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Stabilizing two-qubit entanglement with dynamically decoupled active feedback
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We propose and analyze a protocol for stabilizing a maximally entangled state of two noninteracting
qubits using active state-dependent feedback from a continuous two-gubit half-parity measurement in
coordination with a concurrent, noncommuting dynamical decoupling drive. We demonstrate that such
a drive can be simultaneous with the measurement and feedback, while also playing a key part in the
feedback protocol itself. We show that robust stabilization with near-unit fidelity can be achieved even in
the presence of realistic nonidealities, such as time delay in the feedback loop, imperfect state-tracking,
inefficient measurements, dephasing from 1/ -distributed qubit-frequency noise, and relaxation. We mit-
igate feedback-delay error by introducing a forward-state-estimation strategy in the feedback controller
that tracks the effects of control signals already in transit. More generally, the steady state is globally
attractive without the need for ancillas, regardless of the error state, in contrast to most known feedback

and ermor-correction schemes.
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L INTRODUCTION

Maximally entangled multiqubit states are important
resources for quantum information processing tasks. How-
ever, entangled states decohere more rapidly than single-
qubit states, and so must either be generated on demand
when needed or stored using some form of stabilization
that prevents degradation. Circuit-based quantum error-
correction protocols are examples of such active entan-
glement stabilization [1], but are resource intensive since
they require additional ancillary qubits, periodic entan-
gling unitary gates, and single-qubit measurements. Bath
engineering protocols can stabilize entanglement [2-T7],
but typically require custom device designs to select the
state.

A natural nonunitary tool to consider for such an entan-
glement stabilization task is the direct measurement of a
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two-qubit observable, such as parity [8,9]. Periodic or con-
tinuous measurements of such an observable can prepare
[10] and then stabilize [11—13] the entangled eipenspaces
of the measurement and can perform multiqubit operations
[14,15], even in cases where the qubits do not directly
interact [ 16—23]. Stabilizing a specific state, however, gen-
erally requires bath engineering or additional feedback
control [24—29] to break the symmetry of the measurement
toward the desired outcome.

Implementing robust entanglement stabilization using
measurement feedback is challenging in practice. The
stabilized state should not only be a steady state under
ideal conditions for the measurement and other engineered
decoupling drives [30-36], but remain stabilized in the
presence of realistic nonidealities [37]. Some dynamical
states such as single-qubit Rabi oscillations [38] are less
sensitive to environmental noise and so can be more eas-
ily stabilized, but entangled states are more susceptible to
decoherence, which can drastically lower the achievable
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steady-state entanglement [ 16—18]. Dynamical decoupling
can reduce dephasing and prolong coherence [39—41],
but does not produce true stabilization [42] and is typi-
cally separated from the measurement and feedback. Time
delays in the feedback loop [43.44] and measurement
inefficiency are also unavoidable in the laboratory [45],
and can be disastrous to the stabilization fidelity if not
accounted for in the protocol [33,46.47].

In this work, we show that it is possible to combine
measurement, a feedback drive, and a dynamical decou-
pling drive simultaneously to achieve robust entanglement
generation and stabilization. As a case study, we revisit
the simple measurement-feedback protocol introduced in
Ref. [33], which stabilizes a maximally entangled two-
qubit Bell state with feedback from a half-parity mea-
surement. This protocol was vulnerable to dephasing that
would mix the target state with a degenerate measure-
ment eigenstate, thus eliminating stability. We expand
the protocol to include a concurrent drive that provides
both dynamical decoupling [45-51] and acts to remove
an undesired fixed point of the dynamics. We analyze
both the optimum settings and resulting performance in
the presence of experimental nonidealities, including the
time delay of the feedback loop, measurement inefficiency,
and environmentally induced relaxation and dephasing.
Notably, we model environmental dephasing as more real-
istic non-Markovian qubit-frequency noise from environ-
mental fluctuators, with either white or 1/f noise spec-
tra [52], which we compare to the standard (Lindblad)
Markovian techniques for modeling dephasing.

Our modified stabilization protocol benefits from two
key innovations. First, our dynamical decoupling drive
notably differs from standard approaches since it neither
acts only during idle times nor acts only on auxiliary sub-
spaces. Instead, the decoupling drive is always on as a
second drive that can optionally be adjusted by the feed-
back controller. This drive both reduces dephasing and pro-
vides an active pathway for stabilization out of erroneous
states. Second, we develop a forward-state-estimation pro-
cedure for the feedback controller that accounts for the
time delay in the feedback loop by anticipating the evo-
lution occurring from signals already in transit. We find
through numerical simulations that the inclusion of these
features significantly improves the performance of the sta-
bilization protocol. For dephasing from 1/f fluctuators
noise, in particular, the modified protocol can robustly
achieve near-unit asymptotic fidelity to the tarpet state ina
wide range of conditions.

II. STATE STABILIZATION PROTOCOL

As in Refs. [16,33], our system is composed of two
qubits that are not interacting, described by a joint (system)
density operator p..(f). Each qubit experiences environ-
mental dephasing at an average rate I';, detailed later. We

assume a rotating frame, independent control drives, and
coupling to a common half-parity measuring device (e.g.,
Refs. [10,13,16]).

The half-parity observable N = (6" +6®)/2 has
three eigenvalues: —1, 0, and 1. The eigenvalues —1 and
1 have the even-parity eigenvectors |11} and |00}, respec-
tively, while the eigenvalue 0 has a degenerate odd-parity
subspace spanned by |01) and |10). The two odd-parity
entangled Bell states, |We) = (|01) £+ II(}}};’JE are thus
preserved by the measurement, while the even-parity Bell
states |¢p1) = (]00) & [11))/+/2 get disturbed.

The goal of the protocol is to use the two single-qubit
control drives and the joint half-parity measurement to
stabilize one maximally entangled Bell state: |y, ).

To use feedback to accomplish this goal, we apply con-
trol drives that depend upon the collected measurement
record r(f), which has the approximate form

r(f)dt = Tr(pey(ON)dt + /T dW, (0

where dW? = dt is a stochastic Wiener increment [24] and
T = 1 /2" is a timescale set by the measurement rate nl",
given efficiency 5 € [0,1] and measurement-dephasing
rate I'. This stochastic process models, e.g., a homodyne
measurement of N after phase-sensitive amplification of
the informational quadrature, then shifting and rescaling to
normalize the mean signal to the eigenvalues of N [53].

We synchronize the applied single-qubit drives to be
either corotating or counter-rotating, &' +&® = ..
yielding the effective two-qubit drive Hamiltonians

Ho() =hQ¥./2,  Ha(®)=hAY_2, (2
with amplitudes £2 and A that are generally functions of
time f, the collected record r(f — t4) after a delay t; from
the feedback loop, and/or an estimated state o (f). Impor-
tantly, both N and A act trivially on the stabilized |y, ),
meeting the condition for global convergence [25,37]. The
corotating drive A with matched drive phases generates
rotations in the {|yy},|d_}} subspace that contains the
target state |y, ), making it the feedback drive [33]. The
counter-rotating drive H, with relative m-phase shift gen-
erates rotations in the {|¢ } , [W_}} subspace orthogonal to
|yry }; these rotations also suppress slowly varying dephas-
ing noise on |y, ), making this the dynamical decoupling
drive.

Figure | shows a conceptual schematic of how the
two drives and the measurement both prepare and stabi-
lize the entangled state |yr, ). After preparing the product
state [+, +) = (Y1) + |+))/+/2, the measurement stabi-
lizes |yr. ) at dephasing rate I", but stochastically transfers
within the subspace |¢, ) <+ |[¢b_}. The feedback drive uni-
tarily rotates between |¢h_} < [r,.) at rate £2, but the
measurement feedback law biases this rotation to accu-
mulate population in |y, ). Meanwhile, dephasing induces
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FIG. 1. Schematic for stabilizing the entangled Bell state |y )
(red). Two noninteracting qubits pg:(f) undergo a half-parity
measurement with dephasing rate I" (orange), yielding a noisy
record r and stochastic transfer M, between |ghy} =+ |gp_} while
stabilizing |y+). Environmental dephasing at rate I'; (pink)
also causes stochastic transfer .'::"rl between |¢ ) <+ |¢_) and
|y} = |yf_). A controller uses the measurement record to inter-
nally track an estimated state pg(f), then applies a feedback
drive Ay (blue) after a delay 1, at rate $2[pex(f)] that induces a
biased transfer |¢p_} — |y}, as well as a dynamical decoupling
drive A (purple) at rate A[geq(f)] that stabilizes |y, ) and |¢_)
and also transfers |y—) = |d).

transfers between [, ) <+ |W_) and |¢b;) <= |¢_) at rate
I"3, with |yr_} invisible to both £ and the measurement.
Thus, |y_} is an undesired fixed point of the protocol
so far. However, the decoupling drive umitarily rotates
between [{r_} « |¢b, ) at arate A; the measurement (at rate
I") and corotating drive (at rate £2) then provide a path from
|¢+) — |Wre) as described above. Neither the dephasing
I"; nor the decoupling A were considered in Ref. [33], nor
in similar ancilla-free protocols in Refs. [10,22,23.31].

A. Modeling the feedback controller

Simulations of real-time measurement feedback must
distinguish between the true (but inaccessible) state of the
system pyys(f) and the estimated state peq(f) being inter-
nally tracked by the controller, both indicated in Fig. 1.
Simulations must evolve both p,.(f) to determine the mea-
surement record in Eq. (1) and p,,(f) to determine the
feedback drives in Egs. (Cl) in Appendix C [47,54].

The evolution of the internal state pgq(f) has three key
differences. First, the controller does not know the specific
environmental fluctuations causing ensemble decoherence,
s0 can only use an average decoherence model. Second,
the controller only has the collected record r(f) up to a
delay 1y before the output feedback signal will reach the
system state p,.(f + 7). Third, whereas the system state

evolves with simulation time step df, the controller esti-
mate p.q(f) evolves with time step 8f = ndf, where n is
some integer. This time step is called a “control cycle”
and represents the time interval in which the controller per-
forms the Bayesian update, estimates the state, and updates
the drive tones. Differentiating the two time steps is impor-
tant because, whereas 4f must be much smaller than any
other simulation timescale to maintain accuracy of the dis-
crete state update, 5¢ will be experimentally constrained by
field-programmable gate array (FPGA) controller latency
and may be comparable to other timescales (such as a Rabi
period).

B. Evolution with decoherence and measurement

We model dephasing as stochastic dispersive energy
shifts from weakly coupling to a noisy environment [52]:

Ho(f) = hao (1 (067 + 32062 /2. (3)

Here y;2(f) are independent zero-mean stochastic pro-
cesses, which we generate with either white or 1/f power
spectral densities to encompass the two extremes of com-
monly observed frequency noise. From here on we refer
to these as “white noise™ and “fluctuator noise.” We cal-
ibrate the amplitude fiw so that ensemble averaging the
fluctuations yields the dephasing rate I'y { Appendix A).
After measuring }:-'._, the observed record rif) in Eq.
(1) integrated over a small time step df is Gaussian dis-
tributed with mean Tr{pm(t}ﬁf} and variance 1/2nldf.
The induced partial collapse is thus encapsulated by the

Kraus operator update [47,53]
My = exp[nT dt(r()N — N*/2)], )

Mo (O] = My p (DM [TH(V) My p (D). (5)

For inefficient measurements, n < 1, the uncollected part
of the signal must be averaged over as unknown, caus-
ing residual measurement dephasing. This dephasing is
described with an additional jump-no-jump Lindblad map.
We use the same procedure to model relaxation (T;)
processes, and group them together into the single map

Lalp O] [55]:

3
Lalp®] =Jop0J]+Y edip0J] (6

k=1
with
3
Jo= 1= a0 ih,  J1a=6"7/V2,
k=1
K=N/VZ ypa=YT, p=0-nyr.
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The composite update map for the system state is thus
Psys(t + dt) = [Uy o Lar 0 Migyar][psys ()] (N

with the unitary update, Ua[o()] = Usot(Dp ()T}, o0
where

U ot = exp(di[Ha () + Ha() + H,(01/ik),  (8)

recalling that £2 and A generally depend upon peq(f). This
completely positive map maintains state inteprity on itera-
tion and is accurate to order df, which is chosen to be much
smaller than any other period in the system evolution.

The controller update omits the noisy H,, as unknown
and either replaces it with an average Lindblad dephas-
ing map (Appendix A 5) or omits it as negligible over
&t. 1t likewise uses a Lindblad map to model the effects
of imperfect measurement efficiency and relaxation. It
also performs a Bayesian update based on the measure-
ment record averaged over the control cycle duration &t,
ie,Flty=(1/m) Z:,_:Lr{r — mdf), where the full update is
given by Egs. (7) and (8) with peys(f + df) — pex(t + 61),
r{f) — F(t), and df — &t

C. Forward estimation

Because of the feedback loop delay, the measurement
record does not reflect the effects of the drives output
over the past ;. This would cause inaccurate control if
Ty = &f, as the system would overcorrect by repeatedly
trying to rotate the state before the effects of those rota-
tions could be measured. We therefore implement a novel
Jforward-estimation protocol to correct for the delay. After
the measurement update described above, the controller
then makes a separate forward estimation by the delay
time t4. This forward estimation predicts the effects of the
control signals already output over the preceding ty, but
of course does not include any measurement information
that the controller would not have access to. For details of
the forward-estimation procedure, see Appendix D. This
Pestll + Ty) is used to determine the new control signals
£2(t + &f) and A(f 4 &f) to output, which are then added to
the buffer of emitted control signals used for forward esti-
mation in future control cycles. We show the effectiveness
of this forward-estimation procedure in Sec. 111 C below.

D. Optimized feedback

The choice of feedback drives £2(f) and A(f) in Egs.
(Cl) in Appendix C affect the stabilization effectiveness,
so we choose them to extremize the fidelity to [y ),

Flpest(D] = (Ve | pest(t) V1) 5 ()

after one time step §t. Imposing the conditions 3 [ pes (f +
§6)]/0A = 0 and 3 [ pext(t + 50]/352 = 0 yields

20l P18t = tan~'[2Re(py, 4 )/ (pg: — py_)l,  (10)

2Qu[p18t = tan~'[2Re(py, 5 )/ (pys+ — pe—)],  (11)

using the notation gy 4 = (V| p |¢) and py = py y. Intu-
itively, feedback coefficients are weighted coherences for
the subspaces in which the drives and measurement act. In
the limit of measurement strength much larger than other
noise scales, this strategy produces a steady state that is
self-healing for arbitrary error operators.

We also consider a dynamical decoupling (DD) strat-
egy with an always-on constant drive A, — App. This
simplification gives less-than-optimal fidelity in the next
time step, but keeps the drive agnostic to state estimation
errors, while increasing decoupling from dephasing (par-
ticularly for fluctuator noise) and still enabling the crucial
transfer |W_} — |¢h.). The feedback drive i’_,_, however,
disturbs the target state |y, ), so the optimal drive £2,p is
necessarily state dependent even in this simplified proto-
col. As shown below, this trade-off of local optimality for
enhanced decoupling is beneficial in some circumstances.

L. NUMERICAL SIMULATIONS

We first compare protocols with different combinations
of feedback and counter-rotating drives across three dif-
ferent noise environments: pure fluctuator noise, fluctuator
noise combined with T decay, and pure white noise. To
compare in a standard way across noise environments, we
define the dephasing rate I"; as follows: In the case of pure
fluctuator or pure white noise, the total dephasing rate is
simply I'; = I'g, i.e., all nonmeasurement-induced dephas-
ing is due to averaged fluctuations, with I'y calibrated sep-
arately (Appendix A 4). We assume that T} — oo for both.
In the case of fluctuator noise combined with T, decay, the
dephasing is split evenly between the fluctuation-induced
and Ty-induced dephasing, such that 'y = I'y + 1 /27 and
I'n = 1/20) = I'z/2, with T7 decay described by Eq. (6).

A. Optimal feedback strategy

Figure 2 shows the time-dependent tarpet-state fidelity
from Eg. (9) after ensemble-averaging N = 1000 sim-
ulated trajectories per curve, with time f < [0, 150] ps
discretized into bins df =1 ns, and parameters I'; =
1/50 ps™!, T'=1ps~!, =0.5, and 1; = 500 ns. We
note that these values are well within the state of the art
in the superconducting qubit community, with recently
achieved efficiencies of 5 = 0.7 [56,57] and dephasing
rates of 1/300 ps~' [58)]. The feedback delay time is
consirained by the travel time for signals to enter and
leave the cryostat and by processing time, leading to typ-
ical delay times of 200400 ns [38]. Drives £2 and A are
updated every 8t = 10-ns control cycle. In Figs. 2(a)}—2(c),
we compare three strategies using £, in Eq. (11):

(1) S2umip) and A = 0, a protocol originally presented
in Ref. [33]:
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(2) L2oplp) and App, where a constant counter-rotating
drive acts as simultaneous dynamical decoupling and feed-
back;

(3) Soplp) and Agp(p), where the counter-rotating
drive choice is locally optimal [Eq. (10)].

We comment on these in turn.

1) No counter-rofating drive—In the presence of envi-
ronmental noise, the corotating feedback drive £2 is inad-
equate for robust stabilization, regardless of the noise
spectrum (1/f versus white) or type (pure dephasing or
dephasing and T;). Decoherence populates |yr_}, which is
indistinguishable from [y, ) under the measurement and
inaccessible to the corotating drive.

i2) Simultaneous DD and feedback—For 1 /f fluctuator
noise [Fig. 2(a)], which causes a nonexponential short-time
dephasing ( Appendix A), a stafe-agnostic constant decou-
pling drive simultaneous with the corotating feedback
is asymptotically the best sfrafegy, achieving near-unit
fidelity. The same approach leads to suboptimal saturat-
ing fidelities for fluctuator noise plus T, decay [Fig. 2(b)]
or pure white noise dephasing [Fig. 2(c)]. These results
make sense in light of known decoupling properties of 1 /f
noise and white noise [59] (Appendix A). With white noise
dephasing or relaxation, the DD drive makes the |yr_) pop-
ulation accessible to the rest of the feedback loop (enabling
some stabilization), but true dynamical decoupling does
not occur.

i3) Locally optimal feedback—For noise environments
with a white component [Figs. 2(b) and 2(c)], the locally
optimal feedback on both corotating and counter-rotating
drives is asympiotically the best strategy. Furthermore,
the qualitative similarities between fidelity time series for
the two noise environments implies that the T decay is
mainly disruptive via its contribution of 1/27) to the over-
all dephasing rate I";, which makes sense given that decay
of individual qubit populations from |1} ~ |0) is a non-
excitation-conserving map and can therefore be detected
by the measurement and subsequently corrected by the
feedback. Furthermore, since we model T using Lindblad
maps, the spectrum of the effective dephasing contribution
is white, which further explains the similarities with pure
white noise. The protocol performs well, particularly at
short times, for pure 1/f fluctuators, but is asymptotically
suboptimal if there is no broadband noise.

Figures 2(d)}-2(f) show how decreasing measurement
efficiency n and increasing time delay 1, affects stabi-
lization in the three noise enviromments, using the best
feedback strategy for each environment, as determined
above. Notably, for fluctuator noise, decreasing n only
slows down the stabilization (due to the resulting decrease
in measurement rate yI"), but does not decrease the asymp-
totic fidelity. For white noise, as well as for fluctuator noise
plus T decay, the asymptotic fidelity is a steady state that
balances the measurement rate nI” and dephasing rate I';,

1.0 (a) senser noee 2 10 () g
i /TT 09 f
Z08¢} 0.8 .
a (1) g o with & = bt
el 2] e with 20 | O-7
0.6 (3} Mo andd e | 5 —7q = 0.1 ps
5 T4 = 0.5 ps
0.5 R | L X i :
0 50 100 150 0 50 100 150
1.0

(b)) sustuster neise + T, ducay
0.9

fidelity

fidelity

=025

0.5 . : . 0.5 } 1
0 50 100 150 0 50 100 150
& {ps)

FIG. 2. Fidelity JFi(f) of the ensemble-averaged state (N =
1000 trajectories) to target |y, ), compared across different feed-
back protocols (aj{c) and apparatus parameters (d}+f). The
ensemble is initialized in state |4, 4} and evolves under opti-
mal corotating drive £;po(e) and specified counter-rotating
drive A. Except where specified, simulations use measurement-
dephasing rate I’ = 1 pus~!, environmental-dephasing rate ['; =
1/50 us“l,, feedback loop delay ty =05 ps, and measure-
ment efficiency n = 0.5. (a}{c) Comparison of three decoupling
strategies, where A is either (1) off, (2) a constant App /27 =
25 MHz simultaneous with £2.pp, or (3) an optimized state-
dependent drive Agy (o) simultaneous with £2q0: 0. For dephasing
from pure 1 /f fluctuator noise in (a), simultaneous feedback and
the constant counter-rotating (decoupling) drive achieve near-
unit fidelity asymptotically. For fluctuator noise plus T} decay
in (b), the state-dependent counter-rotating drive is most effec-
tive but saturates to imperfect stabilization. Pure white noise (c)
mirrors this result with lower fidelities. (d}+f) Comparison with
different measurement efficiencies 5 and feedback loop delays 14,
using the best control strategy for each noise type. For 1/f noise
in (d), strategy (2) (constant App) is applied, and nonidealities
are observed to slow down stabilization without degrading the
asymptotic near-unit fidelity. For fluctuator noise plus T decay
in (e) and white noise in (f), asymptotic fidelities depend on 5
and T,.

so it directly depends on 5. These results are in agreement
with other work showing that DI is most effective against
nonwhite (time-correlated) noise [48].

We note that the locally optimal protocol attempts to
optimize fidelity in the next time step, but assumes that
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the decoherence rate is constant. However, a strong con-
stant DD drive greatly reduces the effective dephasing rate
in the case of slow (1/f) noise. We include this effect in
our estimate of the state’s dephasing (see Appendix A5
for details). When 1/f dephasing is dominant, this DD
approach is globally optimal; when white noise or relax-
ation is significant, the DD is less effective and so the
locally optimal protocol is also globally optimal. Future
work could explore whether hybrid strategies could be
optimal for different ratios of slow and fast decoherence;
for instance, a locally optimal protocol with periodic DD.

B. Optimizing control parameters

Figure 3 shows asymptotic fidelities at f = 150 ps, again
applying the best strategy for each noise environment. The
left panels, Figs. 3(a)}-3(c), sweep the best strategy’s main
control parameter [A for App and T for £2,,(p)] versus
the overall dephasing rate I";. As noted previously, for
pure fluctuator or white noise [Figs. 3(a) and 3(c)], dephas-
ing is entirely due to fluctuations (I'; = I'g), whereas
for fluctuator noise plus T decay [Fig. 3(b)], dephasing
is evenly split between fluctuation and 7 contributions
(1/2T) =T'y = I'2/2). Fixed parameters are t; = (0.5 ps
and I' = 1 ps™! for fluctuators. The right panels, Figs.
3(d}-3(f), sweep the measurement rate I versus the feed-
back loop delay t; for each noise environment, with fixed
;= 1/500 ps~', n =0.5, and Ap/2m =25 MHz for
fluctuators.

Similarly to Fig. 2, we observe that the pure
fluctuator noise environment shows the highest sta-
bilization fidelities, with JF(f;) = 0.98 for any I';
[1/100.0,1/10.0] ps~! after optimizing the counter-
rotating drive strength A,. Similarly, high fidelities are
possible for all loop delays t; = [0.1, 5.0] s after optimiz-
ing over I'. In particular, we highlight an optimal fidelity
of F = 0.9999 with control parameters I" = 5.76 ps~! and
Ap /2w = 25.0 MHz, operating at loop delay 7y = 0.52 ps
and dephasing rate I'; = 1/50.0 ps~!. While fluctuator
noise plus T decay and white noise environments demon-
strate lower fidelities, we note that optimizing over mea-
surement strength I" still leads to high fidelities for realistic
experimental parameters: using measurement strength I =
10.0 ps~! while operating at I'; = 1/50.0 ps~! and 1; =
0.52 s, optimal fidelities achieved are F = 0.95 (fluc-
tuator noise plus T} decay) and JF = 0.92 (white noise).
This feedback delay is achievable with modern FPGA-
based controllers, which we have tested and verified with
placeholder calculations on a Quantum Machines” OPX
controller; all other parameters are well within the current
state of the art.

C. Optimality of forward estimation

‘We note that accounting for time delay in our state esti-
mate is essential to the success of these protocols. If the
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FIG. 3. Asymptotic fidelity J of the ensemble-averaged state
(N = 1000 trajectories) to target [y, ) at {r = 150 s, with color
displayed on a log scale. The optimal protocol for each noise
type is used. Except where specified as a sweep variable, param-
eters defaultto g =05, iy =05 ps, ' =1 |.|.s_], Agf2w =125
MHz, I'; = 1/50.0 ws~'. (a) Fluctuator noise is mitigated with
App, sweeping the counter-rotating drive strength Ay, for dif-
ferent dephasing rates I'; € [0.01,0.1] ps~'. Near-unit fidelity
(= 0.99) is achieved for any dephasing rate with a sufficiently
fast decoupling drive Ag. (b) Fluctuator noise plus T decay and
(c) white noise are mitigated using Agy, sweeping the measure-
ment rate I" for different I';. Fidelities are improved with stronger
measurements (larger I'), but lag behind the fidelities observed
for fluctuators and App. (d}Hf) Measurement rate I” is swept for
different feedback loop delay times 1, for (d) fluctuator noise, (g)
fluctuator noise plus T} decay, and (f) white noise. All demon-
strate stabilization fidelities that are remarkably robust to 1
delay, with short delays showing large optimal I” (up to 10 ps™
in the range swept) and long delays necessitating smaller I'. For
the realistically achievable I'; = 1,/50.0 |.|.s_] and g = 0.52 us,
optimal fidelities achieved are (d) F = 0.9999 at " = 5.76 us~!,
() F =095atT = 10.0 ps!, and (f) F = 0.92 at 10.0 ps~".

raw time-delayed state is used in Eqs. (10) and (11), we
see only instability as the controller “overcorrects,” driving
the system when previously emitted tones would already
rotate to the target state. Our forward-estimation protocol
addresses this issue. However, the behavior is reminis-
cent of a classical feedback controller with a feedback
gain that is too large, which suggests a simpler proto-
col: turn down the strength of the feedback drives. We
tested this deliberate weakening of the feedback drives
such that £2 = £2,,,(8¢/Af). In this simpler protocol, the
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non-forward-estimated (time-delayed) state is used as the
state estimate, and Af is a free parameter whose optimal
value depends on other system timescales.

Three estimation strategies are compared in Fig. 4 for
different loop delays 1; and measurement rates I': no
forward estimation with A¢ = §f (no attenuation), no for-
ward estimation with the attenuation Af/8¢ optimized for
each (tz, ") configuration, and forward estimation with
At = 8t. The first case leads to complete mixing of the
state, resulting in a time-averaged fidelity of 0.25. This
shows that some correction for feedback delay is essen-
tial. The second case—no forward estimation, but with
attenuated drive—provides reliable stabilization, but the
asymptotic fidelity achievable (averaged over the inter-
val [100, 150] ps to reduce noise) is generally lower than
for the forward estimation. In particular, we note that tun-
ing over the controllable parameter I" indicates forward
estimation as optimal for all 7, tested, reducing infidelity
by about 20% compared to the attenuated drive protocol.
Thus, due to the low computational overhead of forward
estimating the state, we selected forward estimation as the
optimal estimation strategy for the data presented in Figs.
2 and 3, where, for simplicity, At = &§f was used for all
forward-estimation simulations; optimizing over the feed-
back attenuation while still using forward estimation could
further improve fidelity.

The attenuation-without-forward-estimation strategy is
slightly simpler and so may be preferred in an experiment
where computational overhead is the limiting factor, at the
cost of lower fidelity. In a similar attempt at simplification,
we also explored a version of the protocol with quasilinear
feedback, where the feedback signal at time f is linearly
proportional to the measurement signal r(f) (see Appendix
C4). The proportionality constant derived depends on the
prior state estimate, so it is not true linear feedback. How-
ever, while the linear feedback is qualitatively similar to
the optimal feedback for stable trajectories, on average,
it does not produce robust stabilization, which we again
attribute to the finite time delay (see Appendix C 5).

IV. CONCLUSION AND DISCUSSION

We have presented and simulated a protocol that reliably
generates and stabilizes an entangled state of two noninter-
acting qubits under realistic experimental conditions with
dephasing from various realistic noise environments. More
generally, in the limit of measurement strength much larger
than other noise scales, our protocol produces a steady
state that is self-healing for arbitrary error operators and
without the use of ancillas. The success hinges on two
key innovations of our protocol. First, we use a drive that
both provides dynamical decoupling and transfers popu-
lation out of an undesired fixed point of the dynamics,
working concurrently with the feedback drive. Second, we
develop a forward-estimation protocol for the feedback

— forward est.
=== no forward est. (atten.)
0-951 74 = 0.5 ps
Z 09
]
=
=
o
E 08l T4 = 2.0 ps
=
o
E 0.7
= ’ T4 = 0.0 ps
0.6 '
057
ﬂ""’ T m
037
021 no forward est. (At = 6t)
0.0 2.5 5.0 7.5 10.0

I (ps™1)

FIG. 4. Ensemble fidelities averaged from 100 to 150 ps are
compared on a log scale for different measurement rates I' (x
axis), loop delay times 1y (color), and state estimation strate-
gies (opaque versus translucent) for the fluctuator plus T noise
environment with I'; = 1/50.0 |.|.s_], 17 = 0.5, 8t = 10 ns. When
control does not take time delay into account, fidelity is close
to the purely mixed case J = 0.25 {dashed lines). Forward esti-
mation results in higher fidelities for all feedback loop delays 14
after optimizing over the control parameter I", with typical infi-
delity reduction of about 20%, demonstrating the optimality of
the protocol.

controller that compensates for loop delay, which can be
used to improve other feedback control protocols. Together
these provide evidence that continuous feedback control
can achieve capabilities beyond what can be replicated
with discrete (projective) measurement and gates, even in
the presence of realistic nonidealities.

We note that, while our simulations take into account
many experimental nonidealities, there are still approxima-
tions we have made. We treat the qubits as true two-level
systems, while superconducting qubits are often weakly
anharmonic. We note that the bandwidth of our drives
(2/8f = 50 MHz) is small compared to typical anhar-
monicity of a transmon (approximately 200 MHz), and
so this assumption appears justified. We ignore stray
qubit-qubit coupling, which can be eliminated in many
architectures via multipath coupling (e.g., Ref. [60]). We
ignore classical control crosstalk, which can be eliminated
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through proper calibration. We also ignore the effects of
finite readout cavity bandwidth (i.e., we make the “bad-
cavity” approximation of Markovianity) and the effects
of an improperly tuned measurement that can distinguish
|01} from |10) (i.e., we assume a perfect half-parity mea-
surement). These last assumptions are the most difficult to
achieve experimentally. Future work could examine pro-
tocol performance when they are relaxed, for example by
modeling cavity evolution directly as a truncated Fock
space and including asymmetric measurement rates for
|01) from |10}.

Extensions of our work could optimize trade-offs
between locally optimal feedback and dynamical decou-
pling based on noise spectra, optimize the forward-
estimation protocol, and explore the impact of non-
Markovian models of relaxation. Furthermore, our work
can be generalized to protocols stabilizing other entan-
gled states, including states with higher numbers of qubits.
The generalization requires three components: (1) a joint
measurement that has the target entangled state as an
eigenstate; (2) combined single-qubit drives that rotate
toward this target state from an entangled state that is nota
measurement eigenstate (in our case the corotating drive);
(3) combined single-qubit drives that have the target state
as an eigenstate, but rotate all other degenerate measure-
ment eigenstates to noneigenstate entangled states (in our
case the counter-rotating drive). We leave the rigorous gen-
eral analysis of this class of protocols to future work, but
note that it would be fruitful to compare protocols obtained
in this way to protocols obtained via more general rein-
forcement leamning or gradient descent methods [61,62].
Applying machine-learning methods to finding optimal
entanglement-generation protocols could guide the choice
of generalized measurements, while identifying specific
features of the protocols (e.g., the three components pre-
viously mentioned) could resirict the optimization space
to reduce computational overhead of machine learning.
We anticipate that our results will guide future studies of
analog continuous measurement feedback protocols and
provide an experimental roadmap for implementing fast
digital processing while compensating for feedback delay.
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APPENDIX A: MODELING DEPHASING

We used three different simulation methods to model
dephasing.

(1) Lindblad. We use time-discrete and completely pos-
itive Kraus maps to implement Markovian dephasing or
decay for individual trajectories when more detailed mod-
eling is not needed.

(2) Fluctuator noise. As a more physically realistic
dephasing model, we simulate a bath of uncorrelated two-
level fluctuators that are dispersively coupled to each qubit.
The random switches of the fluctuators make the qubit
frequencies stochastic processes with 1/f noise spectra,
leading to nonexponential decoherence when ensemble
averaged.

(3) Markovian white noise. For comparison to the fluc-
tuator model, we also simulate a white noise fluctuation
model where the qubit frequencies become Markovian
stochastic processes, leading to exponential decoherence
of Lindblad type when ensemble averaged.

We now summarize the theoretical background and imple-
mentation for each model and show numerically simulated

examples.

1. Lindblad decoherence

We simulate average-sense decoherence using the
“jump-no-jump™ method for minimally unraveling con-
tinuous Lindblad evolution into discrete-time, completely
positive maps (see, e.g., Eqgs. (9) and (10) of Ref. [55]):

p(t) > p(t+d) =Jop(OT)+ ) (rdJip(OF] (A1)
k=1

with

Jo= |1=) (mdnJill. (A2)

k=1

This unraveling models rare events that occur through
one of n available channels, modeled by Kraus operators
{:ﬁ]::, with rates ¢, such that the probability of one event
in a short duration 4f approximates }4df. The correspond-
ing nonevent Kraus operator .J;, follows from the positive
operator-valued measure (POVM) normalization condition
1= j’g - {ytdr}j;jt. The total update then averages over
all n 4+ 1 event possibilities, assuming a lack of knowledge
regarding which event occurred. Using these time-discrete
Kraus maps guarantees that the evolution of each time
step is completely positive, so is less error prone than
naively applying generic numerical integration methods to
the Lindblad differential equation. The usual continuous
Lindblad equation can be recovered by taking the limit
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dt — 0 of this discrete update, with the anticommutator
term arising from nonevents.

While we emphasize fluctuator and white noise mod-
els of dephasing as the more physically realistic models
for each sampled evolution trajectory, this preaveraged
Lindblad decoherence model is an efficient way to model
the expected ensemble-averaged dephasing evolution by
applying it to each individual trajectory instead, acknowl-
edging the absence of more detailed knowledge of the
fluctuation mechanism for that trajectory. In particular, we
use this crude ensemble-averaged model of the dephas-
ing in projected forward-time estimations of the system
state to compensate for signal propagation delay and
maximize real-time feedback performance. For this pur-
pose, single-qubit environmental dephasing using Eq. (Al)
uses the phase-jump operator J = é&./+/2 with rate T's.
Similarly, residual ensemble dephasing due to inefficient
measurement (see_Appendix B2 below) uses the jump
operator .J = N /+/2 with observable N = &M+ 62
and rate (1 — n)I", where I" is the ensemble-averaged
measurement-dephasing rate, n € [0, 1] is the measure-
ment efficiency, and N is the half-parity operator being
measured.

2. Non-Markovian fluctuator noise

The fluctuator approach to simulating dephasing postu-
lates a set of N two-level systems, each of which disper-
sively interacts with the qubit to create classical telegraph
noise. The two-level systems randomly switch between
their two states in a Poisson process with characteris-
tic rates {y,}}: ;- The rates are distributed log uniformly
between minimum and maximum frequencies ()4, v ). i.e.,

—1)/ (V-1
},—N){f Wi ]
4|

Fi i—1 ¥
log —
4| N—-1 4|

— J’r=}’](
(A3)

Because this distribution is exponentially weighted
towards low frequencies, the resulting fluctuations have
nontrivial temporal correlations, leading to non-Markovian
frequency noise that goes beyond simple Markovian (e.g.,
Lindblad) models of dephasing. This behavior better rep-
resents the experimentally observed correlations caused by
two-level systems on-chip, which are a common source
of dephasing in superconducting qubit systems. Simu-
lating dephasing with fluctuator noise in this way gen-
erates a (1/f)® power spectral density (PSD) [63—66],
which is in qualitative agreement with experimentally
measured PSD, particularly in cases where the device is
charge- or flux-noise sensitive [63,67-69]. To implement
the entanglement-generation experiment, in the main text
we consider a flux-funable qubit design may be neces-
sary to engineer the desired joint measurement—as in Ref.
[13}—in which case we should expect 1 /f flux noise to be
relevant.

For the simulations in the main text, we generate each
stochastic telegraph noise realization with the following
procedure.

(1) We define N =20 frequencies [} = 2mf;} dis-
tributed log uniformly between (f}, fv) = (5 kHz, 50 MHz)
according to Eq. (A3).

(2) For each j;, we define a fluctuator to be a clas-
sical stochastic process s,(f) that takes the binary values
—1 or 1 for all € [0,4] up to the simulation duration
tr. Each fluctuator randomly switches between its two
values as a Poisson process with characteristic switching
rate )y, starting from an equiprobably random initial state
5(0) = £1.

For efficient simulation, we use the fact that the
durations between random switches of a Poisson pro-
cess are exponentially distributed, T}ﬂ ~ Exp(,), Le., with
probability density function p(7") = yexp(—T").
Thus, we first sample the random durations between
switches until the total duration, },_, i'f"', exceeds the
desired simulation duration fr. We then construct the
stochastic process s,(f) as a piecewise-constant function
that flips sign after each duration i'j'j in the sampled
sequence, starting from s,(0).

(3) Finally, we construct the total stochastic process
that affects each qubit frequency by averaging the effect
of all N = 20 fluctuators. The resulting stochastic process
x(6) = (1/N) EL 5,(t) has zero mean and a PSD with an
approximate 1/f dependence, as verified in Fig. 5.

The simulated fluctuator envelopes modulate the qubit
frequencies in the effective Hamiltonian

Flner(t) = ;x.m&; + gxﬂﬂﬁf. (A4)

where y2(f) are independent fluctuator processes gener-
ated with the above procedure, while e is a (constant) char-
acteristic frequency that sets the strength of the dispersive
frequency fluctuations.

Motably, after ensemble averaging, these frequency fluc-
tuations produce a characteristic decay envelope that is
distinct from the purely exponential decay of Markovian
(Lindblad) dephasing models, as can be seen in Fig. 5,
with quadratic decay at small times rather than linear
decay. However, at longer times the fluctuator coherence
decay more closely approximates exponential decay, with
the fluctuation strength @ indirectly setting a characteris-
tic decay rate ["; that can be compared to the exponential
decay rate of Markovian dephasing models. We describe
how to calibrate the scaling frequency @ to achieve a
desired I'; in Appendix A 4 below.
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FIG. 5. Comparison of the temporal and spectral character-
istics of white noise and fluctuator noise. (a) The white noise
process (top) is stationary and self-similar at different timescales,
as shown in the inset comparison, while the fluctuator noise pro-
cess (bottom) is temporally correlated and thus more structured.
(b) The PSD of white noise is frequency independent, while the
PSD of our sampled fluctuator noise has approximately 1/f fre-
quency dependence (blue fit curve) between 0.1 and 25 MHz,
with roll-off into a flat spectrum at both high and low frequencies.
Note that the power spectra have been smoothed with a moving
window average of width 50Af = 1 MHz for visual clarity.

3. Markovian white noise

For comparison with the non-Markovian fluctuator
model, we also explicitly simulate Markovian (white
noise) fluctuations that produce purely exponential decay

of the ensemble-averaged coherence. Using the same
Hamiltonian as in Eq. (A4), each stochastic envelope x;
is instead sampled at discrete times f; = f3 + £ df from a
zero-mean Gaussian distribution, x(f;) ~ Norm(0, T /df)
with variance t/df characterized by a timescale T and
the time discretization 4f. The resulting envelope func-
tions yx(f) are then Markovian random processes with
a piecewise-constant structure that limit to white noise
processes satisfying {yg(f) xx(¢)) = T8(f — ') in the time-
continuum limit df — 0. The exponential decay rate of the
ensemble averaged Bloch radius in the x-y plane is then

I =f{[wxxff}][wx¢{f}]}dr’ = %mzr — w= 1;'2]:&
’ (A5)

We numerically confirm this scaling of the decay rate with
e in Fig. 7(b) in the next subsection. For simplicity in the
simulations, we choose T = df to be the same as the time
step duration, making the sampled y; have unit variance.

4. Calibrating the fluctuation strength for a target
dephasing rate

To fairly compare dephasing timescales produced by
the different noise models, we numerically calibrate the
dependence between the noise strength parameter o in
Hamiltonian {A4) and a rate I'; that characterizes the
dephasing envelope. Importantly, the strength @ is not
directly measurable experimentally, while the ensemble-
averaged decay profile of the coherence can be observed
in a Ramsey experiment. Calibrating « as a function of
the characteristic rate ['; thus better connects our simu-
lated noise models to experimental observation. Moreover,
matching effective decay rates in the absence of feedback
is critically important to meaningfully compare and assess
the performance of each feedback protocol in the main text.

A subtle complication with establishing a meaningful
rate comparison is that, while exponential decay is mem-
oryless with a constant decay rate [z, fluctuator noise has
a temporally structured decay that is quadratic for short
times and exponential at late times, so any fit to purely
exponential decay is problematic. This non-Markovian
behavior arises from the exponential memory kernel of
the fluctuator noise time correlations and is precisely what
makes it possible to dynamically decouple from short-time
low-frequency fluctuator noise experimentally (e.g., using
a spin-echo midgate). Nevertheless, we can still identify
a characteristic rate ['; that sets the time scale of the
total decay profile and reduces to the exponential decay
rate in the Markovian limit, which is sufficiently close for
the purposes of the main text. Most importantly, we con-
firm that the feedback protocol fidelity results in the main
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FIG. 6. (a) Ramsey decay curves for fluctuators with different
choices of frequency drift amplitude w, fit to a two-parameter
stretched exponential decay, x(f [‘2,_&}:&1]}{—{1—'11}'3]. (b)
Relation between drift amplitudes @ and the dephasing rate
parameter 'z, which is fit to a power law used to set the
target dephasing rates in the main text. The frequency refer-
ence Ygeom = ./¥1¥w = (2m)500 kHz is the geometric mean
of the N = 20 log-distributed fluctuator frequencies between
¥i/2m =5 kHz and py/2m = 50 MHz. (c) Relation between
drift amplitudes @ and the dephasing power parameter J.

text are not artifacts of any miscalibration of our fluctua-
tor models, but are instead fundamental to the choice of
time-dependent feedback.

Since we can crudely think of the fluctuator noise
spectrum as a mixture of 1/f and white noise, we can

postulate a mean decay profile along a “stretched expo-
nential™ that interpolates between the two. To calibrate w,
we simulate Ramsey experiments as follows: we initialize
ensembles of single-qubit |4x) states undergoing fluctua-
tor or white noise, sweep the parameter « over the range
[0.25,1]/ps for fluctuator noise and [1,5]/ps for white
noise, extract the ensemble-averaged Bloch coordinate x
as a function of time, and fit the resulting decay curves to
a stretched-exponential function,

x(f) = exp(—(T28)#), (A6)

characterized by both a rate I'; and a dimensionless power
B. The power § = 1 corresponds to purely exponential
decay, while the short-time decay anticipated for 1/f noise
should be quadratic with § = 2, supgesting that an aver-
age fit for § will be somewhere between | and 2 for the
full fluctuator noise decay profile. Equation ( A6) is a com-
mon experimental choice for fitting nonexponential decay
with a single rate parameter and fits the broad structure of
our simulated decay curves reasonably well. Moreover, the
extracted rates I'; for nonexponential decay are also very
close to the rates obtained from naive exponential fits to the
same data, which supports the use of the obtained I"; as a
reasonable comparison to purely exponential decay rates.
For the fluctuator noise model, the stretched exponential
fits shown in Fig. 6(a) determine the relationship between
w and I'; shown in Fig. 6(b), which has the polynomial fit

r, o 15
= 0. IE(—) (fluctuator noise). (A7)
Veeom Veeom

For this fit, we choose the reference rate to be the geometric
mean of the log-uniformly-spaced fluctuator frequencies,
Yeeom = /¥1¥n = exp[(1/N) 3, log 3] = (2m)(500 kHz)
= m/us, yielding the swept parameter range @/ Vpoom €
[1/4m,1/m]. Other choices of frequency reference will
scale the prefactor of the fit, but will not change the depen-
dence on . The numerical results for the prefactor (0.12)
and power (1.55) generally depend on other parameters
that we keep constant in our simulations, like the num-
ber of fluctuators N and the number of frequency decades
d = log4(Vmax/¥min) spanned about the mean }peom. but
these additional dependencies are not important for the
results of the main text. The relationship between w and
the power £ is also shown in Fig. 6(c) and is approximately
linear, B{w) = 1.07 + 0.47(@/ Veeom)-

For the white noise fluctuation model, the stretched
exponential fits shown in Fig. 7(a) yield the relationship
between « and I'; shown in Fig. 7(b), with a polynomial
fit

[adt = 0.49(wdf)'*  (white noise), (A8)
which confirms the dependence expected from Eq. (AS5)

with the noise timescale choice of T = df. Similarly, the
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FIG. 7. (a)Ramsey decay curves for white noise with different
choices of frequency drift amplitude w, fit to a two-parameter
stretched exponential decay, x(T2,8) = exp(—l{]"gi‘]'a}. (b}
Relation between drift amplitudes @ and the dephasing rate
parameter I';, which is fit to a power law used to set the target
dephasing rates in the main text. The white noise characteristic
time T = df = 10 ns is set to the simulation time step duration
for convenience. (c) Relation between drift amplitudes @ and the
dephasing power parameter f. Exponential decay corresponds to
the power f = |, confirmed by the white noise fit up to small
deviations due to fit imperfections.

power £ is consistent with the exponential-decay power of
1, as shown in Fig. 7(c).

These fit equations can then be inverted to obtain the
conversion from I'; to @ used for the simulations in the

2, . .
wi(l2) = - {white noise).

5. Effective dephasing rate with constant dynamical
decoupling Rabi drive

In addition to calibrating the relationship between the
fluctuation amplitude @ in Hamiltonian (A4) and the
resulting characteristic dephasing rate I'5, we also calibrate
the effective dephasing rate I" sz observed in the presence
of a dynamical decoupling drive. This is applicable to the
“simultaneous DD and feedback™ protocol in the main text,
where A(p) = App is constant and acts to decouple the
system from slow fluctuations. In the case of a single qubit
undergoing dephasing with no feedback, a constant Rabi
drive A&, /2 around the y axis orthogonal to the frequency
fluctuation z axis & will mitigate the ensemble dephas-
ing by reducing the net time that the qubit coherence is
affected by frequency fluctuations. The effective dephasing
rate 0 = gy < I'z will be reduced in proportion to the ratio
A /Ty of decoupling and bare dephasing timescales. The
effectiveness of such a decoupling technique depends on
the short-time behavior of the ensemble dephasing, which
is linear for exponential decay but has slower quadratic
dependence for fluctuator-based dephasing. Thus, this sim-
ple dynamical decoupling technique is significantly more
effective at mitigating coherence decay for fluctuator noise
than for white noise.

Knowing the expected effective dephasing [".r in the
presence of a decoupling Rabi drive is important for our
feedback protocol in the main text. The forward state
estimation used to compensate for feedback delay uses
an effective dephasing Lindblad term in the filter (see
Appendix D below), which must use an accurate effec-
tive dephasing rate that accounts for the drive. Including
this effective ensemble dephasing in the forward estima-
tion improves the state-tracking fidelity and, as a result,
the feedback stabilization performance.

Figure 8 shows the effective dephasing rate ",z for a
sweep of decoupling Rabi amplitudes A and bare dephas-
ing rates ["; for a single qubit. Because the qubit state vec-
tor is rotating in the x-z plane on average, the purity [i.e.,
P =Trp? = (1 +r%)/2 with 2 = x? 4 y? + z%] is used to
extract a time constant. Since the drive generally decou-
ples from the slow noise components contributing to the
nonexponential decay, a single parameter fit is sufficient:

(A9b)

1 + exp(—2Teat)

Pty = 5

(A10)

For A =0, I' ;g = I';, as expected.
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FIG. 8. Ratio of the effective qubit dephasing rate [y to the

bare rate I"; in the presence of a constant decoupling Rabi drive
Ad, [2. The qubit frequency fluctuations wy (f)d./2 have the
amplitude « calibrated to produce the ensemble-dephasing rate
I'z in the absence of the decoupling drive, based on Figs. 6(b)
and 7{b). The small-time quadratic dependence of the fluctuator-
based dephasing dramatically increases the effectiveness of the
decoupling drive, with the effective dephasing rate decreas-
ing as roughly 1/A. In contrast, for white noise, the effective
dephasing drops to gy = I'z/2 for any nonzero A due to the
system state spending approximately half the time close to the
dephasing-immune z axis.

For white noise, A/T"; = 1/2 yields the asymptotic
limit ',/ "y — 1/2, as shown in Fig. 8 and predicted
from the white noise correlator {y(f)x.(f')) = té(t — 1)
[70]. The intuition behind this limit is that, under a con-
stant Rabi drive, the qubit spends about half its time near
the z axis, where it is immune to & rotations, so dephases
at half the rate.

In contrast, for fluctuators, there are much larger reduc-
tions in ["gras A is increased. As shown in Fig. 8, for larger
AJ T3 % 1, the rate I',5 decays as roughly I'; fA:

Fer/ T2 = 0.09(Ygeom/ T2)*" (I2/ A (All)
with the (Veom/I'z) prefactor accounting for the I':-
dependent intercepts on the log-log plot.

This 1/A behavior allows [,y to become arbitrarily
small for a large enough decoupling drive. For simplicity
and accuracy, we use the numerical results shown in Fig. 8
to calibrate ' in the state-tracking filter used in the main
text.

APPENDIX B: MEASUREMENT MODEL

We use a Bayesian update model of time-stepped
sequential weak measurements to describe the backaction
of the joint continuous measurement on the two-qubit sys-

tem. For completeness, we briefly review the essentials of
this method.

In the time-continuum limit, the monitoring of an
observable NV with a homodyne readout will produce a nor-
malized signal r(#) that approximates a stochastic Wiener
process

r()dt = Tr(pey(O)N)dt + /T dW (BI)
with Wiener increment dW? = dt (assuming the Itd pic-
ture) and a characteristic measurement timescale T =
1/2'n related to the ensemble measurement-dephasing
rate I" through the measurement efficiency n < [0, 1] (see
Appendix B 2 below). This approximation is the founda-
tion of stochastic Schrédinger equation or master equation
methods for describing continuous measurement. Averag-
ing this readout for a duration 4t yields a Gaussian random
variate

li-di dr - T
F = r(f i Tr{pmN) + &%} (B2)

]

with variance t/df, written here in terms of its mean with
additive zero-mean (Gaussian noise £, with unit variance,
i.e., & ~ N(0, 1), which can be efficiently sampled numer-
ically. The observable expectation value with the state
Pr = Psys(t;) approximately determines the mean value of
the signal over the time bin of width 4. This relation
also makes it clear that the measurement timescale T rep-
resents the integration time required to achieve a umnit
signal-to-noise ratio.

In the laboratory, the finite bandwidth of the signal ana-
lyzer discretizes the time axis into bins 4f in this way,
making the observed readout signal more accurately a
discrete readout time series ¥ = {r1,...,Fn.... 1y} with
approximately Gaussian random variates. This random
time series will determine the measurement backaction on
the system. In other words, for a simulation with time
vector f = {ty, t2,. .., 1y}, the state evolution will be com-
pletely determined by the randomly sampled Gaussian
uuise};: = {£, &, ..., E;} combined with the initial condi-
tion pg and full knowledge of the unitary, dissipative, and
measurement evolution.

To obtain the state trajectory g = {1, o2, . ... pn} from
E, we use the discrete Bayesian filter [53] presented in the
main text,

U1, p, 811 €1

—_— (B3)
" Te (i B, )

Pl =

Here, L; is a Kraus map representing total average dephas-
ing (due to, e.g., the imperfect measurement efficiency
discussed in Appendix B 2 below), U isa unitary repre-
senﬁnﬂg the coherent evolution between times f#; and f; + 4f,
and M, is the measurement Kraus operator that imple-
ments the measurement backaction and depends on the
sampled r;, as described below. The set of Jf{,r. over all
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possible r; forms a Gaussian POVM with completeness
condition,

= [ .
f dric(P MM, = |/ — f dre—dr-Mt2T _ ¢
—0 nt J_x

(B4)

with an r-dependent normalization |c(r)|* factor that can-
cels in the state update of Eq. (B3).

1. Derivation of the measurement operator

To derive the measurement operator specific to our
setup directly from the correspondence principle, we start
from the standard form of a measurement Kraus opera-
tor for N = (6" + 6@)/2 that associates the eigenspace
projection operators for its three eigenvalues of —1,0, |
with their corresponding conditional readout likelihoods
[47,53],

c(r)M, = /P(r|00) |00} {00] 4 /P(r|11)|11) {11]
+ /P(r|01, 10)(|01) (01] + |10} (10), (BS)

anticipating a state-independent factor c(r) that will cancel.
By construction, the POVM condition [ dr |c(r)|? M 1, =
I then follows from the normalization of each likelihood
distribution.

For a calibrated readout r averaged over a time bin df,
the readout likelihood distributions,

dt dt
P(r|00) = "#E exp (—E(r — 1}2), (B6a)

dt dt
P(r|11) = mexp(—ﬂl[r+l}2), (B6b)
P(r|01,10) = at ( dtr?) 6c
(r|01,10) = T P | 577 ) (Bobe)

are each Gaussian with variance t /df centered at an eigen-
value of N for each eigenspace, assuming the quantum
computing convention & = |0} (0] — |1} {1]. Thus,

M, = =1 100) (00| 4 e~ @HADED 1) (11)

+ (|01} {01] + |10} {10]), (B7a)
174
e(r) = (%) o (a4 (BTb)

are the forms of the state-dependent Kraus operator M, and
the state-independent normalization coefficient c(r) that
will cancel in the state update. Written in terms of the

Bell basis, this measurement operator has the useful closed
form

My = W) (Y| + 19-) (|
g [ cosh (g)(m b+ 18o) (@]

. rdt
+ sinh (E)(Iiﬁ'ﬂ (-] + I¢-) {¢+|)]

that depends directly on the measured operator and its
square,

o 60 16

> = |¢+) {d—| + 1¢-) (4],  (BBa)
B2 =gy) (s | + 16) (-1, (B8b)
N =R (B&c)

Note that this state-dependent part can also be written
compactly as

M, = exp[(dt/2T)(rV — N?/2)], (B9)
in agreement with the expected form of the Gaussian
POVM in Eq. (B4). Unlike for single-qubit observable
monitoring (e.g., Ref. [47]), the r-independent quadratic
term with N is nontrivial for the state update since it picks

out the relevant projection for the subspace in which the
measurement acts.

2. Inefficient measurement

In a perfectly efficient measurement, the digitized mea-
surement record is informationally complete, so after con-
ditioning the state on the information in the collected
record no information is lost and the state remains pure.
However, a real measurement apparatus is not perfectly
efficient due to signal loss during transit, as well as a degra-
dation of the remaining information in the signal from
additional noise due to thermal interactions, electronics
noise, or the amplification chain.

The overall measurement efficiency can be character-
ized with a parameter 5 [0, 1], such that 5 = | corre-
sponds to perfectly efficient measurement with no informa-
tion loss, 5 = 0 corresponds to total information loss, and
0 = n = 1 is a partially efficient measurement. Any loss of
information increases the measurement time T = 1/2'y
needed to integrate the signal to achieve a unit signal-to-
noise ratio. The measurement operator in Eq. (BY) thus
already accounts for this loss through the parameter 7.

However, any lost information will be effectively aver-
aged over in trajectory validation tomography, which will
produce additional ensemble-average dephasing. In the
limit of n =0 with no collected signal, the best esti-
mate one can claim is the ensemble-averaged evolution,
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which, for Markovian noise, should be in accordance with
a Lindblad master equation. Thus, we include the addi-
tional ensemble dephasing from information loss in each
trajectory via the Lindblad map in Eq. (Al), using J =
N/+/Z as the measured operator with a residual ensemble
measurement-dephasing rate (1 — q)[",

Llp] = (1 — )@ T /2N pN) +JopJ],  (B10a)

Jo =1 (1 — m@r/A2 (B10b)
APPENDIX C: DERIVATION OF FEEDBACK
PROTOCOLS

The feedback task is to apply a control drive that maxi-
mizes the fidelity to the target state |y, }, while minimizing
the fidelity with the invisible state |1_). Such a conirol
drive will be penerated by the co- and counter-rotating
drive Hamiltonians defined in the main text,

- -

Ho(h) = ﬂ%. Ha(h) = ﬂ%. (C1)

where ¥, = &, + 67 and the frequencies Q and A can
generally depend upon the time f, the delayed and nor-
malized measurement record r(t — 1), and/or the quantum
state estimate peq(f).

We use the standard (Uhlmann) definition for the state

fidelity,
2
Flo,p) =Trf JopJo ,

which, for a pure target state o = |y) (| and estimated
state p = peq., simplifies to

(C2)

Fo =F(¥) (¥, pest) = (Wlpetl),  (C3)

and can be interpreted as the population of g in the target
state |1r).

For constant £2 and A, the uni evolution generated
by the control Hamiltonian Ay + A, in isolation over a
time interval df is

Efn,a =@ Fo+a bz

— E—I[ﬂ+ﬁjfr_-_. a2 @ E—I[ﬂ—ﬁjn"ydrﬁ

= (1P 14| + |-} (@) cos(S2dt)
+ (1 - — lp—) (¥ |) sin(2dl)
+ (I M+ | + |} {(W_|) cos(Adr)
+ (g M wr_| — [Wr_) (¢ |) sin(Adl),

where we note the following useful Bell state identities:

~

S5 =W @-1-16) (¥4, (CHa)
2 2
(?*) — )W+ 166, (Clb)
3
¥
7 =18 Wl = 1Y) (@], (C4d)
i,- 2
(T_) = | M| + [ M|, (Cde)
v\ T
(3) -7 9

These identities imply the partition of unity

NS ACING A%

"=(?) +(T)

= o} {ghy| + |eb_) (| + |Wrs) (s | + Ifr_) {Wr_].
(C5)

For completeness, we also note that these operators are part
of two natural sets of Pauli-like two-qubit operators. The
other two in the {|V, ), |¢_)] subspace are

W@ 4 M5

x _
=+ =

= ¥} (-] + lb-) (¥4 ],

2
(Céa)
7. 6@ _sms@
5= z ¢ 3 = ) (| — [Wry) (Wi ],
(Céb)
X, ¥ Z
[T"‘,T‘*} ZZET"' (and cyclic perm.), (Céc)

while the other two in the orthogonal {|W_),|¢;)} sub-
space are

T ~(1)a(2 ~1)a(2
X__zcr})cr;”—cr}lcrr'”
2

= |¥_) (sl + 1oy ) (W_],

2
(CT7a)
-3 FED 1 sMsD
Tz—z = 3 —— = V) (V| — |ds) (],
(CTb)
L 2'2_ d cycli C7
[?,, Tj| = ET {and cyclic perm.). (CTc)

We now briefly derive two strategies for setting the con-
trol frequencies £2 and A so this control unitary maximizes
the target fidelity.
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1. Optimal feedback without measurement or
dephasing

We can derive a feedback protocol if we assume a
known initial estimated state p.y from which an optimal
drive can be inferred. The updated state estimate after
applying a control drive is p, = E.IFQ'_& 3t Past ff& a5 Which
should be compared to the states |.). For a pure tar-
get state o = |) (Y| and the post-control-estimated state
£ = Py the state fidelity has the form

= (¥l

= (WU a0t Uy g 1V - (C8)
The state fidelities to [y, ) following a control drive Un A5t
are thus

Fy+(Q) = 3(py+ + po— + (pys — ps—) cos(2Qdt)

+ 2Re(py + 4 ) sin(2Q810), (C9a)
Fy—(B) = 3(oy— + pg+ + (Py— — pg+) cOS(2A8t)

— 2Re(py, y_) sIN(2A 81)), (C9b)

where py s = (Vilpest| Vi) Por = (P2|Poaldbs), Pyy o =
(Vs | pest@—), and pgy y— = (s |pest| V) are the relevant
populations and coherences of the pre-control-estimated

state pg;. Because |y} is invariant under Hy, and [Wr_)
under Ag, their respective fidelities are only affected by
one of the two drive parameters, £2 or A.

Extremizing these fidelities using the conditions
dFy, /d2=0=dF,_/dA then determines the optimal
state-estimate-dependent constant drives to apply over a
single control cycle 8t,

tan[2Qopeo0( Pest)31] = 2Qopio (Pest) 8t + O(SF)
_ 2Repy g

- , (C10a)
P+ — Py
tan[2 Aopi( Pest) 8] = 2A ot (pest)8t + O(5)
_ IRepgiy— (C10b)
Pyt — Py—

Because the right-hand sides of both expressions are (1)
in §t, which itself is an integer multiple of 4¥, the arctan-
gent is not expanded in calculations of L2450, Aop used in
simulations. Note that, unlike state-estimate-independent
linear feedback schemes (e.g., Ref. [47]), the drive ﬂi’_,_
inherently disrupts the target state in our protocol, which
forces the dependence on a state estimate to achieve opti-
mal feedback control. This optimal feedback drive applies
when the measurement backaction is ignored or negligible.
In particular, the basic rate £2.,, will acquire corrections

when accounting for the measurement properly, as detailed
in the next section.

For completeness, we also note that these optima can be
written in terms of the observables in Eqgs. (C6)) and (C7)),

Qopt0 (Pest) 8t = £ tan ™" (C (pest)), (Clla)
Acpt(pest)8t = 1 tan™" (C_(pes), (C11b)
where
Repyig  (Ky)
Ci(p) = = —— (Cl12a)
T - (ZY)
2Repyry— _ (X)
C_(p) = C12b
O e e (2 (20

2. Optimal feedback with measurement but no
dephasing

When concurrently monitoring an observable N =
(61" 4+ 6172, the feedback control will generally depend
upon the delayed and normalized measurement record
ri(t — 1;). As a minimal feedback protocol, the corotating
drive should depend on the record and a state estimate p,,
while the counter-rotating drive can be kept constant or
independently optimized to the Agp(pes) in Eq. (C11b).
Combining the control drive in Eq. (C4a) with the mea-
surement operator associated with r(f — ;) yields a com-
posite update operator for the measurement interaction and
evolution with delay time t; plus a following control time
step 8f of Efg,ﬂ,;!;ffrmgﬂ?r.

The time delay t; complicates the analysis, since the
state generally evolves between when the measurement
is performed and when the feedback control is applied.
Distinguishing the control cycle time step 5t from the
evolution time step df results in a similar complication,
since even a 7; = 0 system will undergo evolution that
goes uncorrected for an interval 5. However, as an initial
approximation, we can take the zero-delay limit 7y — 0
by ignoring the intermediate evolution ff:d+3r before the
control, and take the controller latency to be negligible by
setting 4 = 4f. In this zero-delay case, the fidelity to the
target state |1y, ) after a measurement-and-control time step
df has the form

(V4] ffﬁa,m,rﬂ?rﬂmﬂ?rrff;],a,w V)

.‘J..F'w+ = - ~
Te{ M, My pest]

(C14)

Treating the parameter 2 as tunable and using the short-
hand notation M = Ug a g »M, for the composite operator,
the extremization condition for this fidelity becomes
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d
TV 0= 2Re (| lpui' 19 (C15)
Using the Bell state identities
ot —di 4T ”i
M |y, ) = cos(Qdf) |y ) sin(Qdf)e cosh |¢—) + sinh &4} |, (Cléa)
M |¢p_) = —sin(Qdt) |yr4) + cos(Qaf)e 4/ [msh ( ) |¢_) + sinh ( ) |¢'+‘.+] (C16b)

the fidelity condition evaluates to a combination of components of pgq:
2Re (| M pea " Y1) = — sin(2Qd) py .

rdt rdt
+ 2 cos(2Q2d)e /4 [cosh (2 )Rep.p_,_ 4— +sinh ( > )R.ﬂp¢+ ¢+]
. e 5 ((rdt .o (rdt . rdt
~+ sin(2L2df)e cosh 37 Pg— + sinh 3 Pg+ + sinh - Reppy g | (C1T)
Setting this to zero, we can then solve directly for the optimal drive:

2e~ /4 [cosh(rdf/21)Repy 4— + sinh(rdt/2T)Repys y+ ]
— e~a/2t[cosh® (rdt21) pg_ + sinh’ (rdt/2T) pg, + sinh(rdt/T)Repys 4]

_ 2Repyry-  rdt [EREP‘H.M + 4RJBP¢+.¢—REP¢+,¢—1|

tan(2 dt) =
Lopt P

P+ — Py Pyt — Py (Py+ — po-)
[ Repyro—  ARepyigiRepyr g +2Repyry (Ppr —po) 2REP¢+.¢—{2R€:9¢+.¢—}21|
4t Loy — po- (Py+ — ps-) (Py+ — ps-)
+ O, (C18)

Here the second equality uses (rdf)’ = tdlt.
Identifying the first term as the rescaled coherence C(p) determining the measurement-free rate {2550 in Eq. (C11a)
and recalling that T = 1/2I"5, this solution can be rewritten in the form

1 dt
Sopedl = = tan™"! (C'+ (Pest) + 20T P(pest) relt + nT QO pest) 5) (C19)

with the characteristic state-estimate-dependent factors

P(pey) = Repyrae | C,( En}ﬁ (C20a)
Pyt — Pg— Pyt — Pg—
(pet) 4Re Re _+ 2Re _( — }  2Re _(2Re P
O(pet) = — C (Pest 4 Py+4+5CPg+ 4 ﬂ;s;+.¢ Po+ — Py n Py+g P¢3+,¢ . (C20b)
2 (py+ — Ps_) (oy+ — Pg-)

The dominant terms are the measurement-free rate C, (p), of order 1, followed by the white noise term of order dr'/?
in rdt = 2Repy, 4 dt + dW/./2I'n. Expanding the arctangent about the (?(1) term C; (pes) and keeping terms of order
dr'’? gives

nP( pm] m’t

1
Q _di = —tan ' (C +
apt 3 (€4 (Post)) T Cilom

P(pes)
—_— |t C21
— Qoo 41 (1 . {pﬂ}z)r c21)
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Thus, incorporating the most recent measurement infor-
mation rdf leads to a finear correction, multiplied by a
state-dependent factor. In the case where the coherence
Py+¢— 15 being consistently and successfully rotated into
the oy population, C, (p.) = 0 and the feedback is linear
up to the state estimation for P{p.q):

opedt &= qT P pes) rdlt. (C22)
MNote that Pip.) can also be written in terms of the
operators in Eqs. (C6)), (C7)), and (B8)) as

Y.V + N 20X, 1N
Plpeg) = — 2% 4{; ; +) {'fz":}{z ! ()
+

This means that the two dominant terms depend mainly on
the premeasurement coherence {)?.,.} and the measurement-
disturbed coherence (X, & + N.X,)/2, both weighted by
population bias (£, ) in the subspace. This further moti-
vates thinking of Eq. (C22) as the optimal drive when the
feedback is on track: given an initial condition py with
{)?.,.} =0, the drive following a measurement will just
be P(pg) = —((X: N + NX,))/4(Z,). Since this drive is
optimal, it should rotate all measurement-disturbed coher-
ence into |yr;), thus restoring {)?.,.} =0 until the next
measurement. However, the introduction of nonidealities
(time delay and fluctuator or white noise) may cause the
trajectory to deviate from this optimal feedback, making
the C; (jpq5) terms critical to the feedback success. This is
explored further in Appendix C 5 below.

3. Optimal feedback with measurement and dephasing

The preceding section neglected the average dephas-
ing occurring during the time step df prior to the control
being applied. However, this dephasing can be readily
included in principle. Since the specifics of the dephas-
ing are unknown to the feedback controller, the fidelity
optimization condition of Eq. (C15) should be modified to

3Fy+

L —0=2Re (g | La(M pea M) |9r,)

(C24)

with the average dephasing modeled by a Lindblad state
update

ATy 0 o o
La(p) = —=6p6{" + 68 p6)

+—“ — AT 8 o+ Jopd] (C25a)
72— d’r‘ 2 -4 _;"}d’rﬁf{ (C25b)

which includes both the effective single-qubit dephasing
and the residual measurement dephasing due to imperfect

efficiency < 1. However, including this dephasing over
the single time step 4f will only add corrections of order
df to the deterministic feedback function O(p.5) in Eq.
(C19), which is already subdominant, so the dephasing
corrections can also be safely neglected.

4. Linear feedback stochastic Schridinger equation

Assuming ideally efficient linear feedback in the form
of Eq. (C19), we can also derive an effective stochastic
Schrodinger equation that describes the feedback dynam-
ics. For simplicity, consider feedback drives of the minimal
form

with a common scaling constant I set to match the
ensemble-average measurement-dephasing rate. For the
corotating drive, the tunable state-estimate-dependent
function P(pgy) scales the measurement record, again
assuming zero time delay for convenience, while the
strength of the counter-rotating drive can be relatively
tuned with the dimensionless constant c.

Following the form of the update in Eq. (Cl14), the
renormalized state after both measurement and the unitary
feedback drive is

Ug,aatr My
NI A AT

In this zero-delay case, using the white noise approxima-
tion for the readout in Eq. (B1), the form of the measure-
ment operator in Eq. (B9), and the form of the conirol
unitary in Eq. (C4a) yields the following composite update
map to order 4, recalling that (rdf)’ = t dt + OQ(dr*/?):

W (t+df)) = [Ur}. (C27)

YaaarMr 5 1 ran [ﬁ—; &) +TP %]
NEALYA) " :
+ dt[l"cL + EE " — {ﬁn}
_ [NE + 2N (V) — 3(A)2
2 4t
i,- 2
— r(rp}l(z—:f) ] (C28)

After substituting the white noise relation rdt = {};’}dt—i-
/T dW and writing the measurement time 7 = 1/2[ in
terms of the dephasing rate I", assuming perfect efficiency
n = 1, this yields a stochastic Schrédinger equation that
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includes (instantaneous and perfectly efficient) feedback:

d|y) = [”’[(N N}}—l—}’+]|¥’f}

_;Edt[ 1’_+ }’+(ﬁ'+{ﬁ} j||'.f-":'

__d[w ()2
2 2

—iﬂ] ).  (C29)
5. Correspondence of deterministic and
record-dependent feedback

The optimal protocols derived in Appendices C 1 and
C 2 are equivalent under a special choice of state estimate.
In particular, Eq. (C14) can be rearranged as

M pest M}

Fys = W1 U, (?
¥+ (Vs A4y T['[M:M,pest]

) Er:'i,ﬁ,aﬂ',r IIIEF+}

= (Vs | Unaair£iUp g g W) (C30)
which is equivalent to using the Bayesian-updated state
P for the deterministic feedback in Eq. (C8). Thus, the
optimal feedback that includes the linear feedback term
[Eq. (C19] is implicitly realized by applying deterministic
feedback [Eq. (Cl11a)] on the Bayesian-updated state.

This has important practical consequences. The fact
that the measurement-dependent feedback requires state
tracking mitigates its potential advantage over the deter-
ministic feedback. In a state-independent linear feedback
protocol such as that of Ref. [38], feedback can be imple-
mented in hardware, eliminating computational overhead.
However, since state estimation is required with both the
record-dependent and record-independent expressions we
derived, it is optimal to compute the computationally sim-
pler deterministic expression in Eq. (C8) after perform-
ing the Bayesian update. In this case, the record depen-
dence enters the feedback implicitly through the Bayesian
update.

For completeness, we compare simulations of two
approaches in Fig. 9. The left column depicts deterministic
feedback, which uses only the £25p ¢ term from Eq. (C11a).
The right column depicts record-proportional feedback,
which uses only the first term in Eq. (C20a), i.e.,

Repy,, 2Re _Repsy s
Plpest) = i+ B {ﬂv+,¢_ q;;r,ql-
Py — Po- M+ — Pg—
~ RePytar (C31)
Py — Po-

This is chosen on the basis that the coherence Repy, 4

and the measured {ﬁ' } are proportional to ,/pg_ and so
become small near |yry ). Including r, the noise will dom-
inate over deterministic terms in Eq. (C19), so ,,df =

(@) (b)

determlnlsllc feed back  record-proportional feedback
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= 0.6
Ty 0.50
0.4 0.25
02p L 0,00
0 10 20 30 40 50 0 10 20 30 40 50
© soss 0 @
" .
=
5 ULI ! ' 0.5
(=]
£ 0.0
E 0.5 0.5
g 1 ﬂm..n,l :
o -1

GD 10 20 30 40 50
£ {us)

I:I- 10 20 30 40 50
tus)

FIG. 9. Fidelity JF(f) to target |y.), comparing determin-
istic feedback flgpo(p) (left) to record-proportional feedback
Qope1(p) = nTPip)r (right), with 1/f noise I'; = 1/52 |.|.s_],
Appf2r =10 MHz, n=1/2, 7y =500 ns, and " =1 |.|.s_].
(a)(b) Overlaid ensemble of 100 trajectories (translucent pur-
ple} highlighting one trajectory (dark purple) and the ensem-
ble average (black). Deterministic feedback in (a) stabilizes
the ensemble mean over time, while proportional feedback in
(b) with a delayed record r(f — 1) does not reliably stabilize
all trajectories. (c)/(d) Comparison of the deterministic drive
Qopeo[o(0)])/nlr(t — 14) scaled by the delayed record (black) and
the envelope P[p(f — 14)] used in proportional feedback with no
forward estimation (aqua). For deterministic feedback in (c), the
drive Qg0 is computed and used to get the highlighted trajec-
tory in (a) first, then P is computed for that observed trajectory
and shows close agreement to the deterministic envelope (inset).
For proportional feedback in (d), the P is computed and used to
get the highlighted and stabilized trajectory in (b) first, then £2,p:0
is computed, but shows poor agreement.

" P[p] rdt so long as the feedback remains close to the
optimal trajectory.

The deterministic feedback in Fig. 9(a) stabilizes more
reliably than the proportional feedback in Fig. 9(b). This
makes sense given that the deterministic feedback includes
the zero-order term while also including record informa-
tion implicitly, whereas the proportional feedback excludes
the zero-order term. Interestingly, for the highlighted tra-
jectory stabilized with deterministic feedback, the forward-
estimated drive 2., 0[pes(f)]/nl'r(t — 174) scaled by the
delayed record in Fig. 9(c) (black) is in close agreement
with the P[pgs(f — T4)] that would have been calculated for
that trajectory without forward estimation (aqua). This sup-
ports the intuition that the deterministic feedback implic-
itly includes the record information, and also confirms that
the proportional term is the dominant effect most of the
time. However, for a trajectory stabilized with proportional
feedback only, the used P in Fig. 9(d) (aqua) shows poor
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agreement with the drive f2.p50/n0'r (black) that would
have been calculated. This suggests that the infrequent,
large discrepancies between {2,y 0 and P in Fig. 9(c) repre-
sent nonlinear corrections that are critical to the feedback
success. Without these large comrections in the proportional
feedback case, the deterministic protocol always predicts a
large correction to return to the more stable regime where
proportional feedback becomes reliable.

APPENDIX D: IMPROVING FEEDBACK
CONTROL WITH FORWARD STATE
ESTIMATION

The feedback control derived in the previous section
ignored the time delay r; between when the measurement
record is collected and the control is applied. However,
in practice, this time lag is necessary for information to
travel between the system and measurement apparatus, so
concurrent system evolution will take place during this
delay that should not be neglected in the state estimate
Lest Deing used to predict the feedback control that should
be applied. Thus, the applied feedback conirol should
anticipate what the future sfate will be, accounting for
the evolution between when the measurement interaction
occurred in the past to produce the collected record and
when the feedback signal reaches the system.

While unitary control drives are known and may be
readily accounted in such a forward esfimation of the
future state, other types of evolution like measurement
and fluctuations are not known during the delay. As such,
the best estimate one can make for the evolution during
the delay is the mean evolution that averages over the
unknowns and uses the information about what drives have
already been output by the controller but have not yet
arrived at the system.

The feedback loop time delay t; between when the mea-
surement microwave field interacts with the system and
when the corresponding feedback control field reaches the
system can be broken into three conceptual parts,

(D1)

where 1,_.. is the time of flight for the readout to make
it through the measurement chain to the controller, . is
the time it takes for the controller to compute the feed-
back to apply, and t._., is the time of flight for the control
signal to reach the system. Thus, the controller should
understand the readout received at time ¢ as rif — 1,_, ),
meaning it reflects information in the system state at a time
T;— in the past, but it should issue a control signal that is
appropriate for the future system state p(f — T,—.. + T4) =
plt + 1o + T.—). However, this distinction is unimportant
for the controller, which can operate with a shifted internal
clock time f ++ t+ T, 50 that its internal f is matched to
the time of the measurement interaction with the past sys-
tem state, in which case it can assume that it receives a

Tg = Ty + To + Tomsay

signal r(f) and must output a feedback signal for the future
state p(f + 14) a full delay time 7 in the future.

Other than this full delay time T4, the only important
timescale for the feedback is the processing time of the
controller T,.. This time sets the minimum duration required
to change the output feedback control signal. Whereas the
readout of the system is modeled as a discrete process with
time step df according to Eq. (B2), the readout processed
by the controller is buffered and averaged in larger bins
of duration 7. to produce the values F(f). In this way, no
signal is lost during the processing time, but the controller
is nevertheless restricted to outputting a signal that is time
stepped into bins no finer than its processing time .. For
the purposes of this work, we assume that this processing
time is what sets the overall control time step §f = 1. in the
analysis.

With the shifted clock, the feedback controller should
track an internal state estimate pg(f) corresponding to the
actual system state pgy:(f) that produced the received read-
out F(f). It should then assume that the feedback signal
will be applied to the appropriate forward esfimate of the
system state,

LTa /1]
pest(t+7a) = [ Ewlt+kd0[pes(n],  (D2a)
£=D
Ea(te) = Lgr o Usi(ty), (D2b)

that has been evolved forward by |7,/38f| time steps
&t, including both known unitary dynamics I (f:)[-] =
ff;,(rﬂ{dff;,(&} for the drives that were already sent by
the controller during the preceding 1y (which have not yet
arrived at the system) and the average deocherence L, that
is anticipated during each time step §f over the delay time
Tg-

In practice, the average decoherence is relatively small
if the delay t; is sufficiently short, s0 can be neglected
as an initial approximation. In this case, the forward esti-
mation is entirely determined by the sequence of conirol
unitaries for the drives that the controller has already sent.
Since the unitary generators ¥+ commute, the controller
only needs to save a munning buffer sum of the emitted
drives, (S2(f),S2(f— &1),...,2(f — 1)) and (A, At —
&), ..., At — 1)), from which it can keep running sums
£1;, and A., over each buffer by subtracting the oldest
and adding the newest when the buffer is updated at each
time step. The forward-estimation unitary operator used for
simulations in the main text is then simply

Urlf = exp(_f{ﬂ?d r+ +A Ty Y_ }‘EU’E) (DE}
with the corresponding closed form in Eq. (C4a). This sort

of buffering and calculation is straightforward and fast on
an FPGA controller.
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