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Phase-separated biomolecular condensates containing proteins and RNAs can assemble into higher-order

structures by forming thermodynamically stable interfaces between immiscible phases. Using a minimal model

of a protein/RNA interaction network, we demonstrate how a “shared” protein species that partitions into

both phases of a multiphase condensate can function as a tunable surfactant that modulates the interfacial

properties. We use Monte Carlo simulations and free-energy calculations to identify conditions under which a

low concentration of this shared species is sufficient to trigger a wetting transition. We also describe a numerical

approach based on classical density functional theory to predict concentration profiles and surface tensions

directly from the model protein/RNA interaction network. Finally, we show that the wetting phase diagrams

that emerge from our calculations can be understood in terms of a simple model of selective adsorption to a

fluctuating interface. Our work shows how a low-concentration protein species might function as a biological

switch for regulating multiphase condensate morphologies.
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I. INTRODUCTION

Intracellular biomolecular mixtures can spatially organize

into complex, self-assembled compartments via phase sepa-

ration [1–3]. Such structures are referred to as biomolecular

condensates, since they form by spontaneously condensing

biomolecular components, such as proteins and RNAs, into

liquidlike compartments that are not enclosed by a membrane

[4]. In many instances, condensates have been observed to

assemble further into higher-order multiphasic structures, in

which multiple immiscible condensates form stable shared

interfaces [5–7]. Common multiphase morphologies include

“core-shell” architectures, in which one condensate is com-

pletely surrounded by a second condensate, and “docked”

architectures, in which condensed droplets attach to the sur-

face of another condensate [8]. The morphologies of many

multiphase condensates appear to be related to their biolog-

ical functions, such as the sequential processing of rRNA

transcripts during ribogenesis within core-shell nucleoli [9],

and the sharing of various biomolecular components be-

tween docked stress granule and P-body condensates that

are involved in regulating mRNA metabolism and translation

[7,10,11]. It is therefore important to understand how the

morphologies of multiphase condensates are controlled at a

molecular level.

The formation of biomolecular condensates is widely

considered to be a consequence of near-equilibrium, ther-

modynamically driven phase separation [12–14]. Within
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this thermodynamic framework, a multicomponent system

evolves to minimize its overall free energy by phase-

separating and adjusting the contact areas between different

phases. The equilibrium morphology of a multiphase sys-

tem is thus governed by the relationships among surface

tensions between pairs of phases and the volume frac-

tions of the phases [15,16]. Recent theoretical studies have

demonstrated that surface tensions in multicomponent mix-

tures, and consequently multiphase morphologies, can be

controlled by changing either the effective pairwise inter-

actions between the biomolecular components [16] or the

stoichiometry of multicomponent condensates that are sta-

bilized by heterotypic interactions [17]. However, changing

condensate morphologies via these mechanisms entails sub-

stantial changes to the state of the system, since the molecular

properties and/or concentrations of the components that com-

prise the bulk of the phase-separated condensates must be

altered.

By contrast, surface tensions can be tuned by making

comparably small perturbations to molecular components that

adsorb to condensate interfaces [18–20]. In principle, tuning

the concentrations and affinities of surfactantlike components

can control multiphase condensate morphologies with mini-

mal changes to the state of an intracellular mixture, analogous

to methods used to engineer multiphase emulsions [21]. A

key example is provided by a recent study [22] of stress

granules (SGs) and P-bodies (PBs), which assemble into a

docked multiphase architecture under stressed conditions in

human cells [11]. Importantly, this study suggested that small

changes to the concentrations of specific proteins—in partic-

ular, those with affinities for proteins in each of the coexisting

SG and PB phases—can trigger a transition between docked

and dispersed condensates [22]. Although the localization of

these particular proteins to the SG/PB interface has not been

confirmed experimentally, this example suggests that molecu-

lar components with affinities for the constituents of multiple
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FIG. 1. Minimal model of multiphase condensates. (a) Schematic of the protein/RNA interaction network that governs stress granule

(SG)/P-body (PB) multiphase condensates [22]. Top: Nodes indicate protein/RNA species, while edges indicate either homotypic interactions

(i.e., self-associations) or heterotypic interactions (i.e., associations between different species). We coarse-grain the network into N1, B, and

N2 species. The approximate partitioning of various species into the SG/PB condensates is suggested by the color bar below. Bottom: SG/PB

condensates form either docked or dispersed morphologies, depending on the interactions specified by the network and the concentrations

of the protein/RNA species. (b) A typical configuration of the coarse-grained direct-coexistence simulations showing the α and β condensed

phases, composed primarily of the N1 (blue) and N2 (red) species, respectively, and a coexisting dilute phase. The low-concentration B species

(gold) is dispersed throughout the simulation box. The interaction matrix, ε, for the nearest-neighbor intermolecular interactions is shown in

the inset. (c) Heterotypic interactions between B and node species either follow an isotropic model (left), in which all nearest-neighbor contacts

contribute an interaction energy εNB (indicated by arrows), or a bivalent model (right), in which only oppositely positioned patches (spherical

caps) on the B molecule interact with specific node species according to εNB.

distinct condensates can alter the morphologies of multiphase

condensates.

In this article, we investigate this proposed mechanism

for switching between morphologies of multiphase conden-

sates. We focus on the transition between nonwetting and

partial wetting morphologies, which we refer to as the wetting

transition for brevity [23]. Specifically, we use a minimal

model of a multicomponent mixture to derive design rules

for controlling wetting transitions via low-concentration “pro-

grammable surfactant” proteins, which interact selectively

with the constituents of two immiscible condensates. We first

introduce a simulation approach for computing the wetting

transition between docked and dispersed morphologies. We

then develop a complementary theoretical approach based

on classical density functional theory, which reproduces our

simulation results semiquantitatively. Both approaches predict

that relatively low concentrations of surfactantlike proteins

can trigger a wetting transition between docked and dis-

persed morphologies under specific conditions. Finally, we

describe a qualitative theory that predicts the key features of

this wetting transition and establishes rational design rules

for understanding the behavior of programmable surfactants

in multicomponent biomolecular mixtures. Taken together,

our results show how programmable surfactants can act as

low-concentration molecular switches for regulating biolog-

ical processes by controlling the morphologies of multiphase

condensates.

II. MINIMAL MODEL OF A PROGRAMMABLE

SURFACTANT

Our model is motivated by the multicomponent SG/PB

system studied in Ref. [22]. At a molecular level, the for-

mation of the immiscible SG and PB condensates is dictated

by the interactions among the constituent protein and mRNA

components. In this system, the relevant intermolecular in-

teractions can be described by a protein/RNA interaction

network [Fig. 1(a)], in which nodes represent proteins, protein

complexes, or RNA, and edges indicate attractive interactions

between species.

To reduce the complexity, we coarse-grain the endoge-

nous SG/PB protein/RNA interaction network to three explicit

molecular components based on the organization of the net-

work. We refer to these coarse-grained species as “Node 1”

(N1), “Bridge” (B), and “Node 2” (N2) throughout this work.

N1 and N2 are the majority components of the immiscible α

and β condensed phases, respectively, that form as a result

of attractive homotypic interactions [Fig. 1(b)]. The α and β

phases coexist with a dilute phase (D), which represents the

cytosol in our implicit-solvent model. For simplicity, we con-

sider a three-dimensional lattice-gas model in which the N1,

N2, and B species occupy individual lattice sites on a cubic

lattice with lattice constant σ . The homotypic and heterotypic

interactions among these species are summarized in a pairwise

interaction matrix ε [24] [Fig. 1(b)]. Details of the simulation

approach are provided in Appendix A.

Bridge molecules (B) represent a “shared” species that

interacts with the majority components of the α and β phases

via attractive heterotypic interactions. In this work, we con-

sider two distinct models for the B species. We first analyze

an “isotropic” model in which B molecules interact with all

nearest-neighbor N1 and N2 molecules; this model is most ap-

propriate for describing highly multivalent protein and RNA

species when the net interactions between pairs of molecules

are weak compared to the thermal energy and can thus be

approximated via isotropic pair interactions [24]. We then

study an anisotropic “bivalent” model, in which B molecules

interact with node molecules via specific patches [Fig. 1(c);

see Sec. V D]. In this case, each of the two patches located

on opposite sides of a B molecule only engages in heterotypic

interactions with a specific node species. We show that these

two models yield qualitatively similar results for the wetting

transition, suggesting that our minimal model serves as a

reasonable approximation for many systems with anisotropic

and multivalent interactions.
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FIG. 2. Characterizing interfaces using Monte Carlo simulations

and umbrella sampling. (a) Definitions of the characteristic interfa-

cial width parameter, ξ , the width of a single condensed phase, l0,

and the distances between the phase centers of mass (COMs), r,

and the Gibbs dividing surfaces (vertical dashed lines), �r. (b) The

potential of mean force (PMF) as a function of the dimensionless

distance parameter �r/ξ . Example PMFs are shown for typical

wetting (orange) and nonwetting (blue) scenarios. Statistical errors

are smaller than the linewidth.

III. COMPUTING WETTING TRANSITIONS

VIA MOLECULAR SIMULATION

In this section, we introduce a Monte Carlo technique

for computing the wetting transition between docked and

dispersed morphologies of a multiphase condensate. Using

direct-coexistence Monte Carlo simulations in the slab geom-

etry [25] [Fig. 1(b)], we determine the potential of mean force

(PMF) between a pair of condensed phases in the canonical

ensemble. We then show how the properties of these PMFs

can be related to the equilibrium morphology of a macro-

scopic multiphase system in the thermodynamic limit.

A. Potential of mean force calculations

To efficiently sample both wetting and nonwetting con-

figurations, we perform umbrella sampling [26] by applying

a harmonic biasing potential to the center-of-mass (COM)

distance between the α and β condensates [Fig. 2(a)]. We

first define the α- and β-phase regions, Sα/β , as the cross-

sections along the z axis of the simulation box with N1

or N2 volume fractions, φN1/N2(z), greater than φ∗: Sα/β ≡
{z | φN1/N2(z) > φ∗}. We find that using a threshold of

φ∗ = 0.56 reduces the effects of density fluctuations near

the interfaces and thus improves the efficiency of our cal-

culations; however, this choice has no significant effect on

the results, as long as φ∗ is situated between the molecular

volume fractions of the bulk condensed and dilute phases. We

then compute the COM distance, r, based on the center of

mass of the N1 or N2 molecules within the α or β phases,

respectively. The COM distance is therefore r ≡ 〈z〉(β ) −
〈z〉(α), where 〈z〉(α/β ) ≡

∫

z∈Sα/β
z dz/

∫

z∈Sα/β
dz, and we use the

minimum-image convention to define distances given the pe-

riodic boundary conditions.

Our aim is to compute the potential of mean force (PMF)

F (r) ≡ −kBT ln
p(r)

p(rref)
, (1)

where p(r) is the probability of finding the α and β con-

densed phases separated by a COM distance equal to r. We

choose a reference point for the PMF calculations where the

interactions between the droplets are expected to be negli-

gible (see Appendix A). Following the canonical umbrella

sampling approach [26], we apply a harmonic biasing po-

tential, (ki/2)(r − r0,i )
2, to constrain the COM distance near

a target distance r0,i. Independent simulations, indexed by

i = 1, . . . , M, are used to sample near target COM distances

at intervals of one σ . The spring constants {ki} are chosen

to ensure that the probability distributions, pi(r), sampled

from simulations at adjacent target distances overlap [27].

In production simulations, we calculate the COM distance

every 10 MC sweeps and record 200 000 samples for every

target distance {r0,i}. Finally, we utilize the multistate Bennett

acceptance ratio (MBAR) method [28] to combine samples

from the M independent biased simulations and to obtain the

unbiased PMF given by Eq. (1). Example PMF calculations

are shown in Fig. 2(b).

B. Morphology predictions using the PMF

The PMF defined via Eq. (1) reflects the propensity for the

α and β condensed phases to assemble into a docked config-

uration, since the minimum value of the PMF corresponds to

the equilibrium distance between the Gibbs dividing surfaces.

To assist in interpreting the PMF calculations, we characterize

the distance between the α- and β-phase interfaces by defin-

ing a dimensionless distance parameter �r/ξ ≡ (r − l0)/ξ

[Fig. 2(a)]. �r/ξ is equal to zero when the Gibbs dividing

surfaces of the two condensed phases are in direct contact,

whereas �r/ξ � 1 indicates that the distance between the

condensed-phase interfaces is large compared to the typical

interfacial width.

Two representative PMFs for wetting and nonwetting sce-

narios are shown in Fig. 2(b). In the nonwetting case, the

PMF is non-negative, indicating a net repulsion between the

α and β phases. We find that the PMF begins to increase

as �r/ξ decreases below ∼4, suggesting that the fluctuating

interfaces interact well before the Gibbs dividing surfaces

come into contact. By contrast, the PMF has a clear minimum

in the wetting case. The negative values of the PMF at COM

distances in the range 0 � �r/ξ � 4 indicate a net attraction

between the α and β condensed phases that also occurs over a

length scale comparable to that of the interfacial fluctuations.

The PMFs from finite-size simulations enable us to predict

the multiphase morphology of the systems in the thermo-

dynamic limit (see Appendix B). The PMF minimum for

a wetting interface [Fig. 2(b)] is proportional to the cross-

sectional area, A, where the constant of proportionality is the
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difference between the surface tensions at the α-β interface,

γαβ , and the dilute-condensed interfaces, γαD,

F (req) = −A(−γαβ + 2γαD). (2)

Equation (2) is supported by the finding that the PMF profiles

scale linearly with A in our simulations in both wetting and

nonwetting cases (see Fig. 7). Thus, the multiphase mor-

phology is determined solely by the PMF, or equivalently by

the surface-tension difference −γαβ + 2γαD, in the thermody-

namic limit.

IV. PREDICTING MULTIPHASE MORPHOLOGY

WITH CLASSICAL DENSITY FUNCTIONAL THEORY

In this section, we develop a complementary approach

for predicting multiphase condensate morphologies using the

framework of classical density functional theory (CDFT). We

first show how to compute equilibrium concentration profiles

for the isotropic bridge model. We then discuss how these

calculations can be used to predict the wetting transition be-

tween docked and dispersed morphologies of a multiphase

condensate.

A. Classical density function theory

Assuming a regular solution model [29], the Helmholtz

free-energy density, f0, of the multicomponent lattice gas can

be written as

f0σ
3

kBT
=

∑

i

φi ln φi + 1

2

∑

i, j

φiχi jφ j, (3)

where the sums run over all N molecular components as

well as the implicit solvent. The molecular volume frac-

tions are constrained by
∑N

i=0 φi = 1, where φ0 represents

the volume fraction of the solvent. The interaction matrix

χi j is related to the nearest-neighbor interaction energy, εi j ,

by χi j ≡ (z/2kBT )(2εi j − εii − ε j j ), where the lattice coor-

dination number is z = 6. For the interaction matrix shown

in Fig. 1(b), Eq. (3) predicts three coexisting phases, α, β,

and D, when the B-species volume fraction, φB, is small, in

agreement with our Monte Carlo simulation results. Details

of the phase-coexistence calculation and its numerical im-

plementation are provided in Appendix C. This mean-field

regular solution model provides an adequate description of the

bulk phases under these conditions, which are chosen to be

sufficiently far from the critical points of the α and β phases.

In the grand-canonical ensemble, we express the grand-

potential functional in terms of the square-gradient approxi-

mation [30],

�[ 	φ(z)] = A

∫

⎡

⎣ω0[ 	φ(z)] + 1

2

∑

i, j

φ′
i (z)mi jφ

′
j (z)

⎤

⎦dz, (4)

assuming planar interfaces as in our simulations. This ap-

proximation assumes that inhomogeneities, such as interfaces

between coexisting phases, vary slowly in space (i.e., over

long wavelengths) due to the absence of higher-order deriva-

tives [30]. � is a functional of the molecular volume fractions,
	φ(z) ≡ (φN1(z), φB(z), φN2(z))�, in a system at fixed chemi-

cal potentials, 	μ ≡ (μN1, μB, μN2)�. For interfacial property

calculations, the chemical potentials are determined from the

aforementioned coexistence conditions, such that the bulk

phases far from an interface are in coexistence. The first term

in the integrand of Eq. (4) is the local grand-potential density,

ω0 ≡ f0 − ∑

i μiφi. The second term, involving derivatives of

volume fractions with respect to z, φ′
i (z), represents the excess

grand potential due to an inhomogeneity.

We approximate the coefficients of the square-gradient

term, m = {mi j}, by again assuming that the inhomogeneity

is small in amplitude and varies slowly in space. In this case,

the mi j coefficients are determined from second derivatives of

the free-energy density [30,31]. For the free-energy density

given in Eq. (3), these conditions imply that

mi j = −σ−1εi j (5)

is a constant, concentration-independent matrix [30,31]. How-

ever, in our multicomponent model, this matrix may not be

positive-semidefinite, as required by the long-wavelength as-

sumption underlying the square-gradient approximation. If

the coefficient matrix instead has negative eigenvalues, then

large-amplitude inhomogeneities act to decrease the grand

potential, leading to unphysical negative surface tensions and

numerical instabilities. Qualitatively, this scenario tends to

occur when heterotypic interactions outcompete one or more

homotypic interactions. We propose that the square-gradient

approximation can nonetheless be applied to multicomponent

solutions in such scenarios by regularizing the m-matrix. We

therefore perform an eigenvalue decomposition of Eq. (5),

replace the negative eigenvalues (if there are any) with zeros,

and reconstruct the regularized low-rank [32] m-matrix for

use in Eq. (4). After regularization, the fluctuation modes

represented by the eigenvectors with zero eigenvalues do not

contribute to the square gradient term in Eq. (4).

The equilibrium interfaces between coexisting phases are

determined by minimizing the grand-potential functional,

δ�[ 	φ(z)]

δφi

= 0, (6)

which yields the equilibrium molecular volume-fraction pro-

files, 	φeq(z). Despite the shortcomings of the long-wavelength

assumption, we find that our approach for regularizing the m-

matrix leads to semiquantitative predictions for the molecular

volume-fraction profiles across a wide variety of conditions,

as we show in Sec. V A.

B. Morphology predictions based on CDFT

To predict the equilibrium morphology of multiphase con-

densates, we calculate the excess free-energy profile, �ω(z),

in the vicinity of an interface between bulk phases,

�ω(z) = ω0[ 	φeq(z)] − ω
(D)
0 + 1

2

∑

i, j

φ′
eq,i(z)mi jφ

′
eq, j (z), (7)

where ω
(D)
0 is the grand potential of the bulk dilute phase. The

associated surface tension,

γ =
∫

�ω(z)dz, (8)
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(a)

(c) (d) (e)

(b)

FIG. 3. Enrichment of the programmable surfactant at condensate interfaces. Here, calculations are performed using the isotropic bridge

model. (a) CDFT predictions (solid lines) closely agree with simulation measurements (points) of the equilibrium concentration profiles at

α-β (left) and α-D (right) interfaces. Vertical dashed lines indicate the Gibbs dividing surfaces. Results are shown for a typical wetting case

(εNB = −1 kBT , εBB = 0, φB = 0.1). (b) Excess free-energy profiles corresponding to the CDFT profiles shown in A. (c)–(e) Concentration

profiles across the interfaces trace out paths in the three-dimensional (N1,N2,B) concentration space. Comparisons are shown between the

simulation results (points), the full CDFT theory (solid lines), the linear-path approximation (dashed lines), and the minimum-free-energy-path

(MFEP) approximation (dash-dotted lines) for the cases shown in A. Simulation statistical errors are comparable to the symbol size.

is then obtained by integrating the excess free-energy profile

across the interface. Finally, we compute the surface-tension

difference −γαβ + 2γαD by applying Eq. (8) to both the α-β

and the α-D interfaces.

We emphasize that the Euler-Lagrange equation specified

by Eq. (6) must be solved numerically for our multicomponent

model, since the concentration of the B species can vary

nonmonotonically across an interface. In practice, this can be

achieved by minimizing �[ 	φ(z)] via gradient descent. Details

regarding our implementation of this numerical scheme, as

well as criteria for assessing convergence, are presented in

Appendix D. As we show in Sec. V B, this numerical approach

predicts wetting transitions in qualitative agreement with our

Monte Carlo simulation results. By contrast, assuming that

the molecular volume-fraction profiles follow linear paths

through concentration space [15,16,22] predicts nonwetting

behavior for a wide range of conditions, which is at odds

with our simulation results. We discuss this approximation,

as well as the relationship between our method and an alter-

native “minimum free-energy path” (MFEP) approximation,

in Appendix E.

V. CONTROLLING WETTING TRANSITIONS

USING A PROGRAMMABLE SURFACTANT

We now investigate how the “programmable surfactant”

(B) species, which is shared between the α and β condensates

in Fig. 1, controls the multiphase condensate morphology.

To this end, we first study the behavior of the isotropic

model at different B-species volume fractions, φB; heterotypic

N-B binding affinities, εNB; and homotypic B-B interaction

strengths, εBB. We focus specifically on the low-φB, weak-εNB

regime, in which the compositions of the bulk α and β phases

are negligibly affected by the presence of the B species, as

we expect that this regime is most relevant to the regulation

of multiphase condensate morphologies in a biological con-

text. We then demonstrate that the bivalent model results in

qualitatively similar behavior.

A. Surfactant enrichment at wetting interfaces

We first examine the correspondence between the inter-

facial concentration profiles predicted by simulations (see

Sec. III) and CDFT (see Sec. IV) under wetting and nonwet-

ting conditions using the isotropic model [Fig. 3(a)]. In the

wetting case, we estimate the equilibrium concentration pro-

file at the α-β interface from simulations conducted with the

biasing potential centered at the equilibrium COM distance,

req [see, e.g., Fig. 2(b) and Appendix A]. In the nonwetting

case, we examine the α-D interface in the absence of the β

phase. We define the Gibbs dividing surfaces by symmetry

in the case of the α-β interface, and on the basis of φN1(z)

in the case of the α-D interface [30]. We generically find a

slight but statistically significant enrichment of the B species

at both α-β and α-D interfaces when εNB < 0. This effect is

greater at α-β interfaces under wetting conditions, as might

be expected for a surfactantlike species that is attracted to

both condensed phases. Nonetheless, we note that even under
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wetting conditions, only a small fraction of all B molecules

are located at the α-β interface.

Despite the approximations inherent to our CDFT ap-

proach, we find semiquantitative agreement between the

predicted and simulated concentration profiles [Fig. 3(a)]. The

interfaces predicted by CDFT tend to exaggerate the B-species

enrichment at the interface relative to the simulation results.

Furthermore, from CDFT calculations, we directly obtain

predictions for the excess free energy across each interface,

�ω(z) [Fig. 3(b)]. In the case of the α-D interface, the excess

free-energy profile is asymmetric about the Gibbs dividing

surface, with the maximum shifted toward the dilute phase.

The behavior of the B species near each interface is more

clearly seen in the three-dimensional (N1,N2,B) concentra-

tion space [Figs. 3(c)–3(e)]. The enrichment of the B species

relative to its concentration in either the condensed or dilute

phase results in a marked deviation from the linear-path ap-

proximation [dashed lines in Figs. 3(c)–3(e)]. Consequently,

the excess free energy predicted by the full CDFT approach

for the α-β interface shown in Figs. 3(a) and 3(b) is substan-

tially lower than that predicted by this linear-path constraint.

Because the deviation from the linear-path approximation

is greater for the α-β interface than the α-D interface, the

linear-path approximation tends to mischaracterize wetting

conditions as nonwetting. By contrast, MFEP calculations

[dot-dashed lines in Figs. 3(c)–3(e)] exaggerate the enrich-

ment of B molecules at all interfaces, and we find that the

MFEP between the α and β phases in concentration space

can actually pass through the dilute phase. The full CDFT

approach, which most closely matches the simulation results,

is intermediate between these limiting cases, exhibiting a

reduction of the N1 and N2 concentrations at the interface

without passing through the dilute phase [Fig. 3(d)]. We stress

that these predictions are dependent on our regularization

approach for the m-matrix (see Sec. IV), without which CDFT

would yield diverging interfacial fluctuations for the parame-

ters used in Fig. 3. Overall, these comparisons demonstrate

the semiquantitative accuracy of our CDFT approach and

highlight shortcomings of the linear-path approximation (see

Appendix E) in multicomponent settings.

B. Computing the wetting transition

To determine how the equilibrium multiphase morphology

changes with the concentration and heterotypic interactions

of the B species, we compute the surface-tension differ-

ence −γαβ + 2γαD using both simulation results and CDFT

calculations [Figs. 4(a) and 4(b)]. A positive surface-tension

difference, −γαβ + 2γαD > 0, indicates a stable wetting in-

terface between the α and β phases. From our simulation

results, we compute this quantity based on the PMF minimum

(Sec. III), and we identify the wetting transition where the

PMF minimum becomes statistically indistinguishable from

zero [blue arrows in Figs. 4(a) and 4(b)]. In our CDFT

calculations, the α-β interface spontaneously relaxes to two

dense-dilute interfaces when a nonwetting configuration is

predicted, in which case we obtain a near-zero value for the

surface-tension difference due to finite numerical precision

(see Appendix D). We therefore identify the CDFT wetting

(a)

(b)

FIG. 4. Identifying surfactant-dependent wetting transitions.

(a) The difference between the nonwetting and wetting surface ten-

sions, −γαβ + 2γαD, as a function of εNB at constant φB = 0.1 using

the isotropic bridge model with εBB = 0. Results are shown for

simulations (blue circles) and CDFT calculations (orange triangles).

Arrows indicate the locations of the wetting transition, where the

surface-tension difference equals zero to within twice the statistical

uncertainty, inferred from both methods. (b) The surface-tension dif-

ference as a function of φB at constant εNB = −0.75 kBT . Statistical

uncertainties are comparable to the symbol size.

transition by comparing the surface-tension difference to the

numerical precision [orange arrows in Figs. 4(a) and 4(b)].

Our simulations and CDFT calculations predict qualita-

tively similar behavior for the surface-tension difference and

the location of the wetting transition. In particular, both simu-

lation and theory predict that the surface-tension difference

tends to increase, leading to a stable wetting configura-

tion, with decreasing εNB and increasing φB. However, the

wetting transition occurs at weaker N-B interactions and

lower B concentrations in the CDFT theory. This quantitative

discrepancy likely arises from the mean-field and long-

wavelength assumptions invoked in the CDFT theory.

Nonetheless, it is interesting that the equilibrium concentra-

tion profiles predicted by CDFT appear to be in much closer

agreement with the simulation results [Fig. 3(a)] than the

surface-tension differences (Fig. 4). This comparison suggests

that the key shortcoming of the CDFT theory lies in the

neglect of interfacial fluctuations, which we expect to have

stronger effects on surface free energies than average concen-

tration profiles.
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(a)

(b)

(c)

FIG. 5. Wetting phase diagrams for programmable surfactants.

Phase diagrams are shown as a function of the B-species volume

fraction, φB, and the heterotypic N-B interaction energy, εNB, for

isotropic bridge models (a) without homotypic interactions and

(b) with weak homotypic interactions (εBB = −0.5 kBT ), and (c) for

the bivalent bridge model. Shaded regions indicate wetting condi-

tions. Phase boundaries are predicted from simulation results (black

points) and CDFT surface-tension calculations (green points).

C. Design rules for regulating multiphase condensate

morphology via programmable surfactants

The equilibrium multiphase morphology of the isotropic

bridge model can be summarized in a wetting phase dia-

gram [Fig. 5(a)]. Here we plot separate curves predicting

the wetting transition based on simulations and the CDFT

surface-tension difference in the absence of homotypic bridge

interactions (εBB = 0). The shaded region of parameter space

below each curve in the εNB-φB plane corresponds to an

equilibrium wetting configuration, where a docked multiphase

morphology is thermodynamically stable. We also report the

phase diagram for a model in which B molecules interact

via weak homotypic interactions, such that εBB = −0.5 kBT

[Fig. 5(b)]. Although the CDFT approach underestimates the

N-B interaction strength required to trigger the wetting tran-

sition, it captures the qualitative shape of the phase diagram

both with and without homotypic interactions.

The wetting phase diagrams presented in Figs. 5(a) and

5(b) exhibit a number of striking features. First, there is

a minimum heterotypic interaction strength, |ε∗
NB|, required

for a stable wetting configuration. Stable docked morpholo-

gies therefore cannot occur for εNB > ε∗
NB, regardless of the

B-species concentration. In this model, we find that ε∗
NB ≈

−0.6 kBT , which is considerably weaker than the critical in-

teraction strength of the cubic lattice gas model [33]. Second,

the wetting transition passes through ε∗
NB at a finite B-species

volume fraction. This observation implies that the wetting

transition is reentrant for values of εNB close to ε∗
NB, where

increasing φB at a constant heterotypic interaction strength

leads the system to transition from the nonwetting regime to

the wetting regime, and then back to the nonwetting regime

at high B-species concentrations. Third, the phase boundary

extends to low B-species volume fractions, on the order of

only a few percent. Importantly, at dilute B-species concen-

trations, the heterotypic interaction strength required to trigger

the wetting transition weakens rapidly with increasing φB. By

contrast, the phase boundary is comparably insensitive to φB

near ε∗
NB.

Finally, we observe that homotypic B-B interactions have

only a minor quantitative effect on the wetting phase dia-

gram. This finding indicates that weak homotypic interactions

among surfactantlike species play a secondary role in modu-

lating multiphase condensate morphologies. However, there

are slight differences between the phase diagrams. On the

one hand, introducing homotypic B-B interactions reduces

the minimum required interaction strength, |ε∗
NB|, by a small

amount. On the other hand, at dilute B-species concentrations,

the wetting phase boundary is shifted to slightly stronger

heterotypic N-B interactions.

Taken together, these observations establish general design

rules for programmable surfactants. Most importantly, our

results indicate that relatively low concentrations of a surfac-

tantlike species (φB � 0.03) and relatively weak heterotypic

interactions (εNB � −0.6 kBT ) are sufficient to trigger a wet-

ting transition in a multicomponent, multiphase mixture. We

note that these phase diagrams are insensitive to changes in the

concentrations of the N1 and N2 species, as these changes do

not substantially affect the compositions of the bulk α and β

phases when the B species is dilute. However, the equilibrium

multiphase morphology may transition from partial wetting

(i.e., a docked configuration) to complete wetting (i.e., a core-

shell structure) when the α- and β-phase volume fractions

differ substantially [15,16].
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D. Generalization to the bivalent bridge model

We next investigate the behavior of the bivalent bridge

model. In this model, each anisotropic B molecule has two

binding sites on opposite sides [Fig. 1(c)]. One site selectively

binds to N1 while the other binds to N2, each with interaction

strength εNB. Thus, to establish a node-bridge interaction,

a B molecule must be adjacent to a node molecule with

the correct binding site pointing towards it, resulting in a

larger entropic penalty for heterotypic interactions than in the

isotropic model.

Despite these differences in the N-B binding rules, we find

that the wetting phase boundary for the bivalent model is qual-

itatively similar to its isotropic-model counterparts [Fig. 5(c)].

In fact, we find that the enrichment of B molecules at α-

β wetting interfaces is more pronounced with the bivalent

model, since the B molecules are less miscible in the bulk

condensed phases. Minor differences arise since stronger N-B

interactions are required to stabilize a wetting interface in

the bivalent model due to the greater entropic penalty for

heterotypic interactions. As a result, the wetting transition

is shifted lower in Fig. 5(c). We also find no evidence for

a reentrant wetting transition at bridge concentrations up to

φB = 0.3. Yet overall, the strong dependence of the wetting

transition on the B-species volume fraction at low φB is pre-

served in the bivalent model. This observation suggests that

the switchlike mechanism for triggering a morphology change

at low φB is a general feature of programmable surfactants,

and is relatively insensitive to the details of the molecular

model.

E. Understanding programmable surfactant design rules

using an adsorption model

To gain a deeper understanding of these empirical design

rules, we introduce a simple adsorption model that recapitu-

lates the key features of the wetting phase diagrams in Fig. 5.

We examine the interplay between the parameters εNB, εBB,

and φB by considering a Langmuir-like model [34] in which

the B species acts as the adsorbate. We therefore assume that

each fluctuating interface between a pair of phases can be

described by a two-dimensional lattice gas with B-species

occupancy φ
(i)
B .

We first consider the isotropic and bivalent models without

homotypic B-species interactions (εBB = 0). The surface ex-

cess grand potential, �ex, due to the presence of the interface

[30] takes the form

�ex
(

φ
(i)
B

)

σ 2

AkBT
= h

(

φ
(i)
B

)

− �S
(

φ
(i)
B

)

AkB

− μB

kBT
φ

(i)
B , (9)

where A is the interfacial area. The first enthalpic term

is linearly related to the occupied volume fraction in the

mean-field approximation, h(φ
(i)
B ) = −aφ

(i)
B + b. For a sur-

factantlike adsorbate, a is positive. Meanwhile, b represents

the enthalpic penalty due to the creation of an interface

from a bulk condensed phase and is independent of φ
(i)
B .

The entropic contribution, �S(φ
(i)
B )/AkB = −φ

(i)
B ln φ

(i)
B −

(1 − φ
(i)
B ) ln(1 − φ

(i)
B ) + s, accounts for the in-plane configu-

rational entropy of the adsorbed B molecules as well as the

entropic penalty, s, due to capillary fluctuations. Finally, μB

(a)

(b)

FIG. 6. An adsorption model predicts qualitative features of the

wetting transition. (a) The enrichment of B molecules at the α-β

interface can be described by a Langmuir isotherm. Simulation mea-

surements of the B-species enrichment for the isotropic model (blue

points; εNB = −0.75kBT , εBB = 0) are fit to a Langmuir isotherm,

Eq. (10), with fitting parameter aαβ = 2.1 and an empirical scaling

factor of 0.45. Measurements of the B-species enrichment in the

bivalent model (black points; εNB = −1.6kBT ) are fit to a Lang-

muir isotherm with fitting parameter aαβ = 0.69. (b) Wetting phase

boundaries as a function of the B-species volume fraction in the

dilute phase. (Data are obtained from the same simulations as pre-

sented in Fig. 5, although the quantities being plotted, φB vs φ
(D)
B ,

are different.) The adsorption model predicts the nonmonotonicity of

the isotropic-model phase boundary, the asymptotic behavior of all

models at low φ
(D)
B , and the increase of the maximum N-B interaction

on the phase boundary, ε∗
NB, due to homotypic B-B interactions.

is the B-species chemical potential. Since the dense phase is

in coexistence with the approximately ideal dilute phase, we

have μB/kBT 
 ln φ
(D)
B , where φ

(D)
B is the B-species volume

fraction in the dilute phase. By minimizing the surface excess

grand potential, Eq. (9), with respect to φ
(i)
B , we arrive at a

Langmuir adsorption isotherm for the B species,

φ
(i)
B,eq = K

1 + K
, (10)

where K ≡ φ
(D)
B ea. This prediction agrees well with the en-

richment of B molecules at α-β interfaces in our simulations

[Fig. 6(a)]. In the case of the bivalent model, we obtain quan-

titative agreement by tuning the coefficient a. For the isotropic

model, we find it necessary to introduce an overall scaling fac-

tor when fitting to the Langmuir isotherm, Eq. (10), since the
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diffuse interfaces are wider than 2σ , making the monolayer

assumption in the adsorption model less appropriate.

We now compute the surface tension in this model from the

equilibrium surface excess grand potential,

γ ≡
�ex

(

φ
(i)
B,eq

)

A
= kBT

σ 2
[b − s − ln(1 + K )], (11)

and apply this formula to both the α-β and the α-D inter-

faces. The φ
(i)
B -independent enthalpic contribution must be the

same regardless of the distance between the α- and β-phase

interfaces, so that bαβ = 2bαD. By contrast, the entropic con-

tribution due to capillary fluctuations depends on whether one

or two distinct interfaces are present between the α and β

phases. We therefore define the dimensionless entropic dif-

ference �s ≡ −sαβ + 2sαD, which is necessarily positive and

increases with the interfacial roughness. In a wetting case,

−γαβ + 2γαD = −kBT

σ 2

[

�s + ln
(1 + KαD)2

1 + Kαβ

]

> 0. (12)

Equation (12) predicts a wetting phase boundary that is

quadratic with respect to φ
(i)
B (see Appendix F), which indi-

cates that wetting can only occur when [35]

aαD − aαβ < ln
1 −

√
1 − e−�s

2
. (13)

Because the coefficients aαD and aαβ reflect the enthalpic

contribution due to the adsorption of B molecules, we assume

that the left-hand side of Eq. (13) is roughly proportional to

εNB. Moreover, by making the approximation aαβ 
 2aαD,

which implies that a B molecule engages in twice as many

N-B interactions at an α-β interface, we obtain a relation

between φ
(D)
B and �s at the minimum binding strength, |ε∗

NB|,
on the wetting phase boundary,

φ
(D)
B

∣

∣

∗ = −(1 − e−�s) +
√

1 − e−�s

2
. (14)

Importantly, the existence of a minimum binding strength

|ε∗
NB|, resulting from Eq. (12), predicts a nonmonotonic wet-

ting phase boundary, with a reentrant wetting transition at

constant εNB < ε∗
NB, as observed in our isotropic-model simu-

lations. In the bivalent model, the entropic penalty to orient the

B-molecule binding sites perpendicular to the α-β interface

implies a substantially higher φ
(D)
B for reentrance, consistent

with our simulations (see Appendix F).

Finally, in the low-concentration and high-affinity regime,

eaαβ−aαD � e�s, we obtain an asymptotic formula for the low-

concentration phase boundary,

ln φ
(D)
B + aαβ = ln(e�s − 1). (15)

The logarithmic dependence on φ
(D)
B in Eq. (15) explains the

sensitivity of the wetting transition to the B-species concen-

tration under these conditions [Fig. 6(b)], where we see that

∂aαβ/∂ ln φ
(D)
B ∝ ∂εNB(kBT )−1/∂ ln φ

(D)
B is roughly constant

in both the isotropic and bivalent bridge models. The behavior

in the low-concentration, high-affinity regime can therefore

be interpreted as a competition between capillary fluctuations

and the free-energy change when adsorbing a B molecule to

the α-β interface.

We now consider the isotropic model with homotypic

interactions (εBB < 0). In this scenario, the mean-field ap-

proximation for the enthalpic contribution in Eq. (9) acquires

an extra term −a′(φ(i)
B )2, where a′ > 0, that accounts for B-

B interactions at the interface. The chemical potential μB

similarly picks up a term that is proportional to φ
(D)
B , since

the B molecules can also attract one another in the dilute

phase. The effects of these modifications can then be predicted

by perturbing the εBB = 0 results (see Appendix F). In the

low-concentration limit, both φ
(i)
B and φ

(D)
B are small, so that

the asymptotic behavior given by Eq. (15) remains unchanged;

this prediction is confirmed by plotting the wetting phase

boundary as a function of φ
(D)
B in Fig. 6(b). However, near

φ
(D)
B |∗, the perturbation due to a′ is non-negligible. Specif-

ically, turning on homotypic B-B interactions results in a

change to the surface tension difference,

�(−γαβ + 2γαD)|∗ = 2K2
αD|∗

(1 + K∗
αD)2

a′ > 0, (16)

at the maximum N-B interaction, ε∗
NB, on the phase boundary.

The sign of Eq. (16) indicates that homotypic B-B interactions

weaken the required N-B interaction strength, resulting in an

increased ε∗
NB. This prediction also agrees with our simulation

results [Fig. 6(b)].

In summary, this analytical model explains all the essential

features of our wetting phase diagrams, including the reen-

trant wetting transition and the low-concentration asymptotic

behavior. Notably, these predictions are obtained without as-

suming specific values of the coefficients in the mean-field

adsorption model. We therefore expect that the design rules

that we have derived for programmable surfactants hold be-

yond the lattice models that we have simulated in this work.

VI. DISCUSSION

In this work, we consider a simplified, coarse-grained

model of a “programmable surfactant” in a multicomponent

biomolecular mixture. Our central results are a set of design

rules for controlling multiphase condensate morphologies,

which are summarized in the wetting phase diagrams pre-

sented in Fig. 5. Most importantly, these phase diagrams

demonstrate that surprisingly low concentrations of a weakly

interacting programmable surfactant can induce a transition

from nonwetting (i.e., “dispersed”) to wetting (i.e., “docked”

or “core-shell”) configurations. More precisely, we find that

the heterotypic interactions between the surfactantlike species

and the majority component(s) of the condensed phases

must exceed a relatively weak binding strength. However,

given heterotypic interactions that are slightly stronger than

this threshold value, a surfactant volume fraction of only

a few percent is needed to trigger the wetting transition.

These observations imply that relatively small changes to

the state of the system—either small adjustments to the

concentrations or heterotypic binding strengths of the surfac-

tantlike species—can alter the equilibrium morphology of a

multiphase condensate.

We find that the qualitative features of the wetting phase

diagrams agree between our molecular simulation results

and the predictions of two theoretical approaches. From our
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molecular simulations, we predict the wetting behavior in

the thermodynamic limit using measurements of the po-

tential of mean force between condensates in a finite-size

system. In the CDFT approach, we minimize an approximate

grand-potential functional to obtain predicted equilibrium

concentration profiles in the vicinity of the condensate in-

terfaces, which agree semiquantitatively with our simulation

results. Finally, we show that a simplified adsorption model

captures the key features of our detailed calculations, sug-

gesting that the design rules that we have extracted from

the wetting phase diagrams are likely to apply much more

generally to related models of programmable surfactants with

different molecular details. For example, we have shown that

our simulation methods and adsorption model can be ap-

plied to biomolecules with directional as opposed to isotropic

interactions.

Returning to the stress granule (SG)/P-body (PB) sys-

tem that motivated our model, we propose that the insights

gained from our calculations can be applied directly to

protein/RNA interaction networks that underlie the phase

behavior of multiphase biomolecular condensates. The key

step lies in coarse-graining the interaction network to iden-

tify potential surfactantlike species, which should interact

with protein/RNA components in multiple, distinct condensed

phases. Such species are likely to be situated as “bridges”

between strongly interacting portions of the network [22].

For example, in the SG/PB system [22], the protein DDX6

[Fig. 1(a)] is an obvious candidate, as it is weakly recruited to

both condensates. Our model predicts that this species should

be weakly enriched at SG/PB interfaces in the endogenous

system, which exhibits a stable docked morphology. This

testable prediction is also reminiscent of recent findings that

certain proteins are localized to the nucleoli rim [36]. In future

work, we will examine theoretical methods for identifying

surfactantlike species on the basis of the interaction network

structure and experimentally determined binding affinities

and expression levels. In light of our current results, the re-

quirements of moderate binding strengths and low molecular

concentrations suggest that this proposed mechanism of a

molecular “switch” for controlling intracellular condensate

morphologies is likely to be biologically relevant. Further

experiments are needed to test the detailed predictions of our

model.

Finally, we note that this mechanism is not limited to nat-

urally occurring biomolecular systems. Low-concentration,

surfactantlike molecular switches may also be useful for tun-

ing multiphase morphologies in materials engineering, where

approaches that do not require substantial changes to the

bulk properties of the coexisting phases are similarly desir-

able. For example, the phase behavior of multiphase DNA

“nanostar” liquids [37] can be interpreted in terms of an in-

teraction network, in which “cross-linker” nanostars can be

engineered to play the role of the molecular switch. Our model

and theoretical framework can also be applied to engineer

complex multiphase emulsions [21], which have broad ap-

plications including encapsulation and triggered delivery of

molecular cargoes. These systems and similar examples of

programmable soft matter [38] would be ideal opportunities

to test our predictions experimentally and to apply the design

rules developed in this work.
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APPENDIX A: DETAILS OF MONTE CARLO

SIMULATIONS

In our lattice model, each molecule interacts with its

six nearest neighbors according to the interaction matrix, ε.

Bivalent bridge molecules, which can engage in at most two

nearest-neighbor interactions, are the sole exception to this

rule. Vacant lattice sites represent the inert solvent. Since

we are interested in investigating how the B species controls

the condensate interfaces as opposed to the properties of the

bulk phases, we choose to keep the homotypic N1 and N2

interactions constant in this work. To guarantee stable α and

β phases, we fix these interaction strengths to be 1.5kBT

per bond, which is stronger than the critical binding strength

∼0.89 kBT of the cubic lattice gas model [33]. The heterotypic

interactions between the N1 and N2 species are set to zero to

ensure immiscibility of the α and β phases. The interaction

energies describing heterotypic N1-B and N2-B interactions,

εNB, and homotypic B-B interactions, εBB, are left as free

parameters. Under these conditions, the N1 and N2 concentra-

tions primarily affect the volume fractions of the coexisting α,

β, and dilute phases and have negligible effects on the compo-

sitions of the condensed phases. We therefore fix the volume

fractions of the N1 and N2 species to be φN1 = φN2 = 0.25,

such that the condensed phases occupy approximately half the

total volume.

We implement direct-coexistence simulations using a

100×8×8 lattice with periodic boundary conditions. Simula-

tions are carried out using the Metropolis Monte Carlo (MC)

algorithm [39], where we attempt to exchange the positions

of molecules of different types, including vacancies, at each

MC move. In each MC sweep, we attempt 6400 moves, which

is the total number of lattice sites in the simulation box. In

simulations with bivalent bridge molecules, each B molecule

has six orientational states. We therefore attempt particle-

swap and B-molecule rotation moves, applied to a randomly

selected B molecule, with equal probability. Each MC sweep

in this case consists of twice as many moves.

The simulation-box geometry results in approximately

planar interfaces between coexisting phases. We therefore

compute molecular volume-fraction profiles, 	φ(z), as a func-

tion of the z coordinate along the long dimension of

the simulation box. The interface between a condensed

phase and the dilute phase is well described by a hyper-

bolic tangent function [30], φN1(z) = (1/2)(φ
(α)
N1 + φ

(D)
N1 ) +

(1/2)(φ
(α)
N1 − φ

(D)
N1 )tanh[(z − z0)/ξ ], where φ

(α)
N1 and φ

(D)
N1 are

the volume fractions occupied by the molecular species N1

in the bulk α and dilute phases, respectively [see Fig. 2(a)].

This expression is used to define the interfacial width, which

is equal to 2ξ . We also define the width of the α condensed

phase, l0, based on the distance between the left and right

Gibbs dividing surfaces, where φN1(z) = (φ
(α)
N1 + φ

(D)
N1 )/2.

We record volume fraction profiles and the COM distances

between condensates at the same time in simulations. We

first equilibrate the system for 5000 MC sweeps, which we
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(b)(a)

FIG. 7. Finite-size scaling of the PMFs. PMFs obtained for the

isotropic bridge model collapse onto a single curve when scaled

by the cross-sectional area, A = σ 2l2, in both (a) wetting (εNB =
−1kBT , εBB = 0, φB = 0.1) and (b) nonwetting (φB = 0) examples.

The cross-sectional dimensions of the lattice, l×l , are indicated

for each curve in units of σ . Statistical errors are smaller than the

linewidth.

determine to be much longer than the equilibration time based

on the COM distance fluctuations. We then perform a produc-

tion run as described in the main text. The reference point

for the PMF calculation is chosen to be rref = 35σ for the

isotropic bridge model, and rref = 33σ for the bivalent bridge

model. The target values for the COM distances during um-

brella sampling are in the range 25σ � r0,i � 35σ for the

isotropic bridge model and 23σ � r0,i � 33σ for the bivalent

bridge model. To estimate the equilibrium volume fraction

profiles shown in Fig. 3(a), we average the profiles from a sim-

ulation performed under the umbrella potential with r0,i = req.

Importantly, this approach does not affect the equilibration of

degrees of freedom orthogonal to the coordinate r.

APPENDIX B: FINITE-SIZE SCALING OF THE PMFs

In this Appendix, we show that the condensate morphol-

ogy of the system with an arbitrary finite size, or in the

thermodynamic limit, can be predicted on the basis of PMF

calculations obtained from finite-size simulations. Within a

finite simulation box, the probability of distribution of the α-β

COM distance is related to the PMF via p(r) ∝ e−F (r)/kBT =
e−A f (r)/kBT , where A is the cross-sectional area of the simula-

tion box and f (r) is the PMF per unit area. Consistent with

this expectation, we indeed find that the PMF profiles scale

with A in our simulations in both wetting and nonwetting

cases (Fig. 7). These results indicate that the PMFs capture

extensive properties of the condensed-phase interfaces in our

model and are not significantly influenced by the dimensions

of the simulation box. Next, we define a contact distance

rc = l0 + λ beyond which we consider the condensates to be

in a nonwetting configuration, such that F (rc) 
 0. Here l0
depends on the width of the condensed phase while λ is a

constant. The probability of finding the α and β condensed

phases in a wetting configuration in a simulation box of length

L can then be written as

pw = Zw

Zw + Znw

, (B1)

where Zw ≡
∫ rc

0
e−A f (r)/kBT dr and Znw = L/2 − rc are the par-

tition functions associated with the wetting and nonwetting

macrostates, respectively.

We now consider changing the geometry of the simulation

box while keeping the concentrations of all molecular species

unchanged. As a result, the volume associated with each

condensed phase, l0A, scales with the system size, while the

volume fractions and compositions of the condensed phases

remain constant. Since Zw depends on the cross-sectional area

A and Znw depends on the box length L, the wetting probability

depends on both A and L in a finite-size simulation box. The

L-dependence indicates that configurational entropy plays a

role in determining pw in a finite-size system, implying that

the probability of forming a wetting interface tends to zero

if the simulation box is elongated with the cross-sectional

area A held constant. However, in the thermodynamic limit,

both A and L are taken to infinity with the ratio A1/2/L held

constant. The wetting probability then tends to either one or

zero, depending on whether the minimum of the PMF is less

than zero. If the PMF minimum is negative, then Zw scales

exponentially with A while Znw scales with A1/2; in this case,

pw = 1 according to Eq. (B1). By contrast, if the minimum

value of F (r) is non-negative, then Zw decreases with A, and

pw = 0.

These arguments are easily extended to describe the mor-

phology of spherical multiphase condensates. The finite-size

wetting probability, Eq. (B1), is now determined from the

partition functions Zw = 4π
∫ rc

0
e−A(r) f (r)/kBT r2dr and Znw =

V − (4π/3)r3
c , where the interfacial area, A(r), depends on

the COM distance, r. The nonwetting partition function, Znw,

represents the free volume available to a nonwetted con-

densate, and V is the total volume of the system. In the

thermodynamic limit, an analogous scaling argument implies

that the wetting behavior again depends solely on the surface-

tension difference, which is related to the PMF minimum

via Eq. (2). When −γαβ + 2γαD > 0, the docked condensates

take the shape of spherical caps [40], forming a circular

interface with each condensate spanning a contact angle

θ = arccos(−γαβ/2γαD) [41]; otherwise, spherical α and β

condensates do not form a stable shared interface in the ther-

modynamic limit.

APPENDIX C: CDFT PHASE-COEXISTENCE

CALCULATIONS

We solve for phase coexistence in the regular solution

model (see Sec. IV) following the numerical strategy de-

scribed in Ref. [24]. Specifically, we solve for the molecular

volume fractions, { 	φ(k)}, and the mole fractions of the coexist-

ing phases, {x(k)}, given the total molecular volume fractions,
	φtot. Mass conservation requires that

	φtot =
m

∑

k=1

x(k) 	φ(k), (C1)

if there are m phases in coexistence.

We now consider the conditions for phase equilibrium. The

grand-potential density is related to the free-energy density

via ω0 = f0 − ∑N
i=1(∂ f0/∂φi )φi, where the chemical poten-

tials of the nonsolvent molecular species are μi = σ 3∂ f0/∂φi.
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Coexisting phases are located at minima of ω0, ensuring that

all components have equal chemical potentials in all phases.

Phase equilibrium also requires equal pressures across all

coexisting phases, implying that the ω0( 	φ) has the same value

at all local minima. Together, these conditions require

ω0( 	φ(k)) = min ω0( 	φ; 	μ). (C2)

We solve Eq. (C2) numerically by minimizing the norm of the

residual errors of Eqs. (C1) and (C2) iteratively. At each iter-

ation, we first locate the local minima of the grand potential,
	φ(k) = arg min 	φ ω0( 	φ; 	μ) for all phases k = 1, . . . , m, using

the Nelder-Mead method [42]. We then update 	μ and {x(k)}
using the modified Powell method [43].

Success of this optimization procedure requires that the

initial estimates of { 	φ(k)} are not too far from the values at

coexistence. We obtain an initial guess for { 	φ(k)} from the con-

vex hull method [15,24], in which we locate the convex hull

of points on a discretized (N + 1)-dimensional free-energy

surface. We initialize our optimization procedure with N + 1

vectors { 	φ(k)} that correspond to the vertices of the convex

hull facet that encompasses 	φtot. From the linear equation that

defines this facet, we also obtain initial guesses for 	μ and

{x(k)}. When the number of coexisting phases m is less than

N + 1, some of the N + 1 vectors { 	φ(k)} are identical to within

numerical tolerance after optimization; in this case, we restart

the optimization procedure with a unique set of vectors and

the corresponding 	μ and {x(k)}. In this way, we determine

the number of coexisting phases, m, as well as the molecular

volume-fraction vectors, { 	φ(k)}, and chemical potentials, 	μ, at

phase coexistence.

APPENDIX D: NUMERICAL SOLUTION OF THE CDFT

EULER-LAGRANGE EQUATION

To minimize the grand-potential functional in Eq. (4), we

employ a numerical approach based on gradient descent. We

first discretize the z coordinate, oriented perpendicular to the

planar interface between phases, as {zk} for k = 1, 2, . . . , n.

As a result, the integration in Eq. (4) becomes a summation,

and the grand-potential functional becomes a function of n N-

dimensional vectors 	φk ≡ 	φ(zk ). Using the central difference

formula for differentiation, Eq. (4) becomes

�

Ah
=

n−1
∑

k=2

[

ω0( 	φk )+ ( 	φk+1− 	φk−1)
� · m · ( 	φk+1− 	φk−1)

2(2h)2

]

,

(D1)

where h ≡ zk+1 − zk is the discretization interval. We fix the

vectors 	φk at the two points closest to each boundary, k =
1, 2, n − 1, and n, to be equal to the bulk phase densities. In all

calculations, we set h = 0.02σ and n = 1004. These choices

separate the bulk-phase boundary conditions by a distance of

20σ , which is much greater than the typical interfacial width

[see Fig. 2(a)].

We then apply gradient descent to minimize the discretized

grand potential, Eq. (D1), by calculating the partial derivatives

∂�/∂ 	φk . At each optimization step l , the densities are updated

according to

	φ (l+1)
k

= 	φ (l )
k

− λ

(

∂�

∂ 	φk

)

	φ (l )

, (D2)

where λ controls the step size. We choose 10−3 as the initial

value of λ and reduce it by half if an attempted step increases

the grand potential. We initialize this optimization algorithm

using an interface with a width of 4σ and a piecewise-linear

spatial variation of the molecular volume fractions. The algo-

rithm terminates when the norm of the gradient falls below

a threshold value, 10−3, at which point we take 	φk to be the

equilibrium profile.

To verify the convergence of this algorithm, we perturb the

concentration profiles by moving the α and β interfaces apart

by 0.04σ and then restarting the optimization algorithm. In a

wetting scenario, the profile converges back to the result of the

original optimization. However, in a nonwetting scenario, the

profile remains close to the perturbed profile, consistent with

an unstable interface. In practice, we compare the norms of the

distances between the reoptimized, perturbed, and originally

optimized profiles to verify the optimization result.

In predicted wetting cases where the CDFT surface tension

is positive yet close to zero, we observe that the equilibrium

excess free-energy profile becomes doubly peaked [inset of

Fig. 8(a)]. This feature can serve as an empirical, yet prac-

tically useful, criterion for estimating the conditions for the

wetting transition, since it is numerically much easier to detect

this feature than to converge the calculations to the precision

required to compute the surface tension difference [Figs. 8(a)

and 8(b)]. We empirically find that the transition from singly

to doubly peaked excess free-energy profiles results in rea-

sonable agreement with the wetting phase diagram computed

from our simulation results [Fig. 8(c)].

APPENDIX E: CDFT LINEAR PATH AND MINIMUM

FREE-ENERGY PATH APPROXIMATIONS

In some cases, the CDFT results that we obtain by solving

Eq. (6) numerically differ qualitatively from the predictions of

a “linear path approximation” that has appeared in previous

studies of multicomponent fluids [15,16,22]. To demon-

strate the important differences between these approaches,

we follow the Cahn-Hilliard approach [31] and integrate the

Euler-Lagrange equation, Eq. (6), to obtain

ω0[ 	φeq(z)] − ω
(D)
0 = 1

2

∑

i, j

φ′
eq,i(z)mi jφ

′
eq, j (z), (E1)

which relates the bulk and square-gradient contributions to

the excess free energy, Eq. (7), of the equilibrium interface.

However, to make further progress using Eq. (E1), we need to

know the path through concentration space that corresponds

to the equilibrium interface between the coexisting phases

α and β. In general, this path can be described paramet-

rically by 	φ(η), with 0 � η(z) � 1, limz→−∞ η(z) = 0, and

limz→∞ η(z) = 1.

Unlike the case of a binary mixture, the equilibrium path

through concentration space is typically not known a pri-

ori in a multicomponent system. Assuming a linear path,
	φ(η) = (1 − η) 	φ(α) + η 	φ(β ), leads to the expression utilized
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(a) (b) (c)

FIG. 8. Empirical criterion for locating the wetting transition in CDFT. (a), (b) The location of the wetting transition can be empirically

estimated from CDFT by examining where the double peaks of the excess free-energy profile merge (inset). In B, this method predicts a

reentrant wetting transition at constant εNB = −0.75 kBT . The calculations in A-B use the isotropic bridge model with εBB = 0. (c) The

wetting phase diagrams predicted by this empirical criterion.

in Refs. [15,16,22],

γαβ =
√

2
(

φ
(β )
i −φ

(α)
i

)

mi j

(

φ
(β )
j −φ

(α)
j

)

∫ 1

0

[�ω0(η)]1/2dη,

(E2)

where �ω0(η) ≡ ω0( 	φ(η)) − ω
(D)
0 . However, this linear-path

assumption implies that the concentration of the B molecule

cannot be greater at the interface than it is in the coexisting

bulk phases, which is generally inconsistent with our simula-

tion results. For this reason, Eq. (E2) fails to predict wetting

configurations for all conditions that we consider in this work.

A plausible alternative approximation is to find the path

through concentration space that minimizes the bulk con-

tribution to the excess free energy. This approximation

leads to a minimum-free-energy path (MFEP) assumption

for 	φ(η). More precisely, the MFEP minimizes the integral
∫ 1

0
�ω0( 	φ(η)) dη and thus passes through a saddle point on

the grand-potential landscape between the bulk-phase con-

centrations 	φ(α) and 	φ(β ). In practice, we calculate the MFEP

using a direct implementation of the zero-temperature string

method [44]. (For a discussion of the algorithmic details of

this method, we refer the reader to Ref. [44].) Following the

terminology in Ref. [44], we use a total of N = 100 points

on a string between two local minima on the bulk excess

free-energy surface. In the “evolution step” of the algorithm,

the points evolve according to the gradient descent method,

as in Eq. (D2), where �t controls the step size. Here we use

the forward Euler method with �t = 5×10−4. Then in the

“reparametrization step” we reparametrize the string such that

the N points are equally spaced with respect to the arc length

along the string. We check for convergence by measuring the

norm of the displacement of all points from their positions in

the previous iteration, and we use a convergence tolerance of

TOL = 10−4.

By contrast with the linear-path assumption, the MFEP

tends to predict enrichment of the B component at the

interface whenever εNB < 0. Nonetheless, the MFEP approx-

imation can misclassify the interface as nonwetting in many

cases, particularly when the path is predicted to pass through

the dilute phase [see Figs. 3(d) and 3(e)]. The numerically

determined equilibrium path, 	φeq(η), is intermediate between

the linear path and the MFEP. We therefore interpret the

equilibrium path as resulting from a competition between the

bulk and square-gradient contributions to the grand-potential

functional in our multicomponent model. For this reason, the

optimal path is sensitive to the m-matrix, making our regu-

larization approach (see Sec. IV) an essential and nontrivial

aspect of our CDFT calculations.

APPENDIX F: FLUCTUATING-INTERFACE

ADSORPTION MODEL

In this Appendix, we detail the essential steps to bridge the

gaps between Eq. (12) and the subsequent results presented in

Sec. V E of the main text. Explicitly expressing the wetting

condition in Eq. (12) leads to
(

φ
(D)
B

)2
e2aαD + φ

(D)
B (2eaαD −eaαβ−�s) + 1−e−�s < 0. (F1)

Equation (F1) only has solutions for φ
(D)
B when the discrimi-

nant of this quadratic function is positive, such that (2eaαD −
eaαβ−�s)2 − 4e2aαD (1 − e−�s) > 0. Setting the quadratic func-

tion to 0 and considering eaαβ−aαD � e�s, we obtain the

asymptotic formula for the low-concentration phase boundary,

Eq. (15).

Both aαD and aαβ are expected to be proportional to the

N-B binding energy, εNB. In addition, physical values of φ
(D)
B

must be between 0 and 1. With these conditions, Eq. (F1)

allows us to predict the weakest N-B binding strength for a

wetting interface. Setting the discriminant to 0, the volume

fraction at this binding strength is

φ
(D)
B

∣

∣

∗ = e−aαD

√

1 − e−�s. (F2)

At the weakest binding strength, we have a∗
αD − a∗

αβ = ln(1 −√
1 − e−�s)/2, from which we obtain Eq. (13). Then, by

making the approximation aαβ 
 2aαD, we are able to express

these quantities in terms of �s at the weakest N-B binding

strength, |ε∗
NB|, on the wetting phase boundary,

a∗
αD = ln 2 + ln[e�s +

√

e�s(e�s − 1)], (F3)

K∗
αD =

√

1 − e−�s, (F4)

φ
(i,αβ )
B

∣

∣

∗ = 2φ
(i,αD)
B

∣

∣

∗
. (F5)

According to Eq. (F3), the minimum binding strength |ε∗
NB|

increases with �s, since aαD ∝ |εNB|. As �s increases, the

B-species volume fraction in the dilute phase, φ
(D)
B |∗, first

increases until reaching a maximum value of 0.125 at K∗
αD =

0.5, as evidenced by substitution of Eq. (F4) into Eq. (14).

φ
(D)
B |∗ then decreases with �s at larger �s. The wetting phase

boundary is always nonmonotonic for a positive �s. These
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observations suggest that an accurate treatment of the cap-

illary fluctuations, quantified here by �s, is essential for

obtaining an accurate prediction of |ε∗
NB|; this interpreta-

tion is consistent with the quantitative differences between

our CDFT and simulation results in Figs. 5(a) and 5(b).

We can also estimate φ
(D)
B |∗ by computing �s directly

from our simulated PMF at zero B-species concentra-

tion, where kBT �s/σ 2 = −(−γαβ + 2γαD) 
 F (�r = 0)/A.

From Fig. 7(b), we find �s ≈ 0.15, which, according to

Eq. (14), suggests that φ
(D)
B |∗ 
 0.12. This prediction is rea-

sonable given our simulation results [see Fig. 6(b)].

We can similarly apply this framework to describe

the bivalent bridge model. To account for the entropic

penalty of aligning B molecules at the interface, we add a

density-dependent term to �S in Eq. (9), �S(φ
(i)
B )/AkB =

−φ
(i)
B ln φ

(i)
B − (1 − φ

(i)
B ) ln(1 − φ

(i)
B ) + s + (− ln 6)φ

(i)
B ,

assuming that the B molecules at the interface are all aligned

in the correct orientation with their binding sites pointed

into the condensed phases. This modification is equivalent to

decreasing a by ln 6. As a result, φ
(D)
B |∗ increases by a factor

of 6 according to Eq. (F2), explaining why we do not observe

the reentrant phase behavior in our simulations at bridge

volume fractions up to φB = 0.3.

To extend this adsorption model to incorporate homotypic

B-B interactions, we modify the mean-field expressions for

the enthalpic contribution to the surface excess grand potential

and the chemical potential in Eq. (9),

h
(

φ
(i)
B

)

= −a′(φ(i)
B

)2 − aφ
(i)
B + b, (F6)

μB/kBT = ln φ
(D)
B − cφ

(D)
B , (F7)

where a′ and c are positive constants that are expected to

be proportional to |εBB|. We can then show that these ad-

ditional terms in Eqs. (F6) and (F7) lead to an increase in

(−γαβ + 2γαD)|∗ by considering perturbations to the εBB = 0

case. Comparison with Eq. (9) shows that these additional

terms effectively alter the parameter a in the original model

by

�a = a′φ(i)
B − cφ

(D)
B . (F8)

According to Eq. (11), introducing the perturbation �a

changes the surface tension by an amount

�γ = −φ
(i)
B �a = −φ

(i)
B

(

a′φ(i)
B − cφ

(D)
B

)

, (F9)

and thus the surface tension difference by an amount

�(−γαβ + 2γαD) =
[(

φ
(i,αβ )
B

)2 − 2
(

φ
(i,αD)
B

)2]

a′

−
(

φ
(i,αβ )
B − 2φ

(i,αD)
B

)

φ
(D)
B c. (F10)

Again assuming that aαβ 
 2aαD, we apply these results to

the minimum binding strength, |ε∗
NB|, on the εBB = 0 wetting

phase boundary. Simplifying Eq. (F10) using Eq. (10) and

Eq. (F5), we find that the term involving the parameter c

cancels out, and we arrive at Eq. (16). The fact that �(−γαβ +
2γαD)|∗ is positive, regardless of specific choices for the pa-

rameters a′ and c, indicates that the minimum binding strength

|ε∗
NB| is reduced compared to the εBB = 0 scenario. Thus, this

model predicts that ε∗
NB increases for εBB < 0, consistent with

our simulation results.
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