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In their seminal work, Polyak and Juditsky showed that stochastic ap-
proximation algorithms for solving smooth equations enjoy a central limit
theorem. Moreover, it has since been argued that the asymptotic covariance
of the method is best possible among any estimation procedure in a local min-
imax sense of Hájek and Le Cam. A long-standing open question in this line
of work is whether similar guarantees hold for important nonsmooth prob-
lems, such as stochastic nonlinear programming or stochastic variational in-
equalities. In this work, we show that this is indeed the case.

1. Introduction. Polyak and Juditsky [27] famously showed that the stochastic gradient
method for minimizing smooth and strongly convex functions enjoys a central limit theo-
rem: the error between the running average of the iterates and the minimizer, normalized by
the square root of the iteration counter, converges to a normal random vector. Moreover, the
asymptotic covariance matrix is in a precise sense “optimal” among any estimation proce-
dure. A long standing open question is whether similar guarantees—asymptotic normality
and optimality—exist for nonsmooth optimization and, more generally, for equilibrium prob-
lems. In this work, we obtain such guarantees under mild conditions that hold both in concrete
circumstances (e.g., nonlinear programming) and under generic linear perturbations.

The types of problems we will consider are best modeled as stochastic variational inequal-
ities. Setting the stage, consider the task of finding a solution x of the inclusion

(1.1) 0 ∈ E
z∼ P

A(x, z) + N X (x).

Here, P is a probability distribution accessible only through sampling, A(·, z) is a smooth
map for almost every z ∼ P , and NX (x) denotes the normal cone to a closed set X . Stochas-
tic variational inequalities (1.1) are ubiquitous in contemporary optimization. For example,
optimality conditions for constrained optimization problems

minx E
z∼ P

f (x, z) subject to x ∈ X ,

fit into the framework (1.1) by settingA(x, z) = ∇f (x, z) in (1.1). More generally still, Nash
equilibria x = (x 1

, . . . , xm) of stochastic games are solutions of the system

xj ∈ argmin
xj ∈X j

E
z∼ P

f j (x, z) for all j = 1, . . . , m,

where f j and Xj , respectively, are the loss function and the strategy set of player j . First
order optimality conditions for these k coupled inclusions can be modeled as (1.1) by setting
[A(x, z)] j := ∇ xj

f j (x, z) and X := X1, . . . ,Xm.
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There are two standard strategies for solving (1.1): sample average approximation (SAA)
and the stochastic forward–backward algorithm (SFB). The former proceeds by drawing a
batch of samples z1, z2, . . . , zk ∼ iid P and finding a solution xk to the empirical approxima-
tion

(1.2) 0 ∈
1
k

k

i= 1

A(x, zi ) + N X (x).

In contrast, the stochastic forward–backward (SFB) algorithm proceeds in an online manner,
drawing a single sample zk ∼ P in each iteration k and declaring the next iterate xk+ 1 as

(1.3) xk+ 1 ∈ PX xk − α k · A(xk, zk) .

Here, PX (·) denotes the nearest-point projection onto X . In the case of constrained optimiza-
tion, A(x, z) = ∇f (x, z) is the gradient of some loss function f (x, z) , and the process (1.3)
reduces to the stochastic projected gradient algorithm. Online algorithms like SFB are usually
preferable to SAA since each iteration is inexpensive and can be performed online, whereas
SAA requires solving the auxiliary optimization problem (1.2). Although the asymptotic dis-
tribution of the SAA estimators is by now well understood [13, 14, 29], our understanding
of the asymptotic performance of the SFB iterates is limited in nonsmooth and constrained
settings. The goal of this paper is to fill this gap. The main result of our work is the following.

Under reasonable assumptions, the running average of the SFB iterates exhibits the same asymptotic
distribution as SAA. Moreover, both SAA and SFB are asymptotically optimal in a locally minimax
sense of Hájek and Le Cam [15, 31].

We next describe our results, and their consequences, in some detail. Namely, it is clas-
sically known (e.g., [13, 14, 29]) that the asymptotic performance of SAA (1.2) is strongly
influenced by the sensitivity of the solution x to perturbations of the left-hand side of (1.1).
In order to isolate this effect, let S(v) consist of solutions x to the perturbed system

v ∈ E
z∼ P

A(x, z) + N X (x).

Throughout, we will assume that the solutions S(v) vary smoothly near x . More precisely,
we will assume that the graph of S locally around (0, x ) coincides with the graph of some
smooth map σ (·). In the language of variational analysis [9], the map σ (·) is called a smooth
localization of S around (0, x ). It is known that this assumption holds in a variety of concrete
circumstances and under generic linear perturbations of semialgebraic problems [10].

Let us next provide the context and state our results. It is known from [14, 29] that under
mild assumptions, the solutions xk of SAA (1.2) are asymptotically normal:

(1.4)
√

k xk − x
D
−→N 0, ∇σ (0) · Cov A x , z · ∇σ (0) .

Thus the Jacobian of the solution map ∇σ (0) appears in the asymptotic covariance of the
SAA estimator. In fact, we will argue that this is unavoidable. The first contributions of our
work is that we prove that the asymptotic performance of SAA is locally minimax optimal—
in the sense of Hájek and Le Cam [15, 31]—among all estimation procedures. Roughly speak-
ing, this means that for any estimation procedure that outputs x̂k based on k samples, there
exists a sequence of perturbations Pk with

dPk
dP = 1 + O(k − 1/ 2), such that the performance of

x̂k on the perturbed sequence of problems is asymptotically no better than the performance
of SAA on the perturbed problems. We note that the analogous lower bound for stochastic
nonlinear programming was obtained earlier in [12], and our arguments are motivated by the
techniques therein. The fact that the SFB algorithm for smooth problems is asymptotically
optimal was proved in [4], Theorem 5.6, by verifying that SFB is asymptotically equivariant
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in law; we follow a similar argument here. Aside from the lower bound, the main result of our
work is to show that under reasonable assumptions, the running average of the SFB iterates
enjoys the same asymptotics as (1.4) and is thus asymptotically optimal.

The guarantees we develop are already interesting for stochastic nonlinear programming:

minx
f (x) = E

z∼ P
f (x, z) subject to gi (x) ≤ 0 ∀i = 1, . . . , m.(1.5)

Here each gi is a smooth function and the mapx  → f (x, z) is smooth for a.e. z ∼ P . The op-
timality conditions for this problem can be modeled as the variational inequality (1.1) under
the identification A(x, z) = ∇f (x, z) and X = {x : g i (x) ≤ 0 ∀i = 1, . . . , m}. The stochastic
forward–backward algorithm then becomes the stochastic projected gradient method. Our re-
sults imply that under the three standard conditions—linear independence of active gradients,
strict complementarity, and strong second-order sufficiency—the running average of the SFB
iterates x̄k = 1

k
k
i= 1

xi is asymptotically normal and optimal:

√
k x̄k − x

D
−→ N 0, ∇σ (0) · Cov ∇f x , z · ∇σ (0) .

Moreover, as is classically known, the Jacobian ∇σ (0) admits an explicit description as

(1.6) ∇σ (0) = PT ∇ 2
xx

L x , y PT
†,

where ∇ 2
xx

L(x , y ) is the Hessian of the Lagrangian function, the symbol † denotes
the Moore–Penrose pseudoinverse, and PT is the projection onto the linear subspace
{∇g i (x )}⊥

i∈ I and I = {i : g i (x ) = 0} is the set of active indices. An illustrative example
of the announced result is depicted in Figure 1, which plots the performance of the projected
stochastic gradient method for minimizing a linear function over the intersection of two balls.
A further illustration for a nonconvex problem of sparse recovery is depicted in Figure 2. This
result may be surprising in light of the existing literature. Namely, Duchi and Ruan [12] un-
cover a striking gap between the estimation quality of SAA and at least one standard online
method, called dual averaging [24, 33], for stochastic nonlinear optimization. Indeed, even
for the problem of minimizing the expectation of a linear function over a ball, the dual aver-
aging method exhibits a suboptimal asymptotic covariance ([12], Section 5.2). 1 In contrast,
we see that the stochastic projected gradient method is asymptotically optimal.

Let us now return to the general problem (1.1) and the stochastic forward–backward al-
gorithm (1.3). In order to derive the claimed asymptotic guarantees for SFB, we will impose
a few extra assumptions. First, in addition to assuming that σ (·) is smooth near the origin,
we will assume that there exists a neighborhood U of the origin such that σ (U )is a smooth
manifold. This assumption is mild, since it holds automatically for example, if the matrix
∇σ (·) has constant rank on a neighborhood of the origin. In the language of [11], the set
M = σ (U) is called an active manifold around x̄. Returning to the case of stochastic nonlin-
ear programming, the active manifold is simply the zero-set of the active inequalities

M = x : gi (x) = 0 ∀i ∈ I .

See Figure 1 for an illustration. Variants of active manifolds have been extensively studied
in nonlinear programming, under the names of identifiable surfaces [32], partly smooth sets
[19], UV-structures [18, 21], g ◦ F decomposable functions [30], and minimal identifiable
sets [11].

The main idea of our argument is to relate the nonsmooth dynamics of SFB to a smooth
stochastic approximation algorithm on M . More precisely, we will show that under mild

1In contrast, in the special case that X is polyhedral and convex, the dual averaging method is optimal [12].
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FIG . 1. The stochastic projected gradient method for minimizingEg[−x 1 +  g, x] over the intersection of two
balls centered around(− 1, 0, 0) and (1, 0, 0) of radius two. The expectation is taken over a Gaussiang ∼ N( 0, I ).
The optimal solution (0, 0,

√
3) (marked with a star) lies on the active manifold M , which is a circle depicted

in black. The figure on the top left depicts the iterates generated by a single run of the process initialized at the
origin with stepsize ηk = k − 3/ 4 and executed for 1000 iterations. The figure on the top right depicts the rescaled
deviations

√
k( x̄K − x ) taken over 100 runs with K = 106. The two figures clearly show that the iterates rapidly

approach the active manifold and asymptotically the deviations
√

k( x̄k −x ) are supported only along the tangent
space to M at x . The two figures on the second row show the histogram and the empirical CDF, respectively, of
the tangent components

√
kPTM (x )( x̄k − x ), overlaid with the analogous functions for a Gaussian.

conditions, the shadow sequence yk := PM (xk) along the manifold M behaves smoothly up
to a small error

(1.7) yk+ 1 = y k − α kPTM (yk) A(yk, zk) + o(α k),

where TM (yk) denotes the tangent space of M at yk. Consequently, we may build on the
techniques of Polyak and Juditsky [27] to obtain the asymptotics of the shadow sequence
yk, and then infer information about the original iterates xk. We note that in the constrained
optimization setting, the iteration (1.7) becomes an inexact Riemannian gradient method on
the restriction of f to M .
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FIG . 2. The stochastic projected gradient method for minimizing E(a,b) [( a, x − b) 2] over the 0 ball
X = {x : x 0 ≤ 2}. Here a ∼ N( 0, I ) and b =  a, x  + g where g ∼ N( 0, 1) and x := e1 + e2, the sum of
the first two standard basis vectors; in this example, d = 20. The optimal solution x lies on the active man-
ifold M = span{e1, e2}. The figure on the left depicts a kernel density estimation of the rescaled deviations√

K · P TM (x )( x̄K − x ) taken over 1000 runs of SGD (Gaussian kernel, bandwidth 0 .5); here, the method

is initialized at the origin with stepsizeηk = k − 3/ 4 and ran for K = 106 iterations. The figure on the right depicts
the rescaled normal deviations

√
K · PN M (x )( x̄K − x )/

√
d. Taken together, the figures again show that the

iterates rapidly approach the active manifold and asymptotically the deviations
√

k( x̄k − x ) are supported only
along the tangent space to M at x .

The validity of (1.7) relies on two extra conditions, introduced in [6], which relate the
“first-order” behavior of X to that of M . Namely, for x ∈ X and y ∈ M near x , we assume:

•  N X (y) ∩ Sd− 1, x − y = o(x − y) [(b)-regularity]
• N X (x) ∩ Sd− 1 ⊂ NM (y) + O(x − y)B [strong (a)-regularity]

Here Sd− 1 and B are the unit sphere and the closed unit ball in Rd, respectively. The (b)-
regularity condition simply asserts that the secant line joining x ∈ X and y ∈ M becomes
tangent to M as x and y tend to the same point near x . The strong-(a) regularity in contrast
asserts that the normal cone NX (x) is contained in NM (y) up to a linear error O(x − y) —
a kind of Lipschitz condition. The two regularity conditions are introduced and thoroughly
developed in [6], with numerous examples and calculus rules presented. In particular, both
conditions hold automatically for stochastic nonlinear programming.

1.1. Outline. The outline of the rest of the paper is as follows. Section 2 presents the
basic notation and constructions that will be used in the paper. Existence of smooth localiza-
tions σ (·) is a central assumption of our work. Section 3 develops asymptotic convergence
guarantees for SAA, which motivate much of the subsequent sections. Section 4 presents the
classes of algorithms that we consider. Section 5 states the main result on asymptotic normal-
ity of iterative methods. Section 6 present shows that SAA and SFB are both asymptotically
local minimax optimal in the sense of Hájek and Le Cam.

2. Notation and basic constructions. This section records basic notation that we will
use throughout the paper. To this end, the symbolRd will denote a Euclidean space with inner
product ·, · and the induced norm x =

√
x, x . The symbol B will stand for the closed

unit ball in Rd, while Br (x) will denote the closed ball of radius r around a point x. For any
function f : R d → R ∪ {+∞} , the domain, graph, and epigraph are defined as

dom f := x ∈ Rd : f (x) < ∞ ,
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gph f := x, f (x) ∈ Rd × R : x ∈ dom f ,

epi f := (x, r) ∈ R d × R : r ≥ f (x) ,

respectively. We say that f is closed if epi f is a closed set, or equivalently if f is lower-
semicontinuous. The proximal map of f with parameter α > 0 is given by

proxαf (x) := argmin
y

f (y) +
1

2α y − x 2 .

The distance and the projection of a point x ∈ Rd onto a set Q ⊂ Rd are

d(x, Q) := inf
y∈Q

y − x and PQ(x) := argmin
y∈Q

y − x,

respectively. The indicator function of Q , denoted by δQ(·) , is defined to be zero on Q and
+∞ off it. The symbol o(h) stands for any function o(·) satisfying o(h)/h → 0 as h 0.

2.1. Smooth manifolds. Next, we recall a few definitions from smooth manifolds; we
refer the reader to [2, 16] for details. Throughout the paper, all smooth manifolds M are
assumed to be embedded in Rd and we consider the tangent and normal spaces to M as
subspaces of Rd. Thus, a set M ⊂ Rd is a Cp manifold (with p ≥ 1) if around any point
x ∈ M there exists an open neighborhood U ⊂ R d and a Cp -smooth map F from U to
some Euclidean space Rn such that the Jacobian ∇F (x) is surjective and equality M ∩ U =
F − 1(0) holds. Then F = 0 are called the local defining equations forM , and the tangent and
normal spaces to M at x are defined by TM (x) := Null(∇F (x)) and NM (x) := (T M (x)) ⊥ ,
respectively. Note that for Cp manifolds M with p ≥ 1, the projection PM is Cp− 1-smooth
on a neighborhood of each point x in M and is Cp -smooth on a neighborhood of the origin
in the tangent space TM (x) [22]. Moreover, the inclusion range (∇P M (x)) ⊆ T M (PM (x))
holds for all x near M and ∇P M (x) = P TM (x) holds for all x ∈ M ([20], Lemma 2.1).

Let M ⊂ Rd be a Cp -manifold for some p ≥ 1. Then a function f : M → R is called
Cp -smooth around a point x ∈ M if there exists a Cp function ˆf : U → R defined on an
open neighborhood U ⊂ R d of x and that agrees with f on U ∩ M . Then the covariant
gradient of f at x is the vector ∇M f (x) := P TM (x) (∇ ˆf (x)) . When f and M are C2-
smooth, the covariant Hessian of f at x is defined to be the unique self-adjoint bilinear
form ∇ 2

M f (x) : T M (x) × T M (x) → R satisfying

d2

dt2
f PM (x + tu)

t= 0
= ∇ 2

M f (x)u, u for all u ∈ TM (x).

If M is C3-smooth, then we can write ∇ 2
M f (x) simply as

∇ 2
M f (x) = P TM (x) ∇ 2(f ◦ P M )(x)P TM (x) ,

while regarding the right-hand side as a linear operator on TM (x) .
A map F : M → R m is called Cp smooth near a point x if there exists a map F̂ : U → R d

defined on some neighborhood U ⊂ R d of x that agrees with F on M near x. In this case,
we define the covariant Jacobian ∇F (x) : TM (x) → R m by the expression ∇M F (x)u =
∇ F̂ (x)u for all u ∈ TM (x) . An easy computation shows that in the particular case when
F (x) = ∇ M f (x) for a C3-smooth function f : M → R , the quadratic form defined by
∇M F (x) on TM (x) coincides with ∇ 2

M f (x) . More precisely, equality holds:

PTM (x) · ∇M F (x) · PTM (x) = PTM (x) · ∇2
M f (x) · PTM (x) .
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2.2. Normal cones and subdifferentials. Next, we require a few basic constructions of
nonsmooth and variational analysis. Our discussion will follow mostly closely Rockafellar–
Wets [28]. Other influential treatments of the subject include [1, 3, 23, 25]. The Fréchet
normal cone to a set Q ⊂ R d at a point x ∈ R d, denoted N̂Q(x) , consists of all vectors
v ∈ Rd satisfying

(2.1) v, y − x ≤ o y − x as y → x in Q.

Thus v lies in N̂Q(x) if up to first-order v makes an obtuse angle with all directions pointing
from x into Q . Generally, Fréchet normals are highly discontinuous with respect to perturba-
tions of the basepoint x. Consequently, we enlarge the Fréchet normal cone as follows. The
limiting normal cone to Q at x ∈ Q , denoted by NQ(x) , consists of all vectors v ∈ Rd for
which there exist sequences xi ∈ Q and vi ∈ N̂Q(xi ) satisfying (xi , vi ) → (x, v) .

The analogous of normal cones for functions are subdifferentials, or sets of generalized
derivatives. Namely, consider a function f : Rd → R ∪ {∞} and a point x ∈ dom f . The
Fréchet subdifferential of f at x, denoted ∂̂f (x) , consists of all vectors v ∈ Rd satisfying the
approximation property:

f (y) ≥ f (x) +  v, y − x + o y − x as y → x.

The limiting subdifferential of f at x, denoted ∂f (x) , consists of all v ∈ Rd such that there
exist sequences xi ∈ Rd and Fréchet subgradients vi ∈ ∂̂f (x i ) satisfying (xi , f (x i ), vi ) →
(x, f (x), v) as i → ∞ . A point x satisfying 0 ∈ ∂f (x) is called critical for f . The primary
goal of algorithms for nonsmooth optimization is the search for critical points.

2.3. Active manifolds. Critical points of typical nonsmooth functions lie on a certain
manifold that captures the activity of the problem in the sense that critical points of slight
linear perturbation of the function do not leave the manifold. Such active manifolds have been
modeled in a variety of ways, including identifiable surfaces [32], partial smoothness [19],
UV-structures [18, 21], g ◦ F decomposable functions [30], and minimal identifiable sets
[11]. In this work, we adopt the following formal model of activity, explicitly used in [11].

DEFINITION 2.1 (Active manifold). Consider a function f : Rd → R ∪ {∞} and fix a
set M ⊆ dom f containing a point x̄ satisfying 0 ∈ ∂f ( x̄) . Then M is called an active Cp -
manifold around x̄ if there exists a constant  >0 satisfying the following:

• (smoothness) The set M is a Cp manifold near x̄ and the restriction of f to M is Cp -
smooth near x̄.

• (sharpness) The lower bound holds:

inf v : v ∈ ∂f (x), x ∈ U \ M > 0,

where we set U = {x ∈ B ( x̄) : |f (x) − f ( x̄)| < }.

More generally, we say that M is an active manifold for f at x̄ for v̄ ∈ ∂f ( x̄) if M is an
active manifold for the tilted function f v(x) = f (x) −  v, x at x̄.

The sharpness condition simply means that the subgradients of f must be uniformly
bounded away from zero at points off the manifold that are sufficiently close to x̄ in dis-
tance and in function value. The localization in function value can be omitted for example if
f is weakly convex or if f is continuous on its domain; see [11] for details.

Intuitively, the active manifold has the distinctive feature that the function varies smoothly
along the manifold and grows linearly normal to it; see Figure 3 for an illustration. This is
summarized by the following theorem from [5], Theorem D.2.
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FIG . 3. f (x 1, x2) = |x 1| + x2
2 .

PROPOSITION 2.2 (Identification implies sharpness). Suppose that a closed function
f : Rd → R ∪ {∞} admits an active manifold M at a point x̄ satisfying 0 ∈ ∂̂f ( x̄) . Then
there exist constants c,  >0 such that

(2.2) f (x) − f PM (x) ≥ c · dist(x, M ) ∀x ∈ B ( x̄).

Notice that there is a nontrivial assumption 0 ∈ ∂̂f ( x̄) at play in Proposition 2.2. Indeed,
under the weaker inclusion 0 ∈ ∂f ( x̄) the growth condition (2.2) may easily fail, as the
univariate example f (x) = −|x| shows. It is worthwhile to note that under the assumption
0 ∈ ∂̂f ( x̄) , the active manifold is locally unique around x̄ ([11], Proposition 8.2).

In order to make progress, we will require two extra conditions to hold along the active
manifold that tightly couple the subgradients of f on and off the manifold. Although these
two conditions, introduced in [6], may look formidable, they are very mild indeed.

The motivation for the first regularity condition stems from a weakening of Taylor’s theo-
rem that is appropriate for nonsmooth functions. Namely, recall that anyC1-smooth function
f satisfies the first-order approximation property

(2.3) f (y) = f (x) + ∇f (x), y − x + o y − x as x, y → x̄.

This estimate is fundamental to optimization theory and practice since it quantifies the ap-
proximation qualify of the linear model of f furnished by the gradient. When f is nons-
mooth, the analogue of (2.3) with subgradients replacing the gradient can not possibly hold
uniformly over all points x and y near x̄, since it would imply differentiability. Instead, a rea-
sonable requirement is to only require (2.3) to hold with pointsy lying on the active manifold
M . In fact, for our purposes, it suffices to replace the equality with an inequality.

DEFINITION 2.3 ((b≤ )-regularity). Consider a function f : R d → R∪{∞} that is locally
Lipschitz continuous on its domain. Fix a setM ⊂ dom f that is a C1 manifold around x̄ and
such that the restriction of f to M is C1-smooth near x̄. We say that f is (b≤ )-regular along
M at x̄ if there exists  >0 such that the estimates

f (y) ≥ f (x) +  v, y − x + 1 + v · o y − x ,(2.4)

hold for all x ∈ dom f ∩ B ( x̄) , y ∈ M ∩ B ( x̄) , and v ∈ ∂f (x) .

Importantly, condition (b≤ ) along an active manifold M directly implies that all nega-
tive subgradients of f , taken at points x near x̄, point towards the active manifold M . In-
deed, this is a direct consequence of Proposition 2.2, and is summarized in the following
corollary. Consequently, subgradient type methods always move in the direction of the active
manifold—clearly a desirable property.
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COROLLARY 2.4 (Proximal aiming). Consider a closed function f : R d → R∪{∞} that
admits an active C1-manifold M at a point x̄ satisfying 0 ∈ ∂̂f ( x̄) . Suppose that f is locally
Lipschitz continuous on its domain and that f is (b≤ )-regular along M near x̄. Then, there
exists a constant μ > 0 such that, the estimate

(2.5) v, x − PM (x) ≥ μ · dist(x, M ) + 1 + v · o dist(x, M ) ,

holds for all x ∈ dom f near x̄ and for all v ∈ ∂f (x) .

The second regularity condition has a different flavor, stemming from a weakening of
Lipschitz continuity of the gradient. Namely, nonsmoothness by its nature implies that the
deviation ∂f (x) − ∂f (y) is not controlled well by the distance in the arguments x − y . On
the other hand, it turns out that if we take y ∈ M and only look at the subgradient deviations
in tangent directions, the error PTM (y) [∂f (x) − ∂f (y)] is typically linearly bounded by x −
y . Moreover, in typical circumstances PTM (y) [∂f (y)] consists only of a single vector, the
covariant gradient ∇M f (y) .

DEFINITION 2.5 (Strong (a)-regularity). Consider a function f : Rd → R ∪ {∞} that
is locally Lipschitz continuous on its domain. Fix a set M ⊂ dom f that is a C1 manifold
around x̄ and such that the restriction of f to M is C1-smooth near x̄. We say that f is
strongly (a)-regular along M near x̄ if there exist constants C,  >0 satisfying

PTM (y) v − ∇ M f (y) ≤ C 1 + v x − y,(2.6)

for all x ∈ dom f ∩ B ( x̄) , y ∈ M ∩ B ( x̄) , and v ∈ ∂f (x) .

The two regularity conditions easy extend to sets through their indicator functions.
Namely, we say that a set Q ⊂ Rd is (b≤ )-regular (respectively strongly (a)-regular) along
a C1 manifold M ⊂ Q at x̄ ∈ M if the indicator function δQ is (b≤ )-regular (respectively,
strongly (a)-regular) along M at x̄.

The paper [6] presents a wide array of functions that admit active manifolds along which
both conditions (b≤ ) and strong (a) hold. Here, we discuss in detail a single example of
nonlinear programming, and refer the reader to [6] for many more examples.

EXAMPLE 1 (Nonlinear programming). Consider the problem of nonlinear program-
ming

(2.7)

minx
f (x)

s.t. gi (x) ≤ 0 for i = 1, . . . , m,

gi (x) = 0 for i = m + 1, . . . , n,

where f and gi are Cp -smooth functions on Rd. Let X denotes the set of all feasible points
to the problem. Consider now a point x̄ ∈ X that is critical for the function f + δ X and define
the active index set

I = i : gi ( x̄) = 0 .

Suppose the following is true:

• (LICQ) the gradients {∇g i ( x̄)} i∈ I are linearly independent.
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Then the set

M = x : gi (x) = 0 ∀i ∈ I

is a Cp smooth manifold locally around x̄. Moreover, all three functions f , δX , and f + δ X

are (b≤ )-regular and strongly (a)-regular along M near x̄. In order to ensure that M is an
active manifold of f + δ X , an extra condition is required. Define the Lagrangian function

L(x, y) := f (x) +
n+m

i= 1

yi gi (x).

Criticality of x̄ and LICQ ensures that there exists a (unique) Lagrange multiplier vector ȳ ∈
Rm

+ × R n satisfying ∇xL ( x̄, ȳ) = 0 and ȳi = 0 for all i /∈ I . Suppose the following standard
assumption is true:

• (Strict complementarity) ȳi > 0 for all i ∈ I ∩ {1, . . . , m}.

Then M is indeed an active Cp manifold for f + δ X at x̄.

EXAMPLE 2 ( 1-regularization). Consider the stochastic optimization problem with 1
regularization

(2.8) minx g(x) = f (x) + λx 1,

where f (x) = E z∈P [f (x, z)] is a Cp -smooth function in Rd. Consider now a point x̄ ∈ Rd

that is critical for the function g and define the index set I = {i : x̄i = 0}. Then the set

M = {x : x i = x̄i , ∀i ∈ I }
is an affine space, hence a smooth manifold. Note that the definition of criticality ensures that
0 ∈ ∂g( x̄) , so we always have

− ∇f ( x̄) i ∈ [−λ, λ] ∀i ∈ I .

Suppose the following condition is true:

• (Strict complementarity) −(∇f ( x̄)) i ∈ (−λ, λ) for all i ∈ I .

Then M is indeed an active Cp manifold for g at x̄. Moreover, (b≤ )-regularity and strong
(a)-regularity hold trivially for g along M at x̄. Note that there is usually a bias between the
center of the asymptotic distribution x̄ and the ground truth due to the regularization term.

2.4. Smoothly invertible maps and active manifolds. Performance of statistical estima-
tion procedures strongly depends on the sensitivity of the problem to perturbation. A variety
of estimation problems can in turn be modeled as the task of solving an inclusion 0 ∈ F (x)
for some set-valued map F , whose values we can only approximate by sampling. We next
review basic perturbation theory based on the inverse/implicit function theorem paradigm,
while closely following the monograph [9].

A set-valued map F : Rd ⇒ R m is an assignment that maps a pointx ∈ Rd to a set F (x) ⊂
Rm. Set-valued maps always admit a set-valued inverse:

F − 1(y) = x : y ∈ F (x) .

The domain and graph of F are defined, respectively, as

dom F := x : F (x) = ∅ and gph F := (x, y) : y ∈ F (x) .

We will be interested in the sensitivity of the solutions to the system v ∈ F (x) with respect
to perturbations of the left-hand side v, or equivalently, the variational behavior of the map
v  → F − 1(v) . In particular, we will be interested in settings when the graph ofF − 1 coincides
locally around a base point (v, x) with a graph of a smooth map. This is the content of the
following definition.
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DEFINITION 2.6 (Smooth invertibility). Consider a set-valued map F : Rd ⇒ R m and a
pair ( x̄, v̄) ∈ gph F . We say that F is Cp invertible around ( x̄, v̄) with inverse σ (·) if there
exists a single-valued Cp -smooth map σ (·) and a neighborhood U of ( v̄, x̄) satisfying

U ∩ gph F − 1 = U ∩ gph σ.

The definition might seem odd at first: there is nothing “smooth” about F , and yet we
require the graph of F − 1 to coincide with a graph of a smooth function near ( v̄, x̄) . On the
contrary, we will see that in a variety of settings this assumption is indeed valid. In particular,
smooth invertibility is typical in nonlinear programming.

EXAMPLE 3 (Nonlinear programming). Returning to Example 1 with p ≥ 2, define the
set-valued map

F (x) = ∇f (x) + N X (x).

Then it is classically known that F is Cp− 1 invertible at ( x̄, 0) if and only if the matrix

 := P TM ( x̄)∇ 2
xx

L( x̄, ȳ)PTM ( x̄)

is nonsingular on TM ( x̄) . In this case, the Jacobian of the inverse map is∇σ (0) = †, where
† denotes the Moore–Penrose pseudoinverse. It is worthwhile to note that can be equiva-
lently written as PTM ( x̄)∇ 2

M f ( x̄)PTM ( x̄) .

EXAMPLE 4 ( 1-regularization). Returning to Example 2 with p ≥ 2, define the set-
valued map F (x) = ∇f (x) + λ∂( · 1)(x) . Then F is Cp− 1 invertible at ( x̄, 0) if and only
if the matrix  := P TM ( x̄)∇ 2f ( x̄)PTM ( x̄) is nonsingular on TM ( x̄) .

Smooth invertibility is closely tied to active manifolds, and Example 3 and Example 4
are simple consequences. Indeed the following much more general statement is true. This
result follows from a standard argument combining active manifolds and the implicit function
theorem. The proof appears in Section 7.1 of the Supplementary Material [7]. We will require
a mild assumption on the considered functions. Following [26], Definition 2.1, a function
f is called subdifferentially continuous at a point x̄ if for any sequences (xi , vi ) ∈ gph ∂f
converging to some pair ( x̄, v̄) ∈ gph ∂f , the function values f (x i ) converge to f ( x̄) . In
particular, functions that are continuous on their domains and closed convex functions are
subdifferentially continuous.

THEOREM 2.7 (Smooth invertibility and active manifolds). Consider the map

F (x) := A(x) + ∂f (x),

where A : Rd → R d is Cp -smooth and f : Rd → R ∪ {∞} is subdifferentially continuous
near a point x̄. Suppose that f admits a Cp+ 1 active manifold M at some point x̄ for
−A( x̄) ∈ ∂̂f ( x̄) . Let G(x) = 0 be any Cp+ 1-smooth local defining equations for M near
x̄ and let ˆf be a Cp+ 1-smooth function that agrees with f on a neighborhood of x̄ in M .
Define the map

H(x, y) := A(x) + ∇ ˆf (x) + ∇G(x) y.

Then there exists a unique multiplier vectorȳ satisfying the condition 0 = H( x̄, ȳ) . Moreover,
F is Cp -invertible around (0, x̄) with inverse σ (·) if and only if the matrix

 := P TM ( x̄)∇xH( x̄, ȳ)PTM ( x̄)

is nonsingular on TM ( x̄) , and in this case equality ∇σ (0) = † holds.
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3. Asymptotic normality of SAA. Before analyzing the asymptotic performance of
stochastic approximation algorithms, it is instructive to first recall guarantees for sample av-
erage approximation (SAA), where the assumptions, conclusions, and arguments are much
simpler to state. This is the content of this section: we derive the asymptotic distribution of
the SAA estimator for nonsmooth problems.Throughout the section, we focus on the problem
of finding a point x satisfying the variational inclusion

(3.1) 0 ∈ A(x) + H (x) where A(x) = E
z∼ P

A(x, z).

Here H : Rd ⇒ R d is a set-valued map with closed graph,P is a fixed probability distribution
on some measure space (Z , F ), and A: R d × Z → R d is a measurable map. We will impose
the following assumption throughout the rest of the section.

ASSUMPTION A. The map F := A + H is C1-smoothly invertible near (0, x̄) with in-
verse σ (·).

The SAA approach to solving (3.1) proceeds as follows. Let S = {z 1, . . . , zk} be i.i.d.
samples drawn from P and let xk be a solution of the problem

(3.2) 0 ∈ AS(x) + H (x) where AS(x) :=
1
k

k

i= 1

A(x, zi ),

assuming one exists. We will now show that the solutions of sample average approximations
are asymptotically normal with covariance ∇σ (0) · Cov(A( x̄, z)) · ∇σ (0) . Though variants
of this result are known [13, 14, 29], we provide a short proof in Section 8.1 of the Supple-
mentary Material [7] highlighting the use of the solution map σ (·). To this end, we impose
the following standard assumption.

ASSUMPTION B (Integrability and smoothness). Suppose that there exists a neighbor-
hood U around x̄ satisfying the following.

1. For almost every z, the map A(·, z) is differentiable at every x ∈ U .
2. The second moment bounds hold:

sup
x∈U

E
z∼ P

A(x, z) 2 < ∞ and sup
x∈U

E
z∼ P

∇A(x, z) 2
op < ∞.

The following theorem shows that as long as xk eventually stay in a sufficiently small
neighborhood of x̄, the error

√
k(xk − x̄) is asymptotically normal with covariance ∇σ (0) ·

Cov(M( x̄, z)) · ∇σ (0) . Verifying that the problem (3.2) admits solutions xk that are suffi-
ciently close to x̄ is a separate and well-studied topic and we do not discuss it here.

THEOREM 3.1 (Sample average approximation). Suppose that Assumptions A and B
hold. In particular, there exist 1, 2 > 0 and a C1-smooth map σ : B 1

(0) → B 2( x̄) with

gph σ = B
1
(0) × B 2( x̄) ∩ gph F − 1.

Suppose moreover that there exists a square integrable function L(z) satisfying

(3.3) ∇A(x 1, z) − ∇A(x 2, z) ≤ L(z)x 1 − x 2 ∀x1, x2 ∈ B 2( x̄).

Shrinking 2, if necessary, let us ensure that 2 ≤ min{ lip(σ )− 1

2EL
, 1

2EL }. Let S = {z1, . . . , zk}
be i.i.d. samples drawn from P and let xk be a measurable selection of the solutions (3.2)
such that Pr[xk ∈ B 2( x̄)] → 1 as k tends to infinity. Then the expansion holds:

√
k(xk − x̄) = −∇σ ( 0) ·

√
k A( x̄) − A S( x̄) + oP (1),
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and therefore

(3.4)
√

k(xk − x̄) D
−→N 0, ∇σ (0) · Cov A( x̄, z) · ∇σ (0) .

Note that Theorem 3.1 assumes existence of a measurable selection of the solutions (3.2)
such that Pr[xk ∈ B 2( x̄)] → 1 as k tends to infinity. This is a very mild assumption and
follows for example, from uniform convergence and smooth invertibility.

THEOREM 3.2 (Existence of measurable selections). Suppose that F is C1-smoothly
invertible around near (0, x̄) and that A(x, z) and ∇A(x, z) converge uniformly on some ball
around x̄, that is there exists  >0 such that

sup
x∈B ( x̄)

∇A S(x) − ∇A(x) = op (1) and sup
x∈B ( x̄)

AS(x) − A(x) = op (1).

Then there exists δ > 0 and a measurable selection of the solutions (3.2) such that Pr [xk ∈
Bδ( x̄)] → 1 as k tends to infinity.

PROOF . Standard results on the implicit function theorem (see proof of [9], Theo-
rem 3G.3) imply that there exist sufficiently small ε2, ε3 > 0 such that whenever
supx∈B ( x̄) A S(x) − A(x) < ε 2 and supx∈B ( x̄) ∇A S(x) − ∇A(x) < ε 2, the map AS + H
is guaranteed to be smoothly invertible on Bε3( x̄) × B ε3

(0). In particular, the solution
xk ∈ Bε3( x̄) of (3.2) exists and is unique. To see measurability of xk, observe that the maps
AS and H are both measurable ([28], Exercise 14.9), and therefore so is the map D(S) =
gph(AS + H ) . Notice now that xk(S) uniquely satisfies the inclusion (xk(S), 0) ∈ D(S) .
Therefore, [28], Theorem 14.16, implies that xk is measurable.

Our goal in the rest of the paper is to show that a simple online algorithm, namely the
stochastic forward backward (SFB) method, under reasonable assumptions enjoys the same
guarantees as (3.4) for SAA. Moreover, in the final section of the paper (Section 6), we
will show that this performance is best possible among any estimation procedure in a local
minimax sense, and therefore both SAA and SFB are asymptotically local minimax optimal.

4. Stochastic approximation: Assumptions & examples. We now move to stochastic
approximation algorithms, and in this section set forth the algorithms we will consider and
the relevant assumptions. The concrete examples we will present will all be geared to solving
variational inclusions, but the specifics of this problem class is somewhat distracting. There-
fore, we will instead only isolate the essential ingredients that are needed for our results to
take hold. Setting the stage, our goal is to find a point x satisfying the inclusion

(4.1) 0 ∈ F (x),

where F : Rd ⇒ R d is a set-valued map. Throughout, we fix one such solutionx̄ of (4.1). We
will assume that in a certain sense, the problem (4.1) is “variationally smooth”. That is, there
exists a distinguished manifold M —the active manifold in concrete examples—containing x̄
and such that the map x  → P TM (x) F (x) is single-valued and C1-smooth on M near x̄. The
following assumption makes this precise.

ASSUMPTION C (Smooth reduction). Suppose that there exists a Cp manifold M ⊂ Rd

such that the following properties are true.

(C1) The map FM : M → R d defined by

FM (x) := P TM (x) F (x)

is single-valued on some neighborhood of x̄ in M .
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(C2) There exists a neighborhood U of ( x̄, 0) such that

U ∩ gph F = U ∩ gph(FM + N M ).

We note that smooth invertibility ofF can be easily characterized in terms of the covariant
Jacobian ∇M FM ( x̄) . This is the content of the following lemma.

LEMMA 4.1 (Jacobian of the solution map). The map F is Cp -smoothly invertible
around ( x̄, 0) with localization σ (·) if and only if the linear map PTM ( x̄)∇F M ( x̄)PTM ( x̄)

is nonsingular on TM ( x̄) . In this case, the Jacobian of the localization is given by

∇σ (0) = PTM ( x̄)∇M FM ( x̄)PTM ( x̄)
†.

PROOF . Let be a smooth extension of F to a neighborhood V ⊂ R d of x̄. In light
of Assumption (C2), the graphs of F and  + N M coincide near ( x̄, 0), and therefore we
can focus on existence of smooth localizations of (  + N M )− 1. Applying Lemma 7.2 in
the Supplementary Material [7] with ȳ = 0, we see that  + N M is Cp -smoothly invertible
around ( x̄, 0) if and only if the linear map PTM ( x̄)∇ ( ¯x)PTM ( x̄) is nonsingular on TM ( x̄) .
In this case, the Jacobian of the localization is given by ∇σ (0) = (P TM ( x̄)∇ ( ¯x)PTM ( x̄) )†.
Noting the equality ∇F M ( x̄)PTM ( x̄) = ∇ M ( ¯x)PTM ( x̄) completes the proof.

The stochastic approximation algorithms we consider assume access to a generalized gra-
dient mapping:

G: R ++ × R d × R d → R d.

Given x0 ∈ Rd, the algorithm iterates the update

xk+ 1 = x k − α kGαk
(xk, νk),(4.2)

where αk > 0 is a control sequence and νk is stochastic noise. We will place relevant assump-
tions on the noise νk later in Section 5.

We make two assumptions onG. The first (Assumption D) is similar to classical Lipschitz
assumptions and ensures the steplength can only scale linearly in ν .

ASSUMPTION D (Steplength). We suppose that there exists a constant C > 0 and a
neighborhood U of x̄ such that the estimate

sup
x∈UF

Gα(x, ν) ≤ C 1 + ν ,

holds for all ν ∈ Rd and α > 0, where we set UF := U ∩ dom F .

The second assumption makes precise the relationship between the mapping G and FM .

ASSUMPTION E (Strong (a) and aiming). We suppose that there exist constantsC, μ > 0
and a neighborhood U of x̄ such that the following hold for all ν ∈ Rd and α > 0, where we
set UF := U ∩ dom F .

(E1) (Tangent comparison) For allx ∈ UF , we have

PTM (PM (x)) Gα(x, ν) − F PM (x) − ν ≤ C 1 + ν 2 dist(x, M ) + α .

(E2) (Proximal Aiming) For x ∈ UF , we have

Gα(x, ν) − ν, x − P M (x) ≥ μ · dist(x, M ) − 1 + ν 2 o dist(x, M ) + Cα .
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Some comments are in order. Assumption (E1) ensures that the direction of motion
Gαk

(xk, νk) approximates well FM (PM (x)) in tangent directions to the manifold M . As-
sumption (E2) ensures that after subtracting the noise from Gαk

(xk, νk), the update direction
xk − xk+ 1 locally points towards the manifold M . Note that the little-o term in (E2) depends
only on dist(x, M ) and not on α. We will later show that this ensures the iteratesxk approach
the manifold M at a controlled rate.

4.1. Examples of stochastic approximation for variation inclusions. The rest of the sec-
tion is devoted to examples of algorithms satisfying Assumptions D and E. In all cases, we
will consider the task of solving the variational inclusion

(4.3) 0 ∈ A(x) + ∂g(x) + ∂f (x).

Here A: R d → R d is any single-valued continuous map, f : R d → R is a closed function,
and g : Rd → R is a closed function that is bounded from below. 2 As explained in the In-
troduction, variational inclusions encompass a variety of problems, most-notably first-order
optimality conditions for nonlinear programming and Nash equilibria of games. In order to
identify (4.3) with (4.1), we define the set-valued map F to be

F (x) := A(x) + ∂g(x) + ∂f (x).

Throughout, we fix a point x satisfying the inclusion (4.3).
A classical algorithm for problem (4.3) is the stochastic forward–backward iteration,

which proceeds by taking “forward-steps” on A + ∂g and proximal steps on f . Specifically,
given a current iterate xt , the algorithm performs the update

(4.4)
Choose wt ∈ ∂g(x t )

Choose xt+ 1 ∈ proxαt f
xt − α t A(x t ) + w t + ν t

,

where νt is a noise sequence. The operatorGα(x, ν) corresponding to this algorithm is simply

Gα(x, ν) :=
x − sf (x − α(A(x) + s g(x) + ν))

α
,

where sg(x) is any selection of the subdifferential ∂g(x) and sf (x) is any selection of the
proximal map proxαf (x) . The goal of this section is to verify Assumption E for this operator
under a number of reasonable assumptions on A, g, and f .

In particular, the local boundedness condition D for G is widely used in the literature,
with a variety of sufficient conditions known. The following lemma describes a number of
such conditions, which we will use in what follows. The proof appear in Section 9.1 of the
Supplementary Material [7].

LEMMA 4.2 (Local boundedness). Suppose that A(·) and sg(·) are locally bounded
around x̄. Then Assumption D is guaranteed to hold in any of the following settings.

1. f is the indicator function of a closed set X .
2. f is convex and the function x  → dist(0, ∂f (x)) is bounded on dom f near x̄.
3. f is Lipschitz continuous on dom g ∩ dom f .

We next verify Assumption E in a number of reasonable settings; all proofs appear in the
Supplementary Material [7]. In particular, it will be useful to note the following expression
for FM . We will use this lemma throughout the section, without explicit reference.

2In particular, proxαf (x) is nonempty for all x ∈ Rd and all α > 0.
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LEMMA 4.3 (Local tangent reduction). Suppose that f and g are Lipschitz continuous
on their domains, A is Cp -smooth, f + g admits an active Cp+ 1 manifold at x for −A(x ),
and f and g are both Cp+ 1-smooth and strongly (a) regular along M near x . Then As-
sumption C holds and FM admits the simple form

(4.5) FM (x) = P TM (x) A(x) + ∇ M g(x) + ∇ M f (x),

for all x ∈ M near x .

4.1.1. Stochastic forward algorithm (f = 0). We begin with the simplest case of (4.3)
where f = 0. In this case, the iteration (4.2) reduces to a pure stochastic forward algorithm
and the map G takes the simple form

Gα(x, ν) := A(x) + s g(x) + ν,

which is independent of α. Let us introduce the following assumption on the problem data.

ASSUMPTION F (Assumptions for the forward algorithm). Suppose that f = 0 and that
both g(·) and A(·) are Lipschitz continuous around x̄. Suppose that M ⊆ X is a Cp -smooth
manifold for g at x̄.

(F1) (Strong (a)) The function g is strongly (a)-regular along M at x̄.
(F2) (Proximal aiming) There exists μ > 0 such that the inequality holds:

A( x̄) + v, x − P M (x) ≥ μ · dist(x, M ) for all x near x̄ and v ∈ ∂g(x) .(4.6)

Note that Corollary 2.4 shows that the aiming condition (F2) holds as long as the inclusion
−A( x̄) ∈ ∂̂g( x̄) holds, M is an active manifold for g at x̄ for v = −A( x̄) , and g is (b≤ )-
regular along M at x̄. The following proposition shows that Assumption F suffices to ensure
Assumption E. The proof appears in the Supplementary Material.

PROPOSITION 4.4 (Forward method). Assumption F implies Assumption E.

The following is now immediate.

COROLLARY 4.5 (Active manifolds). Suppose f = 0 and that both g(·) and A(·) are
Lipschitz continuous around x̄. Suppose moreover that the inclusion −A( x̄) ∈ ∂̂g( x̄) holds,
that g admits a C2 active manifold around x̄ for v̄ = −A( x̄) , and that g is both (b)≤ -regular
and strongly (a)-regular along M at x̄. Then Assumption E holds.

4.1.2. Stochastic projected forward algorithm (f = δ X ). Next, we focus on the partic-
ular instance of (4.3) where f is an indicator function of a closed set X . In this case, the
iteration (4.2) reduces to a stochastic projected forward algorithm and the map G takes the
form

Gα(x, ν) :=
x − sX (x − α(A(x) + s g(x) + ν))

α
,

where sX (x) is a selection of the projection map PX (x) . In order to ensure Assumption E for
the stochastic projected forward method, we introduce the following assumption.

ASSUMPTION G (Assumptions for the projected gradient mapping). Suppose that f is
the indicator function of a closed set X and both g(·) and A(·) are Lipschitz continuous
around x̄. Let M ⊆ X be a C2 manifold containing x̄ and suppose that f is C2 on M near
x̄.
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(G1) (Strong (a)) The function g and set X are strongly (a)-regular along M at x̄.
(G2) (Proximal aiming) There exists μ > 0 such that the inequality holds

A( x̄) + v, x − P M (x) ≥ μ · dist(x, M ) ∀x ∈ X near x̄ and v ∈ ∂g(x) .(4.7)

(G3) (Condition (b)) The set X is (b≤ )-regular along M at x̄.

Note that a similar argument as Corollary 2.4 shows that the aiming condition (G2) holds
as long as the inclusion −A( x̄) ∈ ∂̂(g + f )( x̄) holds, M is an active manifold of g + f at x̄
for v = −A( x̄) , and g is (b≤ )-regular along M at x̄.

The following proposition shows that Assumption G is sufficient to ensure Assumption E.

PROPOSITION 4.6 (Projected forward method). If Assumptions D and G hold, then so
does Assumption E.

The following is now immediate.

COROLLARY 4.7 (Active manifolds). Suppose that f is the indicator function of a
closed set X and both g(·) and A(·) are Lipschitz continuous around x̄. Suppose moreover
the inclusion −A( x̄) ∈ ∂̂(g + f )( x̄) holds, g + f admits a C2 active manifold around x̄ for
the vector v̄ = −A( x̄) , and both g and f are (b≤ )-regular and strongly(a)-regular along M
at x̄. Then Assumption E holds.

4.1.3. Stochastic forward–backward method (g = 0). Finally, we focus on the particular
instance of (4.3) where g = 0. In this case, the iteration (4.2) reduces to a stochastic forward–
backward algorithm and the map G becomes

Gα(x, ν) :=
x − sf (x − α(A(x) + ν))

α
.

In order to ensure Assumption E for the stochastic proximal gradient method, we introduce
the following assumptions.

ASSUMPTION H (Assumptions for the forward–backward method). Suppose g = 0 and
f (·) and A(·) are Lipschitz continuous on dom f near x̄. Suppose moreover that there exists
a C2 manifold M ⊂ X containing x̄ and such that f is C2-smooth on M near x̄.

(H1) (Strong (a)) The function f is strongly (a)-regular along M at x̄.
(H2) (Proximal Aiming) There exists μ > 0 such that the inequality

A( x̄) + v, x − P M (x) ≥ μ · dist(x, M ) − 1 + v o dist(x, M )(4.8)

holds for all x ∈ dom f near x̄ and v ∈ ∂̂f (x) .

Note that Corollary 2.4 shows that the aiming condition (H2) holds as long as the inclusion
−A( x̄) ∈ ∂̂f ( x̄) holds, M is an active manifold for f at x̄ for v = −A( x̄) , and f is (b≤ )-
regular along M at x̄.

The following proposition shows that Assumption H is sufficient to ensure Assumption E.

PROPOSITION 4.8 (Forward–backward method). If Assumptions D and H hold, then so
does Assumption E.

The following is now immediate.

COROLLARY 4.9 (Active manifolds). Suppose g = 0 and both f and A(·) are Lipschitz
continuous on domf near x̄. Suppose moreover the inclusion−A( x̄) ∈ ∂̂f ( x̄) holds. Suppose
that f admits a C2 active manifold around x̄ for v̄ = −A( x̄) and f is both (b)≤ -regular and
strongly (a)-regular along M at x̄. Then Assumption E holds.
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5. Asymptotic normality. Next, we impose two assumptions on the step-sizeαk and the
noise sequence νk. The first is standard, and is summarized next.

ASSUMPTION I (Standing assumptions). Assume the following.

(I1) The map G is measurable.
(I2) There exist constants c1, c2 > 0 and γ ∈ ( 1/ 2, 1] such that

c1

kγ ≤ αk ≤
c2

kγ
.

(I3) {νk} is a martingale difference sequence w.r.t. to the increasing sequence ofσ-fields

Fk = σ (xj : j ≤ k and νj : j < k),

and there exists a function q : Rd → R + that is bounded on bounded sets with

E[νk|Fk] = 0 and E ν k
4|Fk < q(x k).

We let Ek[·] = E[·| Fk] denote the conditional expectation.
(I4) The inclusion xk ∈ dom F holds for all k ≥ 1.

All items in Assumption I are standard in the literature on stochastic approximation meth-
ods and mirror for example those found in [8], Assumption C. The only exception is the
fourth moment bound on ν k , which stipulates that νk has slightly lighter tails. This bound
appears to be necessary for the setting we consider.

To prove our asymptotic normality results, we impose a further assumption on the noise
sequence νk, which also appears in [12], Assumption D. Before stating it, as motivation,
consider the stochastic variational inequality (4.3) given by:

0 ∈ A(x) + ∂f (x) + ∂g(x) where A(x) = E
z∼ P

A(x, z).

Then the noise νk in the algorithm (4.4) takes the form

νk = A(x k; zk) − A(x k).

Equivalently, we may decompose the right-hand side as

νk = A( x̄; zk) − A( x̄)

=:ν (1)
k

+ A(xk; zk) − A( x̄; zk) + A( x̄) − A(x k)

=:ν (2)
k (xk)

.

The two components ν(1)
k and ν(2)

k (xk) are qualitatively different in the following sense. On

one hand, the sum 1√
k

k
i= 1

ν(1)
i clearly converges to a zero-mean normal vector as long as

the covariance Cov (A( x̄, z)) exists. On the other hand, ν(2)
k (xk) is small in the sense that

Ekν
(2)
k (xk) 2 ≤ 2 · Ez[L(z) 2] · x k − x̄ 2, where L(z) is a Lipschitz constant of A(·, z).

With this example in mind, we introduce the following assumption on the noise sequence.

ASSUMPTION J. Fix a point x̄ ∈ dom F at which Assumption C holds and let U be a
matrix whose column vectors form an orthogonal basis ofTM ( x̄) . Recall thatEk[·] denote the
conditional expectation with respect toFk. We suppose the noise sequence has decomposable
structure νk = ν

(1)
k + ν

(2)
k (xk), where ν(2)

k : dom F → R d is a random function satisfying

Ek U ν(2)
k (x) 2 ≤ Cx − ¯ x 2 for all x ∈ dom F near x̄,



ASYMPTOTIC NORMALITY IN NONSMOOTH STOCHASTIC APPROXIMATION 1503

and some C > 0. In addition, we suppose that for all x ∈ dom F , we have Ek[ν (1)
k ] =

Ek[ν (2)
k (x)] = 0 and the following limit holds:

1
√

k

k

i= 1

U ν(1)
i

D
−→ N 0, U U

for some symmetric positive semidefinite matrix .

Note that Assumption J only requires that ν(1)
k and ν(2)

k have zero conditional mean, which
is weaker than being independent of the previous iterates. We are now ready to state the main
result of this work—asymptotic normality for stochastic approximation algorithms.

THEOREM 5.1 (Asymptotic normality). Suppose that Assumption C, D, E, I, and J hold.
Suppose that γ ∈ ( 1

2
, 1) and that the sequence xk generated by the process (4.2) converges to

x̄ with probability one. Suppose that there exists a constant μ > 0 satisfying

(5.1) ∇M FM ( x̄)v, v ≥ μv 2 for all v ∈ TM ( x̄).

Then F is Cp -smoothly invertible around ( x̄, 0) with inverse σ (·) and the average iterate
x̄k = 1

k
k
i= 1

xi admits the expansion

√
k( x̄k − x̄) = −

1
√

k

k

i= 1

U U ∇M FM ( x̄)U − 1U ν(1)
i + oP (1),

and hence
√

k( x̄k − x̄) D
−→ N 0, ∇σ (0) ·  · ∇σ ( 0) .

Moreover,∇σ (0) can be equivalently written as ∇σ (0) = (P TM ( x̄)∇M FM ( x̄)PTM ( x̄) )†.

The conclusion of this theorem is surprising: although the sequence xk never reaches the
manifold, the limiting distribution of

√
k( x̄k − x̄) is supported on the tangent space TM ( x̄) .

Thus asymptotically, the “directions of nonsmoothness,” which are normal toM , are quickly
“averaged out.” When G αk

(xk, νk) is bounded away from 0 for all k, this means that xk

must oscillate across the manifold, instead of approaching it from one direction.

5.1. Asymptotic normality in nonlinear programming. As a simple illustration of The-
orem 5.1, we now spell out the consequence for the stochastic projected gradient method
for stochastic nonlinear programming, already discussed in Example 1. Namely, consider the
problem (2.7) and let x̄ be a local minimizer. Suppose that gi are C3-smooth near x̄ and f
takes the form f (x) = E z∼ P f (x, z) for some probability distribution P and each function
f (·, z) is C3-smooth near X . Consider the following stochastic projected gradient method:

Sample: zk ∼ P ,

Update: xk+ 1 ∈ PX xk − α k∇f (x k; zk) .(5.2)

In order to understand the asymptotics of the algorithm, as in Example 1, let ȳ be the La-
grange multiplier vector and suppose that LICQ and strict complementarity holds. Suppose
moreover the second-order sufficient conditions: there exists μ > 0 such that

(5.3) w ∇ 2
xx

L ( x̄, ȳ) w ≥ μw 2 for all w ∈ TM ( x̄) .

Note that, as explained in Example 3, this condition is simply the requirement that the co-
variant Hessian of f := f 0 + δX

∇ 2
M f ( x̄) = P TM ( x̄)∇ 2

xx
L x , y PTM ( x̄)
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is positive definite on TM ( x̄) . Finally, to ensure our noise sequence

νk = ∇f (x k; zk) − ∇f (x k)

= ∇f ( x̄; zk) − ∇f 0( x̄)

=:ν (1)
k

+ ∇f (x k; zk) − ∇f ( x̄; zk) + ∇f ( x̄) − ∇f (x k)

=:ν (2)
k (xk)

,

satisfies Assumptions I and J, we assume the stochasticity is sufficiently well behaved:

ASSUMPTION K (Stochastic gradients). As a function of x, the fourth moment

x ∈ X → E z∼ P ∇f (x; z) − ∇f (x) 4

is bounded on bounded sets. Moreover, there exists C > 0 such that

Ez∼ P ∇f (x; z) − ∇f ( ¯x; z) 2 ≤ Cx − ¯ x 2 for all x ∈ X .

Finally, the gradients PTM ( x̄)∇f ( x̄; z) have finite covariance  = Cov(PTM ( x̄)∇f ( x̄; z)).

With these assumptions in hand, we have the following asymptotic normality result for
nonlinear programming—a direct corollary of Theorem 5.1.

COROLLARY 5.2 (Asymptotic normality in nonlinear programming). Suppose that
LICQ, strict complementary, second-order sufficient conditions, and Assumption K hold.
Suppose that γ ∈ ( 1

2
, 1) and consider the iterates xk generated by the stochastic projected

gradient method (5.2). Then if xk converges to x̄ with probability 1, the average iterate
x̄k = 1

k
k
i= 1

xi admits the expansion

√
k( x̄k − x̄) = −

1
√

k

k

i= 1

U U ∇ 2
xx

L( x̄, ȳ)U − 1U ν(1)
i + oP (1),

where the columns of U form an orthonormal basis of TM ( x̄) . Consequently, asymptotic
normality holds:

√
k( x̄k − x̄) d

−→ N 0, ∇σ (0) · Cov ∇f ( x̄; z) · ∇σ (0) ,

where ∇σ (0) = (P TM ( x̄)∇ 2
xx

L( x̄, ȳ)PTM ( x̄) )†.

As stated in the Introduction, this appears to be the first asymptotic normality guaran-
tee for the standard stochastic projected gradient method in general nonlinear programming
problems with C3 data, even in the convex setting. Finally, we note that even for simple opti-
mization problems, dual averaging procedures can achieve suboptimal convergence [12]. This
is surprising since such methods identify the active manifold [17] (also see [12], Section 4.1),
while projected stochastic gradient methods do not.

EXAMPLE 5. It is instructive to look at three problem formulations for sparse recovery:

minx E f (x, z) + λx 1,(regularized)

min
x 1≤A

E f (x, z) ,(l1 constraint)

min
|supp(x)|≤s

E f (x, z) .(l0 constraint)

Problem (regularized) is typically solved by the stochastic proximal algorithm, while
(l1 constraint) and ( l0 constraint) are solved by the stochastic projected gradient method.
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Both methods are trivially examples of the algorithm (4.4) that we have studied in the sec-
tion. Let us now look at the asymptotic covariance of these methods corresponding to the
three problems. To this end, let x denote the optimal solution for the three problems and
suppose that x 1 = A and |supp(x )| = s . Without loss of generality suppose moreover
supp(x ) = { 1, . . . , s}. In all cases, under the regularity conditions discussed in the section,
the asymptotic covariance of the average iterate is

∇σ (0) · Cov ∇f x , z · ∇σ (0) .

Thus the only distinction is in Jacobian of the solution map∇σ (0). It is straightforward to see
that the active manifold (under strict complementarity) for (regularized) and (l0 constraint) is

M 1,3 = R s × { 0}d−s ,

while the active manifold for (l1 constraint) is

M 2 = M 1,3 ∩ x :
s

i= 1

|xi | = A .

Because the active manifoldM in all cases is piecewise linear, an application of Theorem 2.7
yields the expression:

∇σ (0) = PTM (x )E ∇ 2f x , z PTM (x )
†.

For the problem (regularized) and ( l0 constraint), the tangent space is simply TM 1,3
(x ) =

Rs × { 0}d−s , while for (l1 constraint), the tangent space is smaller

TM 2
x = v ∈ TM 1,3

x :
s

i= 1

sign xi vi = 0 .

In particular, the asymptotic covariance corresponding to ( l1 constraint) is no larger in the
Loewner order than that of (regularized) and ( l0 constraint). Consequently, the formulation
(l1 constraint) may be preferable when A = x 1 is known. The caveat, however, is that
LASSO solution is biased due to the regularization term and therefore a comparison of the
three formulation purely based on the asymptotic covariance is not entirely justified.

6. Asymptotic optimality of SAA and SFB. In this section, we show that the asymp-
totic covariance in (3.4) is the best possible among all estimators of x̄, and therefore both
SAA and SFB are asymptotically optimal. Namely, we will lower-bound the performance of
any estimation procedure for finding a solution of an adversarially-chosen sequence of small
perturbations of the target problem. In order to specify this sequence, define the set

G := g : Z → R d : E
z∼ P

g(z) = 0, E
z∼ P

g(z) 2 < ∞ .

Fix now a function g ∈ G and an arbitrary C3-smooth function h: R → [− 1, 1] such that its
first three derivatives are bounded andh(t ) = t for all t ∈ [− 1/ 2, 1/ 2]. Now for each u ∈ Rd,
define a new probability distribution Du whose density is given by

(6.1) dPu(z) :=
1 + h(u g(z))

C(u)
dP(z),

where C(u) is the normalizing constant C(u) := 1 + h(u g(z)) dP(z). Thus each vector
u ∈ Rd induces the perturbed problem

(6.2) 0 ∈ L(x, u) + H (x) where L(x, u) = E
z∼ Pu

A(x, z).

Reassuringly, the following lemma shows that map(x, u)  → L(x, u) is C1 near ( x̄, 0). All
proofs of results in this section appear in Section 11 of the Supplementary Material [7].
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LEMMA 6.1. The map (x, u)  → L(x, u) is C1 near ( x̄, 0) with partial derivatives

∇xL( x̄, 0) = ∇A( x̄) and ∇uL(x, 0) = E
z∼ P

A( x̄, z)g(z) .

The family of problems (6.2) would not be particularly useful if their solution would vary
wildly in u. On the contrary, the following lemma shows that for all small u, each problem
(6.2) admits a unique solution in U , which moreover varies smoothly in u. We will use the
following standard notation. A map σ (·) is called a localization of a set-valued map F (·)
around a pair ( ū, v̄) ∈ gph F if the two sets, gph σ and gph F , coincide locally around ( ū, v̄) .

LEMMA 6.2 (Derivative of the solution map). The solution map

S(u) = x : 0 ∈ L(x, u) + H (x)

admits a single-valued localization s(·) around around (0, x̄) that is differentiable at 0 with
Jacobian

∇s( 0) = −∇σ ( 0) · E
z∼ P

A( x̄, z)g(z) .

In light of Lemma 6.2, for all small u, we define the solution x̄u := s(u) . The following
theorem provides an asymptotic lower bound on the performance of any estimator when
applied to the problems within our parametric family. We letEPk

u
denote the expectation with

respect to k i.i.d. observations zi ∼ Pu.

THEOREM 6.3 (Local minimax). Let L : Rd → [ 0, ∞) be symmetric, quasiconvex,
and lower semicontinuous, let xk : Z k → U be a sequence of estimators, and set g(z) :=
A( x̄, z) − A( x̄) . Then the inequality

(6.3) sup
I ⊂Rd, |I |<∞

lim inf
k→∞

max
u∈ I

EPk
u/

√
k

L
√

k(xk − x̄u/
√

k) ≥ E L(Z)

holds, where Z ∼ N(0, ∇σ (0) · Cov(A( x̄, z)) · ∇σ (0) ).

In particular, applying Theorem 6.3 with quadratics L yields a lower bound on the achiev-
able covariance among any estimator. We will now show that both SAA and SFB fulfill (6.3)
with equality, and therefore in a precise sense asymptotically minimax optimal. Note that we
already know that the asymptotic covariance σ (0) · Cov(A( x̄, z)) · ∇σ (0) is achieved by
both SAA (Theorem 3.1) and SFB (Theorem 5.1) when applied to the fixed problem u = 0.
It remains therefore to argue that

√
k(xk − x̄u) along the perturbed sequence of problems is

asymptotically independent of u. This is the content of the following theorem.

THEOREM 6.4 (Tightness of SAA). Under the same assumptions as Theorem 3.1,
the sample average approximation estimator x̂k := x k satisfies (6.3) with equality for any
bounded continuous function L : Rd → [ 0, ∞) .

SFB enjoys completely analogous results, which we summarize next.

THEOREM 6.5 (Tightness of SFB). Suppose the same setting as Theorem 5.1 and that
ν(1)

i = A( x̄, zi ) − A( x̄) with zi ∼ iid P and such that Eν
(1)
i

2 < ∞ . Then the average iterate
x̂k = 1

k
k
i= 1

xi satisfies (6.3) with equality for any bounded continuous function L : Rd →
[0, ∞) .
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THEOREM 6.6 (Tightness of SFB for nonlinear programming). Under the same assump-
tions as Corollary 5.2, the average iteratex̂k := 1

k
k
i= 1

xi satisfies (6.3) with equality for any
bounded continuous function L : Rd → [ 0, ∞) .

We note that asymptotic optimality of SFB for smooth problems was proved in [4], Theo-
rem 5.6, and the proof we present of the three theorems above is an adaptation of the argument
therein.
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