University Libranes. Downloaded on January 12,2025 at 18:44:34 UTC from IEEE Xplore. Restrictions apply.



and gradually inserted to SI-MBR-Tree. The computational
implications of continually updating SI-MBR-Tree may cause
non-negligible overhead incurred by tree growing.

Approximation Error Tolerance. In this subsection we
analyze the potential impact on path cost incurred by the
approximated neighbor search, and address the second concern
in Section III-C. As shown in Fig. 8, (experimental setting
refers to Section V) after applying the approximated neighbor
search, the computational saving (at least 4 times) is not traded
with significant increase in path cost. Instead, for several
workloads the approximation-based solution even brings better
path quality (lower path cost). We believe the main reason
for such seemingly impossible “free lunch” phenomenon is
that, since the Tree Refinement stage of RRT* will optimize
the final path cost, more tolerance is granted for performing
low-cost approximated neighbor search — any potential penalty
incurred by the approximation can be further fixed via refining
the tree later. In other words, the approximated neighbor search
essentially leverages the inherent error-tolerance of RRT* with
respect to path cost, reducing the computational cost without
sacrificing path quality.

(f+m -
-)Wursefﬂeﬁderl:y H

Fig. 9: The proposed low-cost SI-MBR-Tree insertion. SI
means steering-informed. MBR means minimal-bounding-box.

B w/ Original k

Cw/P

Cost
-

-
ba

Normalized

Computatlonal

o 0 00%, g T g2y
Fig. 10: Computational cost reduction brought by the proposed
low-cost insertion method.

C. SI-MBR-Tree with Low-Cost Insertion

With the assurance that steering-informed approximated
neighbor search does not affect the path cost, we next address
the second issue — the computational implications of dynam-
ically updating the SI-MBR-Tree. The primary ambition in
developing this tree structure specific for neighbor search of
RRT#* lies in maximizing spatial efficiency, which encapsulates
the structure’s ability for logically and compactly organizing

488

spatial data, facilitating rapid neighbor searches and accurate
steering-informed approximations.

To ensure this spatial efficiency, the straightforward way is
to hinge on a costly online construction process especially in
high-dimensional scenarios where the motion planners always
operate. More specifically, to insert the newly sampled point
to the tree, the planner has to traverse the entire tree from
the root to a leaf node with selecting the child node with
minimum area enlargement at each level. As illustrated in Fig.
9, the area enlargement is defined by the increase of bounding
box when inserting the sampled point to the bounding box
that is represented by the tree node. In general, to improve
the efficiency of neighbor search served by the tree, the area
enlargement incurred by each node insertion should be mini-
mized to reduce the spatial overlap between the sibling non-
leaf nodes and maintain a balanced tree. This is because less
area enlargement leads to more compact spatial organization
of the data, bringing fewer number of overlapping regions and
making it more likely that the nodes are well-distributed [54].

As described above, the straightforward tree insertion tra-
verse the entire tree and check the minimum area enlargement
at each level. Consider calculating the area enlargement is
costly especially in high-dimensional setting, such level-by-
level procedure, when repeats for each sampled point, brings
high computational cost. In addition, this level-wise check
strategy is only locally optimal, since sequentially minimizing
the area enlargement for each level does not guarantee that
the final choice at the leaf node exhibit the globally minimum
area enlargement. Consequently, the tree constructed using
this traversal check may still suffer unbalanced structure and
excessive spatial overlap between the non-leaf nodes at the
same level, hindering search efficiency.

SI-MBR-Tree with Low-Cost Insertion. To overcome
these limitations, we propose the steering-informed minimal-
bounding-box tree (SI-MBR-Tree) with low-cost (O(1)) inser-
tion strategy that is specifically designed for neighbor search
operation in RRT*. As illustrated in Fig. 9, our key idea is
to directly set x,., as the sibling leaf node of Z,ecqres: In
the tree, i.e., they share the same parent non-leaf node. This
simple strategy is motivated by the observation that .., is
steered from z,,.qres¢ With a pre-set step size. In other words,
it is very likely that x,,c,, and 2, eqres: are very closed to each
other, implying that when we add x,,.,, as the sibling leaf node
of Tpearest> the incurred minimum area enlargement should
be substantially small, potentially leading to smaller spatial
overlap and more balanced tree structure. Another attractive
benefit brought by this ultra-simple direct insertion is the low
operational cost. Compared to repeatedly calculating the level-
wise minimum area enlargement during the entire course of
tree traversal, computation-free simple insertion is evidently
much more efficient. As shown in Fig. 10 (experimental
setting refers to Section V), this spatial information-aware
insertion approach brings additional more than 20% lower
computational cost over the design using conventional tree
insertion, resolving previous concern on insertion overhead.

Why SI-MBR-Tree-based Neighbor Search? Readers who

Authonized licensed use limited to: Rutgers University Libranes. Downloaded on January 12,2025 at 18:44:34 UTC from IEEE Xplore. Restrictions apply.



are familiar with efficient K-Nearest Neighbor (KNN) search
may question that why SI-MBR-Tree, instead of KD-tree and
other Bounding Volume Hierarchy (BVH) tree that have been
efficiently accelerated in both hardware [12], [19], [62], [79]
and software implementations [32], [33], [54]-[56], [88], is
adopted here. We believe SI-MBR-Tree is a more suitable
solution in our target robotic scenarios because of three
reasons. 1) Many existing efficient KNN implementations [12],
[19], [32], [33], [62], [79], [88] are primarily designed for low-
dimensional (2D/3D) neighbor search used in computer graph-
ics, vision and fluid dynamics; while motion planning typically
requires neighbor search operated in high-dimensional con-
figuration space (e.g., 5-13 DoF). As indicated in [26], [39],
the curse of dimensionality causes the low-dimension-oriented
solutions (e.g., KD-Tree) need to visit substantially more
branches in the high-dimension contexts, thereby substantially
reducing acceleration efficiency. On the other hand, MOPED’s
SI-MBR-Tree is specifically designed for high-dimensional
search, mitigating this challenge effectively. 2) Most of exist-
ing efficient KNN implementations, even for FLANN library
[55], [56] that can work in high-dimensional space, are primar-
ily designed to handle static datasets. However, the neighbor
search required in RRT* is usually operated in the dataset
that is dynamically updated — the planner samples configu-
ration space continuously. As indicated in [21], [52], [55],
incorporating these static data-oriented methods (e.g., KD-
tree) into sequential data acquisition-based robotic applications
requires to rebuild the entire tree from the scratch for multiple
times, obviously causing substantial computational overhead.
Instead, as analyzed in Section III-C, SI-MBR-Tree insertion
enjoys very low cost as tree grows, bringing non-negligible
overhead. 3) Fig. 7 shows that the computing procedure of
steering operation-based RRT* requires two times of neighbor
search after each round of sampling. Applying other efficient
KNN methods cannot reduce such repeated requests because
it is the algorithmic requirement of RRT*. On the other hand,
as described before, because SI-MBR-Tree data structure nat-
urally groups the geometrically nearby leaf nodes belonging to
the same non-leaf node, we can leverage this unique property
and the characteristic of steering operation in RRT* to perform
steering-informed approximated search, eliminating the need
of second neighbor search and saving computational costs.

IV. MOPED: HARDWARE ARCHITECTURE

A. Overall Architecture

Based on the proposed algorithmic optimization, in this
section we further develop and optimize the corresponding
hardware accelerator. Fig. 11 shows the overall architecture of
MOPED hardware, which consists of a Tree Extension Module
and a Tree Refinement Module. Here Tree Extension Module
is in charge of sampling configuration space, performing
neighbor search, steering and collision check. To that end,
a group of LFSRs is used to perform random sampling in
the high-dimensional configuration space. The sampled point
Trand, together with the information of the nodes in the
EXP-tree (stored in the EXP Node SRAM), are sent to the

489

neighbor search component to identify the neighborhood. In
the EXP Node SRAM, the spatial information of each node
is stored using d values, where each value takes 16 bit and
d is the number of DoF in the current task. As described
in Section III-B, SI-MBR-Tree is used to simplify neighbor
search operation, hence the information of this tree is stored in
Bottom NS SRAM with cached top tree (see details in Section
IV-C). The spatial information of each Minimum Bounding
Rectangle (MBR) in the tree is represented by a set of 16-
bit values, consisting of 2d components. The first d compo-
nents denote the minimum coordinates, and the remaining d
components signify the maximum coordinates. The results of
neighbor search is then sent to S&R unit, which is designed
for increasing sampling-level parallelism (see Section IV-B for
details) with speculative and repaired neighbor search. After
Tnew 15 steered from z,.4pest, together with OBB/AABB-
format obstacle information stored in SRAM, it is then sent
to the SAT-based collision checker to determine the clearance
of the requested check. The spatial information of AABB and
OBB- format obstacles are represented by sets of 16-bit values,
with AABB and OBB consisting of 6/4 and 15/8 values for
3D/2D workspace, respectively. Here the first 3/2 values in
both AABB and OBB represent the coordinates of the center
point in the 3D/2D workspace, and the subsequent 3/2 values
in both AABB and OBB denote the positive halfwidth extents
of the box along each axis. In the case of OBB, the final
9/4 values express the rotation matrix that encapsulates the
orientation information. When check is clear, SI-MBR-Tree
Operator is activated to update SI-MBR-Tree stored in SRAM
via using low-cost insertion method described in Section III-C.

. Distance Calcudation - — — — — — —

Tree Extension Module B SR antarn < 3
(e T e ™ s s

i .,.)a.z.n-.v =g " n-[ﬂ_; o

L“

Tree Refinement
Module

| SAT Gollsion Check: i
I il = r 1 ety Folse; #Cme 2182 |

ans ¥
-

S
-Fpme mncse "!I

“He - zo.n-:.-n-n-—-n |§
o mmcsan |

momac, e, I

Fig. 11: Overall architecture of MOPED hardware.

For Tree Refinement Module, because its primary func-
tion is to rewire node connection of EXP-tree if needed, a
EXP Struct SRAM storing structural information of EXP-
tree (path cost and node connection) is budgeted. If the
distance calculator finds there exists a shorter path cost and
the structure of EXP-tree should be modified, another copy of
collision checker is activated to determine whether the rewired
connection of the EXP-tree, which corresponds to the planned
movement, collides with the environmental obstacles or not.

Authonized licensed use limited to: Rutgers University Libranes. Downloaded on January 12,2025 at 18:44:34 UTC from IEEE Xplore. Restrictions apply.



B. Enabling Sampling-Level Parallelism

As shown in Fig. 11, MOPED hardware architecture puts
an S&R unit between the processing of neighbor search
component and collision checker. Here the main function of
this special unit is to enable the sampling-level parallelism
of the entire computing scheme. To be specific, as illus-
trated in Fig. 12, in conventional processing procedure, the
neighbor search and collision check for the next round of
sampling cannot be enabled until all the operations occurred
in the current sampling finish. This is because the correctness
of the neighbor search in the next sampling relies on the
most recently updated SI-MBR-Tree, which can only become
available after the online insertion operation of SI-MBR-
Tree in the current sampling. Evidently, such strong data
dependency prohibits exploring the potential sampling-level
parallelism. Also, because neighbor search and collision check
are processed in the different units, it causes low resource
utilization.

Sample 5 |
{b) : Str. + Collision Check | (0): Update Tree |

. (a): Samp. + N5 |
S0 W2
)
Str. Eolisbon Check

Original

-

e ——————

q, ! Original: ‘I

m Node (D)is the | (al—s{b)—ic}—=(d) |

R ] | ,

PerOSEd \ msw,&\,;,;:,; (el T R () | : Proposed: |
e ——— sampe6————— | @ & |
Sampens [Msectre] | @—1—1 |

- NS (e) (0 |
4

fe): Say. + N5
(d) :Str. + Collision Check | [c):  Update Tree | 1
= le5 I...

Fig. 12: Speculate-and-Repair. NS: neighbor search, Samp.:
sampling, Str.: steering, Spec.: speculate, Rep.: repair.

To address this challenge, we develop a “speculate-and-
repair” (S&R) strategy to enable sampling-level parallelism
and improve utilization of computing units. As illustrated in
Fig. 12, our key idea is that upon the completion of neighbor
search in the current sampling, the Tree Extension Module
immediately begins the next-round sampling and neighbor
search operation in a speculative way. Once the collision
check in the current sampling and neighbor search in the next
sampling finish, a repair operation is performed to ensure that
the correct result of the neighbor search in the next sampling
can be identified. In general, the success of this repair effort
is guaranteed by the fact that since the difference between
the non-updated and updated SI-MBR-Tree is only one to-
be-inserted node (e.g., node 5 in Fig. 12) that is steered
from the nearest neighbor (node 2) identified in the current
sampling (Sample 5), the correct nearest neighbor in the next
sampling (Sample 6) must exist between the result (node 3)
of the speculated neighbor search in the next sampling and
this to-be-inserted node (node 5). Therefore, we can simply
fix the potential incorrectness incurred by speculated neighbor

490

search in Sample 6 via comparing the distances of node 3
and node 5 to the newly sampled point in Sample 6, thereby
ensuring the correct output of neighbor search required in
Sample 6. Notice that because the speculated neighbor search
in the next sampling cannot find the to-be-inserted node (e.g.,
node 5) in the current sampling, we refer this type of node as
“missing” neighbors and allocate a special buffer, the Missing
Neighbors Buffer, to store them to facilitate the processing in
S&R unit (see Fig. 11). More specifically at the hardware
implementation level, the output from the neighbor search
component, represented as T,.qs¢ and its associated distance
t0 Trqnd. 1S stored in a FIFO. Subsequently, when the S&R
unit is ready and the Missing Neighbor Buffer is not empty,
a comparison is made between the stored distance and the
distances of the missing neighbors to x,.,,4. If any inaccuracy
in the speculated neighbor search is detected, the nearest point,
Tpearest. 18 promptly updated with the accurate value retrieved
from the Missing Neighbors Buffer. This corrective action
constitutes the ‘repair’ operation within the S&R unit.

Notice that using “speculate-and-repair” strategy essentially
reduces the overall planning latency of MOPED. More specif-
ically, as the sampling-based motion planner, MOPED calcu-
lates and outputs the collision-free path only after completing
all the required sampling. This is because as shown in Fig.
2, the exploration tree dynamically extends and changes as
sampling process progresses, and hence the planned path,
which should be identified from the most recently updated
exploration tree, will not be calculated until finishing the last
round of sampling 2. Therefore, the overall planning latency
of MOPED is the end-to-end duration measured from first
to last round of sampling, instead of the time consumed in
each round. Consider 1) the neighbor search and collision
check, which can be now largely overlapped by using the S&R
strategy (see Fig. 12), are very costly since every neighbor
search and collision check require the involvement of all the
sampled nodes (up to thousands or more); and 2) the newly
added speculate/repair operation, is instead very cheap because
each time it only calculates the distances of very few missing
neighbors (fewer than 10) to x,4,4; such huge saving brought
by overlapping old operations and minor overhead incurred by
new operations, together, significantly reduces the end-to-end
planning latency. For instance, with 5000 rounds of samplings
in a 2D mobile workload, our proposed speculate-and-repair
strategy brings about 2x reduction in overall planning latency.
More evaluation on the speedup provided by this strategy can
be referred to Section V-C.

Resource Availability & Overhead of FIFO/Missing
Neighbors Buffer. As described in the above paragraphs,
FIFO and Missing Neighbors Buffer are two key hardware
components for realizing S&R strategy, making their resource
availability and cost largely impacts the effectiveness of S&R

?Notice that here the number of rounds of sampling is the actual amount
of sampling that the planner uses for generating the collision-free path. For
instance, if the planner with 5000-sampling budget decides to early terminate
and attempts to calculate the path after 100 sampling, the last round of
sampling is the 100-th sampling.

Authonized licensed use limited to: Rutgers University Libranes. Downloaded on January 12,2025 at 18:44:34 UTC from IEEE Xplore. Restrictions apply.



R-Tree Operator — )
f (o] ai-’}
§ {‘90 N Eiﬁ

f _nowpon 0]
g —

S .

& Bupyoe) pAa-anp

J

\ Suppe) pasn-audul

Fig. 13: Multi-level caching. NS denotes neighbor search.

strategy and the overall hardware overhead. A promising
feature of the proposed S&R strategy is that it only consumes
ultra-low-cost FIFO and Missing Neighbors Buffer. More
specifically, the depth of FIFO is essentially the the maximum
number of sampled points awaiting collision checks (collision
checks may be slower than the neighbor searches, causing
potential accumulation of sampled points awaiting collision
checks). Fortunately, our experiments across different work-
loads show that such backlog phenomenon, if occurs, is very
negligible, and using a 20-depth FIFO is already sufficient to
avoid the unnecessary pipeline stalls. Meanwhile, the capacity
of the Missing Neighbor Buffer is determined by the maximum
number of collision checks that can be ascertained as collision-
free within the duration of one neighbor search operation. Our
experimental finding shows that this number is very small,
and budgeting a buffer capable of storing up to 5 "missing
neighbors™ is already enough for different planning workloads.
Such small FIFO and Missing Neighbors Buffer only consume
0.75KB extra storage, a ultra-low overhead meaning that the
resource availability of these two hardware modules can be
very easily satisfied.

Overall, after using this speculate-and-repair solution, the
operations in the consecutive sampling can now be paralleled.
Essentially, the original strong data dependency is mitigated
and the hardware can now be properly pipelined, reducing the
overall planning latency and increasing resource utilization.
Notice that such benefits are enabled without sacrificing the
correctness of functional validity — the missing neighbors
buffer-powered repairing operation guarantees that the correct
nearest neighbors can always be identified after performing
speculated neighbor search. Therefore, the planner with and
without using S&R strategy are functionally equivalent.

C. Hierarchical Multi-Level Caching

In addition to improving parallelism, we also develop a
hierarchical multi-level caching strategy to further optimize
the performance of MOPED hardware. To be specific, three
levels of caching opportunities are explored in the design.

Unit-Level Caching. First, we propose to cache the data
used in the neighbor search component via leveraging the
temporal locality of SI-MBR-Tree. As shown in Fig. 13,
each time when this neighbor search component searches the
neighborhood, the top part of the tree is always accessed more
frequently because the SI-MBR-Tree-based search process is
performed from top towards bottom. Therefore, caching the

corresponding data, e.g., information of bounding box, brings
reduction in memory access and more energy-efficient search.

Module-Level Caching. In addition, we also cache the trace
of neighbor search to address the potential resource conflict
issue in the Tree Extension Module. More specifically, every
time after the desired nearest neighbor leaf node of SI-MBR-
Tree is identified, the search history for finding this node, i.e.,
the spatial information of the bounding boxes represented by
the visited non-leaf nodes, will be saved. Here our rationale
is that, it is very likely that the sizes of these corresponding
bounding boxes will be adjusted because of the insertion of
new leaf node; and meanwhile the information of the non-leaf
nodes of SI-MBR-Tree is also heavily used in the speculative
neighbor search at that moment. Consequently, caching the
search trace is very desired to avoid the access conflict for
SI-MBR-Tree memory.

Engine-Level Caching. We also observe that caching the
identified neighborhood is required to facilitate data sharing
between the two computing modules of MOPED accelerator.
More specifically, after the neighbor search component in
Tree Extension Module identifies the neighboring nodes of
SI-MBR-Tree, it is very necessary to save the information of
these neighbors to a cache, preparing for the future use in
the rewiring operation performed by Tree Refinement Module.
Otherwise, because the memory (Bottom NS SRAM and Top
NS Cache) storing those information are always extensively
accessed due to the frequent neighbor search query, severe
memory access conflict may occur.

V. EVALUATION

Robot Models. In this section, we evaluate the algorithmic
and hardware performance of our proposed co-design solution
on five robot models with different DOFs and bounding box

representations. More specifically, they are:
« 2D Mobile: A 3-DOF robot with two translational degrees

of freedom (z, y) and one rotational degree of freedom,

bounded by one 2D OBB.
e 3D Drone: A 6-DOF robot featuring three translational

degrees of freedom (z, vy, z) and three rotational degrees
of freedom (yaw, pitch, roll) [61], bounded by one 3D

OBB.
o ViperX 300 Robot Arm [66]: A 5-DOF robot arm,

described by five distinct joint angles that dictate the
arm’s configuration in the workspace. This robot arm is

bounded by three 3D OBBs.
« ROZUM Robot Arm [65]: A 6-DOF robotic arm, speci-

fied by six unique joint angles that define the arm’s con-
figuration in the workspace. This robot arm is bounded

by four 3D OBBs.
+« XArm-7 Robot Arm [71]: A 7-DOF robotic arm, defined

by seven independent joint angles that determine the

arm’s configuration in the workspace. This robot arm is
bounded by seven 3D OBBs.

Environmental Settings. The performance is evaluated in

a simulated 3D workspace of size 300 x 300 x 300 (300 x 300

for 2D Mobile) with varying obstacle counts: 8, 16, 32,

and 48. For each environment configuration, we generate

Authonized licensed use limited to: Rutgers University Libranes. Downloaded on January 12,2025 at 18:44:34 UTC from IEEE Xplore. Restrictions apply.



50 different planning tasks by randomly placing obstacles
of various shapes (3D size limited to 30 x 30 x 50, 2D
size limited to 30 x 30) in random locations with random
orientations. In addition, the start and goal configurations
for each planning task are also randomly generated. This
randomness enables us to robustly assess the effectiveness
of our approach across a diverse range of scenarios. More-
over, the environment size and obstacle densities are similar
with those utilized in other motion planning works [4], [49],
[60], ensuring our performance evaluation are appropriately
benchmarked. Because in real-world scenarios the obstacle
information received by back-end planner is OBB-format data
generated by front-end perception module, random generated
obstacles in our simulation environment are also in OBB
format. The corresponding spatial information, including the
coordinates of central points, halfwidth extents of boxes along
the axis and the orientation-related rotation matrix, are stored
in the obstacle OBB SRAM (see Fig. 11). More details of
obstacle encoding of MOPED can be referred to Section IV-
A. Note that because MOPED first performs an AABB-OBB
collision check at the first stage, the spatial information of
AABB-format obstacles is calculated from OBB format and
stored in another AABB SRAM (see Fig. 11).
A. Algorithmic Performance

Fig. 14 summarizes the algorithmic performance of MOPED
across various robot models with different environmental set-
tings with 5,000 sampling attempts. It is seen that MOPED
significantly reduces the computational costs without com-
promising the path quality. Notably, for higher-dimensional
applications, the reduction in computational complexity is
more pronounced. Furthermore, as the environment becomes
more complicated (characterized by the increasing number of
obstacles), MOPED demonstrates its enhanced capability for
complexity reduction. These findings highlight the efficacy and
adaptability of MOPED in solving high-dimensional motion
planning problems across wide range of robot models and
environmental complexities.

Random Generated Map w/8 Obstacles [T] w16 Obstacles [ w32 Obstacles

TN T

oW a°°'°“°\1\9°‘*mo o™

x T T T T
S0’ i
E 10° [
» oo o oo™ ‘N-‘*sﬂﬂ eﬁ'—‘m ;N‘“"'
Fig. 14: Algorithmic performance of MOPED.
B. Hardware Performance
Experimental Setting. We first conduct a high-level func-
tional simulator for the behavior modeling of MOPED. We
then utilize Verilog to develop a RTL model which is synthe-
sized with the Synopsys Design Compiler and a CMOS 28nm
library. Synthesis results provide the datapath area and power
consumption metrics, and CACTI is used for obtaining the
memory performance.

=]
.3

+
=]
=]

1

1
M

Path Cost

Normalized

FLOPs

492

Baseline: We compare MOPED with three baselines:
CPU: A C++ version of original RRT* algorithm im-
plemented based on RTRBench [5], a real-time robotics
benchmark. Notice that we modify its planning envi-
ronment and robot modeling method to better fit for
real-world motion planning tasks with high DoFs. The
computing platform is AMD EPYC 7601 CPU.

RRT* ASIC: A hardware implementation of original
RRT* algorithm, using the similar architecture (overlap-
ping tree extension and refinement stages) used in [78]
and with the same computing resource and very similar
memory resources as MOPED has.

RRT* ASIC with CODAcc: The above hardware imple-
mentation of RRT* with collision check using CODAcc
[4], a recent collision check accelerator that performs
OBB collision checks using occupancy grid method. We
adopt a resolution of one unit length per cell and integrate

four CODAcc accelerators.’
Design Configuration. We implement a design example

of MOPED hardware architecture equipped with 168 16-bit
multipliers and accumulators (MACs) and 198 KB of on-chip
SRAM. With 28nm CMOS technology, this motion planning
accelerator occupies 0.62 mm? silicon area and consumes
137.5 mW power under 1000 MHz operating frequency.
Hardware Performance Comparison. Fig. 15 illustrates
the performance improvement of MOPED as compared to the
baselines across various robot models and working environ-
ments. The latency of MOPED in executing these tasks are
0.35-0.96 milliseconds. Compared to CPU-based solutions,
MOPED achieves 1066.2x — 6149x speedup and 453.6x
— 10744.6 x higher energy efficiency, respectively. Compared
with RRT* ASIC design, MOPED demonstrates 2.3x — 41.1x
speedup, 2.1x — 38.3x times area efficiency increase, and
2.1x — 38.2x improved energy efficiency, respectively. Com-
pared with RRT* ASIC solution equipped with customized
collision check hardware CODAcc, MOPED achieves 2x —
9.2x speedup, 1.7x — 7.9x better area efficiency, and 2x —
9.3 higher energy efficiency, respectively.
C. Analysis & Discussion

L]

Ll

Ll

Breakdown in Computational Saving. Because the sig-
nificant reduction in computational costs come from several
efforts, Fig. 16 (Top) analyzes the impact of different ap-
proaches. Here V1 means only Two-Stage Processing Scheme
(TSPS) is applied, bringing 33.9% - 77.7% reduction in
computation across various robot models. V2 represents the
design further applying SI-MBR-Tree-based Neighbor Search
(STNS) on V1. And this effort leads to an additional 48.2%
— 80.1% computational saving. V3 integrates the Steering-
Informed Approximated Search (SIAS) to V2, bringing further

*Notice that since the occupancy grid method is built on the discretization
of the environment, its memory consumption is huge. In our experimental
setting, more than 3.2MB on-chip SRAM is needed to store the occupancy
erid information of the 300 x 300 x 300 3D environment with a resolution
of one unit length per cell. Following the setting in [4], we assume that an
external CPU sends the occupancy grid information to the accelerator; and
area, power and communication costs incurred by using CPU are not included
in the performance report of this baseline. MOPED does not need CPU.

Authonized licensed use limited to: Rutgers University Libranes. Downloaded on January 12,2025 at 18:44:34 UTC from IEEE Xplore. Restrictions apply.



I cpu [ RAT* ASIC [ RRT* ASIC w/ CODAcc [ MOPED

O Original RAT* & V2: VI+STNSE V4: V3+LCI

gz‘m_‘:—lr .8“._ > .16“._.._"'._ —> Ilf“l_‘l_‘l — 430bsta ,‘,— 5 W V1: TSPS [ V3: V2+SIAS
il gdiggd g iidg

2 BG RGP RGP RAG RGN o

ol ol oo ol ol ol fl Al il Ll 4 ooroomrtomn st g et
o S R g o o R §4m | ]
] e S e e s s s 1t I ]
iadaiiaiadiaiadiaiig BdJd JJJ

RS SRR ST

N e

20 MO0 D10 ok 30007 UM pnT

Fig. 15: Hardware performance of motion planning hardware across different Fig. 16: (Top) Source of computational saving in

robot models in different environments.

28.3% — 47% less computation as compared to V2. V4 is
built on the top of V3 via featuring Low-Cost Insertion (LCI),
achieving additional 14.6% - 66% computational saving.

Software-only Speedup. To evaluate the acceleration per-
formance of our proposed algorithm without any hardware
support, we benchmark it against the C++ software implemen-
tation described in Section V-B. As shown in Fig. 16 (bottom),
our software-only solution brings 2.77 x — 4.14 x speedup
over the baseline design. This result shows that 1) MOPED
algorithm indeed brings significant runtime acceleration; and
2) to fully unleash the algorithmic benefits, i.e., 15x and more
computational saving as shown in Fig. 16 (top), our proposed
customized hardware support is very necessary.

2 EMOPED wio S&R CJ MOPED w/ S&R

1 0 MOPED wio S&R O] MOPED w/ S&R

1

Speedup

Speedup

5
1
0.5
1]

iw“w 0o am? 8 16 32
20 W7 50 DO geck T ay w No. of Obstacles

Fig. 17: Speedup brought by S&R across (Left) different robot
models (Right) different environments (ViperX 300 robot).

48

Speedup & Scalability of “Speculate-and-Repair”. Fig.
17 (left) and (right) illustrate the speedup after using S&R
strategy across different robot models and different environ-
mental complexities, respectively. It is seen that the proposed
strategy brings consistently speedup for different planning
workloads. Such stable acceleration performance with different
robot models (from 2 to 7 DoFs) and different environmental
settings (from 8 to 48 obstacles), also demonstrates the good
scalability of S&R strategy when problem complexity in-
creases. Notice that because the S&R strategy aims to overlap
neighbor search and collision check operations, the varying
performance improvement on different workloads are mainly
determined by the condition that whether the costs of these
two operations are more close or not.

Bounding Box for Collision Check: OBB vs AABB.
Fig. 18 (left) compares the path cost using OBB and AABB
bounding boxes to represent obstacles in the collision check.
It is seen that OBB-based solution enjoys 20%-50% lower
path costs. Such significant improvement in path quality brings
huge time/energy saving for the overall robotic system, since

MOPED. (Bottom) Software-only speed-up.

the overall planned path has been largely shortened. In addi-
tion, we also evaluate the acceleration performance of MOPED
only using AABB bounding box-based collision checker. As
shown in Fig. 18 (right), compared with baseline RRT* ASIC
using the same AABB checker, MOPED still brings 5.6x -
7.6 speedup.

T2 = AABB Obstacle=] OBB Obstacle g —-AABB ASICE AABB WOPED
Bz 5
w0
o m w2
z04, 0
L Ll T 20 W3S ot oM

Fig. 18: (Left) Path cost using AABB and OBB-format obsta-
cle. (Right) Speedup over baseline RRT* using AABB.

Speedup at Different Sampling Stages. The number of
sampling points is an important factor that can affect the
performance of motion planner, since it directly determines
the complexity of neighbor search. Fig. 19 (left) shows the
speedup of MOPED at varying sampling stages. It is seen
that MOPED achieves steadily increasing speedup as more
points in the configuration space are sampled. This is because
as the complexity of neighbor search continues to scale due
to the increasing sampled points added to the EXP-tree, the
low-cost search featured by MOPED becomes more signifi-
cant, bringing higher speedup as compared to early sampling
stage. Notably, such property is particularly attractive when
solving challenging ultra-high-dimensional planning problems
that may require a large number of samplings.

B KD-Tree-based O SEMBR-Tree-based

= g‘g;
% *g:tvmm!u! E§:4
sTeeee R ik
[}

LN N T gw‘,nﬂ‘“‘:‘”ﬂum o™

Fig. 19: (Left) Speedup of MOPED at different sampling
stages. (Right) Computational costs of SI-MBR-Tree and KD-
Tree -based neighbor search in RRT*.

SI-MBR-Tree vs KD-Tree for Neighbor Search in RRT*.
Fig. 19 (Right) compares the computational costs of SI-MBR-
Tree and KD-Tree-based neighbor search in RRT*. It is seen
that using SI-MBR-Tree brings 4.12x — 7.76 x computational
saving over KD-Tree-based solution. As outlined in Section

493

Authonized licensed use limited to: Rutgers University Libranes. Downloaded on January 12,2025 at 18:44:34 UTC from IEEE Xplore. Restrictions apply.



III-C, this superior performance can be attributed to the inher-
ent advantages of SI-MBR-Tree for neighbor search in RRT*,
such as suitability for high-dimensional spaces and dynamic
datasets and the elimination of repeated search requests.

VI. RELATED WORK

Motion Planning Hardware. Despite the importance of
motion planning, to date only few hardware accelerators
are reported [4], [36]-[38], [49], [58]-[60], [78], [80], [81].
Among them, [60] (MICRO’16) proposes to use exhaustive
offline collision check for each possible movement, and stores
all the pre-computed results on chip for rapid reference. Such
trading-storage-for-speed strategy is tightly integrated with
the environment, and hence it needs hours of offline reset if
obstacles change. Also, if the environment or resolution scales
up, the required storing cost becomes very huge, hindering
the scalability. Recently, [4] (ISCA’22) proposes a CPU-aided
hardware accelerator for search-based planning. Due to the in-
herent limitation of search algorithm, its suitable application is
2D/3D instead of high-dimensional configuration space. Also,
using CPU to store the discretized environmental information
brings non-negligible overhead.

RRT* and its Variants. To date, many RRT/RRT* vari-
ants have been proposed to further improve the planning
performance, e.g., biased sampling [22], [83], increasing par-
allelism [7], [13], [39], [45], [47] and adapting for dynamic
environments [1], [8], [20]. Different from these existing
works, MOPED aims to solve another general bottleneck for
RRT*/RRT and variants: how to reduce the operational fre-
quency of collision check and neighbor search per sampling.
Because 1) this problem is very fundamental and universal
and 2) RRT#* serves as the kernel in its variants, the solution
proposed in MOPED is not only beneficial to RRT*, but can
also be directly applied in all types of RRT*/RRT variants to
reduce computational cost.

Parallelizing RRT*. Parallelizing the RRT* procedure can
be explored at different levels. RRT-Connect [45] aims to
enable exploration tree-level parallelism via first growing trees
from start and end points simultaneously, and then connect
them. Also, [4], [7] propose to increase collision check-level
parallelism via leveraging the nature that multiple collision
checks within the same round of sampling can be performed
simultaneously. MOPED, together with [39], [47], study the
efficient approaches to improve sampling-level parallelism. A
key difference between MOPED and [39], [47] is that MOPED
focuses on parallelizing consecutive samplings performed by
each thread; while the goal of [39], [47] is to parallelize
multiple sampling performed by different threads (targeting
for multi-core CPU/GPU). In other words, MOPED explores
temporal parallelism and [39], [47] studies spatial parallelism.
Another fundamental difference from prior parallel RRT*
works is that MOPED also reduces the frequency and cost of
collision check and neighbor search; while only increasing par-
allelism will not change the overall cost. Evidently, MOPED
is complementary with these prior RRT* parallelization works
and the joint use of them can bring further acceleration.

494

Learning/Factor Graph-based Motion Planning. DNN-
based motion planners receive increasing attention in the
recent literature [11], [40], [63], [82], [84], [86]. Despite the
powerful capability of DNNs, learning-based planners suffer
from high model costs and lack of theoretically guaranteed
completeness that RRT* enjoys, hindering their practical de-
ployment in real-world applications. In addition, due to its ver-
satility in modeling diverse optimization challenges in robotics
[15], [16], [35], [43], [57], factor graph, as a probabilistic
graphical model for representing state estimation problems,
has also been proposed to solve a series of robotic tasks (e.g.,
motion planning, localization, control), further motivating the
research on factor graph-oriented hardware accelerators [28],
[29], [69]. A potential challenge for applying factor graph in
motion planning is that this trajectory optimization method
might get trapped in the local optima and sometimes may
not able to provide a feasible solution under tight planning
constraints [35] and hence how to build reliable factor graph-
based motion planners for real-world scenarios is an open
research question and needs more exploration.

Space Subdivision Algorithms for Collision Check. Space
subdivision algorithm [74], e.g., R-tree/AABB-tree, KD-tree
and Octree are popularly used geometric data structures, and
some of them have been adopted for checking collision in
computer graphics [70], [75]. Motion planning has unique
requirements for tree-based collision check, especially on path
quality and hardware cost. Using computer graphics-oriented
R-tree/AABB-tree suffers potential false positive problem,
severely affecting path quality in motion planning. Octree
spatially divides 3D space into small voxels. Because rep-
resentation precision is an important factor determining the
performance of robotic task using Octree, high resolution is
typically required, bringing very high memory consumption.
For instance, even for Octree-based works aiming to minimize
memory usage [34], [77], the storage demand for environment
modeling can still be up to hundreds of megabytes (e.g.,
130MB), posing challenges for applying Octree-based solution
in resource-constrained motion planning applications. KD-tree
is constructed by recursively splitting the environment into two
halves using a plane aligned with one of the domain axes. In
practice, there are always obstacles that straddle the dividing
plane during the construction process, and then the boundaries
of one partition has to be modified to encompass the obstacles,
bringing overlaps between the partitions [9]. This inherent and
uncontrolled overlap causes many redundant collision check
queries, makes entire planning process inefficient. Also, KD
tree is less efficient in managing dynamic data, making it not
suitable for collision check in the dynamic environments with
moving obstacles.

VII. CONCLUSION

This paper develops MOPED, an algorithm and hardware
co-design for efficient motion planning engine. Compared with
the existing motion planner solutions, MOPED achieves very
significant performance improvement.

Authonized licensed use limited to: Rutgers University Libranes. Downloaded on January 12,2025 at 18:44:34 UTC from IEEE Xplore. Restrictions apply.



ACKNOWLEDGEMENTS

This work is partially supported by National Science Foun-
dation under Grant CCF-2239945.

REFERENCES

[1] O. Adiyatov and H. A. Varol, “A novel rrt-based algorithm for motion
planning in dynamic environments,” in 2017 IEEE International Con-
ference on Mechatronics and Automation (ICMA). IEEE, 2017, pp.
1416-1421.

[2] W. G. Aguilar, S. Morales, H. Ruiz, and V. Abad, “Rrt* gl based
optimal path planning for real-time navigation of uavs.” in Advances
in Computational Intelligence: 14th International Work-Conference on
Artificial Neural Networks, INANN 2017, Cadiz, Spain, June 14-16,
2017, Proceedings, Part Il 14. Springer, 2017, pp. 585-595.

[3] O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-based
algorithms for optimal motion planning.” in 2013 IEEE International
Conference on Robotics and Automation. 1EEE, 2013, pp. 2421-2428.

[4] M. Bakhshalipour, S. B. Ehsani, M. Qadri, D. Guri, M. Likhachev,
and P. B. Gibbons, “Racod: algorithm/hardware co-design for mobile
robot path planning.” in Proceedings of the 49th Annual International
Symposium on Computer Architecture, 2022, pp. 597-609.

[5] M. Bakhshalipour, M. Likhachev, and P B. Gibbons, “Rtrbench: A
benchmark suite for real-time robotics.” in 2022 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2022, pp. 175-186.

[6] A. Bauer and Z. Popovi¢, “Rrt-based game level analysis, visualization,
and visual refinement,” in Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, vol. 8,
no. 1, 2012, pp. §13.

[7] 1. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing the
rrt and the rrt,” in 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 1EEE, 2011, pp. 3513-3518.

[8] I. Bruce and M. Veloso, “Real-time randomized path planning for robot
navigation,” in JEEE/RSJ international conference on intelligent robots
and systems, vol. 3. IEEE, 2002, pp. 2383-2388.

[9] 1. R. Bruce, “Real-time motion planning and safe navigation in dynamic
multi:robot environments,” Ph. D. dissertation, 2006.

[10] M. Cap, P. Novdk, J. Vokfinek, and M. Péchoudek, “Multi-
agent rrt* Sampling-based cooperative pathfinding,” arXiv preprinmt
arXiv:1302.2828, 2013.

[11] B. Chen, B. Dai, Q. Lin, G. Ye, H. Liu, and L. Song, “Learning to
plan in high dimensions via neural exploration-exploitation trees,” in
International Conference on Learning Representations, 2019.

[12] F. Chen, R. Ying, J. Xue, E Wen, and P. Liu, “Parallelnn: A parallel
octree-based nearest neighbor search accelerator for 3d point clouds,”
in 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 1EEE, 2023, pp. 403—414.

[13] L. Chen, Y. Shan, W. Tian, B. Li, and D. Cao, “A fast and efficient
double-tree rrt -like sampling-based planner applying on mobile robotic
systems,” IEEE/ASME transactions on mechatronics, vol. 23, no. 6, pp.
2568-2578, 2018.

[14] K. L. Cheung and A. W.-C. Fu, “Enhanced nearest neighbour search on
the r-tree,” ACM SIGMOD Record, vol. 27, no. 3, pp. 16-21, 1998.

[15] F. Dellaert, M. Kaess et al., “Factor graphs for robot perception.”
Foundations and Trends® in Robotics, vol. 6, no. 1-2, pp. 1-139, 2017.

[16] 1. Dong, M. Mukadam, F. Dellaert, and B. Boots, “Motion planning as
probabilistic inference using gaussian processes and factor graphs.” in
Robotics: Science and Systems, vol. 12, no. 4, 2016.

[17] E. Donsky and H. J. Wolfson, “Pepcrawler: a fast rrt-based algorithm
for high-resolution refinement and binding affinity estimation of peptide
inhibitors,” Bioinformatics, vol. 27, no. 20, pp. 2836-2842, 2011.

[18] C. Ericson, Real-time collision detection. Crc Press, 2004.

[19] Y. Feng, G. Hammonds, Y. Gan, and Y. Zhu, “Crescent: taming memory
irregularities for accelerating deep point cloud analytics,” in Proceedings
of the 49th Annual International Symposium on Computer Architecture,
2022, pp. 962-977.

[20] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with rrts.,” in
Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006. 1EEE, 2006, pp. 1243-1248.

[21] P. R. Florence, J. Carter, J. Ware, and R. Tedrake, “Nanomap: Fast,
uncertainty-aware proximity queries with lazy search over local 3d data.”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 7631-7638.

495

[22]

[23]

[24]

[23]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 1EEE, 2014, pp. 2997—
3004.

J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed
trees (bit): Sampling-based optimal planning via the heuristically guided
search of implicit random geometric graphs,” in 2015 IEEE international
conference on robotics and automation (ICRA). 1EEE, 20135, pp. 3067-
3074.

M. Ghallab and D. G. Allard, “A: An efficient near admissible heuristic
search algorithm,” in Proceedings 8th IJCAI, 1983, pp. 789-791.

E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for
computing the distance between complex objects in three-dimensional
space,” IEEE Journal on Robotics and Automation, vol. 4, no. 2, pp.
193-203, 1988.

J. E. Goodman, O. Rourke et al., “Handbook of discrete and computa-
tional geometry,” Chapman & Hall: CRC, Tech. Rep.. 2004.

A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, 1984, pp. 47-57.

Y. Hao, Y. Gan, B. Yu, Q. Liu, S.-S. Liu, and Y. Zhu, “Blitzcrank: Factor
graph accelerator for motion planning,” in 2023 60th ACM/IEEE Design
Automation Conference (DAC). IEEE, 2023, pp. 1-6.

Y. Hao, B. Yu, Q. Liu, S. Liu, and Y. Zhu, “Factor graph accelerator
for lidar-inertial odometry,” in Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design, 2022, pp. 1-7.

P E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.

E. Heiden, L. Palmieri, S. Koenig, K. O. Arras, and G. S. Sukhatme,
“Gradient-informed path smoothing for wheeled mobile robots.” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 1710-1717.

R. C. Hoetzlein, “cunsearch,” https://github.com/
InteractiveComputerGraphics/cuNSearch.

R. C. Hoetzlein, “Fast fixed-radius nearest neighbors: interactive million-
particle fluids.” in Fast fived-radius nearest neighbors: interactive
million-particle fluids. In GPU Technology Conference, 2014.

J. Hou, M. Goebel, P. Hiibner, and D. Iwaszczuk, “Octree-based ap-
proach for real-time 3d indoor mapping using rgb-d video data.” The
International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. 48, pp. 183-190, 2023,

E. Huang, M. Mukadam, Z. Liu, and B. Boots, “Motion planning with
graph-based trajectories and gaussian process inference.” in 2017 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2017, pp. 5591-5598.

L. Huang, X. Zang, Y. Gong, C. Deng, J. Yi, and B. Yuan, “Img-smp:
Algorithm and hardware co-design for real-time energy-efficient neural
motion planning,” in Proceedings of the Great Lakes Symposium on
VLSI 2022, 2022, pp. 373-377.

L. Huang, X. Zang, Y. Gong, and B. Yuan, “Hardware architecture of
graph neural network-enabled motion planner.” in Proceedings of the
41st IEEE/ACM International Conference on Computer-Aided Design,
2022, pp. 1-7.

L. Huang, X. Zang, Y. Gong, B. Zhang, and B. Yuan, “VIsi hardware ar-
chitecture of neural a* path planner,” in 2022 56th Asilomar Conference
on Signals, S and Computers. 1EEE, 2022, pp. 334-338.

c. Ichnowski and c. Alterovitz, “Parallel sampling-based motion planning
with superlinear speedup.” in 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 1EEE, 2012, pp. 1206-1212.

B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2018, pp. 7087-7094.

F. Islam, J. Nasir, U. Malik, Y. Ayaz, and O. Hasan, “Rrt-smart: Rapid
convergence implementation of rrt towards optimal solution,” in 2012
IEEE international conference on mechatronics and automation. 1EEE,
2012, pp. 1651-1656.

J. Jiang and K. Wu, “Cooperative pathfinding based on memory-efficient
multi-agent rit,” JEEE Access, vol. 8, pp. 168 743-168 750, 2020.

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “isam2: Incremental smoothing and mapping using the bayes
tree,” The International Journal of Robotics Research, vol. 31, no. 2, pp.
216-235, 2012.

Authonized licensed use limited to: Rutgers University Libranes. Downloaded on January 12,2025 at 18:44:34 UTC from IEEE Xplore. Restrictions apply.



[44] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research, vol. 30,
no. 7, pp. 846-894, 2011.

[45] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning.” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. 1EEE, 2000,
pp. 995-1001.

[46] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for
path planning,” 1998.

[47] R. C. Lawson, L. Wills, and P. Tsiotras, “Gpu parallelization of policy
iteration rrt,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2020, pp. 4369-4374.

[48] S. T. Leutenegger, M. A. Lopez, and J. Edgington, “Str: A simple and
efficient algorithm for r-tree packing,” in Proceedings 13th international
conference on data engineering. IEEE, 1997, pp. 497-506.

[49] S. Lian, Y. Han, X. Chen, Y. Wang, and H. Xiao, “Dadu-p: A scalable
accelerator for robot motion planning in a dynamic environment,” in
Proceedings of the 55th Annual Design Awtomation Conference, 2018,
pp. 1-6.

[50] M. Likhachev, D. 1. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic a*: An anytime, replanning algorithm.” in ICAPS,
vol. 5, 2005, pp. 262-271.

[51] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a* with
provable bounds on sub-optimality,” Advances in neural information
processing systems, vol. 16, 2003.

[52] B. T. Lopez and J. P. How, “Aggressive 3-d collision avoidance for
high-speed navigation.” in /CRA, 2017, pp. 5759-5765.

[53] R. Luna, I. A. Sucan, M. Moll, and L. E. Kavraki, “Anytime solution
optimization for sampling-based motion planning,” in 2013 IEEE in-
ternational conference on robotics and automation. 1EEE, 2013, pp.
5068-5074.

[54] Y. Manolopoulos, A. N. Papadopoulos, A. N. Papadopoulos, and
Y. Theodoridis, R-Trees: Theory and Applications: Theory and Applica-
tions. Springer Science & Business Media, 2006.

[55] M. Muja, “Flann - fast library for approximate nearest neighbors,” https:
lgithub.com/flann-lib/flann.

[56] M. Muja and D. Lowe, “Flann-fast library for approximate nearest
neighbors user manual.” Computer Science Department, University of
British Columbia, Vancouver, BC, Canada, vol. 5, p. 6, 2009.

[57] M. Mukadam, J. Dong, X. Yan, FE. Dellaert, and B. Boots, “Continuous-
time gaussian process motion planning via probabilistic inference.” The
International Journal of Robotics Research, vol. 37, no. 11, pp. 1319-
1340, 2018.

[58] S. Murray, W. Floyd-Jones, G. Konidaris, and D. J. Sorin, “A pro-
grammable architecture for robot motion planning acceleration.” in 2079
IEEE 30th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), vol. 2160. IEEE, 2019, pp. 185
188.

[59] S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. D. Konidaris,
“Robot motion planning on a chip.” in Robotics: Science and Systems,
vol. 6, 2016.

[60] S. Murray, W. Floyd-Jones, Y. Qi, G. Konidaris, and D. J. Sorin, “The
microarchitecture of a real-time robot motion planning accelerator.” in
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 1EEE, 2016, pp. 1-12.

[61] A. Niichter, 3D robotic mapping: the simultaneous localization and
mapping problem with six degrees of freedom. Springer, 2008, vol. 52.

[62] R. Pinkham, S. Zeng, and Z. Zhang, “Quicknn: Memory and perfor-
mance optimization of kd tree based nearest neighbor search for 3d point
clouds,” in 2020 IEEE International symposium on high performance
computer architecture (HPCA). 1EEE, 2020, pp. 180-192.

[63] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, “Motion
planning networks,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 2118-2124.

[64] A. Ranganathan and S. Koenig, “Pdrrts: Integrating graph-based and
cell-based planning.” in 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROSNIEEE Cat. No. 04CH37566),
vol. 3. IEEE, 2004, pp. 2799-2806.

[65] R. Robotics. Roboticarms pulse. [Online]. Available: https:/rozum.
com/robotic-arm/#about

[66] T. Robotics. Viperx 300 robot arm. [Online]. Available: https:
/iwww.trossenrobotics.com/viperx-300-robot-arm.aspx

496

[67]

[68]

[69]

[70]

[71]
[72]

[73]

[74]

[73]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87

—

M. P. Strub and J. D. Gammell, “Advanced bit (abity Sampling-
based planning with advanced graph-search techniques,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2020, pp. 130-136.

N. R. Sturtevant, Z. Zhang, R. Holte, and J. Schaeffer, “Using inconsis-
tent heuristics on a search.” in Proceedings of the AAAI Workshop on
Search Techniques in Artificial Intelligence and Robotics, 2008,

I. Sugiarto, C. Axenie, and J. Conradt, “Fpga-based hardware accelerator
for an embedded factor graph with configurable optimization,” Journal
of Circuits, Systems and Computers, vol. 28, no. 02, p. 1950031, 2019.
M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-
pathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann,
W. Strasser er al., “Collision detection for deformable objects.” in
Computer graphics forum, vol. 24, no. 1. Wiley Online Library, 2005,
pp. 61-81.

UFACTORY. Ufactory xarm 7. [Online]. Available: https:/fwww.
ufactory.cc/product-page/ufactory-xarm-7

J. M. Van Verth and L. M. Bishop, Essential mathematics for games
and interactive applications. CRC Press, 2015.

P. Verbari, L. Bascetta, and M. Prandini, “Multi-agent trajectory plan-
ning: A decentralized iterative algorithm based on single-agent dynamic
mt,” in 2019 American Control Conference (ACC). 1EEE, 2019, pp.
1977-1982.

Wikipedia, “Space partitioning — wikipedia.” 2022. [Online]. Available:
https:/len.wikipedia.org/wiki/Space_partitioning

T. H. Wong, G. Leach, and F Zambetta, “An adaptive octree grid
for gpu-based collision detection of deformable objects.” The Visual
Computer, vol. 30, no. 6-8, pp. 729-738, 2014.

R. J. Wood, B. Finio, M. Karpelson, K. Ma, N. O. Pérez-Arancibia,
P. S. Sreetharan, H. Tanaka, and J. P. Whitney, “Progress on “pico”
air vehicles,” in Robotics Research: The 15th International Symposium
ISRR. Springer, 2017, pp. 3-19.

K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard,
“Octomap: A probabilistic, flexible, and compact 3d map representation
for robotic systems.” in Proc. of the ICRA 2010 workshop on best
practice in 3D perception and modeling for mobile manipulation, vol. 2,
2010, p. 3.

S. Xiao, N. Bergmann, and A. Postula, “Parallel rrt architecture design
for motion planning,” in 2017 27th International Conference on Field
Programmable Logic and Applications (FPL). 1EEE, 2017, pp. 1-4.
T. Xu, B. Tian, and Y. Zhu, “Tigris: Architecture and algorithms for
3d perception in point clouds.” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
629-642.

Y. Yang, X. Chen, and Y. Han, “Dadu-cd: Fast and efficient processing-
in-memory accelerator for collision detection,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC). 1EEE, 2020, pp. 1-6.

Y. Yang, S. Lian, X. Chen, and Y. Han, “Accelerating rrt motion planning
using tcam,” in Proceedings of the 2020 on Great Lakes Symposium on
VLSI, 2020, pp. 481-486.

C. Yu and S. Gao, “Reducing collision checking for sampling-based
motion planning using graph neural networks,” Advances in Neural
Information Processing Systems, vol. 34, pp. 4274-4289, 2021.

L. Yuan, J. Zhao, W. Li, and J. Hou, “Improved informed-rrt* based path
planning and trajectory optimization for mobile robots,” International
Journal of Precision Engineering and Manufacturing, vol. 24, no. 3,
pp. 435-446, 2023,

X. Zang, M. Yin, L. Huang, J. Yu, S. Zonouz, and B. Yuan, “Robot
motion planning as video prediction: A spatio-temporal neural network-
based motion planner,” in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 12492-12499.
X. Zang, M. Yin, J. Xiao, S. Zonouz, and B. Yuan, “Graphmp: Graph
neural network-based motion planning with efficient graph search.” in
Thirty-seventh Conference on Neural Information Processing Systems,
2023.

R. Zhang, C. Yu, J. Chen, C. Fan, and S. Gao, “Learning-based
motion planning in dynamic environments using gnns and temporal
encoding.” Advances in Neural Information Processing Systems, vol. 35,
pp. 30003-30015, 2022,

W.Zhang, X. Zang, L. Huang, Y. Sui, J. Yu, Y. Chen, and B. Yuan, “Dyn-
gmp: Graph neural network-based motion planning in unpredictable
dynamic environments,” in 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2023.

Authonized licensed use limited to: Rutgers University Libranes. Downloaded on January 12,2025 at 18:44:34 UTC from IEEE Xplore. Restrictions apply.



[88] Y.Zhu, “Rtnn: accelerating neighbor search using hardware ray tracing,”
in Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2022, pp. 76-89.

[89] C. Zito, R. Stolkin, M. Kopicki, and J. L. Wyatt, “Two-level rrt
planning for robotic push manipulation,” in 2012 IEEE/RSJ international
conference on intelligent robots and systems. 1EEE, 2012, pp. 678-685.

497
Authonized licensed use limited to: Rutgers University Libranes. Downloaded on January 12,2025 at 18:44:34 UTC from IEEE Xplore. Restrictions apply.



