N
Check for
Updates

Evolving to Find Optimizations Humans Miss: Using
Evolutionary Computation to Improve GPU Code for
Bioinformatics Applications

JHE-YU LIOU, Arizona State University, Tempe, AZ, USA

MUAAZ AWAN, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
KIRTUS LEYBA and PETR Su LC, Arizona State University, Tempe, AZ, USA
STEVEN HOFMEYR, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
CAROLE-JEAN WU, META, Menlo Park, CA, USA

STEPHANIE FORREST, Arizona State University, Tempe, AZ, USA

GPUs are used in many settings to accelerate large-scale scientific computation, including simulation, com-
putational biology, and molecular dynamics. However, optimizing codes to run efficiently on GPUs requires
developers to have both detailed understanding of the application logic and significant knowledge of parallel
programming and GPU architectures. This paper shows that an automated GPU program optimization tool,
GEVO, can leverage evolutionary computation to find code edits that reduce the runtime of three important
applications, multiple sequence alignment, agent-based simulation and molecular dynamics codes, by 28.9%,
29%, and 17.8% respectively. The paper presents an in-depth analysis of the discovered optimizations, revealing
that (1) several of the most important optimizations involve significant epistasis, (2) the primary sources of
improvement are application-specific, and (3) many of the optimizations generalize across GPU architectures.
In general, the discovered optimizations are not straightforward even for a GPU human expert, showcasing
the potential of automated program optimization tools to both reduce the optimization burden for human
domain experts and provide new insights for GPU experts.

CCS Concepts: « Software and its engineering — Compilers; - Computing methodologies — Heuristic
function construction;

Additional Key Words and Phrases: Genetic improvement, Evolutionary programming, Bioinformatics, Genetic
programming

We gratefully acknowledge support from ONR grants N000142012094, N000142112876, NSF DMR-2239518, NSF CCF-2211750,
NSF OAC-2115075, ARPA-H(SP4701-23-C-0074), and the Santa Fe Institute.

Authors’ Contact Information: Jhe-Yu Liou (corresponding author), Arizona State University, Tempe, AZ, USA; e-mail:
jhe-yuliou@asu.edu; Muaaz Awan, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; e-mail: mgawan@lbl.gov;
Kirtus Leyba, Arizona State University, Tempe, AZ, USA; e-mail: kleyba@asu.edu; Petr Sulc, Arizona State University,
Tempe, AZ, USA; e-mail: psulc@asu.edu; Steven Hofmeyr, Lawrence Berkeley National Laboratory, Berkeley, CA, USA;
e-mail: shofmeyr@lbl.gov; Carole-Jean Wu, META, Menlo Park, CA, USA; e-mail: carolejeanwu@meta.com; Stephanie
Forrest, Arizona State University, Tempe, AZ, USA; e-mail: steph@asu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2688-3007/2024/11-ART21

https://doi.org/10.1145/3703920

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

21:2 J. Liou et al.

ACM Reference format:

Jhe-Yu Liou, Muaaz Awan, Kirtus Leyba, Petr Sulc, Steven Hofmeyr, Carole-Jean Wu, and Stephanie Forrest.
2024. Evolving to Find Optimizations Humans Miss: Using Evolutionary Computation to Improve GPU Code
for Bioinformatics Applications. ACM Trans. Evol. Learn. Optim. 4, 4, Article 21 (November 2024), 29 pages.
https://doi.org/10.1145/3703920

1 Introduction

The use of GPUs in bioinformatics applications has become increasingly important due to the
growing size of biological datasets and the complex computations required for their analysis. The
parallel architecture of GPUs can significantly accelerate many bioinformatics algorithms, such as
sequence alignment [Klus et al., 2012; Korpar and Siki¢, 2013; Liu et al., 2012], protein structure
prediction [Mrozek et al.,, 2014; Pang et al., 2012; Stivala et al., 2010], agent-based simulation
[Richmond et al., 2010], and molecular dynamics simulations [Eastman et al., 2013; Kylasa et al.,
2014; Salomon-Ferrer et al., 2013]. This acceleration has led to faster and more extensive analyses of
biological data, which in turn facilitates the discovery of new biological insights and the development
of new treatments for diseases.

However, it is well known that maximizing the potential of GPUs can be a challenging task,
for several reasons. First, GPU programming requires a different mindset compared to traditional
CPU programming, including parallelization, memory management, and data transfer between the
CPU and GPU. Second, GPUs often have a more complex architecture than CPUs, which requires
specific optimization techniques. Last, GPU architectures evolve rapidly. Almost annually, GPU
manufacturers, such as Nvidia and AMD, update their products with improved designs, which often
introduce more specific optimization techniques. It is a challenging programming task for a GPU
expert, not to mention for bioinformatics researchers who might not have a deep understanding of
GPU architecture.

To address the aforementioned challenges for GPUs, prior works, such as [Grauer-Gray et al., 2012;
van Werkhoven, 2019], explored automated compilation optimization to reduce the programming
and performance optimization burden on application programmers. These approaches mostly apply
their search methods on a predefined search space, such as to find the best combination of compiler
flags or kernel configurations for specific GPU architecture. Another approach uses evolutionary
computation (EC) to optimize GPU programs represented in the LLVM [Lattner and Adve, 2004]
intermediate representation (LLVM-IR) [Liou et al., 2020a]. The strength of this approach is its
ability to freely explore optimization opportunities that don’t preserve exact program semantics.
An earlier study demonstrated that the EC-based approach achieved runtime improvements on a
wide variety of general-purpose, but mostly unoptimized, GPU programs by an average of 51%,
performing especially well on error-tolerant applications. Despite these results, questions remain
about what optimizations such a method can find, how well it performs on hand-tuned production
applications, how the optimizations are discovered, and how the method can be integrated into a
production-level GPU application development.

In this paper, we address these research questions with an EC-based tool called Gpu EVOlution
(GEVO) [Liou et al., 2020a], analyzing performance optimization opportunities for bioinformatics
applications in three key fields: sequence alignment, a SARS-CoV-2 (SIMCoV) agent-based infec-
tion simulation, and a molecular dynamics code. Aligning sequences of DNA, RNA or proteins is a
fundamental operation in computational biology and underpins the success of many bioinformatics
and medical applications [Pareek et al., 2011]. The SIMCoV model simulates how the virus interacts
with the immune system while spreading through a human lung and causing tissue damage. Acceler-
ating the performance of the SIMCoV simulation is crucial for understanding the many complexities

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

Evolving to Find Optimizations Humans Miss 21:3

of COVID-19 and other respiratory infections. The molecular dynamics application (0xDNA)
[Poppleton et al., 2023; Rovigatti et al., 2015; Snodin et al.,, 2015] is a coarse-grained model which
represents each nucleotide in a DNA molecule as a single rigid body, with interactions between
them parameterized empirically to reproduce structural, thermodynamic and mechanical properties
of DNA. The model was primarily developed for simulations of designed DNA nanostructures and
to handle the large system sizes and long simulation timescales needed to capture their properties.

All three applications are computation-intensive. For example, in the first 6 months of 2021, over
6.7 million CPU hours were used for genome assembly on National Energy Research Scientific
Computing Cluster (NERSC)’s Cori Supercomputer, with roughly 40% of the time spent in the
sequence alignment kernel. Because of its importance, significant effort has been spent developing
and manually optimizing ADEPT [Awan et al., 2020], a state-of-the-art GPU accelerated sequence
alignment library which we use in our investigation. Similarly, on a modern, consumer-level CPU
it would take over two weeks for SIMCoV to simulate a single infection trajectory, even for a single
two-dimensional slice of human lung tissue. For oxDNA, sampling a single rigid DNA nanostructure
on one consumer-level CPU requires on the order of three days to a week and much longer more
for flexible designs.

The three applications represent three quite different types of bioinformatics applications: se-
quence alignment (which forms the core of many widely used bioinformatics tools); simulation
(used for studying biological processes that are difficult or impossible to measure experimentally);
and molecular dynamics (used widely for studying molecular-level genetic). The applications also
represent different development stages, which allows us to observe how GEVO interacts with
different stages of software maturity. We applied the GEVO optimization method to two versions of
ADEPT, each downloaded from its public open-source code repository. ADEPT-VO0 is the version of
the code before hand-tuning, whereas ADEPT-V1 represents a hand-optimized version. We show
that the performance of ADEPT-VO0 can be improved by 30 times on state-of-the-art GPUs—a level
of performance that is similar to the hand-tuned version. On the hand-tuned version (ADEPT-V1),
an additional 28.9% speedup is achieved with GEVO-discovered optimizations. SIMCoV was, at the
time of writing, in its early development stage where porting the CPU implementation to GPU just
started. Despite less than participated performance gain, on SimCoV, GEVO finds optimizations
providing 29% performance improvement for the simulation code running on the P100 GPU. Lastly,
0xDNA is considered to have the most mature GPU implementation of over 10 years of development.
Still, GEVO improves the performance of oxDNA simulation codes by over 17.8%.

Although GEVO does not enforce exact program semantics and relies instead on extensive
test suites, we demonstrate that the benefits of automated program optimization tools are multi-
dimensional by using a tailored instrumentation of the program source code to localize the dis-
covered optimizations and through a detailed performance and optimization analysis. Our results
showcase the potential of automated program optimization tools to reduce the optimization burden
for application developers, allowing them to focus on algorithms rather than details of hardware
features and architecture specifics which are often a black box or proprietary, and we show how
such tools can actively influence the development of GPU application codes.

An important contribution of this work is its in-depth analysis of the discovered performance
improvements, which can shed light on under-studied phenomena by slightly relaxing strict
adherence to existing program semantics. Our analysis shows that several of the most impressive
performance improvements arise from multiple interdependent code modifications or epistasis.
To gain insight into how the search process assembles these interdependent code modifications,
we recapitulate and analyze the history of an informative run. We also convert the discovered
code LLVM-IR modifications back to the source code to characterize their contributions. To our
knowledge, this is the first such study to reveal the importance of interdependencies in GPU code

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

21:4 J. Liou et al.

as optimization opportunities, which has implications for automated compiler optimization in
general.
The main contributions of the paper are summarized as follows!:

— Although EC methods were shown in prior work [Liou et al., 2020a] to improve the perfor-
mance of naive GPU programs, we demonstrate that EC can compete directly with human
experts, outperforming hand-tuned (observed from ADEPT), sometimes even vendor built-in
(observed from 0xDNA), GPU programs (Section 4).

—We conduct a detailed study and code analysis to characterize discovered performance im-
provements in three bioinformatics applications and explain how the optimizations were
discovered and achieved. Compared to earlier EC-based work on software, which typically
uses one or two mutations to repair small bugs or otherwise improve software, we find opti-
mizations that involve hundreds of mutations, and we define a multi-step process to identify
relevant interdependent clusters, reporting how they were discovered (Section 5).

—We demonstrate the benefits of using EC methods in earlier stages of GPU program develop-
ment, identifying performance hot-spots and strengthening a programmer’s understanding of
system performance improvement opportunities. These lessons can suggest further algorith-
mic improvements to the programmer and/or manual adjustment of suggested optimizations,
e.g., to avoid unwanted side effects if any.

By focusing on three computation-intensive workloads, our analysis reveals the importance of
manipulating interdependencies to find performance enhancements at the LLVM-IR level, high-
lighting why stochastic methods like EC are particularly suitable for accelerating execution time
performance of domain-specific computations beyond what is currently achievable by algorithm
and hardware domain experts.

2 Preliminaries

This section first reviews how a GPU is programmed and what challenges a programmer might
face, then it describes how our evolutionary algorithm, GEVO, searches for optimizations in GPU
programs. We then provide relevant background on the three bioinformatic applications: ADEPT,
SIMCoV, and 0xDNA, and give details about their corresponding GPU implementations.

2.1 The Challenges of GPU Programming

GPU programming, like most parallel programming, requires programmers to define the kernel, a
function that is repeatedly computed with different data input. The calculation is similar to a loop in
which loop iterations are distributed as threads to different computing cores on the GPU for parallel
execution. The first challenge for a programmer is to find a suitable property in their application
and rewrite that part of the code into a kernel for the GPU to accelerate. During this process,
programmers must decide how many iterations or threads (how many times the kernel executes)
are needed, how they will be mapped to the GPU thread model, and how data are transferred into
the kernel, including the pattern of data movement between CPU and GPU.

Up to this point, programmers do not need to know much about GPU hardware beyond the
size of the GPU memory and the size of the kernel that can be executed on the target GPU.
There are some common approaches, such as reducing if/else statements as much as possible
due to inefficient execution on GPU hardware, but how much this can achieve is constrained by
the application logic. The situation becomes more complex, however, if data are communicated

This study extends a prior work published in ISWC’22 [Liou et al., 2022]. The code and the benchmarks are available at
https://github.com/lioujheyu/gevo/tree/master/benchmark

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

Evolving to Find Optimizations Humans Miss 21:5

between threads. Programmers can separate calculations into multiple kernels and use global data
communication between kernels, but this incurs high overhead. Or, if data communication is limited
to a small area of threads, programmers can optimize the code with shared memory along with
an in-kernel synchronization point, or even with private register sharing. Each of these options
requires a certain understanding of GPU architecture, and in many cases details about the particular
GPU are important. For example, the Nvidia V100 GPU can achieve fine-grain synchronization
compared to its prior generation, P100 GPU, which allows the programmer to control the degree of
synchronization for a smaller performance impact.

2.2 Evolutionary Search for GPU Code Optimizations

There is considerable interest in methods that automatically tune code after traditional compiler
passes. Our work uses EC because it generalizes to large code sizes and can be applied generically to
many software problems, including automated bug repair [Le Goues et al., 2011; Yuan and Banzhaf,
2020], energy reduction [Bruce et al., 2015; Schulte et al. 2014a], and runtime optimization [Langdon
and Harman, 2010; White et al., 2011]. Many tools have been developed over the past decade for
evolving program text [Le Goues et al., 2011; Marginean et al., 2019; Sitthi-Amorn et al., 2011;
Walsh and Ryan, 1996; Yuan and Banzhaf, 2020], and the vast majority of them operate on source
code. In a nutshell, these methods start with a single program, generate an initial population of
program variants using random mutation operators, validate each variant by running it on multiple
test cases, evaluate the valid variants according to a fitness metric (usually test cases), and use
this information to select the best individuals, which are then subjected to further mutation and
recombined with one another to produce novel variants. This process is iterated until a time-out is
reached or an acceptable solution is discovered. Mutation operators that are readily implemented
in source code or assembly (e.g., those that modify a single program statement) are more complex
for the single static assignment discipline of LLVM-IR. The only mature EC tool that operates on
LLVM-IR is GEVO [Liou et al., 2020a], which we adapted for the present work.

GEVO takes as input a GPU program, user-defined test cases, and a fitness function to be
optimized, which in our case is runtime. Kernels that run on the GPU are first separated and
compiled into LLVM-IR by the Clang compiler. GEVO takes these kernels as input, applies mutation
and crossover to produce new kernel variants, and translates the implementations into PTX files.
The mutations can either operate on an instruction (copy, delete, move, replace, or swap) or replace
the operands between instructions. Although operand replacement can be an independent mutation,
its primary use is for repairing mutations that break a value-use chain or to allow a value generated
by a newly inserted instruction to be used in the computation. The host code running on the CPU
is then modified to load the generated PTX file into the GPU. Finally, GEVO evaluates the kernel
variant according to the fitness function. This process is illustrated in Figure 1. A full description of
GEVO is given in [Liou et al., 2020a].

2.3 Sequence Alignment

ADEPT implements Smith-Waterman, a widely used sequence alignment algorithm based on
dynamic programming which guarantees an optimal local alignment between two given sequences
[Smith et al., 1981].

2.3.1 Smith-Waterman Algorithm. Given two sequences A = (ay, az, ..., an), B = (b1, ba, ..., bpy)
to be aligned, a scoring matrix H is calculated with size (n+ 1) X (m + 1), where n and m are the
length of A and B respectively (Figure 2(a)). The cell H;; in the scoring matrix H represents the
highest alignment score with sequences ending in the pair of a; and b;.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

21:6 J. Liou et al.

Device code Population
Compilation
Mutation o808

Host code
Compilation

’
’
’

/
Evaluation [--=---==----- Crossover

Fig. 1. The GPU program compilation flow with GEVO interposed to dynamically modify and evaluate
variants of the kernel code.

1
1
1
1
1
1
1
1
1
1
1
1
1
|

ATGCT
ATGCT olololo oo
G C
ololofoTolo Alol241 o [o]o
A0 T2 10 |ote G |3 z aloli o321
T +N] -1
Glo[T[0]3d241 £ clofolol2[5]4
Il ; C 1
clo|0 o2 54 2-_1..% T (oo |21 |47
Tlolo 2=l [4]7 ATGCT
max
A- GCT

—
o
~

(a) (b)

Fig. 2. Example of the Smith-Waterman algorithm aligning two sequences, ATGCT and AGCT. (a) The
forward pass calculates the scoring matrix with arrows showing how the scores are derived. (b) A single
score calculation from the three neighboring cells. (c) The reverse pass from the calculated scoring matrix
determines the alignment, with the final alignment result shown in the red text under the matrix.

The cell score H;; is calculated by maximizing over the values from three directions of prior
alignments (H;_1 j_1, H; j—1, Hi—1;) (Figure 2(b)). The diagonal direction considers the similarity
score s of the current pair a;, b; in the sequences, awarding the cell score (+2) if the paired a;, b;
is matched and penalizing it (—2) otherwise. The vertical or horizontal direction introduces a gap
in the current location of one sequence or another. Gap insertion penalizes the cell score with a
smaller penalty (—1) than a sequence pair mismatch. How the score is awarded or penalized is
arbitrarily determined and can be changed based on particular scenarios.

After the scoring matrix is obtained by iterating the cell score calculation from top left to bottom
right, the optimal alignment is generated by tracing back from the highest score in the matrix H,
traversing along the highest score in the region in the reverse direction from how the matrix was
calculated until score zero is reached (Figure 2(c)).

2.3.2 GPU-Accelerated Smith-Waterman Algorithm. ADEPT parallelizes Smith-Waterman by
offloading the computation of each column of the scoring matrix into one thread. As Figure 3 shows,
the computation in each cell also depends on the scores of neighboring cells. Thus, the threads
must be delayed, following the order of column index so the dependent values are ready to be
shared from other threads.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

Evolving to Find Optimizations Humans Miss 21:7

Grid ’ Shared mem ‘
Thread block

warp / Lwarp

T BRI

ATGOCT

T
0

t0
A tl
G t2
o 3
t4 C|G|A

Fig. 3. lllustration of the GPU-accelerated Smith-Waterman algorithm. The kernel runtime performance
can be improved depending on the data communication patterns: spatial (bottom, left) vs. temporal (bottom,
right).

In the GPU CUDA programming model, developers can exchange thread data through global/host
memory, GPU device memory, shared memory, or private-thread register [NVIDIA, 2017]. The
first two memory types have no restriction on which threads can exchange data, but data stored
in the shared memory and private thread register are visible only within a thread block and
a warp, respectively. Despite much faster data access latency, private registers are unfriendly
to programmers because they involve low-level, intrinsic instructions. To reduce data move-
ment latency, ADEPT optimizations exploit both shared memory and private registers for data
exchange.

2.4 Coronavirus Simulation Model

Moses et al. developed a computationally intensive, spatially explicit model (SIMCoV) to study why
SIMCoV infection trajectories vary so widely across different patients, even those with identical
comorbidities [Moses et al., 2021]. SIMCoV simulates both the spread of virus (SIMCoV) through
the complex physical structure of the lung and important aspects of the immune response. The
model represents the spatio-temporal dynamics of four important elements: epithelial cells, virions,
inflammatory signals, and T cells. Given a simulation space, the model is initialized with an epithelial
cell at each relevant grid point (voxels containing lung tissue), and a set of infection sites. For
simplicity in the following, we will consider a grid that represents a two-dimensional slice of lung
tissue. On each iteration, the model simulates four tasks for each occupied grid point:

—Circulating T cells extravasate from the vascular system into the epithelial tissue with a
probability determined by the presence of inflammatory signals.

—If the grid point contains a T cell, the T cell moves randomly to an adjacent location.

—Each epithelial cell’s state is updated to one of healthy, infected, apoptotic (in the process
of dying), or dead. Virions (individual viruses) cause healthy cells to become infected, and
infected cells eventually die. T Cells trigger cell death by binding to cells, preventing the
further production of the virus.

—Virus and inflammatory signals diffuse from established sites of infection to neighboring grid
points.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

21:8 J. Liou et al.

2.4.1 GPU-Accelerated SIMCoV. SIMCoV’s GPU implementation parallelizes its multi-core CPU
implementation to use GPU kernels by assigning each grid point’s calculation to a thread. This
leverages the fact that over 90% of the GPU kernel runtime is spent moving T cells and spreading
virus and inflammatory signals.

2.4.2 Stochastic Nature of the SIMCoV Simulation. Many components of SIMCoV are stochastic,
e.g., T cell generation and movement. This mimics biology but also poses validation challenges for
GEVO, which must determine the correctness of any code modification. Fixing the random seed
removes most of the stochasticity but not all. For example, the simulation does not allow two T cells
to move into the same grid point, which can cause a race condition. When such race conditions
occur, the outcome is determined by the implementation of the GPU thread scheduler. This is an
architecture-dependent approach and not transparent to application developers.

2.5 DNA Simulation Model Using Molecular Dynamics

Simulating nucleic acids is important from the fundamental point of view for understanding how
biomacromolecules behave, and, from an application standpoint, it is important for predicting their
behavior under particular conditions. However, detailed simulations of molecular dynamics are
so computationally expensive that coarser-grained models have been developed, which describe
nucleic acids at the nucleotide level [Doye et al., 2013]. 0xDNA is an example of a coarse-grained
model, and its software package has become a popular choice for investigating the dynamics,
thermodynamics, and self-assembly behavior of DNA and RNA systems [Poppleton et al., 2021; Sulc
et al., 2014]. To date, oxDNA has been used in more than a hundred publications,” but computational
cost remains a challenge.

Initially developed for a single CPU platform, oxDNA has supported GPU acceleration since
2014. Its GPU implementation is considered to be mature, has been optimized over several years
of development, and is thus an appealing example application for evaluating our GEVO-based
approach. oxDNA leverages the GPU to parallelize the model in an edge-based approach. A thread
is mapped for each interacting pair of particles, using atomic operations and Newton’s third
law to calculate the resulting force acting on each particle. For more details about the oxDNA
implementation, the interested reader is referred to [Rovigatti et al., 2015].

3 Experimental Setup

This section describes how we set up our system for GEVO to optimize target applications. This
includes how the applications are compiled, what hardware and system software we used, and how
GEVO was configured for the experiments.

3.1 Compilation Preprocessing

First, we compile the ADEPT, SIMCoV, and oxDNA GPU kernels from CUDA into LLVM-IR
using the Clang compiler with full optimization (Compiler flag: -O2). Additionally, to enable code
correspondence between the CUDA source and the GEVO-transformed codes, we instrumented the
Clang compiler to enable source code debugging information (Compiler flag: -g1) and modified
GEVO’s mutation operator to encode source code location for each mutation. Note that this
additional step only adds source code information using the LLVM meta field without additional
debugging instructions, meaning that performance isn’t affected.

Next, we modified all three applications’ (ADEPT, SIMCoV, and 0xDNA) host code to invoke the
GPU kernel from an external PTX file—the final product of a mutated LLVM-IR which is executable

https://www.webofscience.com/wos/author/record/14753

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

Evolving to Find Optimizations Humans Miss 21:9

by the CUDA binary. The host code is compiled using NVIDIA’s nvec compiler [NVIDIA, 2024a].
Figure 1 illustrates the compilation process.

3.2 Application Code

To study GEVO’s effectiveness at different code development stages, we considered two versions of
ADEPT:

— ADEPT-V0 is the original parallel implementation (423 lines of source code from one CUDA
kernel, 1,097 LLVM-IR instructions)

—ADEPT-V1 is a manually-optimized version by an expert in both the application and GPU
domains (623 lines of code from two CUDA kernels, 1,707 LLVM-IR instructions).

ADEPT-V1 contains NVIDIA hardware-specific intrinsics, which use both shared memory and
private registers for data exchanges (Section 2.3). ADEPT-V1 executes twenty to thirty times faster
than ADEPT-VO0 across the GPUs used in this paper.

For SIMCoV, the only available GPU code was an initial GPU port from its multi-core CPU imple-
mentation, similar to ADEPT-VO0, with 1,197 lines of source code from 8 GPU kernels, translating to
1712 LLVM-IR instructions.

For oxDNA, we asked GEVO to search for optimizations in almost all of its twelve GPU kernels,
except for three kernels using the texture function which are not compilable by LLVM CUDA
compiler. The targeted GPU kernels cover over 97% of the total runtime spent on GPU computation,
and they comprise 1,023 lines of source code, although this count excludes many auxiliary functions
which we have a hard time counting accurately (a rough estimation is that they contain 2,000+
lines of code in them). Nevertheless, the compiled GPU kernels, including those auxiliary functions
mentioned above, have 13,748 LLVM-IR instructions.

3.3 Validating Code Transformations

It is important to verify that any code transformations imposed through mutation and crossover
generate the same behavior as the original code. This is achieved by running a set of test data
through both the modified and unmodified programs and comparing their results. However, this
process also dominates the time cost of running GEVO on the three bioinformatics applications. To
speed up the process, for each application, we divide the test sets into training sets and held-out
sets. GEVO uses only the training tests during the search process. The training test sets are fairly
small so that GEVO can run within a reasonable time budget (recall that we have to rerun the
tests on each program variant that GEVO considers). After GEVO completes its optimization run,
we manually verify the final optimized code using the held-out test sets. This ensures that the
optimized application behaves the same as the original applications.

For ADEPT, We used the 30,000 pairs of DNA gene sequences in the ADEPT repository for
fitness evaluation, holding out 4.6 million pairs of sequences to validate the final optimized ADEPT
code. Each pair of DNA gene sequences is run through the alignment process once per fitness
evaluation and generates one aligned sequence. Although GEVO can trade off error tolerance
against performance objectives, gene sequence alignment usually requires strict accuracy, so we
require 100% accuracy on the validation tests.

SIMCoV does not have a formal testing dataset for verification. Therefore, we controlled the
simulation environment by fixing the initial random seed so the simulation’s trajectory, including
virus spread, epithelial cell state, and number of T cells was as similar as possible across runs. We
use the simulation output generated from the unmodified SIMCoV as ground truth.

To evaluate the fitness of a SIMCoV variant, we run the simulation on a small, 100 X 100 grid
for 2,500 simulation steps, which is generally insufficient for the simulation to reach a steady

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

21:10 J. Liou et al.

Table 1. Architectural Characteristics of the GPUs

GPU P100 1080Ti V100 A100
Architect

renptecture Pascal Pascal Volta Ampere
Family
CUDA cores 3,584 3,584 5,120 6,912
Core Frequency 1,386 MHz 1,999 MHz 1,530 MHz 1,410 MHz

Memory Size 16 GB HBM 11 GB GDDR5X 16 GB HBM2 40 GB HBM2e

state. To accommodate the simulation non-determinism, we introduce the concepts of per-value
mean and per-value variance to measure how close the output is to ground truth. Initially, GEVO
will run the unmodified SIMCoV ten times to collect the mean and variance of various metrics,
such as virus or T cell count, on a per-gridpoint basis. The verification process then compares
whether each metric generated by the GEVO-optimized simulation falls into its corresponding
mean + 3 = variance. Similar to ADEPT’s held-out tests, after the run completes we further validate
the final GEVO-optimized SIMCoV program by first running the same 100 x 100 grid size for 10,000
simulation steps and then by simulating a much larger, 2,500 X 2,500, grid. We were unable to run
our optimized SIMCoV on a 10,000 X 10,000 grid, as the original paper did, due to the size limit of
our GPU memory.

For oxDNA, we set up a fairly small simulation environment, with 32,768 nucleotides simulated for
1,000 steps, as the test set for GEVO to use for fitness evaluation. This small simulation environment
is included in the oxDNA repository. The simulation output contains the calculated energy and
position on each nucleotide after a set number of steps. Due to a similar non-determinism issue
to the one we faced in SIMCoV, We again apply the same per-value mean and per-value variance
for the verification process. The same number of 32,768 nucleotides, but run longer for 100,000
simulation steps to a final steady state was then used as the held-out test.

Unlike CPU compiler, because of the lack of coverage statistics from both Nvidia CUDA compiler
and Clang/LLVM, GEVO may modify the code outside the execution path of these test sets. Also,
despite the use of both training and testing sets, the code transformation could potentially overfit
the data. The former can be mitigated by the edit-minimization as a post-processing step introduced
in Section 5.1. Still, careful analysis of the code transformation is required to make sense of their
purpose and function (Section 6).

3.4 System Hardware and Software

We evaluated and analyzed performance improvement using three generations of NVIDIA GPUs:
P100 [NVIDIA, 2024¢], 1080Ti GPU [NVIDIA, 2024c], V100 [NVIDIA, 2024f], and A100 [NVIDIA,
2024d], summarized in Table 1. We disabled the GPU Boost Technology [NVIDIA, 2024b] to maintain
constant GPU operating frequency for the experiments. The machine equipped with a P100 GPU
features a 20-core CPU and 256 GB of memory, and the one with the A100 GPU has a 32-core
CPU and 384 GB of memory. For the V100 GPU, we used the NERSC Cori Supercomputer’s GPU
instances [NERSC, 2024], which have one V100 GPU with 10 CPU cores and 16 GB memory in each
instance.

All systems are configured with CUDA 11.4 with the Nvidia driver 470 installed. In addition, we
developed our own profiling tool using Nvidia CUDA Profiling Tools Interface (CUPTI) instead of
using Nvidia’s default profiling tools (e.g., nvprof or nsight) to measure the kernel execution time.
This reduced the overhead of the Nvidia profilers and made the profiling process consistent across

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

Evolving to Find Optimizations Humans Miss 21:11

Nvidia GPU generations. Nvidia requires two profilers, nvprof and nsight, to profile a GPU before
and after Pascal architecture.

3.5 GEVO Specification

Kernel execution time is the fitness target, averaged across all test cases in the test set. Individuals
that fail one or more tests are deleted and not included in the calculation. We set the population
size to 256, retained the four best individuals into the next generation (elitism), applied crossover
with 80% probability for each individual, and used a mutation probability of 30% per individual
per generation. These parameters are taken from the original GEVO paper, where they were
determined empirically. Different search budgets were given to GEVO for ADEPT (7 days), SIMCoV
(2 days), and 0xDNA (7 days), which roughly translates to between 130 to 300 generations for each
application.

4 Performance Evaluation Results

Figures 4, 5, and 6 report the performance improvements found by GEVO for ADEPT-V0, ADEPT-V1,
SIMCoV, and 0xDNA on four generations of the GPUs. Execution time improved for ADEPT-V0
by 32.8X, 32X, 18.36X, and 30.2X on the P100, 1080ti, V100, and A100 GPUs, reducing the kernel
runtime from 2,362 ms to 72 ms, from 1,442 ms to 45 ms, from 918 ms to 50 ms, and from 638 ms
to 21 ms, respectively. For the hand-tuned, well-optimized version, ADEPT-V1, GEVO found an
optimization that achieves 1.28X, 1.31X, 1.17X, and 1.37X performance improvement on the P100,
1080ti, V100, and A100 GPUs. The performance improvements for SIMCoV and oxDNA are 1.29X
and 1.18X on P100; 1.42X and 1.19X on 1080ti; 1.16X and 1.09X on V100; and 1.56X and 1.06X on
A100 GPU. 0xDNA developers report that the observed performance improvement on oxDNA
through one Nvidia GPU generation is roughly 20%. Although the improvement that GEVO achieved
on oxDNA is small compared to other applications, it is significant enough for consideration and
analysis.

Because GEVO implements a stochastic search, we next ask how much variation there is across
experimental runs. Each experiment is computationally expensive, so we focused our analysis on on
the P100 GPU, conducting ten independent runs for each configuration (Figure 7). For ADEPT-V1,
compared to the initial run (1.29X improvement indicated by the solid blue line in Figure 7(a)), the
highest speedup found was 1.33X while the lowest was 1.1X. The mean is 1.20X and the variance
is £0.08. Figure 7(b) shows that for SIMCoV the highest speedup is 1.35X and the lowest is 1.18X,
with a mean of 1.28X and variance of +0.06. Figure 7(c) shows that for oxDNA, the highest speedup
was 1.22X and the lowest was 1.13X, with a mean of 1.17X and variance of +0.03. These results
convey the value of running GEVO multiple times to discover the best possible optimization. The
sources of performance improvement for ADEPT, SIMCoV, and oxDNA are quite distinct, which
we analyze and discuss in detail in Section 6.

To assess the portability of the discovered optimizations, we ran ADEPT-V0 (GEVO optimized
for the P100) on the V100 GPU and compared its performance to ADEPT-VO which GEVO opti-
mized natively for the V100. The former achieves 99% of the performance gain of the latter and
similarly for the 1080Ti and A100 GPUs, suggesting that many of the optimizations generalize
across the three GPUs, even though they feature distinct compute and memory architectures. We
observed similar generality with optimized SIMCoV and oxDNA. However, with ADEPT-V1, the
same analysis showed that a small subset of the optimized code from the P100 GPU cannot run
directly on the V100 and A100 GPU, suggesting that some performance optimizations are GPU
architecture-dependent.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

21:12 J. Liou et al.

OADEPT-VO O ADEPT-V0-GEVO O ADEPT-V1 B ADEPT-V1-GEVO

40

35x
32 30x
30
24x
20
10
2362 ms| (1442 ms (918 ms) (638 ms)
0

P100 1080Ti V100 A100

Speedup (normalized to
ADEPT-V0 within each GPU)

Fig. 4. Performance results for GEVO-optimized ADEPT on four generations of the GPUs.

- OSIMCoV ESIMCoV-GEVO - OoxDNA EoxDNA-GEVO
z) i)
] e o
55 L2 143x Lo EE=)
ER i 1.17x ER 117x 1.19x ,
g \2 (716ms) (512 ms) (344 ms) (452 ms) g \2 (326 ms) (365 ms) (225 "h)lﬂﬂx (173 um)l'”hx
gg 1 cg 1
£ g -
e © e ©
))
9 9
53 54
2 0 2 0
" "
P100 1080Ti V100 A100 P100 1080Ti V100 A100

Fig. 5. Performance results for GEVO-optimized SIM- Fig. 6. Performance results for GEVO-optimized

CoV on four generations of the GPUs. oxDNA on four generations of the GPUs.
14
1.35| Distribution
& 1.33) Mez
T 1.29 can
o 1.3
3 1o === Reported
bt : .28
5
QE) 12 1.20
54 1.1§
Sa8!
o
S 1.10|
1 T
1 31 61 91 121 151 181 211 241 271 301 1 21 41 61 81 101 121 0 20 40 60 80 100 120 140
Evolution Generation Evolution Generation Evolution Generation
(a) ADEPT-V1 (b) SIMCoV (¢) oxDNA

Fig. 7. Distribution of performance improvements across ten GEVO runs for (a) ADEPT-V1, (b) SIMCoV, and
(c) oxDNA GPU kernels on the P100 GPU. The shaded area encloses the historical path for all runs, while the
dashed line indicates the average.

5 Understanding the Optimizations

To study the GEVO-discovered optimizations, we first define a multi-step process which eliminates
edits that contribute less than 1% performance improvement (weak mutations), then separates
out mutations (edits) that are independent, i.e., those that achieve greater than 1% fitness im-
provement independent of the other edits in the set. We can then conclude that the remaining
mutations are interdependent (epistatic), but we do not know if the entire set is mutually in-
terdependent or if there are subsets. To find the subsets, we conduct an exhaustive search of
all possible combinations of the epistatic edits, which is feasible because the total number of
epistatic edits is small. For example, the edit number is reduced to 12 from 1394 on ADEPT-V1.
The following subsections describe each step in detail, primarily using ADEPT-V1 on P100 as an
example.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

Evolving to Find Optimizations Humans Miss 21:13

Algorithm 1: Identify Weak Edits

Parameter: Edit set S = {ey, ..., e, }, Performance threshold T%
Function f(S): measure the fitness (performance) of the program with edit set S applied

1: weaks « 0

2: for eache; € S do

3: if f(S — weaks — ¢;) fails then

4: continue

. . f(S —weaks) — f(S — weaks — e;) < T% then
f(S —weaks — e;)

6: weaks «— weaks + e;

5.1 Edit Minimization

Overall, the best performing code variants from ADEPT-V1, SIMCoV, and oxDNA on a P100
GPU contained a total of 1394, 384, and 489 mutations, respectively. It is remarkable that the
code is robust to so many mutations while preserving the ability to pass the validation test suite,
especially because the total number of instructions in each kernel is relatively small. To focus on the
performance-critical changes, and to avoid side effects, we removed weak edits from consideration
(Algorithm 1).

We systematically measured the performance difference between the optimized program with
and without each target mutation in the context of all the remaining mutations. Any individual
edit may not have an immediate impact on kernel execution time, but it could enable other higher-
performing program mutants, serving as a kind of stepping stone to better fitness. Our systematic
reduction identified these false-negative cases for weak edits. It is possible, however, that multiple
weak edits can have an identical effect. For example, suppose edits e; and e; are both stepping
stones leading to es. In this case, e; and e, are redundant, and one of the two can be safely removed
from the edit set without performance impact. Our implementation removes whichever one is
tested first.

With the performance threshold set to 1%, the process outlined above reduces the number of
code edits in our set from 1394 to 17 for ADEPT-V1, with a minimal reduction of performance (0.9%)
from 28.9% to 28%. However, when we applied the 1% threshold to oxDNA’s edits, our procedure
reduced the number of edits from 489 to 8 and eliminated half of the performance improvements
(17.8% to 8%). We then experimented with a more relaxed threshold of 0.5% for oxDNA, which only
reduced the number of edits to 101 from 489, corresponding to a performance improvement of
14.3% instead of 17.8%. This result reveals that much of the improvement for oxDNA arises from
many weak edits. This led us to study nearly all of 0xDNA’s edits to understand how the weak edits
contribute to performance improvement (Section 6.5).

5.2 Edit Interactions

Next, we describe how to identify particular interactions (epistasis) among edits, producing a set
of independent edits and a set of epistatic edits (Algorithm 2). The algorithm first identifies the
set of independent edits, and whatever remains after the procedure is considered to be epistatic.
An independent edit must individually be both applicable and removable from the edit set (lines
4 and 5 of Algorithm 2) without causing an error. If it passes this check, we next evaluate how
performance changes with and without the edit applied, first to the empty set of edits (i.e., to the
original program) and then in the context of the remaining edit set (lines 6 to 9 of Algorithm 2). If
the runtime from the above two tests agrees, the edit is identified as independent. In our running
example, this algorithm divided the 17 significant edits from Section 5.1 into 5 independent and

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

21:14 J. Liou et al.

Algorithm 2: Separate Independent and Epistatic Edits

Parameter: Edit set S = {ey, ..., e, }
Function f(S): measure the fitness (performance) of the program with edit set S applied

1: Indep «— 0

2: for eache; € S do

3: if f(e;) or f(S — Indep — ¢;) fails then
4: continue 0

5 PerfiIncr « 10 — fle)

Sf(ml) d S —Ind
6: PerfDecr<—f(~ Indep = &) — f(S Indep)
f(S— Indep — e;)
7: if Per fIncr ~ Per fDecr then
8 Indep < Indep +e;

9: Epistasis < S — Indep

@I Exec failed @ Force data to be stored in shared memory

> < 1% perfimpry e @ Modify two if-else statements to “if” always, which is
2% equivalent to solely rely on the shared memory of

Ol 10% e Modify the data access pattern that associating with the else
> 15% clause of e and @

- 17% (all) @ Similar to @ but in a different code region

Dependent @ Similar to e and @ butrely on @

Fig. 8. Relationships among epistatic edits for GEVO-optimized ADEPT-V1 on P100 GPU, together with
their corresponding performance improvement. Each node represents a single edit labeled with its index,
and the table on the right briefly describes each edit’s behavior. The different backgrounds indicate the
performance improvement for the different edit combinations, where orange color denotes edits that have
execution failures when applied individually, e.g., edit 8.

12 epistatic edits. The two sets contribute 7% and 17% performance improvement to ADEPT-V1,
respectively. Interestingly, we did not find performance-impactful epistatic edits for ADEPT-VO0,
SIMCoV, or oxDNA.

5.3 Epistatic Edit Set Analysis

While prior work in EC for software improvement rarely discovers epistasis (e.g., in bug repair
there are usually only one or two relevant mutations and when there are two, they rarely interact),
epistasis is common in biology [Bateson, 1909]. Our analysis of epistasis in ADEPT-V1 identified
twelve edits that interact with others in some way. Here, we show the dependency graph (Figure 8)
for the most significant epistatic clusters—determined by evaluating every subset of the epistatic set.
The numbers in circles represent the edit index, and the black lines indicate a dependency relation.

There are two independent epistatic subgroups. One subgroup (edits 5, 6, 8, and 10) is the most
significant, contributing 88.2% of the overall 17% performance improvement. Edits 8 and 10 both
depend on the success of edit 6. The program mutants with either edit 8 or edit 10 individually
fail the verification step. Edit 5 also fails individually and requires all three remaining edits (6, 8,
and 10), to function properly. We consider this most significant cluster in detail. Figure 9 shows
when the edits were discovered and how the discovery affected fitness. As expected, edit 6 with no
dependencies was discovered first, followed by edit 8 in the 47th generation, edit 10 in the 213th
generation, and edit 5 in the 221st generation.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

Evolving to Find Optimizations Humans Miss 21:15

Speedup

J~ T T T T T T T T T T T T T T T
1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

Evolution Generation

Fig. 9. The discovery sequence for edits in the largest epistasis set (edits 5, 6, 8, and 10) across 303 generations.
These are the same edits to ADEPT-V1 shown in Figure 8. The group of edits in each box indicates in which
generation this group was found, and edits colored red indicate the first time that edit was discovered.

The performance variation from run to run (Figure 7(a)) was affected by the completeness of
the discovered epistatic subgroups. For example, in the best run, GEVO further expanded the
epistatic subgroup (e0, e11) to a 4-edit cluster similar to the subgroup (e5, €6, €8, €10). In the lowest
performing run, GEVO discovered (e6, e10) but missed e8 and e5.

6 Functional Analysis of the Optimizations

This section explores the functional impact of the key mutations identified in Section 5. We do so
by tracing each relevant code edit in the LLVM-IR level back to its corresponding CUDA source
code. Although requiring significant manual effort, this is an important step in understanding
the performance optimization opportunities that EC can uncover. We first consider important
ADAPT-V1 optimizations (Sections 6.1, 6.2, and 6.3), then SIMCoV (Section 6.4), and finally oxDNA
(Section 6.5).

6.1 Rearrange Usage of Sub-memory Systems on GPU

The epistatic edits identified in Section 5.3 alter how ADEPT-V1 uses the GPU’s shared memory
and private registers. By doing so, 15% performance improvement is achieved on the P100. These
edits are applicable on the V100 as well, achieving similar performance improvement. Recall that,
in Section 2.3, ADEPT-V1 uses both private registers and shared memory to exchange data. Its
implementation is shown in Figure 10 with GEVO mutations indicated in red. These edits essentially
eliminate the use of private registers and rely only on shared memory.

The else clauses at lines 19 and 28 are for the thread that meets the conditions to share data
through private registers using the shfl_sync function. Due to a limitation of the GPU architecture,
GPU threads that cannot exchange data through private registers communicate through shared
memory. The effect of edits 8 (line 17) and 10 (line 26) is to drop the use of private registers. It is
achieved by replacing the corresponding if condition with the existing boolean expression from
line 14. If the boolean expression in line 14 is true, both lines 17 and 26 are evaluated as true. This
effectively causes every relevant GPU thread in the code snippet to write/read the data to/from
the shared memory regardless of any other condition. However, edits 8 and 10 cannot be applied
alone without edit 6 that implicitly enables every thread to write its data to the shared memory
named local_prev_XX. After applying the three aforementioned edits, the shared memory named
sh_prev_XX is not required, leading to edit 5. At this stage, a human developer would likely remove
the entire if clause at lines 3 since the shared memory within the if clause is no longer referred to.
Instead of removing the shared memory, edit 5 is introduced that only changes which thread will

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

21:16 J. Liou et al.

1T ...

2 // if (laneld == 31)

3 if (landId == @) { // edit 5

4 sh_prev_E[warpId] = _prev_E;

5 sh_prev_prev_H[warpId] = _prev_prev_H;}
6

7 // if(diag >= maxSize)

8 if (tID < minSize) { // edit 6

9 local_prev_E[tID] = _prev_E;

10 local_prev_prev_H[tID] = _prev_prev_H; }
11

12 __syncthreads();

13

14 if (is_valid[tID] && tID < minSize) {

15

16 // if (diag >= maxSize) {
17 if (is_valid[tID]) // edit 8

18 eVal = local_prev_E[tID-1] + extendGap;
19 else {

20 if (warpId != 0 && landId == 0)

21 eVal = sh_prev_E[warpId-1];

22 else // private register

23 eVal = __shfl_sync(...); }

24

25 // if(diag >= maxSize) {
26 if (is_valid[tID]) // edit 10

27 final_H = local_prev_prev_H[tID-11];
28 else {

29 if (warpId != 0 && landId == 0)

30 final_H = sh_prev_prev_H[warpId-11];
31 else // private register

32 final_H = __shfl_sync(...);

33 3

Fig. 10. Simplified code snippet from ADEPT-V1 for how data is exchanged using both private registers and
shared memory. In edits 5, 6, 8, and 10 (red text, lines 3, 8, 17, and 26), GEVO eliminates private registers and
uses shared memory instead.

access the shared memory. This modification achieves the same performance improvement as if the
affected code snippet were removed. We suspect that by changing the memory access pattern, as
edit 5 does, the GPU can schedule the memory access differently to hide the memory latency of
this particular access [Lee and Wu, 2014].

Accessing private registers on GPUs is much faster than the shared memory. So then, how do
edits that leverage shared memory achieve performance advantage? This might be related to branch
divergence. Recall from Section 2.3 and Figure 3, while some threads in a warp can use private
registers for data sharing, there is often one thread, usually the first thread in the warp, that must
communicate through shared memory. Combining with the GPU lock-step execution model, i.e.,
every thread in the same warp executes the same instruction at the same time, the aforementioned
behavior guarantees branch divergence in the if-else region between lines 17-23 and 26-32. This
essentially forces every thread in the same warp to run through both if and else regions, and
whichever thread uses private registers has to wait for the slowest thread that accesses the shared
memory to finish. As a result, the advantage of the fast access latency using the private registers
is lost.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

Evolving to Find Optimizations Humans Miss 21:17

6.2 Remove Warp-level Synchronization

The CUDA programming guide suggests that, before exchanging data through the private register,
programmers should invoke a query function, such as activemask or ballot_sync, in order to return
a mask indicating which threads are still alive in the warp. In particular, after the NVIDIA Volta
GPU architecture (V100 and A100 GPU in our evaluation environment), ballot_sync should be used
as the query function inside any conditional branch where branch divergence can happen. The
reasoning is that the Volta architecture allows GPUs to subdivide a warp into subgroups to be
scheduled independently, and ballot_sync implicitly forces the GPU to synchronize threads in the
same warp.

Perhaps to be conservative, the developers of ADEPT used both activemask and ballot_sync
before accessing the private registers in a conditional branch. An independent edit shows that
removing ballot_sync yields 4% performance improvement on the V100 GPU but not on the P100
GPU. This supports the idea that ballot_sync performs warp-level synchronization on the Volta GPU
architecture but not on the older GPU architectures. This edit is interesting because it violates the
CUDA programming guide [NVIDIA, 2018]. Yet, the edit passes all the verification tests. However,
due to the proprietary design of the Volta GPU warp scheduler, we cannot conclude in which
situations it is safe to remove warp-level synchronization.

6.3 Remove Unnecessary Memory Initialization and Synchronization Procedures

For ADEPT-V0, GEVO removed a small code region consisting of memset and syncthread functions
for shared memory initialization and synchronization. This change improved the kernel performance
by more than thirty-fold. In this case, it appears that we can completely ignore shared memory
initialization, even on the algorithm level, because other edits were not engaged to compensate for
the behavior change. In fact, the human expert also removed this code region in ADEPT-V1. Even
if the initialization is required, the way it was implemented is vastly inefficient. The original code
asks all the GPU threads to perform memory initialization on the same memory region. Combined
with synchronization, GPU threads block each other to initialize the same memory region over and
over again, creating a significant performance bottleneck. The common practice is to initialize the
memory through the CUDA API outside the kernel or through the in-kernel code using only one
active thread. For application developers, the ability to quickly identify promising performance
hot-spots that are challenging to discover using conventional tools is valuable, and this example
highlights how GEVO supports this task.

6.4 Boundary Check Removal and Grid Padding

In SIMCoV, GEVO removed multiple conditional branches, which disabled a grid boundary check.
Its purpose is to prevent errors when accumulating inflammatory signals from the neighboring grid
points (the fourth task in Section 2.4). As Figure 11(a) shows, the boundary check prevents the edge
grid points from attempting to accumulate values from points outside of the grid (illegal memory
accesses). The performance analysis presented in this section addresses the following questions:
(1) The boundary check optimization alone achieves 20% performance improvement. How does a
simple boundary removal achieve such disproportional execution time improvement? (2) How can
out-of-bound memory access not break the program’s behavior?

To answer the first question, we examined the kernel with the modified code region. Surprisingly,
a significant portion (31%) of the kernel instructions were performing logic operations related to
the boundary comparison, although, as shown in Figure 11(a), the vast majority of the grid points
are not located on the boundary. Removing the boundary check, however, is only legitimate if there
is a compensating code modification to prevent illegal access outside the boundary. This example

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

21:18 J. Liou et al.

GPU memory
Other N
= T application G«/L olofoJolofo
I - u
T L - 0
EER= 0
EEES 0
SIMCoV Grid Data AR
0
small grid large grid
(a) (b) (c)

Fig. 11. (a) illustrates that boundary check is a necessary step in the SIMCoV code; (b) illustrates how the
boundary check removal is acceptable in a small grid but would fail for a large grid, which can be resolved by
(c) padding the grid borders with extra grid points of 0 manually.

Table 2. Edits Distribution across the Mathematic
Functions in oxDNA

sine cosine arccos log sincos abs

158 78 14 13 4 1

demonstrates how the GEVO approach can inform application developers. By actively searching
through the code for performance optimization opportunities, the search can expose promising
performance hot-spot regions that may be overlooked otherwise.

We answer the second question using validation test sets. That is, by running the SIMCoV
simulation at a larger grid size: 2,500 X 2,500. Even though the SIMCoV code passes the initial test
using a smaller simulation area, the boundary check optimization triggers a segmentation fault
on this larger held-out test (Figure 11(b)). It is not surprising that larger held-out tests are needed
during the optimization search process to detect such out-of-bound memory accesses, and this is a
routine part of our evaluation strategy. After probing the code and the boundary check optimization
more deeply, we observed that, by simply padding the grid borders with extra points of value
0 (Figure 11(c)), the application can achieve a 14% performance improvement with a negligible
increase in the memory requirement.

6.5 Optimizing Nvidia’s Built-in Math Library

In 0xDNA there were many weak edits, each contributing a small amount to the performance
improvement. For each such edit we identified its source code location and discovered that 268 out
of 489 of them were modifying functions inside the Nvidia built-in math library. Table 2 shows
how the edits are distributed across the various functions in the library. This raises two additional
questions:

—Why does GEVO modify the built-in math library with such a large number of edits?
—What are the optimizations doing?

We addressed the first question by examining the Nvidia built-in math library (libdevice.bc)
and found that it is not in binary format. Instead, it is in the LLVM bitcode format which can
be converted back to LLVM-IR format using the llvm-dis command-line tool. Inspection of the
converted math library showed that these math functions are inline functions in which function
invocations (the function call instruction) are replaced by the function body. As it happens, oxDNA
uses a large number of inline sine/cosine functions (32 sine and 23 cosine separate function calls)

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

Evolving to Find Optimizations Humans Miss 21:19

15
H Sl S2mS3
10 -
-
5 .'
0
E 0
3
$. B B B B K K. B O S B G B G K B K G P S S B B B B B B B B B B G
LYy Yy Y oYy Yy Y Y Y Y oYYy Y Y Y Yy oYy Yy Y Y Y Y %,
5] R N R N
R e e Y o e, e, e, v e e e e e e e e e e, e
B o Y Y T e A 0o TR Y Y TS T o0 v
P
[}
o 15
=
z, 10
5 |
) |
-
0
6 6 6 6 6 6 6 6 6 o o o o 6 o6 6 6 6 6 6 o o o
T % % % % % %% % T T O T B Y Y % % % D
P % T B L D D D, T T D D 2 v,
v % 7 ¥ o T v D e v e A Y o B % D »

Fig. 12. Distribution of GEVO mutational edits across sine and cosine function instances and code section
each edit falls in. S1, S2, and S3 are the code sections explained in Figure 13. For example, there are 14 edits
in sin1 instances. 13 out of 14 edits are in section 2, 1 in section 3, and none in section 1. This figure shows
that every sine function call in oxDNA receives at least one GEVO edit while there are ten cosine function
calls with zero edits, implying that certain cosine functions cannot be optimized.

000 ! sinf/cosf (float %a)

001 result.i.i.i 11 i32 ligr 91 = %a*2/pi 7

002 ! if (%a == 0
it) Section 1 (S1), corner case check
HE (BE == Amfimite) ~ and nQrma\argumentreduct\on

9 edits

51 = %a ..]

080 e

if (%a > 105615
£ (e > A Section 2 (S2), Huge argument

2o = 2a - reduction

205 edits
238 r %_ internal_trig_reduction_kernel.exit.i } J
%3 = %1 or %2]

| Section 3 (S3), real sine calculation

384 t float %z.i.i. $4 = %3 .. 14 edits

Ret %4 _
(a) sine in libdevice.bc in LLVM-IR (b) Manual decompile

Fig. 13. (a) shows the original sine function in LLVM-IR representation found in Nvidia built-in math
library (libdevice.bc). The numbers on the left are the line numbers in the code. (b) is the author’s manual
decompilation from (a). Based on this understanding the code structure falls naturally into 3 sections, and
the GEVO edits are categorized into each section. (In the original code, 0x3FE45F3060000000 in line 2 is the
double-precision floating-point representation of %), but many other magic hexadecimal numbers similar
to this appear in the code, which the authors could not decipher. The cosine function shares identical code
structures except for a few instructions with different parameters.

to determine the relative position and orientation of nucleotides, compute the direction of the
bonding force, and calculate their movement. Thus, each of the 228 out of 268 edits (as Table 2
shows) to the sine/cosine function apparently modifies a separate copy of the same sine/cosine
code. Further investigation of these mutations showed that GEVO modified the function instances
in different ways. And, certain cosine function calls remained unmodified, as Figure 12 shows.
Without access to the source code, it is challenging to fully characterize GEVO’s optimizations,
but reverse engineering provides some insight into how GEVO edits improved runtime. The Nvidia
built-in sine and cosine functions have nearly identical code structures, which can be separated
into three logical sections as shown in Figure 13. Notably, the majority of edits appear in Section 2

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

21:20 J. Liou et al.

of the code path which is executed only when the input argument (angle) is larger than 105,615. We
suspect that this code handles the rounding error of huge argument reduction. Since here are only
2rrradians in a circle, any input to a sine/cosine function is equivalent to some angle in [-7, 1.
Arguments that are outside this range are computed by reduction, subtracting integral multiples of

7 as shown in Equation (1).

x—k-gzr,kEZ,r<1. (1)

For example, instead of computing sin(x), the function computes sin(r) whererisin [~ 7,]. When
performing floating-point operations with a huge input argument x, the accuracy of computing r
is dominated by the rounding error of x — k - 7, which is limited by the mantissa bits of floating-
point representation. In short, the larger x is, the less accurate r that is produced. This is a well-
known problem discovered in 1992 [Ng, 1992], with many follow-up discussions [Boldo et al.,
2008; Brisebarre et al., 2005; De Dinechin et al., 2019; Henderson, 2000] and solutions that are
incorporated into compilers such as gcc and clang.

Eliding many details about how rounding errors are managed in huge argument cases, we
believe that the modifications GEVO made to the Section 2 code region disables this functionality
using various strategies. We scanned all 0oxDNA input values to the sine function and discovered
that they are always smaller than the Nvidia threshold value for activating fixed-point argument
reduction. Thus, it is safe for oxDNA to disable argument reduction. Next, we manually disabled
the argument reduction of the sine function in the Nvidia math library, and tested it in a standalone
CUDA kernel where only the sine function is invoked with a large input range. This standalone
test shows that the observable error, compared to the unmodified sine function, increases only
after the input is greater than 105,615. More importantly, the performance of the sine function
in the standalone environment on P100 improved by 54%, regardless of the input value. It is
surprising that the performance improvement is so large, even when the input values do not
require reduction. Finally, disabling huge argument reduction through directly modifying in the
sine function in Nvidia math library and then recompiling oxDNA improved the performance
by 4.7%.

Recall that certain cosine functions in 0xDNA received zero edits as Figure 12 shows. We
discovered that, unlike the sine functions, some 0xDNA cosine functions do receive input arguments
larger than 105,615, which likely prevents GEVO from optimizing these parts of the code.

There are some small edits in section 1 of Figure 13(b) similar to those discussed above, but
they disable checks on other corner cases. For example, one edit disables checking for infinite
input arguments in the floating-point format. Notably, shown in Figure 12, only certain function
instances receive such edits, meaning they are only applicable based on the different use cases of
those function instances. In hindsight, a human expert might devise cleaner ways to streamline
these corner cases, but these results show that GEVO can discover many optimization opportunities
in built-in functions per function usage.

6.6 Dead Code Removal

In 0xDNA, all calculations are performed in three-dimensional space. For historical reasons dating
to the early development of 0oxDNA, some important variables are defined in a struct with four
elements, and the last element is never used. In the past, GPU programmers often used internal
data structures for color space with RGBA 4 elements to store vector-like data. However, this is no
longer required. GEVO discovered this redundancy and removed a few load instructions for the 4th
element when passing variables between functions.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

Evolving to Find Optimizations Humans Miss 21:21

Normally, such redundant code could be detected and optimized by the compiler as part of the
dead code removal pass. We are unsure what condition in this case prevents the LLVM compiler
from performing or detecting the dead code.

6.7 Remaining Edits

We attempted to analyze every GEVO edit that has a performance impact greater than 1%, but
there are some that we were unable to decipher. For example, one edit duplicates a memory write
operation to a region that no subsequent code ever accesses. Such an operation seems redundant
and should slow down program runtime. Surprisingly, it improves the kernel performance by 1%
when run on the P100 GPU.

7 Discussion

The mutational edit analysis (Section 6) showed that many performance-enhancing mutations are
related to the GPU architecture. This implies that, although the GPU programming model has
matured in the past decade or two, it is still difficult to master hardware-related programming
language features. Bioinformatic applications, such as those we consider here, are often written by
domain experts who are not necessarily trained as software developers. In these circumstances,
an approach such as GEVO is an appealing choice for GPU code optimization [Liou et al., 2019a,
2019b, 2020a, 2020b]. When we discussed GEVO’s optimizations with the original developers of
both ADEPT and SIMCoV, they were both surprised that EC could discover code modifications with
such large performance improvements. The main developer of ADEPT told us, “If T was aware such
an automatic optimization tool existed, it might have saved a couple of months of effort, especially
for optimizing toward a specific GPU architecture!” And, from the developer of SIMCoV, “When I
looked at the optimizations found for SIMCoV, I saw how I could change my algorithm to improve its
performance at scale. On CPUs, SIMCoV requires many cores to run useful simulations in a reasonable
time. The CPU implementation bogs down when the simulated lung contains many agents, but the
GPU version always loops over the full space so it does not suffer in this scenario”

Our results and the developer feedback illustrate two scenarios in the software development
cycle where EC-based optimization can help: rapid prototyping in the early development stage and
advanced fine-tuning in the final development stage. In the prototyping stage, the developer can
quickly implement a workable but less-optimized version of the software and let EC perform code
optimization searches, identify potentially-interesting performance critical regions, and address
those inefficiencies. In the late development stage, EC can be deployed after hand-tuning by experts
to search for additional optimizations.

Although the developers of 0xXDNA have requested our assistance to incorporate GEVO’s opti-
mizations into their latest code release, modifying built-in libraries is generally beyond the scope
of most developers, particularly, without access to source code. In this context, GEVO provides an
opportunity for library or compilers developers, including engineers inside a GPU manufacturer
like Nvidia, discover optimization opportunities. In fact, we learned that LLVM provides a series
of instruction flags for floating operations to individually control many fast-math flags such as
disabling checking infinite or not-a-number,” which the Nvidia compiler does not support. Neither
LLVM or Nvidia compiler can individually disable the argument reduction discussed in Section 6.5.
Using the comprehensive fast-math flag (-ffast-math for LLVM or -use_fast_math for Nvidia com-
piler) does evidently disable argument reduction for both compilers, but the resulting accuracy also
changes even for small input values.

3https://llvm.org/docs/LangRef html#fastmath

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

21:22 J. Liou et al.

Our approach does not require programmer domain knowledge for optimization. We acknowledge
that EC-driven GPU optimization does not necessarily preserve exact program semantics, which is
both a strength and a limitation. It is a strength because small changes in semantics can lead to large
runtime reduction, often without sacrificing functionality. Perhaps the most striking examples of this
in our study were the removal of the boundary check in SimCoV and the disabling of huge argument
reduction in oxDNA's sine function. Relaxing semantics is a limitation because test suites are often
used to evaluate fitness and verify program behavior. With domain knowledge, developers can
reason about the discovered optimizations, and either adopt them for better program performance,
use them to improve the test suite, or use the insights to inspire related code enhancements, e.g.,
by introducing zero padding (Section 6.4). The results reported here for ADEPT did not require us
to augment the test suite, an advantage of working with a deterministic program with an extensive
test suite. However, if there are mutations that improve performance but do not make sense to
programmers, like the one that introduced an additional memory write into an unused code location
(Section 6.7), the programmer can choose to eliminate the edit or design new tests.

GPUs are complex hardware with an equally complex programming environment. This is one
reason why automated code optimization can be effective. Performant code can easily fail to live
up to performance expectations, sending developers on a lengthy performance debugging journey.
There is no golden rule for finding optimal performance on GPUs. For instance, higher concurrency
does not guarantee better performance because in some cases using larger shared memory per
block while minimizing occupancy may yield better throughput. Similarly, as demonstrated in the
case of ADEPT, using a faster method of inter-thread communication (register-to-register transfer)
does not imply the best performance. In applications like 0xXDNA, humans would look first for
high payoff optimizations and might never consider the hundreds of individual modifications,
which each contributed a small improvement. EC can automate this search for counter-intuitive
optimizations while exploring hundreds of times more code modifications than a human developer
can reasonably consider. We expect that the results achieved for ADEPT and 0xDNA may generalize
to other bioinformatics kernels and programs.

Beyond its contribution to automated optimization, GEVO’s results are striking from the EC
perspective. The optimized ADEPT program we analyzed in detail contained 1395 mutations, each
of these is neutral with respect to the test cases. Most of the mutations are weak (contribute less
than 1% performance improvement), but it is still remarkable that it is even possible to apply
that many random mutations to a program that is only 1,700 instructions long and not break the
program. We don’t yet understand why GEVO produces so many neutral mutations. It was built
on NSGA-II, and an area for future investigation is disentangling the effect of our EC algorithm
from the properties of the LLVM-IR. Once we discarded the weak mutations, the remaining contain
a large number of interacting edits, which is vastly more than what has been reported by any
earlier EC work for software (one or two edits are much more typical). This could arise from several
factors: basic properties of the LLVM-IR representation and the mutation operators, properties of
GPU architectures, opportunities presented by the particular algorithms, or the implementation
choices made by the developer—an avenue for future work. In particular, more effective epistasis is
discovered in ADEPT-V1 than in ADEPT-V0. The developer-optimized codes in ADEPT-V1 might
provide more paths for epistasis to surface since those optimized codes seem to be more resilient to
our mutation operators. More generally, high-level languages are designed to help programmers
express algorithms in a modular way that minimizes interactions between different parts of the
code. So, it would not be surprising if their very structure works against epistasis. At the same time,
the search space defined for a lower-level program representation like LLVM-IR is much larger than
it is for source code, and could even include space beyond the application, like in oxDNA where

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

Evolving to Find Optimizations Humans Miss 21:23

GEVO modified Nvidia math library functions. This would intuitively make search problems more
challenging. How these factors balance out and how to measure them remains an open question.

Regardless of their source, the fact that we found improvements with such a high number of
interacting edits shows how automated methods can discover complex modifications to the target
program. There is significant variability across programs in terms of the success that GEVO had in
improving runtime, although we found significant improvements in all three examples that we
studied. We do not yet understand the source of this variability and leave that for future work. As
expected, there is also variability in the performance gains that are found by GEVO in different runs
on the same program. However, some programs such as ADEPT-V1 had much higher variability
than the others, as shown in Figure 7 and explained in Section 5.3. Finally, reverse engineering
the discovered optimizations is challenging and to a large extent remains a manual process. We
presented a procedure that identifies a set of edits that interact with each other, but the final step
of the process involves testing all their combinations to find epistatic subsets. This will not scale
well beyond the roughly twenty edits we considered. How to reliably discover edit interactions and
effectively analyze them remains unsolved and warrants future study.

8 Related Work

Code generation optimization has been actively investigated in the compiler community. This
includes, but is not limited to, peephole methods [Bansal and Aiken, 2006], loop-unrolling using
machine learning techniques [Leather et al., 2009], loop perforation [Sidiroglou-Douskos et al.,
2011] auto-vectorization [Mendis et al., 2019], and profile-guided optimization [Pettis and Hansen,
1990]. Traditionally, most of these techniques are achieved through pattern matching to ensure
that exact program semantics are preserved. More recently, the need for compilers to optimize
domain-specific languages has become important. For example, Halide [Ragan-Kelley et al., 2013]
targets image processing, XLA [TensorFlow, 2018] developed for TensorFlow [Abadi et al., 2016],
Glow [Rotem et al., 2018] for PyTorch [Paszke et al., 2017], TVM [Chen et al., 2018] for MXnet
[Chen et al., 2015], and so forth. Because GPUs provide unparalleled performance in this domain,
all of these examples are capable of generating GPU kernels for acceleration and optimization.
A major component of these frameworks is identifying efficient loop partitioning and unrolling
patterns tailored for target hardware memory configuration to achieve better memory access
locality. Domain-specific compilers can perform further optimizations when lowering neural-
network operators onto machine-specific implementations using optimized libraries. However,
all of these approaches are still primarily based on human-derived pattern-matching, although,
in certain domains, search algorithms are used when the target problem is unrelated to program
semantics. For example, Halide uses the genetic algorithm to search for improved pipeline scheduler
decisions, which translates to determining the order of loop partitioning and unrolling.

Beyond these traditional compiler techniques, other methods are designed to be generic in the
sense that they are agnostic about the particular application being optimized. There are three main
approaches that have been used: program synthesis [Alur et al., 2013; Barthe et al., 2013; Buchwald
et al., 2018; Gulwani et al., 2011; Jia et al. 2019; Manna and Waldinger, 1980], superoptimization
[Churchill et al., 2017; Schkufza et al., 2013, 2014; Sharma et al., 2015], and EC [Koza, 1994; White
et al,, 2011]. One key difference among the branches is the validation method. Program synthesis
and superoptimization typically use a SAT/SMT solver [Moura and Bjerner, 2008] to check the
logical equivalence of program rewrites, while EC relies on test suites to encode the intended
program specification. The trade-off is that the SAT/SMT approaches can guarantee exact program
semantics but they do not scale well, while test-based methods sacrifice strict semantic equivalence
for improved scalability. As a result, most earlier work in this domain applies only to programs of a
limited length, usually under 200 lines of code.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

21:24 J. Liou et al.

Deep learning methods have recently been used to analyze programs as well, including neural-
network based logical reasoning [Evans et al., 2018; Paliwal et al., 2020] and SAT solvers [Selsam
et al,, 2019; Si et al., 2019] and superoptimization [Bunel et al., 2017]. However, for optimizing
parallel codes like GPU programs, EC may be more viable because logical reasoning about thread
communications in an SAT solver requires deducing the entire parallel programming model in a
logical form which is time-consuming and challenging.

Large language models (LLM) have emerged recently as a new tool for program synthesis.
Although many language models were originally developed to solve natural language processing
tasks such as translation, researchers have discovered that by increasing the degree of language
model architecture with a larger, albeit huge, training dataset, they can unlock many interesting
properties including natural language reasoning and interaction, and even logical reasoning. One of
LLMs’ capabilities is generating simple programs even though the LLM was not explicitly trained on
programming languages [Brown et al., 2020]. Since then, using LLMs for program-related tasks has
become an active research area. Jacob et al. explored and evaluated general program synthesis using
Python docstrings as input for behavior specification [Austin et al., 2021]. Other examples include
CodeBert [Feng et al., 2020], Codex [Chen et al., 2021], and many more [Ahmad et al., 2021; Clement
et al., 2020; Wang et al., 2021] were trained specifically for programming and coding, eventually
leading to the popular and well-known commercial application, Github Copilot [Microsoft, 2023].

The only related LLM work in program optimization to date is from Cummins et al. [2023], which
uses Meta the LlaMa 2 model [Touvron et al., 2023] to learn how the LLVM compiler optimizes
code in LLVM-IR format. The learned LLM model can predict the least amount of compiler flags
needed to optimize a target program or even directly generate the optimized code without using
a traditional compiler. It is unknown, however, whether the trained LLM can generate code or
optimize code that is unseen in the training data.

EC is a popular approach for improving computer programs, e.g., to automatically repair bugs
[Debroy and Wong, 2010; Forrest et al., 2009; Le Goues et al. 2011, 2012; Weimer et al., 2009].
Surprisingly, prior analysis [Schulte et al., 2014b] showed that 20% to 40% of randomly generated
program mutations (edits) have no observable functional effect (even when limited to only regions
of the code that are actively tested), which suggested the possibility of using EC to optimize
non-functional properties of software. As a result, EC has also been adopted to optimize software
properties such as performance [White et al., 2011] and energy cost [Brownlee et al., 2021; Bruce
et al,, 2015, 2018; Schulte et al., 2014a].

Earlier EC work targeting GPU programs dates back to Sitthi-Amorn’s work [Sitthi-Amorn et al.,
2011], which began with a basic lighting algorithm and used EC to gradually modify the shader
program into a form that resembles an advanced algorithm proposed by domain experts. Later,
Langdon et al. applied EC to a series of CUDA programs, ranging from compression methods
[Langdon and Harman, 2010] to RNA and DNA analysis [Langdon and Harman, 2015; Langdon
et al., 2015]. Specifically, BarraCUDA [Klus et al., 2012], a DNA sequence alignment program,
was one of the target programs in the DNA analysis study [Langdon et al., 2015]. However, their
approach is different and less general than the one we used here. For example, the above works
searched for parameter configurations outside the CUDA kernel such as the number of threads per
thread block. The work manually parsed and transformed the CUDA kernel code into a custom-
designed, line-based Backus Normal Form grammar as the code representation, where EC was
applied. The performance improvements were attributed almost entirely to parameter tuning rather
than modifying the kernel code. Orthogonal to the prior work, our approach finds performance
optimization opportunities by transforming the implementation of functions. We instrument the
modern LLVM compiler infrastructure to preprocess the CUDA program into LLVM-IR, a more
general approach that can be applied to any LLVM-IR program.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

Evolving to Find Optimizations Humans Miss 21:25

9 Conclusion

Optimizing GPU codes is a time-consuming process that requires deep knowledge in both the
application domain and GPU architectures. This paper demonstrates the performance optimization
potential of GEVO applied to three different types of bioinformatics workloads: ADEPT, a GPU-
accelerated bioinformatics sequence alignment library; SIMCoV, an agent-based COVID simulation
of viral spread; and oxDNA, a DNA model using molecular dynamic simulation. We find improve-
ments between 17% and 29% for ADEPT-V1 (the expert-optimized version of ADEPT), SIMCoV, and
0xDNA on various GPU platforms. Moreover, on ADEPT-VO0, an earlier and less-optimized version,
we find a 30X improvement. This demonstrates the excellent potential of stochastic search methods
such as GEVO to augment developer efforts to optimize GPU codes.

While we did not find optimizations that are generalizable to all three applications, the diverse
optimizations that GEVO discovered demonstrate its strength to tailor optimizations to particular
applications based on their characteristics. The interdependent modifications (epistasis) found for
ADEPT, the boundary check removal for SIMCoV, and the built-in math library optimizations
for oxDNA are all distinct, unanticipated, and more importantly, challenging to achieve by the
application developers alone. As GPU architectures continue to evolve, the availability of an
automated code optimization tool that can discover hidden performance optimization opportunities
will continue to be useful as an aid to the code development process. We expect such methods to
play an increasingly important role in reducing the developer burden of developing efficient code,
especially for application areas such as bioinformatics and other scientific domains.

Acknowledgments

We thank Lorenzo Rovigatti for helpful discussions.

References

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Geoffrey Irving, Michael Isard, et al. 2016. TensorFlow: A system for large-scale machine learning. In Proceedings of the
12th USENIX Conf. on Operating Systems Design and Implementation.

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Unified pre-training for program understanding
and generation. In Proceedings of the Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. ACL, 2655-2668. Retrieved from https://www.aclweb.org/anthology/2021.
naacl-main.211

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh,
Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai,
Michael Terry, Quoc Le, et al. 2021. Program synthesis with large language models. arXiv:2108.07732. Retrieved from
https://arxiv.org/abs/2108.07732

Muaaz G Awan, Jack Deslippe, Aydin Buluc, Oguz Selvitopi, Steven Hofmeyr, Leonid Oliker, and Katherine Yelick. 2020.
ADEPT: A domain independent sequence alignment strategy for gpu architectures. BMC Bioinformatics 21, 1 (2020),
1-29.

Sorav Bansal and Alex Aiken. 2006. Automatic generation of peephole superoptimizers. SSGARCH Computer Architecture
News 34, 5 (2006), 394-403.

Gilles Barthe, Juan Manuel Crespo, Sumit Gulwani, Cesar Kunz, and Mark Marron. 2013. From relational verification
to SIMD loop synthesis. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’13). ACM, New York, NY, 123-134. DOI: https://doi.org/10.1145/2442516.2442529

William Bateson. 1909. Mendel’s Principles of Heredity. Cambridge University Press, Cambridge.

Sylvie Boldo, Marc Daumas, and Ren-Cang Li. 2008. Formally verified argument reduction with a fused multiply-add. IEEE
Transactions on Computers 58, 8 (2008), 1139-1145.

Nicolas Brisebarre, David Defour, Peter Kornerup, J-M Muller, and Nathalie Revol. 2005. A new range-reduction algorithm.
IEEE Transactions on Computers 54, 3 (2005), 331-339.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

21:26 J. Liou et al.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, 1877-1901.

Alexander Brownlee, Jason Adair, Saemundur Haraldsson, and John Jabbo. 2021. Exploring the accuracy-energy trade-off
in machine learning. In Proceedings of the Genetic Improvement Workshop at 43rd International Conference on Software
Engineering. ACM, New York, NY.

Bobby R. Bruce, Justyna Petke, and Mark Harman. 2015. Reducing energy consumption using genetic improvement. In
Proceedings of the 17th Annual Conference on Genetic and Evolutionary Computation.

Bobby Ralph Bruce, Justyna Petke, Mark Harman, and Earl T. Barr. 2019. Approximate oracles and synergy in software
energy search spaces. IEEE Transactions on Software Engineering 45, 11 (2019), 1150-1169.

Sebastian Buchwald, Andreas Fried, and Sebastian Hack. 2018. Synthesizing an instruction selection rule library from
semantic specifications. In Proceedings of the International Symposium on Code Generation and Optimization (CGO ’18).
ACM, New York, NY, 300-313. DOI: https://doi.org/10.1145/3168821

Rudy Bunel, Alban Desmaison, M. Pawan Kumar, Philip H. S. Torr, and Pushmeet Kohli. 2017. Learning to superoptimize
programs. In Proceedings of the International Conference on Learning Representations.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri
Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on code. arXiv:2107.03374.
Retrieved from https://arxiv.org/abs/2107.03374

Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and
Zheng Zhang. 2015. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems.
arXiv:1512.01274. Retrieved from https://arxiv.org/abs/1512.01274

Tianqgi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan
Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}: An automated end-to-end optimizing compiler for deep learn-
ing. In Proceedings of the 13th { USENIX} Symposium on Operating Systems Design and Implementation ({ OSDI} 18),
578-594.

Berkeley Churchill, Rahul Sharma, J. F. Bastien, and Alex Aiken. 2017. Sound loop superoptimization for google native
client. SSGARCH Computer Architecture News 45, 1 (2017), 313-326.

Colin B Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and Neel Sundaresan. 2020. PyMT5: Multi-
mode translation of natural language and Python code with transformers. arXiv:2010.03150. Retrieved from https:
//arxiv.org/abs/2010.03150

Chris Cummins, Volker Seeker, Dejan Grubisic, Mostafa Elhoushi, Youwei Liang, Baptiste Roziere, Jonas Gehring,
Fabian Gloeckle, Kim Hazelwood, Gabriel Synnaeve, et al. 2023. Large language models for compiler optimization.
arXiv:2309.07062. Retrieved from https://arxiv.org/abs/2309.07062

Florent De Dinechin, Luc Forget, Jean-Michel Muller, and Yohann Uguen. 2019. Posits: The good, the bad and the ugly. In
Proceedings of the Conference for Next Generation Arithmetic, 1-10.

Vidroha Debroy and W. Eric Wong. 2010. Using mutation to automatically suggest fixes for faulty programs. In Proceedings
of 3rd International Conference on Software Testing, Verification and Validation.

Jonathan P. K. Doye, Thomas E. Ouldridge, Ard A. Louis, Flavio Romano, Petr Sule, Christian Matek, Benedict E. K.
Snodin, Lorenzo Rovigatti, John S. Schreck, Ryan M. Harrison, et al. 2013. Coarse-graining DNA for simulations of DNA
nanotechnology. Physical Chemistry Chemical Physics 15, 47 (2013), 20395-20414.

Peter Eastman, Mark S. Friedrichs, John D. Chodera, Randall J. Radmer, Christopher M. Bruns, Joy P. Ku, Kyle A. Beauchamp,
Thomas J. Lane, Lee-Ping Wang, Diwakar Shukla, et al. 2013. OpenMM 4: A reusable, extensible, hardware independent
library for high performance molecular simulation. Journal of Chemical Theory and Computation 9, 1 (2013), 461-469.

Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. 2018. Can neural networks understand
logical entailment?. In Proceedings of the International Conference on Learning Representations.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin
Jiang, et al. 2020. Codebert: A pre-trained model for programming and natural languages. arXiv:2002.08155. Retrieved
from https://arxiv.org/abs/2002.08155

Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009. A genetic programming approach to
automated software repair. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation.

Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John Cavazos. 2012. Auto-tuning a high-
level language targeted to GPU codes. In Proceedings of the Innovative Parallel Computing (InPar), 1-10. DOI: https:
//doi.org/10.1109/InPar.2012.6339595

Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011. Synthesis of loop-free programs. ACM
SIGPLAN Notices 46, 6 (2011), 62-73.

Darrall Henderson. 2000. Elementary functions: Algorithms and implementation. Mathematics and Computer Education 34,
1(2000), 94.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

Evolving to Find Optimizations Humans Miss 21:27

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. 2019. TASO: Optimizing deep
learning computation with automatic generation of graph substitutions. In Proceedings of the 27th ACM Symp. on
Operating Systems Principles (SOSP ’19).

Petr Klus, Simon Lam, Dag Lyberg, Ming Sin Cheung, Graham Pullan, lan McFarlane, Giles S. H. Yeo, and Brian Y. H. Lam.
2012. BarraCUDA - A fast short read sequence aligner using graphics processing units. BMC Research Notes 5, 1 (2012),
1-7.

Matija Korpar and Mile Siki¢. 2013. SW#-GPU-enabled exact alignments on genome scale. Bioinformatics 29, 19 (2013),
2494-2495.

John R. Koza. 1994. Genetic programming as a means for programming computers by natural selection. Statistics and
Computing 4, 2 (1994), 87-112.

Sudhir B. Kylasa, Hasan Metin Aktulga, and Ananth Y. Grama. 2014. PuReMD-GPU: A reactive molecular dynamics
simulation package for GPUs. The Journal of Computational Physics 272 (2014), 343-359.

William B. Langdon and Mark Harman. 2010. Evolving a CUDA kernel from an nVidia template. In Proceedings of IEEE
Congress on Evolutionary Computation.

William B. Langdon and Mark Harman. 2015. Grow and graft a better CUDA pknotsRG for RNA pseudoknot free energy
calculation. In Proceedings of the Companion Publication of the 17th Annual Conference on Genetic and Evolutionary
Computation.

William B. Langdon, Brian Yee Hong Lam, Justyna Petke, and Mark Harman. 2015. Improving CUDA DNA analysis software
with genetic programming. In Proceedings of the 17th Annual Conference on Genetic and Evolutionary Computation.
Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation. In

Proceedings of the International Symposium on Code Generation and Optimization (CGO ’04). IEEE, 75-86.

Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. 2012. A systematic study of automated
program repair: Fixing 55 out of 105 bugs for $8 each. In Proceedings of the 34th International Conference on Software
Engineering.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2011. Genprog: A generic method for automatic
software repair. IEEE Transactions on Software Engineering 38, 1 (2011), 54-72.

Hugh Leather, Edwin Bonilla, and Michael O’Boyle. 2009. Automatic feature generation for machine learning based
optimizing compilation. In Proceedings of the International Symposium on Code Generation and Optimization, 81-91.
Shin-Ying Lee and Carole-Jean Wu. 2014. Characterizing the latency hiding ability of GPUs. In Proceedings of the IEEE

International Symposium on Performance Analysis of Systems and Software (ISPASS).

Jhe-Yu Liou, Muaaz Awan, Steven Hofmeyr, Stephanie Forrest, and Carole-Jean Wu. 2022. Understanding the power of
evolutionary computation for GPU code optimization. In Proceedings of the IEEE International Symposium on Workload
Characterization (ISWC), 185-198. DOI : https://doi.org/10.1109/IISWC55918.2022.00025

Jhe-Yu Liou, Stephanie Forrest, and Carole-Jean Wu. 2019a. Genetic Improvement of GPU Code. In Proceedings of the
IEEE/ACM International Workshop on Genetic Improvement (GI), 20~27. DOI : https://doi.org/10.1109/G1.2019.00014

Jhe-Yu Liou, Stephanie Forrest, and Carole-Jean Wu. 2019b. Uncovering performance opportunities by relaxing program
semantics of GPGPU kernels. In Proceedings of the ACM International Conference on Architectural Support for Programming
Languages and Operating Systems: Workshop on Wild and Crazy Ideas (WACI).

Jhe-Yu Liou, Xiaodong Wang, Stephanie Forrest, and Carole-Jean Wu. 2020a. GEVO: GPU code optimization using evolu-
tionary computation. ACM Transactions on Architecture and Code Optimization 17, 4 (Nov. 2020), Article 33, 28 pages.
DOI: https://doi.org/10.1145/3418055

Jhe-Yu Liou, Xiaodong Wang, Stephanie Forrest, and Carole-Jean Wu. 2020b. GEVO-ML: A proposal for optimizing ML
code with evolutionary computation. In Proceedings of the Genetic and Evolutionary Computation Conference Companion.

Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell. 2012. CUSHAW: A CUDA compatible short read aligner to large
genomes based on the Burrows-Wheeler transform. Bioinformatics 28, 14 (2012), 1830-1837.

Zohar Manna and Richard Waldinger. 1980. A deductive approach to program synthesis. ACM Transactions on Programming
Languages and Systems 2, 1 (1980), 90-121.

Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia, Ke Mao, Alexander Mols, and Andrew Scott.
2019. SapFix: Automated end-to-end repair at scale. In Proceedings of the IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 269-278.

Charith Mendis, Cambridge Yang, Yewen Pu, Saman Amarasinghe, and Michael Carbin. 2019. Compiler auto-vectorization
with imitation learning. In Proceedings of the 33rd International Conference on Neural Information Processing Systems,
14598-14609.

Microsoft. 2023. Github Copilot. Retrieved from https://github.com/features/copilot

Melanie E. Moses, Steven Hofmeyr, Judy L. Cannon, Akil Andrews, Rebekah Gridley, Monica Hinga, Kirtus Leyba, Abigail
Pribisova, Vanessa Surjadidjaja, Humayra Tasnim, et al. 2021. Spatially distributed infection increases viral load in a
computational model of SARS-CoV-2 lung infection. PLoS Computational Biology 17, 12 (2021), €1009735.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

21:28 J. Liou et al.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In Proceedings of the 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.

Dariusz Mrozek, Milosz Brozek, and Bozena Malysiak-Mrozek. 2014. Parallel implementation of 3D protein structure
similarity searches using a GPU and the CUDA. Journal of molecular modeling 20 (2014), 1-17.

NERSC. 2024. Cori GPU Nodes. Retrieved from https://docs-dev.nersc.gov/cgpu/hardware/

Kwok C. Ng. 1992. Argument Reduction for Huge Arguments: Good to the Last Bit. Unpublished draft, available from the
author (kwok.ng@eng.sun.com).

NVIDIA. 2024. CUDA LLVM Compiler. Retrieved from https://developer.nvidia.com/cuda-llvm-compiler/

NVIDIA. 2024. GPU Boost. Retrieved from https://www.nvidia.com/en-us/geforce/technologies/gpu-boost/technology/

NVIDIA. 2024. NVIDIA 1080ti GPU. Retrieved from https://www.nvidia.com/en-in/geforce/products/10series/geforce-gtx-
1080-ti/

NVIDIA. 2024. NVIDIA A100 Tensor Core GPU. Retrieved from https://www.nvidia.com/en-us/data-center/a100/

NVIDIA. 2024. NVIDIA Tesla P100 GPU. Retrieved from https://www.nvidia.com/en-us/data-center/tesla-p100/

NVIDIA. 2024. NVIDIA V100 Tensor Core GPU. Retrieved from https://www.nvidia.com/en-us/data-center/v100/

NVIDIA. 2017. Register Cache: Caching for Warp-Centric CUDA Programs. Retrieved from https://developer.nvidia.com/
blog/register-cache-warp-cuda/

NVIDIA. 2018. Using CUDA Warp-Level Primitives. Retrieved from https://developer.nvidia.com/blog/using-cuda-warp-
level-primitives/

Aditya Paliwal, Sarah Loos, Markus Rabe, Kshitij Bansal, and Christian Szegedy. 2020. Graph representations for higher-order
logic and theorem proving. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2967-2974.

Bin Pang, Nan Zhao, Michela Becchi, Dmitry Korkin, and Chi-Ren Shyu. 2012. Accelerating large-scale protein structure
alignments with graphics processing units. BMC Research Notes 5, 1 (2012), 1-11.

Chandra Shekhar Pareek, Rafal Smoczynski, and Andrzej Tretyn. 2011. Sequencing technologies and genome sequencing.
Journal of Applied Genetics 52, 4 (2011), 413-435.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,
Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. In Proceedings of the NeurIPS Autodiff Workshop.

Karl Pettis and Robert C. Hansen. 1990. Profile guided code positioning. In Proceedings of the ACM SIGPLAN Conference on
Programming language design and implementation.

Erik Poppleton, Michael Matthies, Debesh Mandal, Flavio Romano, Petr Sulc, and Lorenzo Rovigatti. 2023. oxDNA: Coarse-
grained simulations of nucleic acids made simple. Journal of Open Source Software 8, 81 (2023), 4693.

Erik Poppleton, Roger Romero, Aatmik Mallya, Lorenzo Rovigatti, and Petr Sulc. 2021. OxDNA.org: A public web-
server for coarse-grained simulations of DNA and RNA nanostructures. Nucleic Acids Research 49, W1 (2021),
W491-W498.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe. 2013.
Halide: A language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines.
ACM SIGPLAN Notices 48, 6 (Jun 2013), 519-530. DOI : https://doi.org/10.1145/2499370.2462176

Paul Richmond, Dawn Walker, Simon Coakley, and Daniela Romano. 2010. High performance cellular level agent-based
simulation with FLAME for the GPU. Briefings in Bioinformatics 11, 3 (2010), 334-347.

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman Dzhabarov, James Hegeman, Roman Levenstein,
Bert Maher, Satish Nadathur, Jakob Olesen, et al. 2018. Glow: Graph lowering compiler techniques for neural networks.
arXiv:1805.00907. Retrieved from https://arxiv.org/abs/1805.00907

Lorenzo Rovigatti, Petr Sulc, Istvin Z. Reguly, and Flavio Romano. 2015. A comparison between parallelization approaches
in molecular dynamics simulations on GPUs. Journal of Computational Chemistry 36, 1 (2015), 1-8.

Romelia Salomon-Ferrer, Andreas W Gotz, Duncan Poole, Scott Le Grand, and Ross C. Walker. 2013. Routine microsecond
molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. Journal of Chemical
Theory and Computation 9, 9 (2013), 3878-3888.

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic superoptimization. In Proceedings of ACM SIGARCH Computer
Architecture News.

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2014. Stochastic optimization of floating-point programs with tunable
precision. ACM SIGPLAN Notices 49, 6 (2014), 53-64.

Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and Westley Weimer. 2014a. Post-compiler software
optimization for reducing energy. In Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems.

Eric Schulte, Zachary P. Fry, Ethan Fast, Westley Weimer, and Stephanie Forrest. 2014b. Software mutational robustness.
Genetic Programming and Evolvable Machines 15, 3 (2014), 281-312.

Daniel Selsam, Matthew Lamm, Benedikt Biinz, Percy Liang, Leonardo de Moura, and David L. Dill. 2019. Learning a SAT
solver from single-bit supervision. In Proceedings of the International Conference on Learning Representations.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

Evolving to Find Optimizations Humans Miss 21:29

Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. 2015. Conditionally Correct Superoptimization. In
Proceedings of ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations.

Xujie Si, Yuan Yang, Hanjun Dai, Mayur Naik, and Le Song. 2019. Learning a meta-solver for syntax-guided program
synthesis. In Proceedings of the International Conference on Learning Representations.

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. 2011. Managing performance vs. accuracy
trade-offs with loop perforation. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conf. on
Foundations of Software Engineering.

Pitchaya Sitthi-Amorn, Nicholas Modly, Westley Weimer, and Jason Lawrence. 2011. Genetic programming for shader
simplification. In Proceedings of the SSGGRAPH Asia Conference.

Temple F. Smith, and Michael S. Waterman. 1981. Identification of common molecular subsequences. Journal of Molecular
Biology 147, 1 (1981), 195-197.

Benedict E. K. Snodin, Ferdinando Randisi, Majid Mosayebi, Petr Sulc, John S. Schreck, Flavio Romano, Thomas E. Ouldridge,
Roman Tsukanov, Eyal Nir, Ard A. Louis, et al. 2015. Introducing improved structural properties and salt dependence
into a coarse-grained model of DNA. The Journal of Chemical Physics 142, 23 (2015), 06B613_1.

Alex D. Stivala, Peter J. Stuckey, and Anthony I. Wirth. 2010. Fast and accurate protein substructure searching with
simulated annealing and GPUs. BMC Bioinformatics 11 (2010), 1-17.

Petr Sulc, Flavio Romano, Thomas E. Ouldridge, Jonathan P. K. Doye, and Ard A. Louis. 2014. A nucleotide-level coarse-
grained model of RNA. The Journal of Chemical Physics 140, 23 (2014), 06B614_1.

TensorFlow. 2018. XLA Is a Compiler That Optimizes TensorFlow Computations. Retrieved from https://www.tensorflow.
org/xla/

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra,
Prajjwal Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv:2307.09288.
Retrieved from https://arxiv.org/abs/2307.09288

Ben van Werkhoven. 2019. Kernel Tuner: A search-optimizing GPU code auto-tuner. Future Generation Computer Systems
90 (2019), 347-358. DOI : https://doi.org/10.1016/j.future.2018.08.004

Paul Walsh and Conor Ryan. 1996. Paragen: a novel technique for the autoparallelisation of sequential programs using gp.
In Proceedings of the 1st Annual Conference on Genetic Programming, 406—409.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. 2021. Codet5: Identifier-aware unified pre-trained encoder-
decoder models for code understanding and generation. arXiv:2109.00859. Retrieved from https://arxiv.org/abs/2109.
00859

Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009. Automatically finding patches using
genetic programming. In Proceedings of the 31st International Conference on Software Engineering.

David R. White, Andrea Arcuri, and John A. Clark. 2011. Evolutionary improvement of programs. IEEE Transactions on
Evolutionary Computation 15, 4 (2011), 515-538.

Yuan Yuan and Wolfgang Banzhaf. 2020. ARJA: Automated repair of java programs via multi-objective genetic programming.
Transactions on Software Engineering 46, 10 (2020), 1040-1067.

Received 18 June 2023; revised 20 September 2024; accepted 30 October 2024

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 21. Publication date: November 2024.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The Challenges of GPU Programming
	2.2 Evolutionary Search for GPU Code Optimizations
	2.3 Sequence Alignment
	2.4 Coronavirus Simulation Model
	2.5 DNA Simulation Model Using Molecular Dynamics

	3 Experimental Setup
	3.1 Compilation Preprocessing
	3.2 Application Code
	3.3 Validating Code Transformations
	3.4 System Hardware and Software
	3.5 GEVO Specification

	4 Performance Evaluation Results
	5 Understanding the Optimizations
	5.1 Edit Minimization
	5.2 Edit Interactions
	5.3 Epistatic Edit Set Analysis

	6 Functional Analysis of the Optimizations
	6.1 Rearrange Usage of Sub-memory Systems on GPU
	6.2 Remove Warp-level Synchronization
	6.3 Remove Unnecessary Memory Initialization and Synchronization Procedures
	6.4 Boundary Check Removal and Grid Padding
	6.5 Optimizing Nvidia's Built-in Math Library
	6.6 Dead Code Removal
	6.7 Remaining Edits

	7 Discussion
	8 Related Work
	9 Conclusion
	References

