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Abstract

Classical results show that gradient descent converges linearly to minimizers of smooth
strongly convex functions. A natural question is whether there exists a locally nearly
linearly convergent method for nonsmooth functions with quadratic growth. This work
designs such a method for a wide class of nonsmooth and nonconvex locally Lips-
chitz functions, including max-of-smooth, Shapiro’s decomposable class, and generic
semialgebraic functions. The algorithm is parameter-free and derives from Goldstein’s
conceptual subgradient method.

Keywords Subgradient method - Goldstein subdifferential - Semialgebraic - Partial
smoothness - VU-structure

1 Introduction

Slow sublinear convergence of first-order methods in nonsmooth optimization is often
illustrated with the following simple strongly convex function:

2

1
f(x)= max x; + 3 X for some m < dand all x € RY. 1.1)

1<ism

For example, consider the subgradient method applied to f, which generates iterates
xx- Since fis strongly convex, classical results dictate that f (xx) — inf f = O(k™1).
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Fig. 1 Comparison of NTDescent with PolyakSGM on (1.1). Left: we fix d and vary m; Right: we fix
mand vary d. For both algorithms, the value f (. x; ) denotes the best function value seen after t  oracle
evaluations

On the other hand, under proper initialization and an adversarial first-order oracle,
there is a matching lower bound for the first m iterations:f (x;) — inf f = (2m)~! for
all k £ m; see [11, 43]. Beyond the subgradient method, the lower bound also holds
for any algorithm whose kth iterate lies within the linear span of the initial iterate and
past k— 1 computed subgradients. Thus, one must make more than m first-order oracle
calls to f, i.e., function and subgradient evaluations, before possibly seeing improved
convergence behavior.

While such methods make little progress when k& m, this behavior may or may not
continue for k  m. On one extreme, the subgradient method continues to converge
slowly even when equipped with the popular Polyak stepsize PolyakSGM) [47]; see
dashed lines in Fig. 1. On the opposite extreme, more sophisticated algorithms such
as the center of gravity method or the ellipsoid method converge linearly, but their
complexity scales with the dimension of the problem, a necessary consequence of the
linear rate of convergence; see the discussion in [11, Chapter 2].

A natural question is whether there exists a first-order method whose behavior
lies in between these two extremes, at least for nonsmooth functions f satisfying
regularity conditions at local minimizers. Regularity conditions often take the form
of growth—Ilinear or quadratic—away from minimizers. Well-known results show
that subgradient methods converge linearly on nonsmooth functions with linear (also
called sharp) growth [47]. On the other hand, in smooth convex optimization, quadratic
growth entails linear convergence of gradient methods. However, to the best of our
knowledge, no parallel result for nonsmooth functions with quadratic growth exists.
Thus, in this work, we ask

is there a locally nearly linearly convergent method for nonsmooth functions
with quadratic growth whose rate of convergence and region of rapid local con-
vergence solely depends on f?
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Let us explain the qualifiers “nearly” and “solely depends on f.” First, the qualifier
“nearly” signifies that the method locally achieves a function gap of size € using at
most, say, O(C f log3(1/€)) first-order oracle evaluations of f, where C f depends on
f. Second, the qualifier “solely depends on the function,” signifies that (and the size
of the region of local convergence do not depend on the dimension of the problem, but
instead depend only on the function f through intrinsic quantities, such as Lipschitz
and quadratic growth constants.

In this work, we positively answer the above question for a class of nonsmooth
optimization problems with quadratic growth. The method we develop is called Normal
Tangent Descent NTDescent). We formally describeNTDescent in Sect. 1.4. For
now, we illustrate the performance of NTDescent onf from (1.1) in Fig. 1. In both
plots, we see NTDescent improves on the performance of PolyakSGM, measured
in terms of oracle calls. This is a fair basis for comparison since botRo 1lyakSGM and
NTDescent perform a similar amount of computation per oracle call. Figure 1b also
shows that the performance of NTDescent is dimension independent. We highlight
that this performance was achieved without any tuning of parameters fdiTDescent.
Indeed, our main theoretical guarantees foNTDescent (Theorem 1.1) do not require
the user to set any parameters.

The problem class on which NTDescent succeeds consists of locally Lipschitz
nonsmooth functions with quadratic growth and a certain smooth substructure at local
minimizers. Importantly, we do not assume the problems under consideration are
convex, though convexity entails improved guarantees. Two example classes with
such smooth substructure include (i) “generic” semialgebraic functions and (ii) prop-
erly CP decomposable loss functions satisfying strict complementarity and quadratic
growth conditions [49]. A semialgebraic function is one whose graph is the finite union
of intersections of polynomial inequalities. Semialgebraic functions (more generally
tame [32] functions) model most problems of interest in applications. If f is semial-
gebraic, for a full Lebesgue measure set of w e R 9, we will use show that the tilted
function fw : x - f(x) + w xhas quadratic growth and the desired smooth sub-
structure at each local minimizer, explaining the qualifier “generic.” We mention that
this fact essentially follows from combining results of [19, 23]. On the other hand, a
properly CP decomposable function is one that decomposes near local minimizers as a
composition of a positively homogeneous convex function with a smooth mapping that
maps the minimizer to the origin. Decomposable functions appear often in practice,
e.g., in eigenvalue and data fitting problems. An important subclass of decomposable
functions consists of so-called “max-of-smooth” functions, which are the maximum of
finitely many smooth functions that satisfy certain regularity conditions at minimizers,
e.g., f in (1.1).

The precise smooth substructure used in this work was recently identified in [19],
where it was shown to be available in decomposable and generic semialgebraic prob-
lems. Since it is available in many problems of interest, throughout this introduction
we call this the combination of quadratic growth and smooth substructure typical
structure and call functions possessing this combined structure typical. We present
the formal structure in Sect. 3. At the heart of this structure is a distinguished smooth
manifold M —called the active manifold—containing a local minimizer of interest.
We formally define the active manifold concept in Definition 1.2, but at a high level, the
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Fig.2 The function f (u, v) = u? + |v| has typical structure

two crucial characteristics are that (i) along the manifold, the function fis smooth and
(ii) normal to the manifold, the function grows sharply. For example, Fig. 2 depicts
the nonsmooth function f (u, v) = u? + |v| for which the u-axis plays the role of
M . In Sect. 1.3.2 we will examine this function and explain how we use its typical
structure in NTDescent. This example also has the smooth substructure developed
in several seminal works in the optimization literature, including those found in work
on identifiable surfaces [52], partly smooth functions [38], VU structures [36, 41],
and minimal identifiable sets [26]. However, crucial to the analysis of NTDescent
are two further properties introduced in [19], called strong ( a)—regularily and (b<)-
regularity. Strong (a)-regularity roughly states that the function is smooth in tangent
directions to the manifold up to an error term which is linear in the distance to the
manifold. On the other hand, (b<)-regularity is a one-sided uniform semismooth-
ness [40] property that holds automatically when fis (weakly) convex. Both properties
hold for the two variable example in Fig. 2 and for the function in (1.1), where the
active manifold is the subspace in which the first m variables take on the same value:
M ={ xeR9:x = X2 =...Xpn}

Before turning to the description ofNTDescent, we point out that similar smooth
substructure has been used in the analysis first-order methods in nonsmooth optimiza-
tion, most famously for functions with VU-structure [36, 41] and more recently for
max-of-smooth functions.! For VU functions, so-called “bundle-methods,” [35, 50]
which possess an inner-outer loop structure, have been shown to converge superlin-
early with respect to the number of outer-loop steps [41]; see also the survey [44].
These methods have excellent empirical performance, but a complete account of their

1 Though they also benefit from smooth substructure, proximal-methods do not fall within the oracle model
of first-order methods considered in this work. Thus, we omit them from our discussion.
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inner-loop complexity remains elusive. On the other hand, in arecent work, Han
and Lewis proposed a first-order method—Survey Descent—that converges linearly
on certain strongly convex max-of-smooth objectives, stepping beyond the classical
smooth setting [30]. The method shows favorable performance beyond the max-of-
smooth class, e.g., on certain eigenvalue optimization problems, but no theoretical
justification for this success is available. We discuss Survey Descent in more detail in
Sect. 7.1. We now motivateNTDescent.

1.1 Motivation: Goldstein’s Conceptual Subgradient Method

To motivate NTDescent and the role of smooth substructure, let us set the stage:
consider the nonsmooth optimization problem:

minimize, ga f(x),

where f : RY - R is alocally Lipschitz function, which is not necessarily convex.
The algorithm developed in this work assumes first-order oracle access to f [11, 42,
43]. In particular, at every x € RY we must be able to evaluate f (x) and retrieve an
element of the Clarke subdifferential 0 f(x). Informally, the Clarke subdifferential
is comprised of convex combinations of limits of gradients taken at nearby points; a
formal definition appears in Sect. 1.7. The Clarke subdifferential reduces to the familiar
objects in classical settings. For example, when f is C!, the Clarke subdifferential
reduces to the singleton mapping {V f}. In addition, when f is convex, the Clarke
subdifferential reduces to the subdifferential in the sense of convex analysis.

The starting point of this work is the classical conceptual subgradient method of
Goldstein [29]. The core object in this method is the Goldstein subdifferential:

[ \
0o f(x) := conv \ 0 f(y)/ forallx e RY and 0 > 0. (1.2)
yeBo(x)

This subdifferential is simply the convex hull of all Clarke subgradients of [ taken
at points inside the ball of radius O- Its importance arises from the following descent
property proved in [29]: fix 0> 0and x € R? and let W denote the minimal norm
element of 05 f(x). Then

w
f x-0_— < f(x)-ow ifw= 0 (1.3)

This property motivates Goldstein’s conceptual subgradient method, which simply
iterates:

w,
k .
Xk+1 = Xk — 0 —— where Wy = argmin w. (1.4)
Wk wedo f(xx)
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This algorithm is remarkable since it is provably a descent method for any Lipschitz
function and even converges at a sublinear rate. Indeed, a quick appeal to (1.3) yields

f(xo) - min f _

min W g<¢ holds when K 2
1 gé&

K= Orever K=

While this exact variant of the Goldstein method is not necessarily implementable,
recent work has devised approximate versions of the method that have similar sublinear
convergence properties [21, 55].

The algorithm introduced in this work approximately implements the method (1.4).
The goal of this work is to prove that the method is locally nearly linearly convergent on
typical nonsmooth functions. To develop such a method, we must resolve two issues
for this problem class. First, we must develop rapidly convergent algorithms that
approximately compute the minimal norm element of the Goldstein subdifferential.
Second, we must devise an appropriate regularity property that ensures the proposed
method converges nearly linearly. We will discuss both of these properties in turn,
beginning with a regularity property that relates the decrement in (1.3) to the function
gap.

1.2 Linear Convergence via a Gradient Inequality
Observe that if the bound
owkzn( f(xx) - minf)

holds for some 1> 0Oandall k > 0, then the Goldstein method (1.4) converges
linearly to a minimizer of f. A potential issue with this inequality is that the vector
Wy is zero whenever O is larger than the distance of x j to the nearest critical point
of f; thus the algorithm may stall whenever x  is near enough to a minimizer. This
suggests a simple relaxation of the property that allows O to depend on x.

Indeed, we will provide conditions under which the following bound holds near a
local minimizer x of f: there exists a constant /1 > 0 and a function 0: RY - R .
such that for all x near x, we have

g ()dist(0: 95 ) f(x)) 2 n( f(x) = f(x)- (1.5)

throughout, we will refer to this bound as a gradient inequality, due to its similarity to
the Kurdyka-t.ojasiewicz (KL) gradient inequality [7]. The KL inequality requires that
a suitable nonlinear reparameterization () : R - R of the function gap is bounded by
the minimal norm Clarke subgradient for all x near x :

dist(0, 0 f(x)) = y( f(x) - f(x)-

In recent years, the KL inequality has played a key role in establishing convergence
and rates of convergence for proximal methods in nonsmooth optimization and in
continuous time analogs of the subgradient method; see e.g., [3, 4, 7, 9, 53].
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To illustrate, let us specialize to the semialgebraic setting, where the desingular-
ization function ¥ is known to take the form ¥(r) = r® for 8 € [0, 1). The work [2,
Theorem 2] initiated the study of convergence of proximal methods in this setting,
showing that the proximal point method asymptotically converges to its limit point,
which is critical but not necessarily optimal. The method convergence in finitely many
steps when8 = 0, locally converges linearly whend € (0, 1/2], and locally converges

at the rate k% when 6 € ( 1/2, 1). Further works such as [3, 9] generalized the tech-
niques to related proximal methods. Passing to continuous time, one is interested in the
convergence of the trajectory of subdifferential inclusion satisfying(t) € =9 f(x(t))
at almost every t . Here, the rates of convergence exactly parallel those in the proximal
methods as shown in [6, Theorem 4.7].2 In contrast to the proximal and continuous-
time settings, we do not know whether the KL inequality alone allows one to design

a locally linearly convergent discrete-time subgradient method, except in the setting
where 8 = 0 (i.e., f issharp)andf is convex [47] or weakly convex [22]; weakly
convex functions form a broad class of nonconvex functions that includes all com-
positions of Lipschitz convex functions with smooth mappings. When 6 > 0, to the
best of our knowledge, the best rate proved in the literature for any subgradient type

~(1-9
method is k (59 : [33]; this result is only known to hold for convex functions.

A well-known property of the KL inequality is its prevalence: it holds at each
critical point of an arbitrary lower-semicontinuous semialgebraic function f [7]. We
will show that the gradient inequality (1.5) is also prevalent in the sense that it holds
for the aforementioned problems with typical structure. In this way, the conceptual
method (1.4) with varying Oy := 0 (xx) will locally converge linearly on such prob-
lems. The reader may wonder whether we can or must find the precise value O (x;).
We will show that for typical problems, an appropriatedy may be found through a line
search procedure.

1.3 Approximately Implementing Goldstein’s Method

The gradient inequality ensures that the conceptual Goldstein method converges lin-
early, provided the stepsize O is chosen adaptively. To move beyond the conceptual
setting, we must develop strategies for approximating the minimal norm element of
0 f(x) for 0> 0and x € RY. Let us suppose we have such a method and denote it
by MinNorm(x, 0 ) Then the method of this work simply iterates:

Wi .
and W), = MinNorm(xy. G) (1.6)

Xk+1 = Xk_UkW
k

for an appropriate sequence Oy > 0. We will discuss and develop two different
implementations of MinNorm(x, 0) in this work. Givenx €R 9 and 0 > 0,

2 These rates were shown only for “lower-C 2» semialgebraic losses, but extend to locally Lipschitz semi-
algebraic functions via the semialgebraic “chain rule” proved in [20].

3 The results stated in [33] pertain to functions with Holder growth; thus, to prove the results stated in the
paragraph, we must use the following known fact: functions satisfying the KL inequality with exponent 6
have Holder growth with exponent 1/( 1 — 8) , which follows from the proof of [24, Theorem 3.7].
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both methods iteratively construct a sequence of Clarke subgradients g ¢s - - - gr-1
taken at points in the ball Bo(x) and then output a “small” convex combination
w e conv{go: - - - gT-1}, which satisfies the descent condition
w ( g
x—0d—— < f(x)- —w. 1.7
fx-o—— s )= (17)

The oracle complexity ofMinNorm(x, 0 )is then T function/subgradient evaluations,
and we hope to ensure that T is relatively small, for example, a constant or at most

T=0 log ;}; where 4,0 := dist(0, 9o f(x)-

Provided that Tis on this order, that f satisfies the gradient inequality (1.5), and
that O is chosen appropriately, the iterate x ; will satisfy f (xx) = f(x) <& after
at most O (log?(1/€)) iterations, a nearly linear rate of convergence. This complexity
ignores the cost of choosing an appropriate stepsizéJy, but we will show that in typical
problems we can find appropriate Oy with at most O (log(1/€)) function/subgradient
evaluations.

We are aware of two MinNorm type methods in the literature, but their complex-
ity is either too large or is useful only in low dimensions problems. For example, the
works [21, 55] introduced such a method for general locally Lipschitz functions. How-
ever, the complexity of the methodis T = O(1/ ,6)—too large for our purposes.
On the other hand, the work [21] also introduced a method tailored to low-dimensional
weakly convex functions. However, the method is based on cutting plane techniques,
so its complexity scales linearly with dimension: T = O(d log(1/ ,,0)).

While existing MinNorm methods are slow for general Lipschitz functions, we
show that the aforementioned typical structure allows us to developMinNorm meth-
ods that accelerate in a neighborhood of the minimizer. Our approach is based on a
decomposition of a neighborhood of the minimizer into two regions: one where the
method of [21, 55] is applicable, and another region where a novelMinNorm method
may be applied.

1.3.1 The Normal and Tangent Regions

In this work, we use the active manifoldY to split the space of(x, O )for x nearby the
minimizer x € M into two sets where fast MinNorm methods are available. We call
the first set the normal region. This region consists of points whose normal distance
dist(x, M) is larger than a multiple of the squared tangential distance Pv (x) = x 2,
together with stepsizes O proportional to a multiple of the normal distance:

Udist(x, M) s o < ardist(x, M);
a3 Pm (x) - x 2 < dist(x, M),

123 2.4
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for problem dependent constants a 1 a> € (0, 1); see Theorem 4.3 for more details.
We will show that in this region, we have 0 = 1),60 the MinNorm method
of [21, 55] terminates with descent in finitely many steps.

On the other hand, we call the second set the tangent region. This set consists
of points whose squared tangential distance is larger than a multiple of the normal
distance, together with stepsizesd proportional to a multiple of the tangential distance:

L pPulx)-x<0s a Pu(x)-x;
ist(x,M ) -
distte ™ < 2a; Pum (x) - %,

where a; and a; are as in the normal region. For this region, we will propose a new

MinNorm method, which terminates rapidly. We note that in both cases we provide
arange of valid O, rather than a single value since we aim to estimate O with a line
search.

1.3.2 A Simple Example

Before describing the methods in detail, let us illustrate the regions and the principles
of the methods on the following simple function of two variables f(u, v) = u?+ |v],
which has a unique minimizer atx = (0, 0). Here, the u-axis is the active manifold” .
Along the manifold, f is smooth and grows quadratically, while off of the manifoldf
grows sharply; see Fig. 2 for a plot of the function and see Fig. 3 for the x -component
of the normal and tangent regions for f (with ap = 1/8). The manifold M induces
a decomposition of f into smooth f u(u, v) = u? and nonsmooth f v(u, v) = |v|
components. In particular, with variable x = (‘u. V), we have

f(x)= fulx)+ fv(x)= Pwm(x)-x 2+ dist(x, M). (1.8)

From this decomposition, we see fV is dominant in the normal region, while fu is
dominant in the tangent region. Likewise, as we will argue momentarily, the minimal
norm Goldstein subgradient Wo € do f(x) satisfiesw ¢ 2V fv(x) in the normal
region, while w ¢ = (Vfu(x)) in the tangent region. This has several conse-
quences. First, in the normal region, the MinNorm method of [21, 55] will terminate
in finitely many steps, due to the lower bound w ¢ = 1. On the other hand, in the
tangent region, W o can be much smaller, so we must introduce a new method to
generate descent. Finally, assuming these approximations are accurate, the gradient
inequality (1.6) quickly follows: in the normal region, we have

OWg = dst(x, M) = ( f(x),
while in the tangent region, we have
owo = ev (x)-xv  fulx)=  (PMm(x)-x2)=  f(x)
123 4]
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Though it follows from immediate calculations in this example, in the more general
setting, the following consequence of quadratic growth will be crucial in establishing
asimilarbound: V. fu(x)= ( Pm (x)-Xx) .

Now, to lower bound W o we use the following fact: V fu(u, V) is tangent to
M | while V fv(u, V) is normalto M when v = 0. Thus, to lower bound w ¢ in
the normal region, we will simply lower bound the size of the normal component
of Wg. Indeed, since 0 < dist(x, M) , all points x € Bo(x) are on the same side
of M . Therefore, the normal component of W is an average of identical gradients
V fv(x )=V fv(x). Likewise, in the tangent region, we lower bound the tangent
component of Wo. Indeed, since 0 < ~x — Pm (x)/ 8, the projection onto M of all
points x € Bo(x) are on the same side of the origin. Thus, the tangent component of
W is an average of nearly identical gradientsV fu(x ) =V fu(x), yielding the lower
bound. We prove a more general form of both of these lower bounds Lemma 4.1 and
Lemma 4.2, which follow from similar principles.

Turning to algorithms, we have so far noted that theMinNorm method of [21, 55]
may be used in the normal region. In the tangent region, we are unsure how to design
a method that can quickly recover Wo. Instead of searching for Wo directly, we take a
slightly different perspective in the tangent region: we seek a vector ge do f(x) with
“small” normal component, meaning:

Py(g)= o fulx) ?)

where N is the normal space to M . Intuitively, when g has small normal component,
the nonsmooth part fv minimally changes along a gradient step. On the other hand, if
g is sufficiently correlated with V fu, the smooth part fu decreases at an appropriate
rate; we prove this in a more general setting in Lemma 5.2.

Why might one expect such a g to be available in the tangent region? The reason is
that the gradient of the smooth component is itself a Goldstein subgradient. Indeed, for
points near the origin and in the tangent region, the tangential distance is much larger
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than the normal distance. Thus, the reflection of any poifi: V) across the manifoldV
is contained in Bo(x), which immediately implies gradient of the smooth component
is an element of Goldstein subdifferential:

vV fulu, v) = %V flu, v) + %v flu, -v) €d o f(x) (1.9)

While the inclusion (1.9) illustrates one way to construct such a g, we cannot hope
for perfect symmetry in general problems.

Instead, a central insight of this work is that a similar approximate reflection exists
in problems with typical structure. To illustrate, consider Fig. 4. This figure depicts a
point x in the tangent region together with the result of a normalized gradient step:

o Vf(x)
v f(x) '

X+ = X

As can be seen from the figure, x- is an approximate reflection of x across the u-axis,
which “flips the sign” of the nonsmooth component of V f:V fv(x) = -V fv(x+).
Thus, in this setting, one may “cancel out” the nonsmooth component by a simple
averaging:

V fulx) = %v f(x) + %v f(xs):

While seemingly crude, we will show this strategy generalizes to typical functions. An
important distinction with the general setting is that a single averaging step alone will
no longer suffice. Nevertheless, we show that by iterating this process, we can geo-
metrically shrink the normal component of the Goldstein gradient, eventually yielding
descent.

1.3.3 Two MinNorm Methods: NDescent and TDescent

To generalize the strategy outlined in the previous section, =~ we will prove that the
minimal norm Goldstein subgradients of typical problems similarly split into tangent
and normal components just as in Sect. 1.3.2. Then, we introduce twoMinNorm type
methods for “normal” and “tangent™ steps.

For (x, 0 )in the normal region, we use a small modification of theMinNorm type
method of [21]. We call this method Normal Descent NDescent) and describe it in
Algorithm 1. As in the simple example above, we will show that NDescent must
terminate with an approximately minimal norm Goldstein subgradient in finitely many
steps, provided O lies within an appropriate range. We will show that this subgradient
is a descent direction satisfying (1.7).
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Algorithm 1 NDescent(x, g, 0, T)

1: Setgp = gandt = 0.

2: whileT - 12¢t, g > O,and% g = f(x)- f x—crg—: do
3:  Choose any rsatisfying0 < r <o g; .

4:  Sample ¢; uniformly from B, (g¢).

5:  Choose y; uniformly at random in the segment x, x — 0 Zzi— .
6:  Choose g¢ €0 f(y,).

70 Ge+1 = argmingerg, 61 Z 2.

8 t=1t+ 1

9: end while

10: return g;.

We illustrate the principle behind NDescent as follows. Suppose we are given a

vector g € do f(x) not satisfying the descent condition, i.e., with u := %, we have
_ _ _ g
fx-ou- f(x)= -

Then by Lebourg mean value theorem [16, Theorem 2.4] (provided thatf is differen-
tiable along the line segment between[x: x ], which can be ensured by adding a small
perturbation to g; we ignore this in our discussion), we may assume that

1
f(x-ou- f(x)=0 - Vflx-otW,udt=-0 Viu,
0

-1‘,5 -1‘.0 -6.5 OjO 0.‘5 1.‘0 115 ‘. I. -C;.S 0.‘0 0.‘5 1.‘0 1.‘5
Fig.4 Contour plots for f(u, v) = u? +|v| . Left: The pointx = ( 1, -1) together with the approximate
reflectionx+ = x-.3 VV f i across the u axis. The solid light green arrow is parallel to the negative
gradient direction -V f(x). The dashed arrows denote the orthogonal decomposition of -V f(x), respec-
tively =V f(x+), into the vectors =V fu(x) and =V fv(x), respectively =V fu(x+) and =V fv(x+).
From the plot, we see V fv(x) ==V fi/(x+). Right: The point x with estimate - %(V f(x)+V f(x+))
of the vector -V fu(x)
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where v := 01V f(x-twWd €dof(x). Consequently, Vg < g /8. While
it is not possible to compute V, we can compute a random element of the Goldstein
subdifferential, satisfying the same inequality in expectation. Indeed, defining V =
V f(y) where y is uniformly sampled from the line segment [x, x — ¢ u] (with end
points xandx —ou), wehave Ey[v], g < ¢ 2/8. Based on this bound, a quick
calculation shows that the minimal norm element g of the line segmenfg. V ] satisfies
the bound
4

Ey g+ < g °- 13?
Moreover g+ € do f(x). Thus, repeating this process yields a decreasing sequence of
Goldstein subgradients which tend to zero as long as the descent condition is not met.
In general, the norms of the subgradients generated by this process decay at a rate of
1/ k. However, we will prove that disf0, 05 f(x)) is bounded below by a fixed constant
when (x, 0)is in the normal region described in Sect. 1.3.1. Consequently, the loop
must exist in finite time with descent (with high probability), for otherwise we will have
found a subgradient norm strictly smaller than dist (0, 05 f(x)); see Proposition 5.1.
The reader interested in the formal calculations may consult [21, 55].

On the other hand, for (x, 0 )in the tangent region, we develop a new MinNorm
type method, which likewise relies on an approximate reflection property. We call this
method Tangent Descent (TDescent) and present it in Algorithm 2. Given an input
point x , stepsize 0 > 0, and initial subgradient go € d f(x), TDescent repeats the
following steps

Choose: gk €0 f x—Gi ;

gk

Update: gx+1 = argmin g,
g€l gr. gil

until it achieves descent f(x - o g—ﬁ )< f(x) - % gk orruns over budget.

Algorithm 2 TDescent(x, g, 0, T)

1: Setgg = gandt = 0.

2: whileT - 121¢t, g > O,and% g 22 flx)- f x—Ug—f do
3:  Choose ¢ € f(x - Ug—ﬁ).

4 g+l = argminzelghg[] z .
5 t=t+ 1.

6: end while

7: return g;.

The motivation for this method is that for typical problems the step x - g -2 is

g
locally an approximate reflection across M that “flips” the normal component o% the
Goldstein subgradient. Indeed, let y := Pwm (x) denote the projection of x onto M
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andlet N := Nm () denote the normal space toM at y. Then we will prove that for
all k, we have

Pngk, gk - C Pygk+ O(y-x )

for some C > 0, provided O lies within an appropriate range. This inequality ensures
that each step of the TDescent geometrically decreases the “normal component” of
gk, until we arrive at a Goldstein subgradient with normal component on the order of
O( y - x 2);see Sect. 5.2.2. Moreover, given g€ do f(x) satisfying

Py(g)s C3y-x?

for a particular problem dependent constant G3 > 0, we will prove the descent condi-
tion

f x—Gi < f(x)—a—g
g 8

holds; see Lemma 5.2. Combining these two facts shows thatTDescent will rapidly
terminate with descent.

1.4 The NTDescent Algorithm

We call the main algorithm of this work Normal Tangent Descent {TDescent) and
present it in Algorithm 4. At a high level the method is an approximate implementa-

tion of Goldstein’s conceptual subgradient method as in (1.6), using NDescent and
TDescent as MinNorm type methods. As input it takes three parameters: an initial
point x ; a sequence of grid-sizes {Gy} for the line search on O; and a sequence of

budgets {Tx} for the MinNorm type methods NDescent and TDescent. Later we
will show that the user may simply set Ty = Gx = k+ 1forallk = 0.

Algorithm 3 linesearch(x, g;s, G, T)

1: SetVy = g.
2: fori = 0.4 G - 1do
0 = (G-

3 .
4:  u; = Tpescent(x, Y, G;, T).
5.  Vi4q1 = NDescent(x, uj: G;, T).
6: end for

7

8

: %= argmin{f(x ) : x e{x}u{x-0; Vix

Visr -
s return x .
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Algorithm 4 NTDescent(x, g co, {Gi}, {Tk})
Require: sg = 0, ¢ € (0, 1]

1: Setxg = xandgg = g.

2: fork= 0,1 ---do

3:  xx+1= linesearch(xy g max{ gx, co go}, Gi Ti).
4:  Choose gi+1 €0 f(xp+1).

5: end for

The workhorse of NTDescent is the line search procedure in Algorithm 3
(linesearch). Let us briefly comment on the structure of this method. Lines 2
through 6 of Algorithm 3 implement a line search on0. Line 7 chooses the Goldstein
subgradient that provides the most descent while enforcing the trust-region constraint
0, < V’T” Line 7 also ensures the NTDescent is a descent method. Within the
line search procedure, we evaluate TDescent and NDescent a total of G times
each. Not all of the callsto TDescent and NDescent will succeed with descent
within the allotted budget T, but we will show that for typical problems, at least
one will generate sufficient descent provided xi is close enough to a local minimizer
and T is sufficiently large. The reason at least one will succeed with descent is that
given any x sufficiently near the solution and parameters G and T sufficiently large,
linesearch will find a 0 such that (x, 0 )is in either the normal or tangent region
described in Sect. 1.3.1. The line search allows the possibility tha@ is as large as ¥ 2,
which might force x+ 1 to leave the region surrounding the minimizerx . This concern
is what motivates the somewhat unusual structure of the line search method wherein
the MinNorm-type methods are nested. Indeed, on the one hand, the nesting ensures
the norms of the Goldstein subgradients v ;+1 are decaying as 0; increases. On the
other hand, the trust region constraint ensures that 0; is not chosen too large, which
we need for two technical reasons in our analysis: (i) it prevents x k+1 from leaving
a small neighborhood around the minimizer where our regularity assumptions hold;
(ii) we can only ensure TDescent terminates quickly when 0 < d g, for a certain
radius 5Grid defined in Lemma 5.7, which may be substantially smaller than 1/2.

Computationally, it may at first seem desirable to drop the trust region constraint.
Figure 5 shows this may not be the case. We suspect the reason is two-fold: First, the
trust region constraint allows us to cut off a range of 0 from our search, which might
otherwise waste oracle calls; indeed, since v ;j+1 isnonincreasing ini, and 0; is
increasing, once the trust region is violated, it will be violated for all larger i . Second,
although we may take longer steps by disabling the trust region constraint, the amount
of descent we expect is on the order of iV ,-+(?) . Thus, since the norms V j+1
are nonincreasing, larger stepsizes 0; do not necessarily translate to larger descent.

Finally, we comment on our motivation for choosing the scaling
sk = max{ gk, Cco go} inthe trust region constraint. First, note that it is possi-
ble to prove, using identical techniques, that the NTDescent converges when one
replaces sk by any positive sequence that is bounded from above and below by posi-
tive constants. For our particular choice of sy, the term ¢y go ensures the sequence
is bounded below, while the local Lipschitz continuity of f ensures that s is bounded
above. Second, we wish for the trust region constraint to be unaffected by rescalings
of f. Our particular choice of g guarantees scaling invariance, since the subgradients
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Fig. 5 Comparison of NTDescent on Problem (1.1) with the trust region constraint in Line 6 of Algorithm 3
removed. Left: we fix d and vary m; Right: we fix m and vary d. We invite the reader to compare these plots
with Fig. 1

of a f are simply the subgradients of f scaled by a for any positive constant a. One
might introduce other schemes for choosing s, but we did not explore such strategies.
Finally, we found that performance of NTDescent is relatively insensitive to the
choice of co > 0, and any ¢y € {1077 : i = 0, 2, 4, 6} yielded adequate performance;
see Fig. 6e, f.

1.5 Main Convergence Guarantees for NTDescent

The main contribution of this work is a local, = nearly linear convergence rate for
NTDescent. The local rate holds under a key structural assumption—Assumption A
— which formalizes the concept of typical structure and mirrors the structure of the
simple function considered in Sect. 1.3.2. While we formally describe Assumption A
in Sect. 3, for now, we mention that it holds for max-of-smooth and properly C P
decomposable functions, provided the local minimizer x is a strong local minimizer
that satisfies a strict complementarity condition; this class includes the max-of-smooth
setting considered in [30]. Assumption A also holds for generic linear tilts of semi-
algebraic functions: if f is semialgebraic, then for a full Lebesgue measure set of
weR 94, Assumption A holds at every local minimizer x of the tilted function
fw:x > f(x)+w x. Wenow present the theorem.

Theorem 1.1 (Main convergence theorem) Let f : RY - R satisfy Assumption A at
a local minimizer x € R 9. Fix scalar cg € (0, 1], budget {Ty} and grid size {Gy}
sequences satisfying

min{Tx, Gk} =2 k+ 1 forallk = 0.

Suppose that for initial point x o € RY, there exists a subgradient g € 0 f(xo) such
that go = 0. Consider iterates{x;} generated byNTDescent(xo: go: co, {Gk}, {Tk}).
FoC'T
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For any g ko» C > 0, let E,,q,c denote the event:
f(xi) = f(x) < max{( f(xy,) - f(x)q* ko, cq*y for all k = ko-

Then there exists g € (0, 1), C; C > 0, and a neighborhood U of x depending solely
on f such that for any failure probability pe (0, 1) and all ky = C max{log(1/ p), 1},
we have

P(Exyq.c | Xy € U)2 1= p,
provided P( Xky € U) > 0. Moreover, if f is convex, we have
P(Ekyqc)2 1= p-

The theorem, which is justified in Theorems 6.3 and 6.5, bounds the function gap
and distance by a quantity that geometrically decays in k. Let us examine the local
complexity. Recall that each outer iteration of NTDescent requires at most 2T, G
first-order oracle evaluations. Thus, if Tx = G = k+ 1forall k = 0, the total
number of oracle evaluations of K steps of NTDescent is at most O (K3). In other
words, the local complexity of achieving an € optimal solution is O (log3(1/€)) for
all sufficiently small € > 0, where the big-O notation hides terms depending on the
local conditioning of f; see Lemma 6.6. Therefore theorem establishes a local nearly
linear rate of convergence for NTDescent.

1.6 Outline

The outline of this paper is as follows. In Sect. 1.7 we present notation and basic con-
structions. This section describes a key structure—the active manifold—and cannot
be skipped. In Sect. 2, we present the sublinear convergence guarantees, which will
be useful in the convex setting. This section also introduces key properties of the
NDescent method, which will be used later in the work. In Sect. 3, we introduce
our main structural assumption—Assumption A — and show that it is satisfied for
the generic semialgebraic and decomposable problem classes. In Sect. 4, we show
that Assumption A implies the gradient inequality (1.5). In Sect. 5 we show that
the TDescent and NDescent methods terminate rapidly under appropriate con-
ditions. In Sect. 6, we use the gradient inequality (1.5) and Assumption A to prove that
NTDescent locally nearly linearly converges. Finally, in Sect. 7 we provide a brief
numerical illustration.

1.7 Notation and Basic Constructions

We use standard convex analysis notation as set  out in the monographs [16, 48].
Throughout, RY denotes a d—q;mensional Euclidean space with the inner product -, -

and the induced norm x = x, x . We denote the open ball of radiug > 0 around
apoint x € R? by the symbol Be(x). We use the symbol B to denote the closed unit
FolC'T
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ball at the origin. For any set X € R ¢, the distance function and the projection map
are defined by

dist(x, X ) := inf y- x and  Px(x):= argmin y - x,
yeX yeX

respectively. Note that the function dis{:, X ) is 1-Lipschitz for any setX . For any set
XcSR4allxeX,allx e R? andally € Px (x), we have

y-x< 2 x-x.
We denote the diameter of a set X by

diam(X )= sup x-— y.

xyeX

We call a function h : R - R sublinear if its epigraph is a closed convex cone, and
in that case we define

Lin(h) :={x e RY : h(x) = = h(- x)}

to be its lineality space. Given a mapping F  : RY - R ™ and a point x € R4, we
define

- F(x)- F
lipg(x) := lim sup M
XX = X X—x
X=X

Given a mapping F : RY - R ™*" into the space of m X n matrices and a point
x € RY then we define

_ F(x)- F(
lip;’_-p(x) := lim sup X x) P,

XX = X X— X
X=X
where - g, denotes the operator norm defined on R™*".

Semialgebraicity. We call a set X € R ¢ semialgebraic if it is the union of finitely
many sets defined by finitely many polynomial inequalities. Likewise, we call a func-
tionf : R? - R semialgebraic if its graph gph (f) ={( x f(x)): x eR%}is
semialgebraic.

Subdifferentials. Consider a locally Lipschitz function f : RY - R ¢ and a point
x € R. The Clarke subdifferential is the convex hull of limits of gradients evaluated
at nearby points of differentiability:

0f(x)= conv lim V f(xi):xi> x
1>
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where 4 jetRe set of points at which f is differentiable (recall Radamacher’s
theorem). If f is L-Lipschitz on a neighborhood U, then

forallx € Uand ve d f(x), wehavev< L.

This fact will be used throughout the paper. A point x satisfying 0 € @ f(x) is said
to be critical for f. The Goldstein subdifferential, which appears in (1.2), will be a
central object throughout. An important fact is that O f(x) is a closed convex set for
anyx € R9and 0 > 0.

Manifolds. We will need a few basic results about smooth manifolds, which can be
found in the references [10, 34]. Aset MS R 9 iscalled a C P-smooth manifold
around x (with p 2 1) if there exists a natural number m, an open neighborhood U of
x, and a CP smooth mapping F : U - R ™ such that the JacobianV F(x) is surjective
and Mn U = F~1(0). The tangent and normal spacesto M atx € M near x are
definedtobe Tm (x) = ker(VF(x)) and Nm (x) = Tm (x)* = range(V F(x)*),
respectively. IfM is a C?-smooth manifold around a point x , then there exists C> 0
suchthaty - x € Tv (x) + C y— x ?Bforallx, y € M near x . We also have that
x— Pm (x) € Nm (Pm (x)) for all x near x. Moreover, the projection mapping Pv :
R? - R 4 is CP~! smooth on a neighborhood of x and satisfies V Pm (x) = Pry, (x)
forall x € M near x .

Covariant gradients and smooth extension Let M € R 9 be a CP-manifold around
a point x for some p = 1. Then a functionf : M- R is called C9-smooth (with
q = 1) around the point x if there exists a C! function f : U - R defined on an open
neighborhood U of x and that agrees with f on U n M . In that case, the projection
of V f(x) onto Tm (x) is independent of the choice of f. We call this projection the
covariant gradient of f at x and denote it by

Vm f(x):= Pry (0(V f(x)-
For example, the smooth extension
fm == f °Pm

of f is C™M{P~1a} smooth on a neighborhood of x and agrees with f along M . Thus,
we will use the identification: Vi f(x) :=V fum (x)-

Active Manifolds. In this work, we will assume the local minimizer of interest lies on
an active manifold. Informally, an active manifold is a smooth manifold along which
the function varies smoothly and off of which the function varies sharply. We adopt the
formal model of activity explicitly used in [26]. Related models exist, e.g., identifiable
surfaces [52], manifolds of partial smoothness [38],VU-structures [36, 41], and g°F
decomposable functions [49].

Definition 1.2 (Active manifold) Consider a function f ~ : R?Y > R and fix a set
M < R 9 containing a point x satisfying 0 € d f(x). Then M is called an active
FolC'T
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CP-manifold around x if there exists a neighborhood U of x such that the following
are true:

+ (smoothness) The set M is a CP-smooth manifold near x and the restriction of f
to M is CP-smooth near x .
* (sharpness) The lower bound holds:

infly:ved f(x) xeU\M}> o

In the introduction, we provided two examples of functions that admit an active
manifold at their minimizers. For example, function f (u, v) = u? + |v| admits the
active manifold M :={( u:0): u € R} around the origin. On the other hand, the
function f from (1.1) admits the active manifold M ={ x e R? : x; = x2 =.. . xp}
around the origin. To draw a distinction with partial smoothness property of [38], the
function f (x, y) = max{x, 0} + y? is partly smooth along the x axis, but the x -axis is
not an active manifold for f around the origin; indeed, f does not satisfy the sharpness
condition at the origin. We now turn to sublinear convergence guarantees.

2 Global Sublinear Convergenid@esfcent

The main goal of this work is to show that NTDescent locally converges nearly
linearly for “typical” nonsmooth optimization problems. A natural question is whether
NTDescent also possesses global nonasymptotic convergence guarantees. In this
section, we prove two such guarantees: First, for arbitrary Lipschitz functions, we
analyze the rate at which dist (0, aoi f ( xk)) tends to zero as a function of k. Second,
for convex Lipschitz functions, we analyze the rate at which f (x;) tends to inf f.

In the proofs of this section, theTDescent loop is ignored as we can only prove it
terminates with descent near the minimizer. Instead, the global convergence guarantees
follow from the properties oNDescent. Thus, our analysis essentially follows that of
[21], where a nearly identicalMinNorm method was introduced. The main difference
between theNDescent and the method of [21] lies in the perturbation radius in Line 3
of Algorithm 1: while the radius of NDescent can be computed with access only to
O g: , theradius in [21] requires knowledge of the Lipschitz constant of f, which we
do not assume. Finally, we mention that [21] did not consider rates of convergence for
convex problems.

Before stating the main result, we recall three key Lemmas, which underlie the
proof. The first lemma shows that the vectors u; and V; generated by linesearch
are Goldstein subgradients of decreasing norm.

Lemma2.1 (Properties of linesearch)Let f : R? = R be a locally Lipschitz
function. Fix x € RY, subgradient g € 8 f(x), budget T, and grid size G. Let u; and
V; be generated by linesearch(x, g G, T). Then

ujs Vi+1 € 0g, f(x) and Vis1S UuisSVv 2.1

foralli= 0,....G—- 1
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Proof The proof follows by induction. We prove the base case only, since the induction
is straightforward. First note that the inclusionVy € @ f(x) implies that ug € dg, f(x),
since TDescent constructs ug as a convex combinations of subgradients evaluated

in the ball an (x). Likewise, due to the argmin operation on line 4 of Algorithm 2,

the subgradients generated by TDescent are decreasing in norm. Consequently, we
have up<v ¢ .A similar argument shows that Y € g, f (x)andv 1 £ ug .
This completes the proof.

The next lemma shows that when f is convex, the minimal norm Goldstein sub-
gradient may be used to bound the function values. We place the proof in Appendix
A, since it follows from a standard argument.

Lemma2.2 (Subgradient inequality) Suppose thatf : R? - R is a continuous convex
function. Let x, y € RY. Let L denote a Lipschitz constant for f ~on the ball Byo(x).
Then

f(x)- f(y)<s x-y dist(0, 95 f(x)) + 20L.

The final lemma provides conditions under which NDescent terminates with
descent with high probability. The result is closely related to [21, Corollary 2.6], but
we take extra care to analyze the perturbation radius in Line 3 of Algorithm 1.

Lemma 2.3 (NDescent loop terminates with descent) Let f be a locally Lipschitz
function. Fix initial point x € RY, radius 0 > 0, subgradient g € do f(x), and failure
probability p € (0, 1). Furthermore, let L be a Lipschitz constant of f on the ball
Boo(x). Suppose that

dist(0, 9o f(x)) 64L 2
< —w’;; d T2 ———— — 21og(1/p) -
‘ 128L o dist?(0, 9o f(x)) s p

Define g+ := NDescent(x, g 0, T). Then g+ = 0and the point % := x—0 Z—:
satisfies

0dist(0, 05 f(x))

flxs)< f(x) - m

with probability at least 1 — p-

Proof First note that ¢ € do f(x),so g+ = dist(0, 95 f(x)) > 0. Now, observe that
NDescent is precisely [21, Algorithm 1] with a different bound on the perturbation
radius r . Indeed, in [21, Algorithm 1], r must satisfy

2
gr 2

r< g 1- 1_—128L2

forall t = 0. We now show that the constraint r <0 g, implies the above bound.

) R . 2
To that end, define the univariate functionh :a - 1-(1- #)2. Then h
FolC'T
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is increasing in a fora < L. Moreover, fora [ 0, L], we have h (a) 2 4_1‘;7&.

Consequently, since
dist(0: O f(x)) < g < L

forallt < T, we have

dist(0, /acr f(x) g

= < h(dist(0: 95 f(x))) g: < h( go) gr.

r<g gcs

Thus the proof is a direct application of [21, Corollary 2.6].

Given these lemmata, we are now ready to state and prove our main sublinear
convergence guarantee.

Theorem 2.4 (Sublinear convergence) Letf : R? - R be a locally Lipschitz function.
Fix initial point xo € RY and subgradient g € d f(xo). Assume thatgo = 0. Let
L € RuU{+x} be any Lipschitz constant of f over the widened sublevel set

S:={x+u: f(x)< f(xo) andu € B(0)}.

Fix a scalar cg € (0, 1], budget sequence {T}, grid size sequence {Gy}, and failure
probability p € (0, 1). Let {xi} be generated by NTDescent(x, g- co, {Gk}, {Tk}).
Then for all K > 0, the following holds with probability at  least 1 — p: Define
G = ming<k<2k-1Gkand T ;= ming<k<2k-1 Tk. Then for all i€ G, the following
bound holds with 0; := 27(G=1).

min  dist(0, g, f(xi)

K<k<2K-1
8(f(xk)— inf f) 16L 2log(KG/p) v —

< ma 128LG;
0K T '

Now suppose that f is convex and define D := diam({x e R : f(x) < f(xo)}).
Then

f(xok-1) = inf f

, 8(f(xk) - inf f) 16L 2log(KG/p) ¥
< min D max , — ,

128L0; + 2LO;
<G 0K T i i

2.2)

Proof Let us assume that L <+« ; otherwise the result is trivial. Fix K = 0 and
i £ G. Define

16L 2log(KG/p)
VT I

128L0;

i = max
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For every K < k < 2K — 1, define

Vis1

Xki = Xk — T , where V;+1 := NDescent(xi u;» G Ti),

Vii+1

and u; appear in the definition oflinesearch(x, gi- max{ gx, co go}, Gi Ti);
see Algorithm 3. Note that Vi+1 €0 g, f (x1) by Lemma 2.1. Thus, in the event
{dist(0, 0, f(xx)) = i}, we have

1. xy,; is well-defined since Vj+1 = 0;
Vit

—— is satisfied for s = max{ gk, co go} (in

2. the trust region constraint J; <
Algorithm 3); indeed,

N
Ve dist(0, 9, f(x;)) . 128LG;

—Gii

S S S

where the final inequality follows from the bound s < L, a consequence of the
inclusion xg € int S and the Lipschitz continuity of f onS.

Finally, for every K < k < 2K - 1, define

0;dist(0, 9, f(xi))

o n {dist(0, dg f(x)) 2 i}

Aki = i) = flx) 2=

Now we apply Lemma 2.3.

To that end, observe that since f (x) is nonincreasing and 0; < 1/2, every iterate
X satisfies Bog, ( xx) € S. Consequently, L is a Lipschitz constant of f on Bg, (x1).
Therefore, by Lemma 2.3, for every K < k < 2K - 1, we have

P(Ayi) < P(Ax; | dist(0, 0o, f(xk) 2 ;) S ——- (2.3)

Thus, by a union bound, with probability at least 1 — %, at least one of the following
must hold at every index K < k< 2K — 1:

- di , Og.
flxii) = flxi) < - 9idist(0 5 O) or  dist(0, 0o, f(x)) < -

If dist (0, a"i f(xk)) < ; forsome k satisfying K < k < 2K — 1, then the result
follows. On the other hand, suppose that for all K < k < 2K - 1, we have
dist(0, ao,. f(xi)) > ;in particular, we have dist (0, ao,. f(xi)) > 128L0;. There-
fore, with probability at least 1 — %, we must have

0;dist(0, 0g; f(xy))
g

forallK < k< 2K - 1.
FolCTM
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where the first inequality follows since the trust region constraint is satisfied for x,;.
Iterating this inequality, we have with probability at least 1 — %, the bound

2K-1
1

K k=K

8(f(XK) - f(XQK))
0 K '

i d' t O! a B S
el A0 % 1)

dist(0, 0. f(xx)) <

This proves the result for i . Taking a union bound over i then yields the bound for
minimal norm Goldstein subgradient for all i £ G.
To prove (2.2), fix an i< G and let k; be the index that attains the minimum. Then

(xog 1) = inf f < f(x.) = inf f < dist(xy., Xi) i dist(0, 0o f(x;)) + 20: L,
flxox-1) = inf f < f(xy,) = inf f < dist(xy, cepDin _ dis o, f(xi)) i

where the first inequality follows since ~ f(xx) is nonincreasing and the second
inequality follows from Lemma 2.2. The proof then follows from the upper bound
dist(xki, X )< D.

theorem provides bounds on the minimal norm Goldstein subgradient within any
window of indices K £ k < 2K — 1. Let us briefly investigate the setting |, = k+ 1
forall k = 0. In this case, theorem implies that with probability at least 1 - p, we
have

min . dist(0, aoi f(Xk))

K<k<2K-
8(f(xk) - inf f) 16L 2]Jog(KG/p) ¥

< ma , @Lffi
0K 2K

foralli = G. Let us now suppose G is large enough that there exists i< G satisfying
(/2K V2<0; < K"V2 eg, wemayassume Gx =  log(k?) forall k > 0.
Then, we find that at most O(K T G) = O(K?2G) first-order oracle evaluations are
needed to find a point xj satisfying

dist(0: O-v f(x)) = O(K™V2),

where O hides logarithmic terms in G » K and p. Let’s consider two settings for G .

1. Setting 1: Gx = O(log(k"2)). In this case, NTDescent finds a point x satisfy-
ing
dist(0, 0¢ f(x;)) < € using at most O(€~4) first-order oracle evaluations.

2. Setting 2: Gy = k + 1. Inthis case, NTDescent finds a point xx satisfying
dist(0, O f(xy)) < & using at most O(€~ %) first-order oracle evaluations.

The complexity of Setting 1 is more favorable than the complexity of Setting 2. Nev-

ertheless, when we establish our local rapid convergence guarantees, we will work

in Setting 2, which has more favorable local convergence properties. Before moving

on, we note that the above guarantees likewise apply in the convex setting, namely
FoC'T
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NTDescent finds a point x with f (xi)- f* < & using at mostO(€~4), respectively
O(€~%), first-order oracle evaluations in Setting 1, respectively Setting 2.

In addition to the nonasymptotic guarantees of Theorem 2.4, the reader may wonder
whether a given limit point x of NTDescent is Clarke critical, meaning 0 € 9 f(x).
We prove that this is indeed the case under a bounded sublevel set condition. We place
the proof in Appendix C since it follows a similar line of reasoning as Theorem 2.4.

Corollary 25  (Limiting points are Clarke critical) Let f : RY - R be a locally
Lipschitz function. Fix initial point x o € R¢ and subgradient go € 0 f(xo). Assume
that go = 0. Suppose the sublevel set {x : f(x) < f(xq)} is bounded. Fix scalar
co € (0, 1], budget sequence {Ty}, grid size sequence {G} such that {Gy} tends to
infinity and T; = k. Let {x;} be generated byNTDescent(x, g, co, {Gk}, {Tx}). Then
with probability one, all the limiting points of {xx} are Clarke critical.

This concludes our sublinear convergence guarantees forNTDescent. In the fol-
lowing section, we describe the key structural assumptions needed to ensure that
NTDescent locally rapidly converges.

3 Main Assumption, Examples, and Consequences

In this section, we introduce our key structural assumption—Assumption A. In
Sect. 3.1 we show that Assumption A holds for generic semialgebraic functions and
certain properly CP decomposable functions. Then, in Sect. 3.2, we extract several key
consequences of Assumption A. These consequences will be instrumental in proving
the gradient inequality (1.5) and rapid convergence of NTDescent- We now turn to
the assumption.

Assumption A Function f : RY - R is locally Lipschitz with local minimizer x €
RY.

(A1) (Quadratic Growth) There exists ¥ > 0 such that
Y 5 _
f(x)- f(x)= 5 X— X for all x near x-

(A2) (Active Manifold) Function f admits a C*-smooth active manifold M around

X.
(A3) (Strong-(a) regularity) There exists C(;) > 0 such that

Pry ()(v=Vm f(y) < C x-y
forallx e R%, ved f(x), andy € M near x-

(A4) ((bs<)-regularity) The following inequality holds

fly)z f(x)+ Viy=x +o( y-x)

M _ —
asy - xandx - xwith ved f(x)
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where o(") is any univariate function satisfying lim_, o o(t)/t = 0.

Some comments are in order. Assumption (A1) is a classical regularity condition
that ensures local linear convergence of gradient methods for smooth convex functions.
Assumptions (A2), (A3), and (A4) describe the interaction of f and a distinguished
smooth manifold M . Assumption (A2) requires M to be an active manifold for f
around x in the sense of Definition 1.2.  In particular, along the manifold M , the
function f is C* smooth with covariant gradient Vm f; see Sect. 1.7 for a defini-
tion. Assumption (A3) shows that in tangent directions the covariant gradient along
the manifold approximates the subgradients of f up to a linear error. This property
recently appeared in [5, 19], where it was used to study saddle avoidance properties
of the subgradient method for nonsmooth optimization. Finally, Assumption (A4) is a
restricted lower smoothness property, showing that linear models of pff the manifold
are underapproximators of f on the manifold up to first-order. Note that the property is
automatic if f is weakly convex, meaning the mapping x> f(x) + 2 x 2is convex
for some p = 0. The weakly convex class is broad and contains all compositions of
convex functions with smooth mappings that have Lipschitz Jacobians; see the sur-
vey [17] for an introduction. We mention that the name ¢b<)-regularity” is motivated
by “uniform semismoothness” property of [19], which was called the “(b)-regularity
property.”

In the following section, we provide examples of functions satisfying Assump-
tion A.

3.1 Examples of Assumption A

In this section, we show that the aforementioned problems satisfy Assumption A. The
most important example is the class of generic semialgebraic functions. The following
theorem is essentially contained in [19, 23], but we provide a proof for completeness.

Theorem 3.1  (Generic semialgebraic functions) Consider a locally Lipschitz semial-
gebraic functionf : RY — R . Then for a full Lebesque measure set of w € R 9, the
tilted function fw : x - f(x)+w  x satisfies Assumption A at every local minimizer.

Proof The proof is a consequence of [19, Theorem 3.31] and [23, Corollary 4.8,
Theorem 4.16]. A combination of Corollary 4.8 and Theorem 4.16 in [ 23] shows that
for a full Lebesgue measure set of w € R, the following hold: every local minimizer
xof fw liesona C # active manifold M , verifying (A2); and the quadratic growth
condition (A1) holds at x . Next, [19, Theorem 3.31] shows that fw also satisfies the
strong (a) property (A3) along M ; applying [19, Theorem 3.11 and Theorem 3.4],
we deduce that fw also satisfies the (b<)-regularity property (A4) along M at x.

Turning to our second class, we introduce so-called properly C P decomposable
functions, originally proposed and analyzed in [49]. At a high-level, the class consists
of functions that are locally the composition of a sublinear function with a smooth
mapping, which together satisfy a transversality condition.



Foundations of Computational Mathematics

Definition 3.2 (Decomposable functions) A function f : RY - R is called properly
CP decomposable at x as h ° c if near x it can be written as

f(x)= f(x)+ h(c(x)

for some C P-smooth mapping ¢ : RY - R ™ satisfying c(x) = 0 and some proper,
closed sublinear function h : R™ - R satisfying the transversality condition:

lin(h) + range(V c(x)) =R ™.

The following theorem shows that decomposable functions satisfy Assumption A
near local minimizers if they also satisfy a strict complementarity condition and a
quadratic growth bound. The proof is a consequence of results found in works [ 19,
26, 38, 49].

Theorem 3.3 (Properly decomposable functions) Consider a locally Lipschitz function
f:RI SR Let x be a local minimizer of  f and suppose that f is properly c*
decomposable at x . Furthermore, suppose that

1. (Strict Complementarity) We have that 0  1i 0 f(x).
2. (Quadratic growth) There exists Y > 0 such that
y
— X -

2

X for all x near x-

flx) = f(x) 2

Then f satisfies Assumption A at x .

Proof To set the notation for the proof, recall that since fis properly {lecomposable,
there exist functions h and c satisfying the conditions of Definition 3.2. The discussion
in [49, p. 683-4] then shows that the set

M:= ¢ '(lin(h)

is a so-called C # manifold of partial smoothness for f around x in the sense of
Lewis [38]. Moreover, f is prox-regular at x for 0 in the sense of [46, Definition 1.1],
since by definition it is strongly amenable [46, Definition 2.4] at; see [46, Proposition
2.5]. Thus, according to [31, Theorem 5.3], partial smoothness, prox-regularity, and
strict complementarity ensure that the sharpness condition of Definition 1.2 holds.
Consequently,M is a C* smooth active manifold aroundx , verifying (A2). In addition,
[19, Corollary 3.24] ensures that f satisfies the (A3) and (A4) properties alongM .

A popular class of decomposable objectives arises from pointwise maxima of
smooth functions that satisfy an affine independence property. For example, this class
was considered in the work of Han and Lewis [30].  As an immediate corollary of
Theorem 3.3, we show that such functions satisfy Assumption A.

Corollary 3.4 (Max-of-smooth functions) Consider a locally Lipschitz function f and
a family of C* smooth functions f; : RY - R indexed by a finite set i€ I. Fix a local
FolC'T
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minimizer x of f and suppose the set {V fi(x)}icr is affinely independent. Suppose
furthermore that f is locally expressible as

f(x):= max fi(x)  for all x near x-

Then provided the strict complementarity and quadratic growth conditions of Theo-
rem 3.3 hold, the function f satisfies Assumption A atx .

Proof To prove the result, note that the affine independence property is simply a
restatement of the transversality condition of Definition 3.2 for the smooth mapping
x->(fi (x))ic; and the sublinear function y - maxje Y.

We now turn our attention to the key consequences of Assumption A.

3.2 Key Consequences of Assumption A

The following proposition summarizes the key consequences of Assumption A. The
proof of the result is straightforward but technical, so we place it in Appendix B.

Proposition 3.5  (Consequences of Assumption A) Suppose f satisfies Assumption A
at x . Then there existsOx > 0 such that on the ball B 26A(>a, the projection operator
Pm is C3 with Lipschitz Jacobian and the smooth extensionf M = f ° Pm is C3
with Lipschitz gradient. Moreover, the following bounds hold:

1. (Quadratic growth) The quadratic growth bound (A1) holds throughout_BaA( x).
2. (Smoothness of Py ) For all x € Bs,(x) and x € Ba3, (x), we have

Py (x)=Pm(x)= Pry oy () (x = x) < Cm (dist?’(x, M) + x-x %)

(3.1)
where Cv = ZIip%pPM (x).
3. (Boundson VM f) Forallx e BcSA()a, we have
y - -
> Pu (x)-xsV wmf(Pm(x)sB Pum(x)-Xx, (3.2)

where 3 := 2lipy (x).
4. (Consequence of strong (a)) For all x € B(SA(X_) and g £ 0 p, we have

sup Py (w )(g=VMm f(Pu (x) < Cldist(x, M) +0); (3.3)

gedo f(x)
sup Py (pu (DG S C(o)(dist(x, M) + o)
gedo f(x)
+B Pm (x) - x; (3.4)
sup Py (pu ()(g = g) < 2C()(dist(x, M) + 7). (3.5)
g-g €do f(x)
FoCTl
|_| o
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5. (Aiming) For all x € B6A()a and all v € 9 f(x), we have
v, x = Pm (x) 2 p dist(x, M), (3.6)

where | = }l lim inf dist(0, 0 f(x ))-
M c
- X

X
6. (Subgradient bound) For all x € BcSA(Q and g < d p, we have

sup g=< L
gedo f(x)

where L := 2lip f()a
7. (Function gap) For all x € Bs, (x), we have

f(x) - f(x) < Ldist(x, M) + g Pv(x)-x % (3.7)

Let us briefly comment on the result. Item 2 provides a crucial smoothness prop-
erty of the projection operator of M . Item 3 shows that the Riemannian gradient
of f is proportional to the distance of the projection y to  x. Item 4 shows how the
Goldstein subgradients inherit the strong (a) property (A3) of Assumption A. Indeed,
Equation (3.4) shows that Goldstein subgradients are “small” in tangent directions and
Equation (3.5) shows Goldstein subgradients vary in an approximate Lipschitz fashion
in tangent directions. Item 5 shows that the subgradients of f off of the manifold have
a constant level of correlation with x— Pwm (x), i.e., the direction —v “aims” towards
the manifold. Note thatH > 0 due to the active manifold Assumption (A2). The proof
of Item 5 is based on Assumptions (A2) and (A4); a similar result appears in [ 18,
Theorem D.2]. Item 6 provides a bound on the Goldstein subgradients of ~f near x;
we will appeal to this bound many times throughout the analysis without referencing
this proposition. Finally, Item 7 decomposes the function gap into a sum of two terms:
the distance to the manifold and the squared distance of the projection to the solution.
The proof relies on the smoothness of f along the manifold. Note that the trivial upper
bound L x — x for the gap can be weaker than (3.7).

This concludes our discussion of Assumption A.  The following three sections
establish further consequences: the gradient inequality (1.5) (Sect. 4); rapid local con-
vergence of NDescent and TDescent (Sect. 5); and rapid local convergence of
NTDescent (Sect. 6). Inall three sections, we use the notation and results intro-
duced in Proposition 3.5. Finally, the statements of the results in Sect. 4 and 5 contain
several parameters/radii which we will use in Sect. 6 to determine the region of near
linear convergence and the oracle complexity forNTDescent. For the readers’ con-
venience, we have listed these parameters in Table 1.
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Table 1 Parameters used

Parameter Definition
throughout Sects. 4 and 5
D u
1 8(u+ L)
u
Dy 5
Y
C1 vy
. Yy  min{l,1/0,}
C» min 8’ 2
c2
C3 -
. B min{t/d 5,C3D,/B} 1
Ca MmN T+ 4) " AT+H(1+3A)CM I+ LV 2
. B C3Dy Cy
Csg min ey e Cy 5
. 0, D
6GI min TA' ﬁ
. O, D
%o Tl DiL 128
9,

O in A, 1 , 4
Grid min -5 M (D1_1+1) 8(C(o)*P)

4 Verifying the Gradient Inequality (1.5) Under Assumption A

In this section, we establish the gradient inequality (1.5) for functions satisfying
Assumption A. Throughout the section, we assume that Assumption A is in force.
We also use the notation set out in Proposition 3.5.

We present the formal statement and the gradient inequality (1.5) in Theorem 4.3,
which appears at the end of this section. The proof is a consequence of the two lem-
mata. In the first lemma, we prove a constant-sized lower bound for dist(0, 9 f(x)),
whenever O is sufficiently small. The proof of this bound relies on the active
manifold assumption (A2) and the aiming inequality (3.6). A consequence of the
argument is that all elements of o f(x) are correlated with the normal direction
x = Pv (x) e Nm (Pm (x)). Later in Proposition 5.1 we will also show that Algo-
rithm 1 (NDescent) terminates rapidly when O is in the region, motivating the name
Normal Descent. We now turn to the lemma.

Lemma4.1 (Lower bound on Goldstein subgradients I) Define

u u .
— ' Dy:=—: and O := min —, —
8(u+ L) 2 4 Cm

Dq =
Then for all x € Bg,(x) and 0 < o < Dsdist(x; M) , we have
dist(0, 05 f(x)) = D;-

Proof We begin with some preliminary bounds. Fix xe Bg, (x) and 0 > 0 satisfying
the lemma assumptions. We observe that

0 < Dydist(x, M) < dist(x, M) x-x<8 g
Elol:;ﬂ
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where the second inequality follows since D; < 1 and the third follows sincex € M .
Consequently,

LCwm (02 + dist?’(x, M)) £ giLCm (o + dist(x, M))
2L 01Cm dist(x, M)
2L Dy dist(x, M), (4.1)

IN

I\

where the first inequality follows from the bound max{o, dist(x, M)} £ & ¢ and the
second follows from the bound g < dist(x, M) . We now turn to the proof.
Now, letx € Bo(x) S B6A()a and observe that by aiming condition (3.6),

V,x = Pm (x) =pdist(x , M) forallved f(x)

We claim that Vs x — Pm (x) = Dodist(x, M) forall ved f(x ). Indeed, for all
v € d f(x ) we may upper bound the inner product as follows:

V,x = Pm (x)

Vix=Pu(x) +v x-Pu(x)-x+ Pu(x)

Vix=Pm (x) + L( I- Pry (py ())x—x)+ LCM (02 + dist’(x, M))
V., x = Pm (x) + 3L Didist(x, M),

AN IA

IA

where the second inequality follows from the bound v< L and Item 2 of Propo-
sition 3.5; and the third inequality follows from x — x <g< Dydist(x, M)
and (4.1). Consequently, for all v € 8 f(x ), we have

V,x = Pm (x) =pdist(x , M) - 3L Didist(x, M)
>y dist(x, M) - yo - 3L Dydist(x, M)
2 pu( 1- Dy(1+ 3L/W) dist(x, M)
= Dodist(x, M), 4.2)

where the second inequality follows from 1-Lipschitz continuity of dist (-, M) ; and

the final inequality follows from the bound D; < —(ﬁm— This proves the claim.
Now, fix g€ do f(x). By definition of O f(x), there exists a family of coefficients

A; €[0, 1], points x; € Ba(x) S B(SA()U, and subgradients g; € 8 f(x;) indexed by a

finite set i € I'suchthat ;_; Ai=1landg = el A;gi. Thus, by (4.2), we have
gx-Pu(x) = Ai girx - Pm (x) = Dodist(x, M).
iel
Therefore, we have
g x— Pm (x)

2 7 2 D ]
g dist(x, M) 2
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as desired.

In the second lemma, we provide a lower bound for dist (0, 9 f(x)) on the order
of Pm (x)-x ,providedog = O( Pm (x) - x) . The proof of this bound relies on
quadratic growth (A1) and strong (a)-regularity (A3). A consequence of the argu-
ment is that the minimal norm element of Og f(x) is close to the tangent ~vector
Vm f(Pm (x)) e Tv (Pm (x)). Later in Proposition 5.6 we will  also show that
Algorithm 2 (TDescent) terminates rapidly when O is in the region, motivating the
name Tangent Descent. We now turn to the lemma.

Lemma4.2 (Lower bound on Goldstein subgradients IT) Define

<

Y min{l, 1704}

CiL:= —; and C» := min ;
8C(q) 2

N

Then for all x € BcSA(x_) and g 2 0 satisfying
max{dist(x, M), 0} < C, Pm (x) - x,

we have

Pry (pw ()(g) = C1 Pm(x)=x  forallg €do f(x)-
Proof For the purposes of this proof, the term ¥0 5 in the definition of G, is unneces-
sary; however, it will be crucial in the proof of Theorem 4.3. Turning to the proof, fix
x € Bs,(. x) and 0 = 0 satisfying the lemma assumptions. Define y = Pwm (x). Note
that

0< Cp y—-x< 2C x—Xx<0 A

Thus, by (3.3), forall g € do f(x), we have

Pry (0(g=Vm f(y) s Cldist(x, M)+0)< — y-x.

A<

In addition, by (3.2), we haveV v f(y) = % y—X. Therefore, for all ge do f(x),
we have

Pr (0(g) 2V  wm f(y) = Cw(distx, M)+0)2 — y-X,

A<

as desired.

Given these lemmata, we are now ready to establish the gradient inequality (1.5).
The following theorem verifies the bound

adist(0, % f(x)) 2 n( f(x) = f(x)
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for some 11 > 0 provided x is sufficiently near x and (x, 0 )lies within one of two
regions, described in Item 1 and Item 2 of Theorem 4.3. Item 1 and Item 2 roughly
correspond to the regions considered in Lemma 4.1 and Lemma 4.2,  respectively.
Comparing with the statement of the gradient inequality (1.5), we see that gradient
inequality of Theorem 4.3 does not require knowledge of an explicit function O (x).
Instead, we need only find someO proportional to Ddist(x, M) or C; Pm (x) - x
up to a factor of, say, 2. Later in Proposition 6.1 we show that this flexibility allows
us to find an appropriate O through the 1inesearch procedure.

Theorem 4.3 (Gradient inequality) Suppose that function f satisfies Assumption A at
x € RY. For any constants a; € (0, D1] and a; € (0, C3], we have

Vaz IJCll

8 max{4La3, B} 4max{2L, Blad) (f(x)= f(x)).

0dist(0, 9o f(x)) = min

whenever x € B, (x) and O > 0 satisfy Item 1 or Item 2:

1. (a) "2—1dist(x, M)<o< apdist(x, M) ;
() a5 Pm (x) - x %< dist(x; M) .

2.(@ % Pm(x)-x<0< a Pm(x)-x ;
(b) —diSt(’C‘,’M) <2a Pv(x)-x .

Moreover, for any x € Be,(x)\{ x}, there exists O > 0 such that Item 1 or Item 2 is
satisfied.

Proof We first show that for any x € Bg,(x)\ x}, there exists 0 > 0 such that either
Item 1 or Item 2 is satisfied. We consider two cases. First, suppose 2 M . Then Item
2 is trivially satisfied for 6 = a, Pm (x) = x . Second, suppose x ¢ M and Item 1
cannot be satisfied for any > 0. In this case, we have

dist(x, M) < a? Pv (x)-x 2=2ap0 Py (x)-x  witho:= ay Pm (x) - x/ 2

Thus, Item 2 is satisfied.

Now we prove the gradient inequality is satisfied whenever O satisfies Item 1 or
Item 2. Let us suppose that Item 1 holds for some xe Bg,(x) and @ > 0. From (3.7),
we have the bound:

1
max{2L, B/a%}

1

(109= 16Ds B

Ldist(x, M) + g Pm (x) - x 2

IA

1 _
3 dist(x, M) + a% Pm (x) - x 2
dist(x, M).

IA
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Now observe that the assumptions of Lemma 4.1 are satisfied since x € Ba, (x),
< Dy, and x and O satisfy Item 1. Therefore, we have

May

4max{2L. B/ a 2}(f(x) fe)

odist(0, 9o f(x)) 20 Dy 2 ‘%dist(x, M) =

as desired.
Next, let us suppose that Item 2 holds for some xe Bg, (. x) and @ > 0. From (3.7),
we have the bound:

m(f(x) f(x)) < max(eLaZ B} Ldist(x, M) + : Py (x) - x
1 dist(x, M) _
< 5 T + Py (x)-x 2
= % il M)zalzjl\a/, Co=x Pm (x) = x 2
< pm(x)-x?

Now observe that since a; £ C> and x and O satisfy Item 2, we have
0< Cy Pv(x)—x< 2006 < (1/0,)(0574) < 1,
where we use the bound Cy £ 1/20,. Consequently, we have
dist(x, M) < 20C; Pm (x)-x< Co Pm(x)-x.

Therefore, max{dist(x, M), a} < C» Pm (x) = x , so the conditions of Lemma 4.2
are satisfied (recall5G1 < dp). Thus, let g denote the minimal norm element 0fo f (x)
and let us apply Lemma 4.2:

dist(0, % f(x))= g= Py (pw )(g) 2 g Pm (x) - x.

Consequently, we have

Yay

_ ay _
Odist(0 0o f(x)) 2 —= Pum (x) = x 2 m

(f(x)= f(D):
where the last inequality follows fromo = "2—2 Pm (x)- x . This completes the proof.

Remark 1 Note that a;» a» € (0 1) as claimed in Sect. 1.3.1, where we introduced the
normal and tangent regions appearing in the statement of Theorem 4.3.

FolCT
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This concludes the proof of the gradient inequality (1.5) under Assumption A. In
Sect. 6, we will use the gradient inequality to establish rapid local convergence of
NTDescent- Before proving that, the following section analyzes TDescent and
NDescent methods.

5 Rapid TerminatiohDsfscent andTDescent Under
Assumption A

In this section, we analyze the NDescent and TDescent methods, showing that
both methods rapidly terminate with descent in appropriate regions. Throughout the
section, we assume that Assumption A is in force. We also use the results and notation
of Proposition 3.5, Table 1, Lemma 4.1, and Lemma 4.2.

The main results of this section are Propositions 4.1 and 5.6,  which analyze
NDescent and TDescent, respectively. Proposition 5.1 shows thaNDescent ter-
minates with descent in a constant number of iterations within the region considered in
Item 1 of Theorem 4.3. Proposition 5.6 shows thatTDescent either terminates with
descent in O(log™'(f(x) — f(x))) iterations or f (x) — f(x) is already exponentially
small in T within the region considered in Item 2 of Theorem 4.3. These lemmata will
be the basis of our main convergence theorem—Theorem 6.3—appearing in Sect. 6.

5.1 Analysis of NDescent

The following proposition shows that NDescent locally terminates in finitely many
iterations whenever O is sufficiently small. The result is a simple consequence of
Lemmas 2.3 and 4.1.

Proposition 5.1  (NDescent loop terminates with descent) Define a radius

q\m ‘= min 6GI’ —L -

D;L 128

Then for all x € B5ND()U, radii 0> 0with 0 < Ddist(x, M) , subgradients g €
9o f(x), failure probabilities p € (0, 1) and budgets T > 0 satisfying

64172
T2 2 21og(1/ p)

2

the point x+ := NDescent(x, g, 0, T) satisfies

0dist(0, 05 f(x))

flx+) < flx)- o

with probability at least 1 — p-

Proof Fix x € Bg(. x) and 0 > 0 satisfying the lemma assumptions. Observe that

(=3 DldiSt(X, M) < D15ND < min 6(31: E‘v% ,
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where the final inequality follows from the bound D; < 1; see Lemma E.1. Thus, by
Lemma 4.1, we have dist(0, 05 f(x)) = D, (recall Oyp < d51). Consequently,

PZ_ < dist(O:V/ao_f(x))'
L 128 L 128

Therefore, O and T satisfy the assumptions of Lemma 2.3. Hence, the desired descent
condition is guaranteed with probability at least 1 — p.

We now turn to the analysis of the TDescent step.

5.2 Analysis of TDescent

In this section, we analyze TDescent, proving two main results.  First, we
prove Proposition 5.6, which shows that TDescent terminates rapidly. Second,
in Lemma 5.8 we show that the trust region constraint in Line 7 of Algorithm 3
(linesearch) prevents long steps. Thus, once the method enters a sufficiently small
neighborhood of x, it cannot leave.

We begin with descent Proposition 5.6, which relies on four technical lemmata
that analyze the structure of Goldstein subgradients when O is sufficiently small and
x is sufficiently near x : Lemma 5.2 states that elements of Goldstein subdifferential
with small normal components are descent directions. Lemmas 5.3 and 5.4 show that
normalized subgradient steps approximately reflect points across the active manifold.
Lemma 5.5 uses the approximate reflection property to show that TDescent geo-
metrically decreases the normal component of the input subgradient, ensuring that we
rapidly find a descent direction. We now turn to the Lemmata.

5.2.1 Descent with Small Normal Part

The first lemma shows that Goldstein subgradients with small normal components are
descent directions.

Lemma 5.2 (Descent with small normal part) Define

CZ

Cr = —1,
> 8L

Then for all x € Bs,(x), 0> 0, and g € do f(x)\{ 0} satisfying

1. max{dist(x, M), 0} < 2 Pm (x) = x ;
2. Pnu (pu (N(g)s C3 Pm(x)-x %

we have

f x—Gi < flx) - 79,
g 8
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Proof We begin with preliminary notation and bounds. We fix x € B6A()a and sub-
gradient g € do f(x)\{ 0}. We definey := Pm (x), T := Tm (y),and N := Nm (y).
We observe that

y—;(S 72 x-x< C25A36A,

C> C

gs ==
4
where the final inequality follows since C» < 1; see Lemma 4.2. We now turn to the
proof.
The starting point of the proof is Lebourg’s mean value Theorem [16, Theorem
2.4], which ensures that there exists vV € do f (x) such that
!

o o
fx-0-9 - fx)= v-a 9 == v, pr(g) - — v, Py(g) -
g g g g

In what follows, we will show that the first term satisfies V. Pr(g) = % g 2, while
the second term satisfies | V, Py(g) |< L g 2, yielding the result.
Indeed, beginning with | V, Py(g) |, we note that

_ Cs 1
Py(g)s C3 Pm(x)-x?< == g?= 5.1
n(g) 3 x) = x C%g 8Lg G.1)

where the second inequality follow from Lemma 4.2. Consequently, we have the bound
| V. Py(g) | < L Py(g) < % g % where we first inequality relies on the estimate
v<  L;see Item 6 of Proposition 3.5.

Next, we prove a lower bound on v, Pr(g) . Since v € 9o f(x),

CZC(a) gs<

Pr(v-g)s 2C(y(dist(x, M) +ad) < CoC(y) Pm (x) - x < c % g.
1

where the first inequality follows from (3.5); the second by assurnptlon the third

follows from Lemma 4.2; and the fourth follows from the bound & 2c ( R Therefore,
Pr(v)- g< Pr(v-g)+ Py(g) < 1g+ igstg
2 8L 8 7

where the second inequality follows from (5.1) and the third follows from the bound
g < L. Consequently, we have the bound

Vv, PT(g) = PT(V)xg Z2 g 2 - Pr(v)—g g=

ol W
(e}

This completes the proof.

Note that the proof implies a slightly stronger bound than claimed, namely that we
havef (x—o0g/ g ) < f(x) -0 g/ 4.For the sake of maintaining symmetry with
Proposition 5.1, however, we use the constant /8 throughout.
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5.2.2 The Approximate Reflection Property

The next two lemmata prove the approximate reflection property that was described in
the introduction. The lemmas roughly show that normalized subgradient steps approxi-
mately “flip the sign” of the normal component of the subgradient nearby the manifold;
see Sect. 1.3.2 for more intuition. The first lemma proves the approximate reflection
property up to a tolerance depending on the distance to the manifold and 0. This
lemma will be used again in the proofs of Lemma 5.4 and Lemma 5.7.

Lemma5.3 (Approximate reflection inequality, general case) For all x € Bs,/2(x):
0e(0,0/2],gedof(x)\{0}andgedf X—G% , we have

Pru (pu () () g
u + L diSt(XI M)
S-U Pnu(pu (x)g* d ) ga
, W+ L) g Cum(dist®(x, M) +0 %)
g

(5.2)

Proof We begin with preliminary notation and bounds. We fixx € Bs,/»(x) and
subgradient g € d o f(x)\{ 0}. Wedefiney := Pv (x), T := Tm (y), and N :=
Nwm (y). Finally, define u := -Z-. Note that since x € Banz(Q and 0 <6 A/ 2, we
g
have x — gu € Bs, (x).
Therefore, by the aiming inequality (3.6), we have

,g,x—au—#la’{w (x—Gu)%ZM x—Gu—’ﬂ\/l (x—Uu)%

= A =B

We aim to simplify this inequality with (3.1). To that end, first note that

(x-ou- Pu(x-ou)-(x- Pu (x)-cPy(u))
= Pv(x-ou)- Pm (x)+0Pr(u)
< Cwm (dist>(x, M) + o 2)- (5.3)

Consequently, we have

A2 B2y x-Pum (x)-0Py(u)-py Cm (dist?(x, M)+c ?)2opy Py(w-pu S
where S := dist(x, M) + Cm (dist’(x, M) + o 2). In addition, by (5.3) we have
G (x-ou-Pv (x-ou)+0Pyu < LS
Therefore, we have
G 0Py(u) =- A+ g (x-ou- Puv (x-ou))+0Pyu

Elol:;ﬂ
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<-ou Py(u)+@u+ L)S (54)

Inequality (5.2) then follows by multiplying both sides of inequality (5.4) by g/g .

The second lemma is an application of Lemma 5.3 nearby the manifold.
Lemma 5.4 (Approximate reflection inequality near the manifold) Define

B min{u/d A, C3D»/B} 1

Cy4 = mi ) ,
4T M 1+ 6x) a1+ (1+0)CM )(u+ L) 2

Then for all x € Bs,/2(x), 9> 0, and g € da f(x)\ 0} satisfying

dist(x, M) _
max %:U < Cy Pu(x)- %,

we have

C3D _
22 Pv(x)-x?

Prw (P ()(§) g <= D2 Py (pm ()G +

forallgedf x-o-2-
g

Proof We begin with preliminary notation and bounds. We fixx € Bs,/»(x) and
subgradient g € d o f(x)\{ 0}. We definey := Pv (x), T := Tm (y), and N :=
Nm ( y). We observe that

O0S Cq4 y- XS 204 Xx— xS C404 <5472

Finally, we have

S := dist(x, M) + Cm (dist’(x, M) + 0 2) g C4(1+ Cm (1+34)) y - x.
(5.5)

where the inequality follows from the bound dist(x, M) £ x-x <3 a.
We now apply inequality (5.2):

. B M+ L)gsS
PNg: g S-M Pyg+ —(F——

S—py Pyg+( 1+(1+8A)CM )+ L)Cs g y-x

S Pyg+( 1+(1+06p)CMm )+ L)Ca( Pr(g)+ Pn(g) y-x
u C3 Dy —

<- = + -
5 Png B Pr(g) y-x,
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where the second inequality follows from (5.5); the third inequality follows from
triangle inequality; and the fourth inequality follows from the bound

_ /0 _ /0
(1+(1+06A)CM )(u+ L)Cy y-x < %-(2)(—)()5 A

O </ 2.
4AH

The proof will be complete if we can show that
Pr(g)s 2B y-x.
To that end, we have

Pr(g) < C(dist(x, M)+0)+B y-x
S(C4Cle)(1+34)+B) y-x< 2B y-x,
where the first inequality follows from (3.4); the second inequality follows from the

lemma assumptions and the bound dist(x, M) S C40 y - x < C40x y - x ;and
the third inequality follows from the bounds on Cy4. This completes the proof.

5.2.3 The Normal Component Shrinks Geometrically

The following lemma shows that every step of TDescent geometrically shrinks the
normal component of the subgradient, up to a tolerance of O( Pm (x) = x 2).

Lemma 5.5 (Normal component shrinks geometrically) Define

B C3D2 CZ

Cs := min , , Cgy —
5 2C) 32CB Y 4

Then for all x € Bs,/2(x), 0> 0,g €daf(x)\{0},and § €d f(x -0 EALY
satisfying

1. Py (pm ()92 C3 Pm(x)—x %

2. max M,U <Cs Pm(x)-x ,

the vector g = argminyq g1 h satisfies:

3D2
P (b (0(9) 2 S 1= =25 Pr (u (9 *

Proof We begin with preliminary notation and bounds. We fixx € Bg,/»( x) and
subgradient g € @ o f(x)\{ 0}. Wedefiney := Pv (x), T := Tm (y), and N :=
Nwm (y). We observe two bounds. First, we have

0< C5 y-x< 205 x-x< C50 < 1

123 2.4
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where the final inequality follows since C5 < C»/4 < 1/(89,). Second, we have
dist(x, M) < Cs0 y-x< Cs y- x, (5.6)

since 0 £ 1. We now turn to the proof.
Consider the optimal weight A := argminyro,q) g +A(g = g) . By definition we
haveg = g+ A (§— g). Moreover, a quick calculation shows that
9.9- 9
9-9°?

| | @

A = max min - ;1 50

We claim that the following bound holds onA :

Py(g)g-g _, __3Pnghg-g

- T C <) s- 77 27 (5.7)
" ﬁéz % n2 PN(&$_ g) 2%
=A 1 =) Py
Note that (5.7) is an immediate consequence of the following bound:
1 . R 3 R
0<-> Py(9)g-g<- 95-9g=<-5Pnlga-g- 69

Indeed, if (5.8) holds, thenA = min - f]g’ _g ; g2 » 1 - Thus, we obtain the upper bound

rs- 9879 ._3Png.g-g __3Pnlgg-g

= = = S--——F =
g-g 2 g-79g? 2 Py(g-T) 2

Likewise, we obtain the lower bound

2979 4 zmin -29°9 4

A = min - 5
g—dg 4L

9.9-9 __ Pnlghg-g_
4Lz 8L2

All

where the first inequality follows from the boundg—g 2< 2("g >+ g 2)< 4L?;
and the second equality follows from thebound | g, §- g |< g g-g< 2L
Thus, we now prove (5.8).

To that end, note that (5.8) is equivalent to the following bound:

. - Pn(g),g- g
gPT(Q!), a-g QS — s (5.9)
Therefore, we first bound §PT (9).9-¢ §
§:PT(g), 9-9 .2 Pr(g) Pr(§-g)
FolC'T
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< 2C(y)(dist(x, M) + 0 )( C(y)(dist(x, M) +a) + By - x)
< 4C()C5(2C(0)Cs+ B) y—x °
< C3D2 y_;( 21

4

where the second inequality follows from (3.4) and (3.5); the third inequality follows
from (5.6) and the bound 0 < Cs y — x ; and the fourth inequality follows from

the definition of Cs. To complete the proof of (5.9), we show that % y-x?2<

-3 Pylg)g-g:

C3D _ C3D _
222 x 2< D, Py(g) - 32y—x2
2 2
<- Pnlg), g
<- Py(g),g-g (5.10)

where the first inequality follows from the assumption 32 D2 py(g) 2 C3D 2 y-x %
the second inequality follows from Lemma 5.4 (recall §< Csand x € BaA/ 2(x)); and
the third inequality follows from Py(g) g = Py(g) 2 = 0. Thus, the equivalent
bounds (5.9) and (5.8) hold. Consequently, Equation (5.7) holds.

Now we turn to the contraction argument.  Consider the functionr : R->R
satisfying

r(A)= Py(g) 2+ 2A Py(g), g- g +A? Py(§-g) > forallAeR.
Observe that
Py(g) *= Pn(g) 2+ 2A Py(g),g-g +(A)* Pn(G-g) *=r().
Therefore, by convexity of r and (5.7), we have
Py(g) 2=r(A)< r}lax r(A) € max{r (A),r(A)}

To complete the proof, we showeach termin the “max” is bounded by

2
1- WLZZ PN(g) 2.

To show this, we will use the following consequence of (5.10):

C3D»
y

- Py(g).g- g 2 Dy Py(g) - -x %2 % Py(g), (5.11)

where the final inequality follows from the assumptlonC3D 2 y-x %< % Py(g) .
Indeed, first observe that

3 lN(g); QA 92
A,) = 2_ - N9 g I
r( 2) PN(g) (,. ) >

123 2.4
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3D32
1-———2  pylg) ?
16 Py(4 - g) 2 9
3D32
1_ 2 P 21
oz P

where the first inequality from (5.11) and the second inequality follows from the bound
Pn(G-g) >< "g- g ? < 4L° Likewise, observe that

N 2 - 2 N
Pn(g)g-g .\ Pn(g). -9~ Pn(g-g) ?

A = P ( 2 _
r = Pulg) 412 64L4
P ( ]A _ 2 P ( 'n _ 2
< pylg) ?- ng)hg-g"  Pnighg-g
412 16L2
3D? 5
- P :
oz D@

where the first inequality follows from the bound Py(§—g) °< "g—g > < 4L?;
and the second inequality follows from (5.11). Therefore, the proof is complete.

5.24 TDescent Terminates with Descent

The following proposition is the main result of this section. It shows thatTDescent
must either terminate with descent or f(x) — f(x) is already exponentially small in
T.

Proposition 5.6  (TDescent loop terminates with descent) Fix T € N. Then for all
X € B5A/2(x7, vedo f(x),and 0> 0 satisfying

dist(x, M) _
max %:U < Cs Pm (x) - x,

at least one of the following holds:
1. we have

(CL+p)L u2 T2

- f()s = i

2. the vector g := TDescent(x, V, 0, T) satisfies g > 0and

0dist(0, 05 f(x)) .

g 9 -
fxcrg < f(x) 3

123 343
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Proof We begin with preliminary notation and bounds. We fixx € Bg,/»(. x) and
subgradient v € o f(x). We define y := Pm (x), and N := Nm (y). Observe that

0< C5 y-x< 205 x-x< CsOp < 1,

where the final inequality follows by definition of @ < C»/ 4 < 1/(80,)- In addition,
since C5 < Cp/4, wehave 0 < (Cy/4) y-'x and

dist(x, M)<o C5 y- x< —= y-x,

where the final inequality follows from 0 < 1. Consequently,

C _
max{o, dist(x, M)} < 72 y-x. (5.12)

We now turn to the proof.
Turning to the proof, note that since x € Bs,/ »(x), Lemma 4.2 and (5.12) ensure
that

dist(0, 95 f(x)) = C; y- x> O

Thus, if TDescent(x; V; 0, T) terminates at t < T, then Item 2 must hold. For the
remainder of the proof, we suppose thatTDescent(x, ¥, 0, T) terminates at the final
iteration t = T and that Item 2 does not hold. In this case, Lemma 5.2 and (5.12) ensure
that the iterates g, of TDescent(x, v, 0, T) satisfy Py(g,)> C3 y— x 2 forall

0 < t £ T - 1. Therefore, since x € B(SA/Z()D, max {dist(x, M)/, 0 } < C; y-x ,
and PN(gt) > C3 y- x 2, Lemma5.5, yields the contraction:

2

3D
Py(gi+1) 2 1- 64L22 Py(g) %  forall0<t<T- 1

Unfolding this contraction, we see that g 7 is an exponentially small Goldstein sub-
gradient:

sp2 "
P s 1- 2 P .
v (gr) L2 v (o)
As a result, the projection y is nearby x :
T/2 T/2
_~ o  Pnlgr) _ Pwlgo) _3D3 ~_ L 3D
Y ST G G 64L2 C3  64L’
(5.13)
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Consequently,

f(x)= f(x)< Ldist(x, M)+B y-x ?
S(CIL+B) y-x 2

< (C2L+PB)L - 3D3

Cs 64L2

T/2

where the first inequality follows from (3.7) (recall »x B6A/ »(x)); the second inequal-
ity follows since dist(x, M) S g Cs y - x < C2 y — x 2; and the third inequality
follows from (5.13). The proof then follows from the identlty D, = Ii.

5.2.5 The “Trust Region” Constraint Prevents Long Steps

Before ending this section, we must establish one final technical result fdiDescent-
Namely, in Lemma 5.8, we show that for appropriat€, TDescent eventually gener-
ates small subgradients on the order of O( x — x) . This property is intuitive because
dist(0, 05 f(x)) = 0 wheneverg = x— x . This property will help us ensure that the
iterates of NTDescent (Algorithm 4) cannot leave sufficiently small neighborhoods
of x . Indeed, since the subgradients V;+1 generated by Algorithm 3 (linesearch)
are decreasing in norm, we will show that the trust region constraint 0; < Virt ip
Line 7 of Algorithm 3 must eventually be violated for large i . This ensures large 0;
are never chosen.

To prove this claim, we first establish a refinement of the approximate reflection
property in Lemma 5.4. Compared to Lemma 5.4, the following lemma deals with a
different range of parameters. We place the proof in Appendix D as it follows from a
similar line of reasoning as Lemma 5.4.

Lemma 5.7 (Approximate reflection across manifold, large steps) Define

(N 1 u
2 cm(Dit+1) 8(Cw+B)

6Grid = min

Then for all x € Bg,,(x), 0> 0,and g € do f(x)\{ 0} satisfying
D] 'dist(x, M) S0 <35 Griar
we have

G g <=Dy g+ 2Dy Py (pu (W)(g)  forallGeof x-G%

Finally, we prove that TDescent eventually generates small subgradients.
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Lemma5.8 (TDescent yields small subgradients) Fix T € N . Then forall x €
Ba,.q(x), 0> 0,and g € do f(x)\{ 0} satisfying

Dy 'dist(x, M) SO 5 Grias

the vector g := TDescent(x, g: 0, T) satisfies

! 2 T/2

g s max | 1- g, 4C()o+ 4C(y) + 2B) x - X,

8(f(x)~ f(x) l
—

64L 2

Proof We begin with preliminary notation and bounds. We fix x € Bg,,(x) and
subgradient g € d o f(x)\{ 0}. We definey := Pv (x) and T := Tm (y). We also
define ¢ := C(y)(dist(x, M) + 0 ) + By - x. We have the following two bounds:
First, we have

cSC(x—-x+0)+ 2B x—x< Co+(Cw)+ 2B) x - x. (5.14)
Second, by (3.4), we have
Pr(v)s ¢ forallvedsf(x) (5.15)

We now turn to the proof.
Note that the result holds automatically if g = 0. Thus, we first consider the case
where TDescent terminates in descent, meaning

f(X+)— f(X)S— OTg where x4+ = X—O'g—-

g
Since <9 g £0a/2andx € BéA/z()a, it follows that x + € B6A()a. Thus, by
Item 1 of Proposition 3.5, we have

[z [+ 5 x=% 22 ((2)

Consequently, we have

gg

f(x) = f(x)<- 3

Rearranging then gives the upper bound g < w, as desired.

Let us now suppose that TDescent does not terminate with descent or with g =

0. In this case, the iterates g os - - - g7 of TDescent(x, g, O, T) exist and satisfy
g €00 f(x) forall t < T.We consider two cases.
FoC'T
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Case 1. Now suppose g; < 4c forsomet satisfying0 < t < T.Since g; isa
decreasing sequence, it follows that g = gr < 4c. Recalling (5.14), yields the
bound

g < 4c< 4AC(yo+ 4(Cy + 2B) x - x,

as desired.
Case 2. Next suppose that forall 0 £ t £ Twehave4c < g; . Inthis case,
Lemma 5.7 shows that forall t £ T, we have

. y y I
ge gt S‘EQt*‘IJ Prge = - Egt"'ﬂ CS‘th- (5.16)

We now use this bound to prove a one-step geometric improvement bound for g; 2.
To that end, fixany ¢t < T - 1 and define the weight A := “16%2 and the vector
gr = g + A(g: — gi). Notice that A € [0, 1], since

= H 9 <L51,

16L2 ~ 16L

where the first equation follows since g ; € @ o f(x) and the second follows since
L =y ; see Lemma E.1. Thus

gt+1ZS gA 2= gr2+2)‘ gt,Qr—gtﬂ\z“gz—gtz
< gt2+ 2)\ gt:gt_Z)\ gt2+ 4L2)\2
A
S G 2_7ugt+ 4L°A°
p? 2
TER

where the first inequality follows by definition of g+ 1; the second inequality follows
from the fact that L is a local Lipschitz constant of f near x ; and the third inequality
follows from (5.16). Thus, to complete the proof, simply unfold this recursion to get
the bound
u 2 T/2 5
1- ,
T

as desired.

6 Rapid Local Convergenétiefcent

In this Section, we present our main convergence guarantees for the NTDescent

method under Assumption A. The main results of the section are Theorem 6.3 and

Theorem 6.5, which analyze the nonconvex and convex settings respectively. In the
FolC'T
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Table2 Parameters used throughout Sect. 6; see also Table 1

Parameter Definition
SIb co 90
ai min{Dy, Do/ L}
min{C{/L.C
a { y 5}
) 1 Y D? min{8gyiq/ 2: 1/ 4}

[ min TA’ %1 No- %Grid- ay+2ay)" 1 2Ln 1

8(C(g)+ 2B+ 2C(y) D7 V) -
Cg max 1, M, 2D 1, 4V Dy

SIb 1 SIb
/ /
(Csgr o2 T2 2 T2
LT ax Cs 25612 ' 64L2
2G max — + 1 8C(q) L 276
’ min{l.a;} * 5 min(l:al}ag

o 1- 1 . Yap Hayq

5 min ’
8 8 max{4La§,B} 4 max{2L .5/ a%}

nonconvex setting, we prove that iterates of NTDescent locally nearly linearly con-
verge, provided some iterate reaches a sufficiently small neighborhood of x . In the
convex setting, we strengthen this guarantee, showing that for any initial starting point
Xo and any failure probability p, there exists some index K, after which NTDescent
nearly converges linearly with probability at least + p. Both results are a consequence
of the local one-step improvement bound of Proposition 6.1. This proposition shows
that with high probability, the following hold locally for 1inesearch: its output is
nearby its input; and the function gap geometrically decreases whenever it is larger
than a quantity that is exponentially small in the inner loop budget and the grid size.
The former property will help ensure that the iterates of NTDescent do not escape
a local neighborhood of x .

6.1 Assumptions and Notation

Throughout this section, we assume the following assumptions and notations are in
force. We assume that

1. the budget Tk and grid size Gy satisfy min{Ty, Gx} = k + 1 forall k = 0.

2. We fix an initial we an initial point x ¢ € R? and gg € @ f(xo). We assume that
go = 0. We assume Assumption A is in force at a point x € R 9 and use the
notation of Proposition 3.5 throughout. We let{xx} denote the sequence of iterates
generated by NTDescent(xqs go co, {Gi}, {Tx}) when applied to f.

Turning to notation, we now summarize in Table 2 the main constants used in this
section.

In the following, we lower and upper bound the trust region parameter in
linesearch:

sib < max{ gk, co go}< L. (6.1)

123 2.4
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where the lower bound follows by definition, and the upper bound follows from Part 6
of Proposition 3.5. In addition, we apply Theorem 4.3 with the constants @ a,. These
constants are derived from the parameters D 1, D>, C1, and C5 which are defined
in Lemmas 4.1, 4.2, and 5.5 respectively. We also define a neighborhood B g (. x)
for which linesearch results in geometric improvement. Here, the radius Qs is
derived from the pararnetersaA, 91, O\, Orid, and Y which appear in Proposition 3.5
and Lemmas 4.1, 5.1, 5.7, and 5.8. In addition, the constant (g will appear in an upper
bound on the steplength of Linesearch.

We then define three terms 1,7, 2,6, and P which appear in our convergence
rate analysis. These terms are defined for all T, G > 0 and are derived from the
parameters GCs, C3, aj, ap, L B, C(a), Y, andH which appear in Lemma 5.2, Lemma 5.5,
Proposition 3.5, and Assumption A.

Finally, in the following propositions, the constant p € ( 0, 1) plays the role of a
local contraction factor, while the terms 1,7 and », are upper bounds for function
gap of NTDescent.

We now turn to the one-step improvement argument.

6.2 One Step Improvement

The following proposition presents our one-step improvement bound.

Proposition 6.1 (One step improvement) Assume the assumptions of Sect. 6.1 are sat-
isfied. Recall the notation in Table 2. Then the following holds for all x € BcSLS(x_),
subgradients g € 0 f(x), and grid sizes G> log2(1/5Grid) : Fix a scalar se [sp L],
a failure probability p € (0, 1) and budget T satisfying

256L 2
IJZ

~
I

21log(1/ p) -

Then with probability at least 1 — p, the point ¥ = linesearch(x, g s G, T)
satisfies

L f(%) = f(x) < max{p( f(x)= O prr 26},

2. x-x< Cemax 1,7/sp 2c/sw 20f(x) = F(x)7 min{sp, vy}

Proof We fix x € Bg, g (x), define y := Pwm (x), and choose a subgradient g € 9 f(x).
Throughout we may freely use the results of Proposition 3.5 since O g < 5. We will
first establish the first item of the Proposition. To that end, let us assume that

f(x) = f(x)> max{ 1,1+ 26}

otherwise the proof is trivial. In this case, we claim that x must satisfy either Item 1
or Item 2 of Theorem 4.3 for at least oned; withi < G — 1. To derive a contradiction,
suppose that both items are not satisfied for x with any choice @fwithi = 0, - .. .G-
1. We will show that neither Item 1b nor its complement can be satisfied, leading to a
contradiction.
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Throughout the following argument, we will use the following bound:

N | —

max{aidist(x» M), a y-x}< (a; + 2a2) 95 <

Now suppose that Item 1b holds, i.e., c% y—=x 2 < dist(x, M) . Then by assumption,
Item 1a must fail for anyJ;. We claim that this failure ensures tha@y > aidist(x, M) .
Indeed, if Gy < a;dist(x; M) , we must have

Oy < (ai/ dist(x, M) £ adist(x, M) <0 -1,

since 0y cannot satisfy Item 1a. Thus, there exists some j< G — 1 such that0; = 210,
satisfies Item 1a, a contradiction. Therefore, we have

Oy > aydist(x, M) = alag y-x 2,

In this case, by (3.7), we have

N
IN

I
+

f(x) = f(x)< Ldist(x, M) +

y- X

N ™

which is a contradiction. Therefore, Item 1b cannot hold, so we have a % y- x 2>
dist(x: M) .
Next, for the sake of contradiction, suppose that there exists 0; satisfying Item 2a.

In this case, since 0; = (a/2) y — x , we have

dist(x, M) < a3 y-x 2< 2ay0; y-Xx,
i.e., 0; also satisfies Item 2b, which is a contradiction. Therefore no 0; satisfies Item
2a. We claim that this ensures Oy > a, y — x .Indeed, if Oy < ap y — x , we must
have

Oy<(a’2) y-x< ag y-x<0 g-1

since 0y cannot satisfy Item 2a. Thus, there exists some j< G — 1 such that0; = 2i0,
satisfies Item 2a, a contradiction. Therefore, we have

Oy> ay y- x = dist(x, M).

In this case, by (3.7), we have

m . B _ B

f()= f() < Ldist(x, M)+ = y=x>s L+ - R< e
FolCT
4
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which is a contradiction. Therefore, there must existJ; satisfying either Item 1 or Item
2 of Theorem 4.3.

Let us now fix a 0; satisfying either Item 1 or Item 2 of Theorem 4.3. Then, by
Theorem 4.3, we have the bound

0;dist(0, 05 f(x)) = 8(1-p)( f(x) - f(x)-

In what follows, we will use the above bound to prove that with probability at leastp]
we have f (X) = f(x) <p( f(x) - f(x)) whenever f(x) - f(x) > max{ 1,70 26}
Contraction case 1: normal step. We first suppose that there exist; satisfying Item
1. In the interest of analyzingV;+1 € dg; f (x), et us show that x ,0;, and T satisfy the
conditions of Proposition 5.1: First x € By (- x) since O s < Snp. Second, by Item la
of Theorem 4.3, we have

0<0; < adist(x, M) £ Dqdist(x, M). (6.2)

Finally, from the definition D , = p/ 2, it follows that T satisfies the conditions of
Proposition 5.1. Therefore, with probability at least 1 = p, we have

fox-oi— — s fl)- f(7)- %dist(O' 0, f(x)) <p( f(x) = f()
i+1

Next, we show that Vj+1 and ; satisfy the trust region condition 0; < Yiri Tg
that end, note that the conditions of Lemma 4.1 are met: We have x € Bg,,(: )é since
O s < 5. We also have bound 0; £ Dy dist(x, M) from (6.2). Therefore, it follows
that the minimal norm Goldstein subgradient is lower bounded: d{4, ao—,. f(x)) = D.
Consequently, we have

0; < aydist(x, M) <

= = ]

D26|_s < dist(0s aai f(X))dLs < Voi+1
S S S

where the second inequality follows from the definition of in Table 2 and the inequality
s £ L; and the fourth inequality follows from the boundd, s < 1. Therefore, since the
trust region constraint J; < ¥ =L is satisfied, the following holds with probability at
least 1 - p:

(- 1005 [ x=0i " = () =p( ()~ ()

1

Thus, the first item of the proposition follows.

Contraction case 2: tangent step. Next, we suppose that there exists J; satisfying
Item 2 of Theorem 4.3. In the interest of analyzing u; € dg, f (x), let us show that x,
0;, and T satisfy the conditions of Proposition 5.6: x € Bs,/2( x) since O s <34/ 2.
Second, by Item 2a of Theorem 4.3, we have
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Finally, by Item 2b of Theorem 4.3, we have
dist(x» M)/O ; < 2a, y-x< Cs y- x.

Therefore, since f (x) = f(x) > 1,1, Proposition 5.6 implies that

fox-ot = () ()= ()= Sdist(0, % [(x)) < p( fG) = f(D)

1
Next, we show that u; and 0; satisfy the trust region condition J; < l;i . To show
this, we first note thatJ; and x satisfy the conditions of Lemma 4.2: First xe Bs,/ (. x)
since O 5 < 54/ 2. Second, by Item 2a of Theorem 4.3, we have

O <ay-x< C y-x
Finally, by Item 2 of Theorem 4.3, we have
dist(x, M) £ 2a,0; y-x< 2a3 y-x 2<Cy y-x,
where the third inequality follows from the bounds y - x< 20s< 1V/ayanday €
Cy/2 (re_call that G < Cp). Therefore, by Lemma 4.2 we have u; 2 Py (yu; 2

C1 y — x . Consequently, we have

- Ciy-x uj
O <say-x=s . < o

where the second inequality follows from the definition of a , in Table 2 and the
inequality s £ L. To complete the proof, observe that V;+1 = u;: since the sufficient
descent condition is met, namely f (x — oju;/ u;)< f(x)-o u; ,NDescent
terminates at the first iteration. Therefore, we must have

V1+1

Vii+1

f(R) - fx)s f x-o0; - f(x)sp( f(x)= f(x):

as desired.

Having proved the desired contraction f (X) = f(x) <p( f(x) - f(x)), we now
turn to the bound on x — x .
Stepsize bound. We now no longer assume that f(x) = f(x) > max{ 26- 1,1}. We
claim that we have

max {0;:0; <V j+1/ s}
0<i<G-1

< Cemax  11/sw 2.6/sw 2(f(x) = f(x))/ min{sp, y} - (6.3)
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Note that inequality (6.3) immediately yields the second item of the proposition, since

xX-x< max {0;:0; SV j+1/ s}-
0sisG-1

To prove (6.3), we will apply Lemma 5.8.

To that end, first note that x6 Bg,,( x) since O, s < drig- Next, we verify that there
exists an index i such that J; satisfies a slightly stronger version of the assumptions of
Lemma 5.8. Indeed, recall that by the quadratic growth condition (A1), we have the
bound

dist(x, M) x-x=<  2(f(x)= f(xDVY- (6.4)

Thus, to satisfy the assumptions of Lemma 5.8, we prove that there exists i such
that

Ry:= D' 2(f(x) - f(x)ly<so i < dcra- (6.5)

Indeed, first notice that Oy < &gyid since G 2 log,(1/0y5q) . Thus, if 0y = R, the
bound (6.5) holds for Oy. If instead Oy < Ry, we have

Oy < Ry < D;' 2L s/y< min{Sria/ 2 1/ 4} < min{dgria 1/2} < 1/2=06-1,

where the second inequality follows since x— x <& |sandf is L— Lipschitz contin-
uous on B ¢ (x); and the third inequality follows sincs <y D? min{égria/ 2: 1/ 4}*/
(2L). Thus, there exists i such that 0; € [ min{dgyia/ 2: 1/ 4}, min{Ggriq» 1/2}]. Since
min{Jgi¢/ 2 174} = Ry, inequality (6.5) follows.

Now let i » be the minimal such index such that (6.5) is satisfied fori = i.. If
i~ = 0, the bound T;, - ; £ Ry holds. In particular, G;, £ 2R . Therefore, considering
the cases i~ = 0 and i. = 0 separately, we have

Ry =0y, = max{ffo, ZRX}- (6.6)

Now we bound the step length x —"x by considering two cases.
First suppose that0;, > u;,/ s. In this case, (2.1) ensuresG;, >V j,+1/ s. Then,
since 0; is increasing in i , we have

max {0;:0; SV j+1/ s} <0y,
0<isG-1

< max {0y 2R}

< Cgmax o,/ sp 2(f(x) = f(x)) min{sp, y} -

< Cemax  1,1/swr 2.6/ s 2(f(x) = f(x)) min{sp, y} -

which verifies (6.3). We now consider the alternative case.
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Next suppose that 0;, < u;,/ s. We consider two subcases. First suppose that the
following bound also holds:

8(f(x) = [(x)

g

L«

(6.7)

Then, since 0;, = Ry, we have

ui, < 32¥ DA f(x) = f(x)-

Second, suppose that (6.7) does not hold. Let us apply Lemma 5.8t0 0 =0, :

2 T/2 B
uj, € max 1- e L, 4C(y) max{0g 2R} + 4(C(y) + 2B) x — x
2 T/2 B
< max 1- e 1 8C(0)9 8(C() + 2B) x— x + 16C(q) Rx
<max 1- 1,701 26 8(Ce)+ 2B+ 2CD; ") 2(f(x) = f(IVY

I\

sCemax{ 1,1/s 2.6/s 2(f(x) = f(x)ly},

where first inequality follows from Lemma 5.8 and bound (6.6); the second inequality

follows from the bound: max{a: b} + ¢ < a+ b+ ¢ £ 2max{a: b + ¢} forall

a: b: ¢ 2 0; the third inequality follows by definition of 1,7, 2,¢ and Ry, and (6.4);

and the last inequality follows since Cg = max{1, 8(Cy) + 2B + 2C(a) Dy )/ Sb}-
Therefore, as long as 0;, < u;,/ s, we have

uj,/ s

< max Comax{ 1,7/s1b 2.6/ 20f(x) = (D} 32¥ DI(f(x) = F(IV sy

IA

Cemax 1,7/sp 2.¢/sw 2(f(x) - fCINY

IA

Cemax 1,7/sy 2.¢’swy  2(f(x) = f(x) min{sp, y} -

where second inequality follows from the bound C ¢ = 4Y Dy/('sp); and the third
inequality follows from the bound (6.4). To complete the proof of (6.3), recall that
by (2.1), for all j > i., we have v i S uj .Consequently,

max {0;:0; SV j+1/ s}
0<i<G-1

< max O, u;/ s

ui*/ S

IA

Cemax 11/siw 2.6/sw  2(f(x) = f(x))/ min{sp, y} -
ol:;ﬂ

i
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Table 3 Parameters used throughout Sect. 6.3; see also Tables 1 and 2

Parameter Definition
204812
C 02
(CZL+p) L L B
C max 5 y Ly — + , 8C
C3 min{T.a} 2 min{l,al)ag (@
/
S IEN |
q max P, 1 3ee02’ 2

) /
ds, & min{sp,y }(1- q* 2)2, O ssp(1-q)
4 32LC2 4LCg

NTD min

&g min{sppy }(1- ¢ 2)2 3 ssp(1- ) .
Ls +logg 7L54lcbcsq , log,

320t B

K max lo
0 X 108q Grid

which verifies (6.3).

6.3 Main Convergence Theorems

We are now ready to prove the main results of this work. The goal of this section is to
prove that an event of the following form occurs with high probability.

Definition 6.2 (Ek,.q.c) Forany kg > 0, q € (0 1) and C > 0, let E,.q.c denote the
event that for all k 2 kg, we have the following two bounds:

I\

max{( f(xi)) = f(Nq""*, Cq*};
7 max{( () = (g1, o'

flx) = f(x)

Xk—x 2

IN

We will lower bound the probability of the event &, 4,c in both nonconvex and convex
settings for a particular choice of k ¢» g, and C . In the nonconvex setting, our result
will lower bound the conditional probability of E k,,q,c, given that iterate x k, enters
a sufficiently small neighborhood of x . To prove the result, we will simply iterate the
one-step improvement bound of Proposition 6.1. In the convex setting, we will lower
bound the unconditional probability of Ey,,q,c. To prove this result, we will combine
the conditional result with the sublinear convergence guarantee of Theorem 2.4.
Before turning to the proofs, we introduce the main parameters that are common
to both the nonconvex and convex settings.

6.3.1 The Nonconvex Setting

The following theorem is our main convergence theorem in the nonconvex setting.

Theorem 6.3 (Main Theorem: Nonconvex Setting) Assume the assumptions outlined

at the start of Sect. 6 are satisfied. Recall the notation of =~ Taple 3. {Fix a fail-

ure probabilityp € (0, 1) and an indexk ¢ = max Ko C log C/p . Suppose
FolC'T
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P(xy, € Bép(x)) > 0. Then,
P(Eyyqc | Xk € Bayp(%) 2 1= p-

Proof We begin with preliminary notation and bounds.
Fix ko = max{Ko, C log(C/ p)} and for all k = ko, define the quantity

Ry := max{( f(xk,) = f(x))q" %0, cqky.
Note that whenever xi, € Bg,,(x) we have the bound
Ry < max{Lrpq" ", Cq"}, (6.8)

since f is L-Lipschitz continuous on B 5(x).
Next, we prove that

max{ LT Z'Gk} < Ri+1 forall k = 0- (6.9)

Indeed, beginning with 1, 7,, we have

/ /
(CgL +B) L . 3u2 Ty/ 2 . HZ T/ 2
T, = max —————— - , -
Ui Cs 25612 64L2
! 3#2 TTk IJZ % l
< C max 1- —— , 1=
L 256L 2 6412 J

IA

qu+1 S Rk+ 1’

where the first and second inequalities follow from the definitions of C and q together
with the lower bound Ty 2 k + 1. Turning to »,g,, we have

L

: + ,8C(,) L 27 Ck < 27 Ck
min{l: a1} 2 min{1, al}ag (@

2,Gy =

< Cq"* 1< R

where the first and second inequalities follow from the definition of C and q together
with the lower bound Gx = k + 1. Thus (6.9) holds.
Finally, we analyze the quantity

D041 = Cemax 2R /Y + Riv1/ s where ¥ := min{sp, ¥ }.
k=ko
FolCT
‘_I o
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We claim in particular that
Do,y + OnTD S 5|_s/2- (6.10)

Since Oy1p < 8.8/ 4, it suffices to prove Dy, dyrp < O Ls/ 4- To that end, we have

Digdyrp = Cemax 2RV  Rie1/sp

2 max{LO\Tpqk~ ko, Cqk}ty . max{Lfﬁ\ank_ kofy qu}/suJ

I
a

(=]
=t
Qo
=

k=ko
J
< Cemax 2L %D 2Cqko LoD Cqho
V(1-qY2) Yy (1-q"2) sp(l-q) sp(l-q)
< 6"5,
4

where the first inequality follows from the bounds (6.8) and the bound R +1 < Ry;
the second inequality follows by summing the infinite series; and the third inequality
follows from the definitions of K ¢ and Sy1p together with the bound kg = Kj. This
proves (6.10).

We now turn to the proof. Consider the following sequence defined for all k= ko:

k-1
by := OnTD + Cemax 2RV + Rkst/sip -
j=ko

Note that (6.10) ensures that by < d.s/2 forall k = ko. Now, define the event
Fko Z:{Xko € BGNTD(X_)}.

In addition, define the following decreasing sequence of events

* . _ _ )

Ag = f(Xj)— f(x) < Rjand xj—-x< bj -

J=ko

We claim that
P(Ak+1| Axn Fy) 2 1- exp(- Ti/C)  forall k = ko- (6.11)

Indeed, Proposition 6.1 implies that conditioned on A | N Fy,, the following four
inequalities are satisfied with probability at least 1 — exp(— T}/ C ):

L f(w)= [(DS R

2. Xxk— X< by
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3. Xk+1~— Xk S Cgmax LTk/Slb' Z,Gk/S]bt 2(f(xk)— f(ﬂ)/v ;
4. flxker) = f(x) S max{p( f(xi) = [ 110 26

(Note that in applying the Proposition 6.1, we use the scalar s = max{ gk, co go}
and the inclusion s € [ s, L], which was proved (6.1).) Thus, the bound (6.11) will
follow by induction if we can prove that whenever the above four inequalities hold,
wehave Xg+1- xS brrrandf (xx+1) = f(X) € Ris1.

To that end, we first prove Xx+1 — X < by 1. Indeed,

Xk+1—;(S Xk+1— Xk + xk—}

< Cgmax LTk/Slb’ 2,Gk/slb' Z(f(xk) - f(x_))/V + by
< Cgmax 2RV » Ris1/sp + by = bs 1 (6.12)

where the second inequality follows from Proposition 6.1; and the third inequality
follows from the bound (6.9). Next, we prove the bound on f(xx+1) = f(x) £ Ri+1.
Indeed,

fxke1) = f(x) < max{p( f(xi) = f(x) LT 2.Gy}

max{p max{( f(xk,) = f(x) gk %, cq*y, LT 2.Gy}
Rk+1:

I\

I\

where the final inequality follows from (6.9) and the boundp < q. Consequently, the
bound (6.11) holds. Moreover, due to the bound Ty = k + 1, we have

P(Ag+1 | Ak Fi)2 1= exp(- Ti/C )2 1- exp(=(k + 1)/ C). (6.13)

Now we relate A to Ek,,q,c. To that end, by the conditional law of total probability,
for all k = ko, we have

P(Ag+1 | Fig) 2 P(Age1 | Ak 0 Fiy) P(Ax | Fiy) 2 P(Ak | Fiy) = exp(-(k+ 1/ C)-

Therefore, for all k = kg, we have

P(Ax | Fy,) 2 P(Ax, | Fx) = exp(- j/C)=1- —9—1 21-p
. 1- exp ——
j=kot1

where the equality follows since P ( Ay, | Fx,) = 1; and the final inequality follows
by definition of kg 2 C log(C / p). Now recall that sup ;> ko bk 0 Ls’ 2. Therefore,
defining the event

Eppqc ={ f(x) = f(x) S Ry forallk 2 ko and xx € Bg5(x)},
FoE'ﬂ
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we have
P(EkO'QrC | Fko) 2 kl_g.}‘l P(Ak | Fko) > 1- p-
Next, recall that since O g < 34, the quadratic growth bound (A1)
- 2 2 — 2
Xg= x °S V(f(xk)— f(R)s R

hOk}le for every k = ko within the event E ko q:C* Thus, Ex,q.c 2 E ko q:C Therefore,
we have

P(Expqc | Fiy) 2 P(Eyqc | Fi))2 1= ps

as desired.

6.3.2 The Convex Setting

Now we turn to the convex setting. Our goal is to prove a lower bound on K Eko,q,c)
for g and C chosen as in Table 3 and all sufficiently large k. Before stating the result,
we recall a simple fact about convex functions satisfying Assumption A. A similar
result appears in [8, Section 2.4], but for completeness we provide a proof in Appendix
F.

Lemma 6.4 In addition to the assumption set out at the start of the section, suppose
that function f is convex. Then for all a > 0, we have

- — 2 2
{xeRY: f(x)- f(x)< a}<S B, (x)  whererq := max 4,
‘ Yo Y

In particular, f has bounded sublevel sets.
We now turn to our main theorem.

Theorem 6.5 (Main Theorem: Convex setting) Assume the assumptions of Sect. 6.1
are satisfied. Recall the notation of Table 3. In addition, suppose that function f  is
convex. Consider the bounded set

S:={x+u: f(x)< f(xo) andu € B(x)}.

Let L be a Lipschitz constant of f on S. Define the constants

- 1-a,
64L 2
y o, y a
a = min ﬂ, C%TD ; and b= inf ————"sr—:
4 8 ae(0,1) a -
diam(S)
FolCTM
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Finally, define

4diam?(S) .
————mi

(4L )?
a? a2

b 2
Ky = n 16%(f(xg) - inf )% Z,2048L210g = ,128(L)% +
p

Then, for every failure probability p € (0, 1), we have
2C
P(Eko,q,c)z 1-p forallkp 2 max Ko C log — ,2K1-1
p
Proof Theorem 6.3 shows that
— 2C
P(Ekyq.c | Xk € Bagp(x)) 2 1= p/2  forallkg 2 max Ko C log —
p
(6.14)
We claim that
P(x, € Bayp(x)) 2 1= p/2  forallkg = 2K1 = 1. (6.15)
Note that this yields the proof, since in that case

P(Exyq.c) 2 P(Exyq.c | Xk, € UIP(xiy € Bapp(x)) 2 1+ p/4-p=1-p,

for all kg = max Kg, C log % 2K -1 .
Observe that (6.15) will follow if

P(f(x,) - f(x)<a)z1- p/2  forallky = 2K; — 1- (6.16)
Indeed, by Lemma 6.4, we have.
{x eR¥: f(x) - f(x)< a} S Baypy/2(X) S Bdyrp(X)-

To prove (6.16), we apply Theorem 2.4. To that end, note thate R? : f(x) < f(x)}
and the widened sublevel set S are indeed bounded, due to Lemma 6.4. There-
fore D and the Lipschitz constant L of f on S are finite. Now observe G =
ming, <k<2k,-1{Gk} 2 Kj since Gx = k + 1forall k. Thus, thereexistsi < G
such that

-1/2
L

IA

(/2K "* <0, < K

Therefore, applying Theorem 2.4 (in particular (2.2)) with this J;, we have

f(xok,-1) = F(x)
Elol:;ﬂ

123 aCE



Foundations of Computational Mathematics

!16(f(x1<1)—inf f) 16L  2log(2K}/ p) J@L ! 2L

< D max ) +
l 1/2 172 172 ) 172
K K K K
1 1 1 1
(6.17)

with probability at least 1 — p/2. Thus, to complete the proof, we show that the
left-hand side of (6.17) is smaller than a. Indeed, it is straightforward to check that

N
2. 16D(f(xk,) - inf f) ~ 128DL L a

/2’ 1/2 ’ 172 =
Ky Ky Ky 2

max

Thus, the proof will follow if

16DL  2log(2K% p) 4
<

172
1

(6.18)

N |

K

We perform this calculation in Appendix G. Thus, the proof is complete.

6.3.3 Local Oracle Complexity

Thus, we have established a local nearly linear convergence rate for NTDescent.
To understand the overall complexity of the method, we must derive an upper bound
on the contraction factor q. The following lemma, which is proved in Appendix H,
provides one that depends on a worst-case condition number of f.

Lemma 6.6 Suppose that without loss of generality that Oy < 1. Define the condition
number

_ max{L, B, C(y)}
min{y , uy}

Then there exists a universal constant 11 > 0 independent of  such that

B n
K8(1+ Cm )?

where q is defined as in Table 3.

With this upper bound on g, it is straightforward to derive a local ~complexity
estimate for NTDescent: the method locally produces a point X satisfying f (X) —
f(x) < & with at most

3
o K8(1+ Cm)?log(1/e))
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first-order oracle evaluations. This bound may be pessimistic since we did not attempt
to optimize the constants G or a;. We leave the improvement of this complexity as an
intriguing open question.

Before moving to a brief numerical illustration, we explain how Theorem 1.1 from
the introduction follows from the above results.

Remark 2 (Establishing Theorem 1.1) Theorem 1.1 from the introduction immediately
follows from Theorems 6.3 and 6.5. Indeed, first the event k,q,c from Theorems 6.3
and 6.5 contains the corresponding event E ,q,c from Theorem 1.1 for particular g
and C, which depend solely on f. Second, from the statement of theorems, we see

that the neighborhood of local nearly linear convergence, By, (. x), depends solely on

f.

7 Numerical lllustration

In this section, we briefly illustrate the numerical performance oRTDescent on two
nonsmooth objective functions, borrowed from [1, 12, 37, 39]. In both experiments,
we compare NTDescent to the subgradient method with the popular Polyak stepsize
(PolyakSGM) [47], which iterates

f(xi) = inf fWk

Xier1 = Xk = —— =
k

for some W) € 9 f(xk)-

In the first example, inf f is known, in the second, we estimate inf f from multiple
runs of NTDescent- We choose to compare against the subgradient method because
it is a simple first-order method with strong convergence guarantees in convex [47]
and nonconvex settings [20]. Importantly, Po lyakSGM accesses the objective solely
through function and subgradient evaluations. Thus, we compare the accuracy achieved
by PolyakSGMand NTDescent after a fixed number of oracle calls, i.e., evaluations
of Of.

Let us comment on the implementation of NTDescent. First, in all experiments,
unless otherwise noted, we do not tune parameters di TDescent. Instead, we simply
choose scaling constant co = 10~ ® and loop size parameters

Tk = k+ 1 and Gx = min{k + 1, log,(10" ')} forallk = 0.

Second, we attempt to save first-order oracle calls by breaking the loop on Lines 2
through 6 of Algorithm 3 whenever we find thag; > v ;+1/ s. Since G is increasing
iniandv j+1 isnonincreasing in i, this does not affect the iterateg af NTDescent;
see Lemma 2.1. Finally, in all problems, we initializeNTDescent and PolyakSGM
at a random vector az where z is sampled from the uniform distribution on the unit
sphere. For all problems, we usea = 1 unless otherwise noted. Note that in the
problems of Sect. 7.1 and 7.2, the solution is known, while in the problem of Sect. 7.3,
the solution is unknown.

The purpose of this section is not to argue that NTDescent is a substitute for
standard subgradient methods in most problems. Instead, we only wish to point out

FolCT
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some scenarios where standard first-order methods are known to perform poorly, yet
NTDescent asymptotically accelerates. We are also not arguing that NTDescent
has fast global rates: indeed, we previously mentioned that the NTDescent’s global
rate is O ( ~6) which is much worse than PolyakSGM’s O ( ~2) rate for general
convex problems. In practice, one could devise schemes that couple NTDescent
with PolyakSGM, eventually switching toNTDescent when it begins to outperform
PolyakSGM. While we leave a more thorough numerical study to future work, the
reader may download and run our PyTorch [45] implementation of NTDescent at
the following url: https://github.com/COR-OPT/ntd.py

We now turn to the examples.

7.1 A Max-of-Smooth Function

In this example, f takes the following form

1
flx)= izr?.q.)(m g x+ ExTH,-x ) (7.1)

where we generate a random vector Ae R™in{A> 0: . A; = 0}, arandom
positive semi-definite matrix H, and a random vector gsatisfying that :"= 1 )\igi = 0.
In this case, one can show that with probability 1f, satisfies Assumption A at its unique
minimizer 0.

In Fig. 6 we plot the performance of NTDescent and PolyakSGM for multiple
pairs of (d, m), varying initialization scale, aslight modification of NTDescent
that allows longer steps, and varying scales c g. We begin with Fig. 6a, b. Figure 6a
shows that the performance ofNTDescent depends on m. On the other hand, Fig. 6b
shows NTDescent performance is independent of d, as expected. Both plots show
that NTDescent asymptotically outperforms Po lyakSGM. Turning to initialization,
Fig. 6c shows the result of initializingNTDescent at a random vector az, where z is
uniformly drawn from the sphere and a is a scale parameter satisfyinge{1, 10, 100}.
Clearly,NTDescent is affected by the initialization scale but surpassef0 lyakSGM
after 30,000 oracle calls. While we expect NTDescent to converge slowly when far
from minimizers, we introduce a simple strategy to mitigate this behavior.

Adaptive grid strategy. Briefly, suppose we run linesearch the full G steps
without exiting (via the violation of the trust  region constraint). Then we simply
continue the linesearch loop trying 0-1 = 100, 0-, = 100-1, and so on, until
we violate the trust region constraint or O-; exceeds a predefined threshold.

Figure 6d shows the result of this strategy with a predefined threshold~ , showing
that it compensates for poor initialization quality. Finally in Fig. 6e, f, we show the
effect of changing the cg input to NTDescent. It appears NTDescent is relatively
insensitive to ¢ ¢ and smaller choices generally result in better performance. This
motivates our default choice co = 10~ © in the remainder of the experiments.

Before turning to our  second experiment, we briefly mention two alternative
methods—Prox-linear [13, 27, 28, 51, 54] and Survey Descent [30]—which could

FolC'T
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Fig. 6 Comparison of NTDescent with PolyakSGM on (7.1). For both algorithms, the value f(. x{ )
denotes the best function seen after ¢t oracle evaluations. See text for description
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be applied to this problem. In order to explain these algorithms, let us write f =
max;=1,...,m{ fi}, where the f; are the quadratic function from (7.1).

Prox-linear method. Given a point x RY, the Prox-linear update x+ solves

p
x+ = argmin max {fi(x)+ Vfi(x)hy-x} += y-x 2
yeRd i=leom 2

One may show that x + geometrically improves on x ; see [25]. However, in contrast
to NTDescent, the prox-linear method requires that the components f ; are known.
This is stronger than the first-order oracle model considered in this work. Thus, we do
not compare NTDescent with prox-linear.

Survey Descent The Survey Descent method is a multi-point generalization of gradi-
ent descent, designed for max-of-smooth functions. Rather than maintaining a single
iterate sequence, the Survey Descent maintains a survey S of points, meaning a col-
lection of points {s;}/~, at which f is differentiable. A single iteration of the Survey

Descent method then aims to produce a new survey S* = { si+ HL, satisfying

1 2
si+ = argmingx— Si — EV f(si) g

xeRd
subject to: f(sj)+ \ f(sj), X = Sj

L
+5X—Sj2Sf(S,')+ Vf(s,'),x—si Vj =i

Here, L is an upper bound on the Lipschitz constant of V f; foralli = 1,....m.
In [30], Han and Lewis study linear convergence of Survey Descent on max-of-smooth
functions under the conditions of Corollary 3.4. Given a survey S, they show that the
updated survey S* geometrically improves on S (in an appropriate sense) whenever
the following conditions are satisfied: (i) all elements of the survey S are near x; (i)
the survey S is valid, meaning there exists a permutation a on [m] such that

fa(si) = f(si) and 0f(s;))={V fai)(s;)} foralli=1,-..m-

To estimate the number of components m and find a valid initial survey S sufficiently
close to x, Han and Lewis suggest an empirical procedure based on running a nons-
mooth variant of BFGS [39] for several iterations. After running BFGS, they suggest
to (i) compute an estimate m of m from a singular value decomposition of the com-
puted gradients, and (ii) build the survey from m past iterates in such a way that the
computed gradients form an affine independent set. From the numerical illustration
in [30], Survey Descent performs well on several small problems. However, since the
initialization procedure and implementation of Survey Descent are somewhat sophis-
ticated, we leave a detailed comparison between NTDescent and Survey Descent
and to future work.
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7.2 A Matrix Sensing Problem

In this example, f takes the following form
1 T
f(x)= EA( XXT)-A(M) 1

where M € R¥*V is an unknown positive semidefinite matrix of rank rthat we wish

to recover from known linear measurementsA( M ); the linear operatorA : RV*N -

R" takes the form Y — ( alYa - bl Yh)T. |, forn € N,wherea;: b; e R9 are
random vectors sampled from a standard multivariate normal distribution; and the
decision variable is a tall and skinny matrix X € RN*", where in general we allow
r = r . This optimization problem appears in various signal processing applications

and is known as quadratic sensing [15].  Note that this objective does not satisfy
Assumption A, since the solution set is not isolated.

We consider two settings in this section: the exact setting r = r and the overpa-
rameterized setting r > r . In the exact setting [14] showed thatif n = Nr], the
objective f is sharp, meaning f (x) = dfst(x, argmin f)) and that PolyakSGM
converges linearly whenever the initial iterate is sufficiently close to the set of min-
imizers. In the overparameterized setting, we are not aware of similar guarantees.
Note that in practice, r is unknown, so the overparameterized setting is likely to be
encountered.

In Fig. 7 we plot the performance ofNTDescent and PolyakSGM in two experi-
ments. In Fig. 7a we use base dimensions N = 100, optimal rank r = 5, and varying
overparameterizationr €{r ,r + 2,r + 5}. InFig. 7b we use base dimensions
N = 100, varying optimal rank r € { 5, 10, 15}, and fixed overparameterization
r = r + 5.Inboth experiments, we fixn = 4Nr . Note that the dimension of the
decision variable X is varying across each run since d= N r and r are varying. As can
be seen from the plot, PolyakSGM outperforms NTDescent in the exact setting.
This is to be expected, since f is a sharp function on whichPolyakSGM is known to
perform well. On the other hand, when r > r , we find that both methods slow down.
However, NTDescent continues to converge nearly linearly, while PolyakSGM
converges sublinearly.

7.3 An Eigenvalue Product Function

In this example, we aim to optimize a function f that takes the following form
f(X)=log Ex(A" X)

where A is a fixed positive semi-definite data matrix, Ex(Y) denotes the product of

K largest eigenvalues of a symmetric matrix Y € SV, and " denotes the Hadamard

(entrywise) matrix product, subject to the constraint that X is positive semi-definite and

its diagonal entries are 1. This example is a nonconvex relaxation of an entropy mini-

mization problem arising in an environmental application [1, 12]. In our experiments,

we choose A as in [1]: Ais the leading N % N submatrix of a 63 X 63 covariance
FoC'T
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Fig. 7 Comparison of NTDescent with PolyakSGM on (7.1). In both plots, the base dimension is
N = 100. Left: fixed optimal rank r = 5 and varying overparameterization r € {5, 7, 10}; Right: varying
r e{5 10, 15}, fixed overparameterization r = r + 5. For both algorithms, the value f (. x{ ) denotes the
best function seen after t oracle evaluations

matrix, scaled so that the largest entry is 1. As suggested by [12], we reformulate
this problem as an unconstrained optimization problem using a Burer-Monteiro type
factorization

min f(v)y= flc(v)e(v) ) (7.2)

i
VeRN*

wherec : R¥*N LS N gatisfies c(V) = Diag([diag(VV )]"V2)Vfor all

V € R¥*N_ Here, the mapping diag () takes a matrixan N x N matrix A to the

N dimensional vector with i th entry A ;;. On the other hand, the mapping Diag (-)
takes an N dimensional vector ¥ to the N x N diagonal matrix with i th diagonal entry
V;. A formula for the subgradient of f may be found [12]. We do not attempt to verify
that f satisfies the full Assumption A. Instead, we point out that under a “transversality
condition,” function f admits an active manifold at local minimizers [39].

Turning to the experiment, we consider the case where N = 14 and K = 7. In this
example, the optimal function value inf f is not known. Thus, we run NTDescent
from four random initial starting points. We terminate each run oNTDescent when
a certain “optimality gap” R satisfies Ry < 10~ 2. We denote the minimal function
value achieved across all four runs by f. Let us now define and motivate the optimality
gap. For iteration k in Algorithm 4, define

Ry := min max{ai(k), v i(f)l 2y Gi(k) Sv i(f)l )
where Ui(ld and Vi(f)l are computed in Lines 2 through 6 of Algorithm 3 at iteration

k. Provided that xi is sufficiently close to a point x at which function f  satisfies

Assumption A, it is possible to show that Ry satisfies f(x;) = f(x)  Ry. This is

illustrated in Fig. 8a: there, the optimality gap closely tracks the estimated function
FoCT
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Fig. 8 Numerical performance on (7.2). Left: the close relationship between “optimality gap” and function
gap; Right: comparison of PolyakSGM and NTDescent from three initial starting points. For both
algorithms, the value f (. x; ) denotes the best function seen after t oracle evaluations. See text for detail

gap, when approximating by inf f by f *. In Fig. 8b, we compare the performance
of NTDescent on the three runs which did not achieve function value f * before
termination. In all three cases, we see similar performance. Next, for each run of
NTDescent, we also runPo LyakSGM from the same initial starting point, estimating
inf f by f *. We see that NTDescent outperforms Po lyakSGM.

A Proof of Lemma 2.2

Let g denote the minimal norm element of 0o f(x). Write g as a convex combination
of subgradients: g =  _,;A;g; where [_;A; = landg; €90 f(x;) forsome
xj € Bo(x) andn > 0. Then

n n
f(X)S f /\iX,"" A,‘(X— X,‘)
i=1 i=1
n
< Aif(x)+ LO
i=1
n
< fly)+ Aiginxi—y +LO
i=1
n
< fy)+ gx-y+ Agixi-x +1LO
i=1
< f(y) + dist(0, 05 f(x)) x— y+ 2LO,

as desired.
oM

FeCe
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B Proof of Proposition 3.5

We begin with preliminary notation and bounds. ~First, since M is C* smooth, the
projection Pm is C3 smooth near x . Second, since f is C smooth along M near x,
the composition f M := f ° Pm is also C3 smooth near x . Third, the constant M is
positive due to the active manifold assumption. Fourth, choose 0 > 0 small enough
that the following hold:

1. VPum is Cm -Lipschitz on Bs(x);

V fm is B-Lipschitz on Bs(x);

V2 fm is P-Lipschitz on Bs(x) in the operator norm, where p := ZIipgp2 i (x);
f is L-Lipschitz on B &(x);

the quadratic growth bound (A1) holds:

ik W

f(x)- f(x)= g x-x 2 forallx € Bs(x);
6. the strong (a) bound (A3) holds:
Py ()(v=-Vm f(y)) S C) x-y (B.1)

forall x € Ba(x),ved f(x),andy e Mn Ba(x).
7. the (b<) regularity bound (A4) holds:

f(x)z f(x)+ Vix - x - = x—% (B.2)

forall x € Bs(x),ved f(x),andx € Bs(x)nM .
8. the sharpness condition holds:

dist(0, 0f(x)) > 20 forall x € Bs(x)\M.

Given these bounds, let us define

Vv i
"160" 2(Cy) + 2B + 2Cm L)

1
0y := —min O
AT
For this choice of 84, Item 1 holds automatically. We now prove the remaining items.

B.1 Item 2: Smoothness of P m

Fixx € Byj,(x) and x € Bs,(x). Observe that Pm (x) € By, (x) and we have the
inclusion x = Pm (x) € Nm (Pm (x)). Consequently, we have

L. Pry (pw () (X) = Pry (pu () (PM (x));
2. Pv (x)= Pum (Pm (x);
3. VPm (Pm (x)) = Py (pu (x)-
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Therefore, we have

Py (x) = Pm (x) = Pry (py () (X = x)
Puv(x)=Puv (Pv (x)) =V Py (Pm (x))(x = Pu (x))

C
TMx—PM(x)2

I\

I\

Cm ( x = x 2+ dist’(x, M),

where the first inequality follows from Lipschitz continuity of V PM on B2s, (x) S

Ba(x).

B.2 Item 3: Boundson Vm f

Recall that Pm (x) € Bag, (x) whenever x € Bs, (x). Thus, below we prove that

y - - _
Ey—xSV m(y)<B y-x forally € Bps,(x) N M.

This is equivalent to the claimed bound since V fm (y) =V m f(y) forall y €
Boys, (x) N M .
Let us first prove the claimed upper bound. Due to the inequality,

fm (x) = fm (x) 2 g Pv(x)-x 2 forallx € Bs(x)

it follows thatx is a local minimizer of fm . Consequently,V fm (x) = 0. Thus, since
B is a local Lipschitz constant of V fu on Bs(x), we have

V im(y)sp y-x forall y € Bs(x) n M.

Since 20, < &, this proves the claimed upper bound.
Next, we prove the claimed lower bound. It suffices to establish the following
convexity inequality:

fm(y)+ Vim(y),x-y < fu(x) forally € By, (x) N M. (B.3)

Indeed, if this inequality holds, we have

_ _ oy _ _
VMG y-x 2 m(y)- fm (x) 2 S YTX 2 forally € By, (x) N M,
and the desired result follows from Cauchy-Schwarz.

To that end, observe that sinceV fm (x) = 0and V2 fm is P-Lipschitz in Byg, (x),
we have

_ 14 _ 5
fm ()< fm () + 3 V2 (y-%)hy-x +

FolCT
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Consequently, we have the lower bound on the quadratic form: for alkyB,s, (x)NM ,
we have

14 _ ) o 3
EVZfM(Q(y—x):(y—x)zf/\//(y)—f,v,(x)_E y-%3

>Z -x 2_8 -% 3

25 y Gy

z%y-}% (B.4)

where the second inequality follows from the quadratic growth bound and the third
follows from the bound y - x < 20, < %- Therefore, forally e M n BgéA(Q,
we have

mx)z fm(y)+ Viuly),x-y +%V fm (y)(x - y), (x_y)_% %3
> fu () Vi () Xy + 3V (D= ), (- ) = 2y
2 fu (y)+ VfM(y)x-y+%y x 2= %y-7{3
> my)+ Viuly),x-y,

where the first and second inequalities follow by Lipschitz continuity of V2 fi ; the
third inequality follows from (B.4); and the fourth inequality follows from the bound
y-x< 204 < 1960 This completes the proof.

B.3 ltem 4: Consequences of Strong  (a)-Regularity

Fix x € Bs,(x) ando < & 4. Recall that y:= Pm (x) € Bas, (x) since x € Bs, (x). Fix
g € 9o f(x). By definition of Og f(x), there exists a family of coefficientsA; € [0, 1],
points x; € Ba(x) & Bs(x), and subgradients g ; € d f(x;) indexed by a finite set
i € Isuchthat ;_; Ai=1landg = A;gi. Therefore, by averaging the strong

(a) bound (B.1) over g;, we find that

iel

Py (;)(g=Vm f(y) < Ai Py (g =V m f(y))
iel

AiCla) xi -
iel

C(o)(dist(x, M) + 0 ).

IN

I\

Since g was arbitrary, it follows that for all x € Bg, (. x) and 0 < & 5, we have

sup( ) Pry (0(g=Vm f(y) s C(dist(x, M) + ). (B.5)
gedo f(x.

Now we apply this bound to establish the two remaining inequalities.

123 ¢od]
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Indeed, first observe that for all x € Bg, (x) and 0 < 8 5, we have

sup  Pru ()9 <V M f(y) + C(dist(x, M) + o)
geoo f(x

<B y-x+ Cldist(x, M)+ 0),

where the first inequality follows from (B.5) and the second inequality follows from
Item 3. This proves the first claimed bound. Second, observe that for all x € B, (. x)
and 0 < da, we have

sup  Ppy(w(g=-g)s  sup  Ppy(w(g=-Vm f(y)
grg €do f(x) gedo f(x)

+ sup  Pry (g =Vm f(y)
g €do f(x)

< 2C(y)(dist(x, M) + 0 ).

where the second inequality follows from (B.5). This completes the proof.

B.4 Item 5: Aiming Inequality
Consider a point x € Bs, (x), let k = 2H, and define

e argmin  f(x)+Kk x —x
XE§26A()O

We claim that X e M n B26A()a. Indeed, first note that by definition of X and the
inclusion X € Bag, (. x), we have

xX—-x< M+_x—xs_x—x<5 Al

where the second inequality follows since x is a minimizer of f on B2, (. x), a con-
sequence of quadratic growth. Thus, by the triangle inequality, we havex € B, (. x).
By Fermat’s rule, we, therefore, have the inclusion:

0cd(f+k-— x)(x)S0f(X)+KB:
If £ € M , then dist(0, 0 f(x)) > K , contradicting the above inclusion. Therefore, we
have X e M N Bys, (x).
Turning to the aiming inequality, apply the (b<)-regularity bound (B.2) to & :
f(X)z f(x)+ v,x-x —e x-x2 f(X)+ v,x-x +(k-&) x-X,

where we define € := u/ 2. Consequently, we have

Vix-Pu(x) 2(k-g) x=-x+ v,x-Pu(x) forallved f(x) (B.6)
Fol Tl
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We now bound the term v, X — Pv (x) : By the conclusion of Item 2, we have

Pum (X) = PM (x) = Pry (pu ()(X = X)
SCMm(x-% 2+ dist?(x, M)) £ 2Cm x-% 2

where the second inequality follows since X € M . Thus, we have

lv,x=Pv (X) |<| V' Py (py ()(X—X) |+2CMm v x-%?

S Ppy (pu (HV X=X+ 20M L x =X ?
< (Cpdist(x, M) +B Pm (x)=x) " x-x+ 2CM L x—% 2
< (C(a)% + 2By + 2Cm LOy) "x = x

<e"x- x.

where the second inequality follows from Item 4 and the third inequality follows from
the inclusion Pm (x) € B, (. x). Therefore, plugging this bound into (B.6), we arrive
at

Vix=Pm(x) 2(- 28 x-%x=z2p dist(x, M),
as desired.

B.5 Item 6: Bounding Subgradients

Fixx € B(SA()U, 0<0d a,andg €00 f(x). By definition of O f(x), there exists
a family of coefficients A; € [0, 1], points x; € Bo(x) & Bs(x), and subgradients
gi €0 f(x,-) indexed by a finite set i € I such that ieIAi = landg = iel)\ig,-.
Recall that by Lipschitz continuity of f on Bs(x), wehave g; < Lfori e I.
Therefore,

gS Aigis L,

iel
as desired.

B.6 Item 7: Bounding the Function Gap

Fix a point xe Bg, (x) and recall that Bv (x) € B3, (x). Then by Lipschitz continuity
of f on Bs(x), we have

f(x) = f(Pm (x)) < Ldist(x, M).
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Next, arguing as in the proof of Item 3, we find thatV fum (x) = 0. Thus, since V fm
is B -Lipschitz on B4(. x), we have

f(Pv(x) - f(x)= m(Pv (x))= f(x)< Vm(x) Pu(x)-x

+E PM(X)_;( 2= E PM(X)_;( 2,

By putting both bounds together, we have

f(x)- fx)= f(x)= f(Pm (x)+ f(Pm (x)) - f(x)

IN

Ldist(x, M) + g Pv(x)-x 2

as desired.

C Proof of Corollary 2.5

We begin with the following known Lemma, which immediately follows from [29,
Proposition 2.8]

LemmaC.1 Let f : R? - R be a locally Lipschitz function. Suppose that there exists
sequences xx - X, » 0,and gy € 0t f(xk) with gx - 0. Then x is a Clarke
critical point.

Now we turn to the proof of the Corollary. Since fhas bounded initial sublevel set,
the following widened sublevel set is bounded:

S:={x+u: f(x)< f(xo) andu € B(x)}.

Thus, there exists L > 0 such that f is L-Lipschitz on S. In addition, 0 f is uniformly
bounded by L on int S.

We begin with a claim.
Claim: Fix i > 0 and definel; := 27/, Let g := max{ gk, Co do} be the trust region
parameter used in Algorithm 3 and define ;,x :=  128LT;. Then with probability
one, the event

B = 00 () > andf G ) > flog - 00 3 [0
cannot happen infinitely often, i.e.,
P N7oy Vst Elii) =0
Proof We prove that P(E £i)) is summable in k. Indeed, first, note that P(E ,Ei) )=0
when P(dist(0, aTi f (x) > i) = 0. On the other hand, suppose

FolCT
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P(dist(0 ar,. f(xi)) > iK) > 0. Now we upper bound P (E,E’)) for all Gy satis-
fying G = i.Forsuch G := Gk, theradius T; = 0 g-; is among those considered
in Algorithm 3. Moreover, since sy < L (recall xx € int(S) ), the radius satisfies the
trust region constraint: Og-; =7; <, W sk < dist(0, a%—i f (x))/ s. Therefore, if
NDescent terminates with descent at the (G — i)-th level in Algorithm 3, it follows
that

Fler) > i) - Tidist(O,:ri f(xi))

We estimate the probability of this success with Lemma 2.3: there exist € 0 depend-
ing on ;,x and for all k 2 i, we have

T, dist(0, 0, f(xy)
8

P(Elii)) <P flaed)> flx)- |Idist(0, Or, f(xi)) > ik

< exp(— Ck)-

Therefore, P(E ki)) is summable in k. The result then follows from Borel-Cantelli
lemma.

By the claim and a union bound, we know that with probability one, for any fixed
i,E kl) cannot happen infinitely often. Now, suppose that a subsequence {xy,} (where
k; = 1 is strictly increasing in I) converges to a point x. We note that the sequence
{ f(xi)} is bounded below: Indeed, since X converges and f is continuous, it follows
{f(xx)} is bounded below by a constant ¢ € R . Consequently, since {f(xx))} is
nonincreasing and k; 2 [, it follows that ¢ < f (Xkl) <f (x;) and for every | > 0, as
desired. As a result, the following inequalities cannot be valid simultaneously infinitely
often:

dist(0, or, f(xkl)) > candf (Xk1+1) < f(xkl) _ T;dist(0, ::rl. f(XkI))_

Therefore, dist(0, ari f( xk,)) > i,k cannot happen infinitely often. Consequently, we
can find a sequence of increasing indices j; such that

dist(0, O, f(x;)) < ik andxj - x-

Since ;x - Oask -« ,Lemma C.1, shows that x is Clarke critical.

D Proof of Lemma 5.7
We begin with preliminary notation and bounds. We fix > Bg!(. x) and subgradient
g € 9o f(x)\{ 0}. We definey := Pm (x), T := Tm (y),and N := Nm (y). We have

the following two bounds: First, we have

(u+ L)Cm (Dydist(x, M) + o) < (u+ L)CM Oqria(Dy + 1)
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In
I

u ;
FCm (D7 '+ 1)0Guq (D.1)

Second, we have

IA

C(o)(dist(x, M)+ a)+B y-x

In
I

2C(a)%ria + 2POGriq (D.2)
We now turn to the proof.

By Lemma 5.3 (which is applicable since x € Bg,/2(. x) and 0 < 0 Grig < 0472),
we have

Png p
g O%g < -au N9 (u+ L)dist(x, M)+ (u+ L)Cm (dist®(x, M)+o 2).
g

Rearranging, we find that

. (u+ L) g dist(x, M) (u+ L) g Cm (dist?(x, M) + & 2)
Png g =-H Pyg+ Iei + o

<-u Pyg+ g+ W+ L)Cm (Dydist(x, M)+0)- g

S-u Pyg+t g,

AT

where the second inequality follows from the assumption D | Ldist(x, M)<o and
the third follows from (D.1). Now observe that

Prgg < Prg gs<( Cldist(x, M)+a)+B y-x)- gs

u
7 9

where second inequality follows from (3.4) and the third inequality follows from (D.2).
Therefore,

N =

. . . y
gg = Pvgrg + Prgig S-u Png+ 5 gs= o g+ Pr(g),

as desired.

E Proof that< L

LemmaE.1 We have thatu < L.
Proof Indeed,

p = = lim inf dist(0, 0 f(x)) < lim supdist(0, 0 f(x)) < L-
n 5L

c

=

X - X=X

>

by Proposition 3.5.
FoC'T
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F Proof of Lemma 6.4

We fix a > 0. Note that the claimed inclusion is a consequence of the following
bound:

f(x)- f(x)= ;min{dA, x—x} x-x forall x € RY. (F.1)

Here we provide a proof for completeness.
To that end, we remind the reader that Assumption A is in force. Consequently, by
Item 1 of Proposition 3.5, we have:

y - —
— x-x? forallx € Bs,(x)-
2

f(x) = f(x)=
Thus, if x € Bg,(. x), bound (F.1) is immediate. On the other hand, suppose that we

have x € R4\ BcSA()D. Define the curve x; : t — ( 1 - t)x + tx.Choose ty € [0, 1]
such that x,, € bdry Bg, (. x). Then by Jensen’s inequality, we have

(1= W (9> [lx) = 0/ (1= W) (D + 2 =% *
=(1-ty) f(x)+ M X=X Xy~ X

Consequently, since x;, — x =0 a,we have

_ o) _ _ _
fl(x)- f(x)= VTA X—x2 ;min{éA, x—-x} x-x,
as desired. This completes the proof.
G Proof of (6.18)

Let us expand the left-hand-side of (6.18):

16L  2log(2K{/p) 16DL  2log(K{) 16pL  2log(2/ p)
+ .

72 = 72 P
1 " #g % n &q; %
= A =B

Note that B < a/ 4 by definition of K. Consequently, the proof will follow if A a/ 4.
To that end, for any a € (0, 1), we have

16DL  2log(K?) 16DL 2log(K¥*)/a  1eprL v o
A= = <
K11/2 K11/2 K?—a)/ 2

’
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Therefore, we have A < a/ 4 whenever

z 1-q, z 1-q
64DL 5 D> 64L & D2
Ky =z inf = — inf —g % — = b
ae(0,1) a(l—zT) a? ag(0,1) a {IZ_T) a?
D

This lower bound holds by definition of K ;. Consequently A < a/ 4. Therefore, the
proof is complete.

H Proof of Lemma 6.6

Throughout this section, we use the symbol a b to mean that a < n b for a fixed
numerical constant /] that is independent of f. In addition, we use the bound on the
condition number: kK 2 1, since y < L; see Lemma E.

Turning to the bound, we wish to upper bound q.

ma !P 1 3H? 1 l
= X s -, .
q l 25602 2 )

First note that

3pz W21
- — =z _
256L2 L2 K2

Next, we upper bound P. To that end, we must bound the constants a; and a;, which
rely on the somewhat involved constants C4 and Cs. Thus, we first lower bound Cjy:

Cs = min B , min {U/6 A’ C3D2/B} ’ 1
C(1+34) a(1+(1+3)Cm ))u+ L) 2
- i, u , y2u
C L(+Cm) L2B(1+ Cm)
> __ L
T K1+ cm)’

where we use the bounds y < L,C3 y 2/ L,and Dy p . Turning to Cs, we have:

C3D
Cs=min —_, CD2 o C
2C(y) 32C(y)B 4
i B v 1 y
C) LC(B K3(1+ Cm) C(y
N 1
T K31+ Cm)
FoCT
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where we againuse C3 y 2/L,and D, U . Therefore, we have the lower bound
for ay:

min {C1/ L, Cs} A 1 1
= min ——; .
2 L2 K3(1+ Cm) K3(1+ Cm )

In addition, we have the upper bound:

in{Ci/L, C
a = Mg C/2< 1/ 4

Finally to lower bound a;, we have

a; = min{Dy, D;/L} min

=~ =

=<
X| =

where we use thebound D; ¢/ LandD>/L p/ L.
Now we upper bound P by providing a lower boundon 1 - p.

1-p= 1 min Ya> May
P= 3 8 max{4LaZ, B} 4 max{2L, B/ a2}

Y Ya Ma; Haas

T B L B

oy y u u

mmn — ————7»’' —' P 57— 5
L K31+ CmJ)B KL BK7(1+ Cm )2
1

K8(1+ Cm )2

Putting all these bounds together, we find that:

1 1 1

- m - = >,
1=a min s ez k2 = K(1+ Cm )

as desired.
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