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Abstract

We consider a Bayesian persuasion model in which multiple receivers take one ac-

tion each. We compare simultaneous procedures to sequential ones. In a simultaneous

procedure, all the receivers act simultaneously following the realization of a single pub-

lic signal. In a sequential procedure, receivers receive information and take actions

sequentially. We characterize the conditions under which the optimal sequential pro-

cedure leads to a higher payoff and characterize the optimal ordering of actions.

JEL Codes: D21

1 Introduction

The literature on Bayesian persuasion that began with Kamenica and Gentzkow (2011)

characterizes how a sender affects a receiver’s action by designing a public signal. With

a verifiable public signal, the sender can commit to revealing the signal regardless of its

realization. While such commitment is beneficial for the sender, it poses a challenge when

the sender wishes to affect the decisions of multiple agents. A public signal that leads

to the optimal action (from the sender’s perspective) of one agent would typically lead

to a suboptimal action by another agent. A natural strategy would then be to provide

information gradually and let agents act sequentially. This would enable the sender to

modify the information the subsequent agent observes before taking his action.1
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1See the discussion in Kamenica and Gentzkow (2011) and Kamenica (2019) about the many ways the

sender may commit to the signal. In most applications discussed in those papers, public information disclo-
sure helps with commitment. As we discuss later, our results can be interpreted as how sequential persuasion
can mitigate the costs of publicity.
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An example of sequential persuasion is a multinational company that can come under

investigation for some conduct (for example, alleged market power) in multiple jurisdictions.

The conduct of that company can be different in different countries but is likely correlated.

The regulators and judges in every country may follow different laws when deciding the

cases. When the regulators move sequentially, information revealed by the company in one

case becomes available for the subsequent regulators. It can become either publicly available

(in the form of the report of the early-moving regulators) or the existence of a source can

become available, and the subsequent regulators can request the same data as produced in

the previous cases.2

Another example is when a prosecutor tries to obtain multiple convictions for the same

crime. A known case is the trial for the murder of Mrs. Stout. In the initial trial, the

prosecution asserted that Mr. Stumpf had played the primary role in Mrs. Stout’s murder,

resulting in a death sentence for Mr. Stumpf. Several months later, during Wesley’s trial, the

same prosecutor from Mr. Stumpf’s case, before the same judge who had presided over Mr.

Stumpf’s trial, presented evidence suggesting that it was Mr. Wesley, not Mr. Stumpf, who

had shot and killed Mrs. Stout. After several appeals that reached the US Supreme Court,

it was finally decided that both death sentences were upheld. As noted in a 2017 article in

The New Yorker, ’...a defendant can be convicted of murder without being the killer. But,

if the prosecutor says that a defendant pulled the trigger, it’s easier to ask a judge or a jury

for a death sentence’ 3. Anthony-North (2022) finds that this is not an isolated case, there

are at least 29 similar death sentences. She writes: “This case study illustrates a practice

among prosecutors of a single sovereign whereby they pursue incompatible theories of a case

against two or more defendants for criminal behavior for which, factually, only one defendant

can be culpable.”

Apart from the examples mentioned above, there are other situations where senders may

benefit from sequential persuasion. Such examples include public disclosure of information

by politicians who try to gain support for a sequence of bills, committee heads who try to

influence votes on multiple issues, and managers trying to convince their budget committees

to provide funding for multiple projects.

2For example, in June 2021, Google settled with the French competition authority regarding the
display advertising market (https://www.theguardian.com/technology/2021/jun/07/france-fines-google-for-
abusing-online-advertising-dominance). The UK’s Competition and Markets Authority has opened an in-
vestigation of Google’s conduct in that market in May 2022, with “ Initial investigation: including in-
formation gathering, analysis and review of information gathered” taking place from May 22 to Febru-
ary 2023 (https://www.gov.uk/cma-cases/investigation-into-suspected-anti-competitive-conduct-by-google-
in-ad-tech). The US DOJ brought charges against Google’s conduct in this market in January 2023, while the
European Commission in June 2023 (https://www.nytimes.com/2023/06/14/technology/google-antitrust-
european-union.html?smid=url-share)

3https://www.newyorker.com/magazine/2017/11/13/two-murder-convictions-for-one-fatal-shot
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To illustrate our model, consider the classic example of Bayesian persuasion from the

introduction of Kamenica and Gentzkow (2011). They consider a prosecutor (sender) who

wishes to maximize the probability of conviction by the judge (receiver). The judge finds a

defendant guilty if and only if his belief that the defendant committed a crime is above a cer-

tain threshold. Consider instead two judges who decide whether to convict two defendants,

A and B. The two defendants are accused of two different crimes, and the prior of them

committing these crimes is negatively correlated. The prosecutor who wishes to maximize

the expected number of convictions needs to account for the fact that a signal regarding

A also affects the second judge who decides on B. If the two judges decide simultaneously

based on a single signal, the prosecutor faces a potential tradeoff. Given the negative corre-

lation, increasing the probability of the conviction of A may decrease the probability of the

conviction of B and vice-versa.

A sequential procedure with two steps could help. In the first step, the prosecutor

provides one public signal, and the first judge decides on A. In the second step, the prosecutor

reveals the realization of an additional signal, and the second judge decides on B. The main

questions we address in this paper:

• Do sequential procedures dominate simultaneous ones?

• Assuming that the answer to the first question is yes, under what conditions is the

sequential procedure strictly better than the simultaneous procedure?

• Given a sequential procedure, what order is optimal for the sender?

• To what extent can the sender benefit from flexibility where the order of the sequence

can be based on the realized signals?

In our baseline model, there is an arbitrary number of receivers that we denote by n.4

There are n binary states with an arbitrary correlation structure. Receiver i takes action

ai, which is some function of his belief regarding state i. The sender maximizes the sum

of payoffs from the receivers’ actions where the payoff following a single receiver’s action is

some arbitrary function of his action (that can be state-dependent).

We first note that the sender weakly prefers a sequential procedure to a simultaneous

one. This is because the sender can in each round stay quiet or choose uninformative signals.

Hence, we examine when a sequential procedure strictly outperforms a simultaneous one.

4Another interpretation of our model is that of a single receiver who takes multiple actions. This inter-
pretation assumes that the receiver does not obtain additional information following the actions he takes.
The only source of information is what is provided by the sender. This assumption is realistic, for example,
in the case of a hiring committee making offers to multiple candidates and the quality of the candidates
revealed after they start working.
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We also show that there is an upper bound for the payoff that the receiver can achieve that

applies to any procedure, sequential or simultaneous. The upper bound is constructed by

considering the minimal information leakage. This payoff would be obtained if the signals

were sent via private communication. We refer to that upper bound as the “first-best” payoff.

In Section 3, we consider a sequential procedure where the sender predetermines the order

in which receivers move. That is, the order cannot be modified based on the realization of

signals. Such a restriction is relevant in many cases, such as the above-mentioned legal

example where discovery happens only after a motion is filed. We show that the optimal

sequential mechanism strictly improves the sender’s payoff if and only if the simultaneous

procedure fails to achieve the first-best payoff. It is important to note that when the order of

actions is predetermined, the sequential mechanism may fail to achieve the first-best outcome.

Nevertheless, even when it fails to achieve the upper bound, it generates strictly higher

payoffs than the simultaneous procedure. Intuitively, if simultaneous persuasion performs

strictly worse than private persuasion, then one can find a receiver who is not given optimal

information. If he is provided with “too much” information, one can benefit from making

him make the decision first and provide him with less information. If he is provided with

“too little” information, one can benefit from making him make the decision last and provide

him with additional information. In the Appendix, we present a complete characterization

of a simple set of examples that allows us to characterize when the simultaneous procedure

fails to achieve the first-best payoff and what the optimal order should be.

In Section 4, we deviate from the assumption that the order is predetermined. As we later

discuss, one interpretation of this setup revolves around the concept that the sender isn’t

the originator of new information; rather, it emanates from an external, exogenous source.

The sender’s role primarily involves timing the actions of the receivers. At each point in

time, the sender determines whether to prompt a receiver to take action and, if so, whom to

prompt.5 We demonstrate that if the sender can select the sequence of receivers in response

to the signal’s realization, the sender can always attain the optimal, first-best payoff.

As mentioned before, our baseline model assumes states to be binary, while actions

may encompass more than two values. The sender’s payoff is assumed to be additive. In

Section 6, we investigate a scenario in which actions are binary (e.g., accept/reject) but

relax other assumptions. This exploration enables us to delineate the optimal sequence and

consider situations where the sender endeavors to persuade multiple voters, necessitating the

attainment of a specific majority. Additionally, we assess the extent to which our findings

can be extrapolated to situations involving non-binary states.

5It is equivalent to choosing an order but having the option to tell a receiver to wait.
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1.1 Literature Review

Our paper contributes to the literature on information design and Bayesian persuasion. Au-

mann et al. (1995), Rayo and Segal (2010), Kamenica and Gentzkow (2011), and Bergemann

and Morris (2016a,b) are some of the first models in this field. We apply this framework

to settings where the sender persuades multiple receivers to take irreversible actions, allow-

ing for information to be provided sequentially. In that way, we contribute to two areas:

persuasion of multiple receivers and dynamic persuasion.

The literature on multiple receivers is mostly concerned with strategic interaction between

those agents: they play a game in which payoffs depend on the underlying state of nature

and the profile of actions of all agents. See the survey by Bergemann and Morris (2019) for

a review of that literature. In contrast, in most of our paper, we shut down any strategic

interactions between the receivers: each of them cares only about their “own” state and not

at all about the actions of others. The only thing that links the receivers is that the states

are correlated and hence a public persuasion of one receiver constrains the sender in their

ability to persuade other receivers.

We define first-best payoffs based on what can be achieved with private communication.

So, one way to interpret our results is that they show how the cost of publicity of communica-

tion can be mitigated or even completely removed with the appropriate dynamic persuasion.

The restriction to public messages is also present in Alonso and Câmara (2016). That paper

studies the simultaneous persuasion of multiple voters.

Our results are related to Bergemann and Morris (2016b) who show that if the receiver

has access to additional information, the set of feasible outcomes is reduced. The connection

to our paper is that since the sender provides information about multiple correlated states,

information released about state one becomes a source of additional information about other

states and vice versa. Our model shares the information leakage problem with this paper.

Unlike in Bergemann and Morris (2016b), our additional information is chosen optimally by

the sender, and the sender may decide not to follow optimal persuasion for one receiver to

limit the indirect effect he creates for other receivers.

Our study of sequential persuasion procedures also contributes to the literature on dy-

namic persuasion, such as Hörner and Skrzypacz (2016) and Ely (2017). In that area, our

work is particularly related to Ely and Szydlowski (2020) and Orlov et al. (2020).6 These

papers analyze the provision of information in a dynamic setting where the decision-maker’s

actions are irreversible. In those papers, the receiver decides in every period whether to stop

or continue (stop putting effort or take an irreversible decision to remove a product from a

6See also Smolin (2021) who analyzes optimal evaluation policies for an agent who decides when to quit.
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market). The decisions to stop or continue are not reversible because the receiver cannot

go back in time. In our model, decisions taken by earlier receivers are also irreversible.

Our discussion of non-additive preferences in the last section is also related to the bank run

example in Ely (2017). That example illustrates the optimal private persuasion of multiple

receivers and non-additive preferences of the sender. We discuss the benefits of sequential

public communication.

There are three main differences between our model and those two models. Most im-

portantly, in our model, the set of actions available to the receivers in later steps does not

depend on the actions taken previously. In contrast, in those papers, if the receiver stops in

time t, he has no other choices to make at later times. Second, we do not allow the sender to

condition the past signals on the previous actions taken by the receivers. In our model, pro-

viding information is not used as an incentive. In Ely and Szydlowski (2020) and Orlov et al.

(2020), a major part of the intuition of why gradual information release helps the sender is

precisely the carrot aspect of future information. The sender can entice the receiver to delay

stopping by promising additional information in the future. In contrast, since in our model,

each receiver acts only once, they always make myopically optimal decisions. That allows a

sharp characterization of how sequential information disclosure can help the sender reduce

the cost of public information disclosure.7

There are also papers on sequential persuasion by multiple senders (see, for example,

Board and Lu (2018) or Li and Norman (2021)). Those papers study strategic interactions

among senders. Thus, in those papers, the sender’s ability to provide information is con-

strained by the presence of other senders whose preferences are not necessarily aligned. In

contrast, in our paper, the sender’s ability to design information is constrained because the

states of the world relevant for different receivers are correlated, and unlike in papers with

multiple senders, our sender internalizes the effects of early disclosure on later persuasion.

Our paper is also related to the literature on multi-product firms (Gamp (2019)) and

products with multiple characteristics (Turlo (2019)), where the sender determines the order

for information acquisition. In our paper, the sender decides the order in which the receivers

take action and what information they receive.

Finally, our paper is related to Arieli and Babichenko (2019), who study a sender with

non-linear preferences. They examine a simultaneous procedure with multiple receivers but

focus on private communication.

7Two other differences between our model and those two papers is that we have no discounting/delay costs
and that we allow the sender to choose the order of actions, while in those papers, the order is determined
by the passage of time.
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2 The Model

There are n + 1 agents. Agent i = 0 is a sender, and agents i = 1...n are receivers. There

are n binary states {ωi}ni=1, where ωi ∈ {L,H}. The common prior belief regarding these

states does not need to be symmetric or independent. We denote by xi the prior probability

of ωi = H. When the receivers observe a public signal S (that can be correlated with all or

some states), they update their beliefs about the n states. We let xs,i be the updated belief

that ωi = H conditional on observing S = s.

We assume that each receiver takes one action. In particular, receiver i takes action ai

that depends on his belief about ωi. We denote this dependence by the function ai(x) for

any posterior belief x = xs,i.
8

The sender’s utility as a function of the action of receiver i is fi(ai). The sender’s utility

as a function of the action profile, {ai}ni=1, is additive in the different actions and is given

by
∑n

i=1 fi(ai) . With some abuse of notation we also refer to fi as a function of xs,i; that

is, fi(xs,i) ≡ fi(ai(xs,i)). If the sender’s payoff also depends on the state, then the payoff is

fi(ai, ωi). In that case, we define fi(xs,i) ≡ Efi(ai(xs,i), ωi), where the expectation is taken

over ωi with the belief xs,i. Finally, we let cavf denote the concavification of function f.

We compare a simultaneous (persuasion) procedure to sequential ones. An important

assumption about the sequential procedures is that once receiver i takes his action, he cannot

change it later even if new information comes to light and he regrets his earlier decision.

Definition 1. A simultaneous procedure is described by a single public signal S that induces

a vector of posterior beliefs xs,i. For that procedure, the sender’s expected payoff is:

ES[
n∑

i=1

fi(xs,i)].

Definition 2. A sequential procedure is described by a sequence of public signals {Si}ni=1 and

a permutation π : {1..n} → {1..n} specifying the order in which receivers take actions. In

step i, the sender sends signal Si, and receiver π(i) takes action aπ(i) (as a function of the

posterior belief generated by all the signal realizations observed so far). The signal Si may

depend on the realizations of earlier signals, {sj}i−1
j=1.

In the sequential procedure defined above, the permutation (the order in which the re-

ceivers make their decisions) is chosen ex-ante. In Section 4, we analyze a dynamic procedure

8Since we are focusing on the sender’s payoffs, we do not specify the receiver’s payoffs that determine
which action is optimal for each belief. How the optimal actions change with beliefs depends on the receiver’s
joint preferences over actions and states. As usual in the models of Bayesian persuasion, when the agent has
more than one optimal action we assume that ties are broken to the benefit of the sender.
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that we refer to as a flexible sequential procedure (FSP). In this procedure, the sender can

adjust the order of receivers based on the value of realized signals.

Definition 3. A flexible sequential procedure (FSP) is a sequence of k signals {Si}ki=1 and

a conditional order of receivers π(S1...Si) ∈ {0, 1, ...n}, that specifies the sequence in which

receivers take their actions conditional on the signals realized so far. In step i, conditional

on the realizations of signals S1, ...Si−1, the sender sends signal Si and the receiver π(S1...Si)

takes action aπ(S1...Si). When π(S1...Si) = 0, no receiver takes an action in step i. The

number of steps, k, can be random but is almost surely finite.

Implicit in this definition is that each receiver must eventually be chosen for an FSP to

be well-defined. That is, for every possible sequence of signal realizations, the conditional

order π(S1...Sk) has to select each receiver once. Also, note that we allow for k ≥ n. That is,

we allow the sender to choose a procedure where no receiver takes action in some rounds.9

FSP offers greater flexibility, but this flexibility may not always be feasible. For instance,

consider a company seeking regulatory approvals to market its product across various juris-

dictions (e.g., states or countries). Before initiating the process of collecting and disclosing

evidence to persuade regulators, the company needs to determine the sequence in which it

will apply for permissions. Nevertheless, the FSP not only provides a theoretical bench-

mark, it also holds real-world relevance. For example, as mentioned in the Introduction,

it is a model of a situation where information continuously arrives through some external

process. Beliefs adjust continuously, and eventually, the states become revealed. The sender

primarily determines the timing of the receivers’ actions. At each point in time, the sender

decides whether to prompt a receiver to take action and, if so, whom to prompt.

Finally, in some applications, the order of receivers may be beyond the sender’s control.

It may be fixed exogenously. In that case, we should interpret our result for the sequential

procedure as showing that at least one order of receivers exists for which the sequential

procedure strictly improves the sender’s payoff.

Remark 1. We interpret the game as having multiple receivers taking a single action each.

Equivalently, we could allow some of the actions to be taken by the same receiver or even to

have just one receiver making all of the decisions. In the latter case, we assume that after

action ai the receiver does not learn additional information about the other states beyond

what is revealed by the sender. For example, the receiver commits to an action, but the

9Another type of procedure with an intermediate degree of flexibility would be to allow the sender to
choose the first receiver, disclose the first signal, make that receiver act, and then, depending on the realized
signal, pick the next receiver. The substantial difference is that FSP either allows recommending the receiver
to wait or allows choosing each receiver after the signal in a given round is realized. The payoffs of that
alternative persuasion procedure would be in between those of the sequential procedure and the FSP.
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payoff consequences are delayed until all actions are chosen. This interpretation captures

situations where the receivers represent a voter (or a set of voters as in a budget or hiring

committee), and the sender chooses a sequence of proposals to present to them. The time

between votes on the different issues can be much smaller than the time needed to learn the

consequences of the already made decisions.

2.1 Preliminary Result: First Best

We start by establishing an upper bound on the sender’s payoffs:

Lemma 1. For any procedure (simultaneous or sequential) the sender’s payoff is at most

FB({xi}) ≡
n∑

i=1

cavfi(xi).

As we know from Kamenica and Gentzkow (2011), cavfi(xi) equals the optimal payoff

that the sender could obtain from action i if it was the only action. Hence, FB, which stands

for first best, represents the sum of payoffs if the sender could optimize each dimension

separately. It is an upper bound for any procedure, sequential or simultaneous, since no

procedure can achieve for dimension i a payoff greater than cavfi(xi).

Note that this payoff would be obtained by the optimal simultaneous procedure if the

sender could communicate privately with every receiver. With private communication, there

is no information leakage: when the sender persuades receiver i about state ωi, he can

do it without changing the beliefs about the other states. In contrast, providing public

information about state ωi reveals information about other states as well. This information

leakage constrains the sender’s ability to persuade optimally in every dimension at once.

Therefore, when the correlation of states is strong enough, the sender may not be able to

achieve the first-best payoff.

3 Simultaneous versus Sequential Persuasion

3.1 Strict Improvement from Sequential Procedure

Our goal in this section is to compare simultaneous to sequential procedures. Note that the

outcome of any simultaneous procedure can be replicated by a sequential procedure with

all signals except for the first one being uninformative. So, trivially the optimal sequential

procedure weakly dominates the simultaneous one. We characterize when the improvement

is strict.
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Our main result is that if there exists a scope for improvement (i.e., the simultaneous

procedure cannot achieve the first-best bound), then the optimal sequential procedure strictly

improves upon the simultaneous one. An interesting fact is that the sequential procedure

may also fail to achieve the first-best bound. We show this in the following subsection, where

we present a few examples. We argue that:

Theorem 1. The optimal sequential procedure strictly dominates (in terms of the sender’s

payoffs) the optimal simultaneous procedure if and only if the latter fails to achieve the first-

best payoff, FB({xi}).

The proof follows a simple intuition. Consider the optimal simultaneous procedure and

assume it fails to achieve the first-best payoff. If this is due to a receiver being provided “too

much” information one can benefit from making him make the decision first, and providing

him with less information. If this is due to a receiver being provided “too little” information,

one can benefit from making him make the decision last, and providing him with additional

information.

Proof. The ‘only if’ direction follows from the fact that FB({xi}) is an upper bound on both

procedures. So we only need to prove the ‘if’ part. Consider a simultaneous procedure with

signal S that fails to achieve the first-best outcome, FB({xi}). This implies that for at least

one receiver, i:

ES[fi(xs,i)] < cavfi(xi).

We shall argue that a sequential procedure exists that improves the payoff from action i while

keeping the payoffs from all other actions unchanged. Our proof is based on considering two

cases that are illustrated in Figure 1.

We begin by assuming that cavfi(xi) > fi(xi). Based on this, there exist xL
i , x

R
i ∈ [0, 1]

such that xL
i < xi < xR

i and payoffs satisfy cavfi(x
L
i ) = fi(x

L
i ), cavfi(x

R
i ) = fi(x

R
i ), xi =

λ·xL
i +(1−λ)·xR

i , and cavfi(xi) = λ·fi(xL
i )+(1−λ)·fi(xR

i ). Moreover, for any xi ∈ (xL
i , x

R
i ),

fi(xi) < cavfi(xi).
10

• Case 1: For some realizations S = s, we have xs,i ∈ (xL
i , x

R
i ).

Since fi(xs,i) < cavfi(xs,i) we construct a sequential procedure where receiver i takes

his action last. All other receivers take actions based on the original signal S (in

an arbitrary order). In the last step, conditional on observing S = s the procedure

provides more information regarding state i, which induces posteriors of xL
i and xR

i for

state ωi. This is a strict improvement.

10Generically, xL
i , x

R
i are unique. In case they are not, we define them to be the closest points to xi.
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Figure 1: Proof of Theorem 1

• Case 2: For all realizations S = s we have xs,i /∈ (xL
i , x

R
i ).

In the sequential procedure, receiver i takes his action first. In the first stage, the

sender reveals signal S ′, which is a garbling of S. By Lemma 3 in the Appendix,

there exists a garbling S ′ of S which has two realizations: s′1, s
′
2 so that xs1′,i = xL

i

and xs2′,i = xR
i . After S ′ is realized and the receiver i takes his action, the original

S is revealed in the second step, and the remaining receivers take their actions (in

an arbitrary order). While the original signal does not achieve cavfi(xi), this new

sequential procedure does and leaves the payoffs for all other dimensions unchanged,

so it is also a strict improvement.

Finally consider the case when fi(xi) = cavfi(xi). In this case, the expected payoff from

action i is strictly lower when the signal S is revealed. Hence, one can improve if, in the first

step, receiver i takes action ai based solely on the prior. In the second step, signal S (from

the simultaneous procedure) is revealed (and no more information is revealed later). Then

the remaining receivers take their actions in an arbitrary order.11

11One can view this as a special case of Case 2 when we have xL
i = xR

i .
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3.2 Examples

To illustrate Theorem 1, we consider three simple examples. In these examples, a sender

wishes to affect the binary actions of two receivers: i = 1, 2. Receiver i selects ai = 1 provided

that his posterior belief xs,i exceeds a certain threshold and chooses ai = 0 otherwise. We

assume that f(a) = a so the sender maximizes E(
∑

i ai).

Example 1. The thresholds for both receivers are 0.8. The two states are perfectly negatively

correlated. That is, the prior is that exactly one of the two states is H. The prior is that

each state is H with probability 0.5.

Consider first a simultaneous procedure. If the sender reveals no information, both re-

ceivers pick actions based on the prior and choose ai = 0. This implies that the sender’s

payoff is zero. If, instead, the sender provides full information, exactly one receiver picks

ai = 1, and the sender’s payoff is one. This is an optimal simultaneous procedure as at

most one receiver would pick ai = 1.12 For example, if receiver 1 selects a1 = 1, then

xs,1 = Pr(ω1 = H) ≥ 0.8. This implies that xs,2 = Pr(ω2 = H) ≤ 0.2 and receiver 2 picks

a2 = 0.

Consider now a sequential procedure. The sender first provides a signal about ω1 that

induces a posterior belief of either 0 or 0.8 with probabilities 3/8 and 5/8, respectively. Con-

ditional on the posterior of 0, receiver 1 selects a1 = 0 and receiver 2 selects a2 = 1 in the

second step. Conditional on the posterior of 0.8, receiver 1 selects a1 = 1 in the first step.

At the end of step one, receiver 2 assigns a probability of 0.2 that ω2 = H. In the second

step, the sender can provide more information. With a positive probability, the sender can

convince receiver 2 to pick a2 = 1. In particular, given a prior of 0.2, the sender can induce

a posterior of 0.8 with probability 1/4. Overall, this sequential procedure induces at least one

receiver to pick ai = 1, and sometimes both receivers take the action a1 = a2 = 1. The

sender’s expected payoff from this sequential procedure is 3/8 + 5/8 ∗ (1 + 1/4) = 1.156.13

Example 2. Similar to example 1, but the thresholds for receivers i = 1, 2 are 0.6 and 0.8,

respectively. In addition, the two states are perfectly positively correlated. The prior is given

by Pr(ω1 = ω2 = H) = Pr(ω1 = ω2 = L) = 0.5.

Consider first the simultaneous procedure. Given the perfect correlation, the sender’s

payoff is a function of the belief regarding the common state. If the probability that it is H

is lower than 0.6, then the sender’s payoff is zero. If it is between 0.6 and 0.8, it is one.

If it exceeds 0.8, then it equals 2. Given the prior of 0.5, using a standard concavification

12This optimal procedure is not unique. For example, information that induces posteriors of 0.9 and 0
yields the same payoff.

13We prove in the Appendix that this is the best sequential procedure in this example.
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argument we conclude that the optimal procedure is to generate a posterior of 0.8 with a

probability 5/8 and zero with a probability of 3/8. The sender’s payoff is then 2 ∗ 5/8 = 1.25.

Consider now a sequential procedure in which the sender first wishes to convince the first

receiver to take action a1 = 1. In the first step, the sender induces a posterior of 0.6 with a

probability 5/6 and a posterior of 0 with a probability 1/6. His expected payoff in the first step

is 5/6. In the second step, if he induced a zero posterior, his payoff is zero. If he has induced

an interim posterior of 0.6 then he can induce a final posterior of 0.8 with a probability of

6/8 = 3/4 (and a posterior of 0 otherwise). Hence, his expected payoff from the second

receiver is (3/4) ∗ (5/6) = 5/8. The overall sender’s expected payoff is 5/6 + 5/8 = 1.458.

Example 3. Same as in example 2, but the two states are independent. That is, each state

is H with a probability of 0.5, and these events are independent. Consider a simultaneous

procedure in which the sender induces a posterior for ω1 of 0.6 with probability 5/6 and

zero with probability 1/6. Given the independence, the sender can simultaneously induce a

posterior for ω2 of 0.8 with probability 5/8 and zero with probability 3/8. The first receiver

selects a1 = 1 with a probability 5/6, and the second receiver selects a2 = 1 with a probability

5/8. This leads to a total payoff of 1.458. In this case, no sequential procedure can improve

the sender’s payoff.

Examples 1 and 2 highlight a key reason why a sequential procedure generates a higher

payoff for the sender: the first receiver sometimes regrets his decision once he sees the public

signal in the second step. A key difference between the two examples is that in the second

example, the sender achieves the first-best outcome in the sequential procedure. In the first

example, he does not. The sender in example 3 achieves the first best with both procedures.

The three examples combined illustrate the result in Theorem 1. The optimal sequential

procedure strictly dominates the optimal simultaneous one if and only if the simultaneous

procedure fails to achieve the first-best payoff (the upper bound). Table 1 summarizes that

point:

Simultaneous Sequential First-Best

Example 1 1 1.156 1.25
Example 2 1.25 1.458 1.458
Example 3 1.458 1.458 1.458

Table 1: Payoffs in the Three Examples

It is important to note that: (i) this result is not based on the optimal sequential proce-

dure always achieving the first-best payoffs, as can be seen in Example 1, and (ii) this result

applies to a general action space and general payoffs.
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For two receivers with binary decisions, we provide additional analysis in the Appendix.

One may ask, under what conditions does the simultaneous procedure fail to achieve the

first-best outcome? This is when the sequential procedure achieves a higher payoff. In the

Appendix, we examine this question in a setup based on the above examples. We show that

this would occur if and only if there is sufficient negative correlation between the two states.

4 Flexible Sequential Persuasion

In the previous section, we assumed that the sender predetermines the order of receivers

in a sequential procedure. This section considers “flexible sequential” procedures. As we

discussed above, this would fit a different scenario in which it is not the sender who generates

new information. The sender’s role primarily involves timing the actions of the receivers. At

each point in time, the sender determines whether to prompt a receiver to take action and,

if so, whom to prompt.

To gain some intuition, consider Example 1 from the previous section. The sender can

achieve the first-best payoff by employing the following strategy. In the first step, the sender

induces a posterior belief Pr(ω1 = H) of 0.8 or 0.2. Given the perfect negative correlation,

the signal induces a posterior belief Pr(ω2 = H) of 0.2 and 0.8, respectively. The sender

asks receiver i to take action ai provided that Pr(ωi = H) = 0.8. Without loss of generality,

suppose that this is i = 1. Given that Pr(ω1 = H) = 0.8 the receiver selects a1 = 1. Note

that the belief is now that Pr(ω2 = H) = 0.2. In the second step, the sender follows standard

concavification. He induces a posterior of 0.8 with a probability of 0.25 and a posterior of 0

with a probability 0.75. This implies that receiver i = 2 selects a2 = 1 with a probability of

0.25. The sender’s expected payoff equals E(a1 + a2) = 1.25, which is the first-best payoff.

As we shall show next, this illustrates a more general result. An optimal FSP, which we

name the ’Pacman procedure’, always achieves the first-best payoff.

4.1 The Pacman procedure

We now characterize an optimal FSP as follows: We shall assume that for all i we have that

cavfi(xi) > fi(xi). If this is not the case, and cavfi(xi) = fi(xi), then the optimal FSP starts

with receiver i, and this receiver is asked to take action i without receiving any information.

Recall from the proof of Theorem 1 that xL
i , x

R
i denote the optimal concavification beliefs

for action ai (they depend on the prior, but we suppress that notation). Let xL
i < xi < xR

i .

The Pacman procedure that achieves the first-best payoff is based on a sequence of signals

and a contingent sequence of actions with the following property. The receiver takes action

14
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i only when xs,i ∈ {xL
i , x

R
i } (we abuse notation by writing xs,i as the posterior belief given

the realized sequence of signals). The idea is to construct a dynamic Bayesian persuasion

procedure where, as we disclose information about some states, the beliefs regarding all

states ωi remain in every step in the intervals [xL
i , x

R
i ]. When the belief hits one of the

boundaries of these intervals, receiver i is asked to take action and we remove that receiver

from the continuation problem. This ensures that the procedure achieves the first-best

payoff, provided that it ends in a finite time because from the ex-ante perspective, beliefs

are a martingale, and all receivers take actions exactly at their concavification points.

For any i, consider some signal S that is correlated with ωi, and conditional on ωi is

independent of any other ωj. Suppose that the signal S is rich in the sense that for every

p ∈ [0, 1] there exists s such that xs,i = p. Finally for that signal define hi,j(p) ≡ Pr(ωj =

H|xs,i = p). This function describes how sensitive the beliefs about state ωj are in response

to signals about state ωi. The following technical lemma shows that this sensitivity is at

most one:

Lemma 2. |h′
i,j(p)| ≤ 1.

To construct an optimal FSP (that achieves the first-best payoff FB), define:

∆i = min{xR
i − xi, xi − xL

i }

∆ = min
i

∆i

i∗ = argmin
i

∆i.

Without loss of generality, assume that the minimization in ∆i∗ is achieved by xR
i∗ (that is,

xR
i∗ − xi∗ ≤ xi∗ − xL

i∗).

We now construct the Pacman procedure. In step 1, we choose a signal conditional on

ωi∗ (and conditionally independent of the other states) that generates posterior beliefs about

ωi∗ of xi∗ ±∆, each with probability 0.5. Consider the posteriors for all other states. Lemma

2 implies that for both realizations of the signal in step 1:

∀i, s : xs,i ∈ [xL
i , x

R
i ].

Conditional on the posterior for ωi∗ being xi∗ + ∆ = xR
i∗ , we ask the receiver i∗ to act;

otherwise, we tell all receivers to wait. We then iterate on this procedure. If receiver i∗ acts,

we remove it from the consideration set. Then, for the posterior beliefs from the previous

step, we redefine ∆ and i∗ and repeat.

To see that this procedure achieves the first-best payoff, note that in each step, one of the

receivers acts with probability 0.5, and actions are taken only at the optimal concavification

15

This is the author's accepted manuscript without copyediting, formatting, or final corrections. It will be published in its final form in an upcoming issue of Journal of
Political Economy, published by The University of Chicago Press. Include the DOI when citing or quoting: https://doi.org/10.1086/734125. Copyright 2024 The

University of Chicago.



thresholds. This implies that the procedure ends in finite time almost surely. This proves

the following theorem: 14

Theorem 2. The Pacman procedure achieves the first-best payoff.

Finally, the Pacman procedure helps us understand an optimal sequence of persuasion.

With this procedure, it is optimal to rank decisions based on the distance between the prior

and the nearest concavification threshold (the ∆i’s) and then persuade based on this order.

The only caveat is that the ranking of ∆i’s can change due to the disclosed information, so the

order of persuasion depends not only on the ex-ante parameters but also on the information

learned in the process of persuasion. The other takeaway from this construction is that

with a flexible procedure, the order of information matters less than disclosing information

gradually and then choosing the proper order of actions. The most important thing about

this procedure is that information is disclosed gradually to ensure that a concavification

threshold is not jumped over in any step.

5 Simple versus Flexible Sequential Persuasion and Op-

timal Order of Persuasion.

We now turn to when the optimal FSP can strictly improve upon the simple sequential

procedure we examined before. Since the FSP always achieves the first-best payoff, the

question is under what conditions the simple sequential procedure can achieve it too. In

order to provide a partial answer to this question, we start with the special case of perfectly

correlated states. That was the case in Examples 1 and 2. In general, perfect correlation

makes it the hardest to achieve the first-best payoff.

5.1 Perfectly Correlated States

Let x denote the (common) prior belief that all states are ωi = H.15 The payoff of the

optimal simultaneous procedure is:

14While we construct the Pacman procedure to take more rounds than the number of receivers, it is
possible to reduce the number of steps. Namely, we can create a more complex sequence of signals to take n
steps and achieve the first-best payoff exactly. The intuition is that when the first signal realization moves
the beliefs to xL

i∗ , the sender does not need to reveal the signal. Instead, he can automatically compute the
next optimal signal and reveal it jointly with the first signal realization. If the realization of the second
signal also does not move beliefs to any of the concavification thresholds, we iterate. In the limit, we obtain
a random variable such that every realization moves the beliefs to at least one of the optimal concavification
thresholds without moving any beliefs outside the [xL

i , x
R
i ] region. So in every step, one of the actions is

taken, and information leakage never moves beliefs ’too far.’
15Without loss of generality, we assume perfect positive correlation. If some states are perfectly negatively

correlated with ω1, then we switch the definition of those states, inducing a positive correlation.
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U∗
Sim(x) = cav(

n∑
i=1

fi)(x). (1)

The payoff from a sequential procedure with two receivers acting in the order (1, 2) is

cav(f1 + cavf2)(x). The intuition is that if the sender induces in the first stage posterior x̂,

in the second stage, the persuasion payoff is cavf2(x̂). Taking this into account, the sender

realizes that the total payoff as a function of the first-period posterior is (f1 + cavf2)(x̂).

This, in turn, is maximized in stage 1 by the standard concavification at the prior, yielding

cav(f1 + cavf2)(x).

For more receivers and some permutation π : {1..n} → {1..n}, the optimal sequential

procedure that follows this order yields a payoff that can be defined recursively:

Hn(π) ≡ cavfπ(n)

Hi(π) ≡ cav(fπ(i) +Hi+1(π)).

The payoff of the optimal sequential procedure given prior x can therefore be expressed

as:

U∗
Seq(x) = maxπH1(π)(x). (2)

The result in Theorem 1 in the case of perfect correlation of states can be viewed as the

comparison of (1) to (2). In particular, whenever U∗
Sim(x) < FB(x) then U∗

Sim(x) < U∗
Seq(x).

This characterization can be used to show that the sequential procedure in Example 1 is

optimal despite not achieving the first-best payoff (see the Appendix).

Our goal in this section is to examine when the simple sequential procedure achieves the

first-best payoff. Define

∆L
i ≡ x− xL

i

∆R
i ≡ xR

i − x,

where recall that xL
i and xR

i are the optimal concavification thresholds to the left and to the

right of the prior for receiver i (given the prior). Let πL be the list of i′s in the order of ∆L
i

and analogously define πR. For example if n = 3 and the vectors are ∆L = (0.1, 0.3, 0.2)

and ∆R = (0.4, 0.1, 0.2), then πL = (1, 3, 2) and πR = (2, 3, 1). In words, πL and πR are the

orderings of the receivers in terms of the ranking of the optimal concavification thresholds

to the left and to the right of the prior, respectively. Note that if there are ties in some ∆i’s

(see Example 2), these orderings are not unique (all ways of resolving these ties are allowed).
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Proposition 1. If states are perfectly (positively) correlated, the optimal sequential procedure

achieves the first-best payoff if and only if there exist orderings such that πL = πR (i.e., for

at least one resolution of ties).

When this condition is satisfied, the optimal sequence of persuasion follows these order-

ings: the sender persuades first the receiver with the smallest ∆R
i , then the second smallest,

and so on.

Proof. Suppose this condition is satisfied. That means that the concavification thresholds

are nested around the prior. Moving in the proposed sequence, in every step, we reach one of

the two concavification thresholds for one of the receivers, eliminating them deterministically

one by one. Specifically, let i = πL(1). In step 1 choose a binary signal S1 inducing posteriors

xs ∈ {xL
i , x

R
i }. Let receiver i act and remove him from the consideration set. Next, redefine

i = πL(2) and again choose a binary signal that induces posteriors xs ∈ {xL
i , x

R
i }. Since the

thresholds are nested, in step k+1 the posteriors remain interior to [xL
j , x

R
j ] for every receiver

j later in the sequence than receiver πL(k). That allows the sender to induce posterior beliefs

equal to the corresponding optimal thresholds in every step, proving that this order achieves

the first-best payoff.

If the two orderings are not the same, then this implies that there are two receivers i, j

such that ∆L
i < ∆L

j but ∆R
i > ∆R

j (as in Example 1). In that case, it is not possible to

achieve the first-best payoff with the simple sequential procedure, since if the sender chooses

an order of receivers such that the receiver i acts before receiver j (without loss of generality),

then to achieve the first-best payoff for receiver i we need to induce with positive probability

the belief xR
i > xR

j . That, in turn, means that we do not obtain cavfj(x) on receiver j.

5.2 Imperfectly Correlated States

Proposition 1 allows us to also provide intuition about the imperfectly correlated case. Given

priors xi generalize our previous definition:

∆L
i ≡ xi − xL

i

∆R
i ≡ xR

i − xi,

and define the orderings πL, πR as before.

First, suppose that all the states are positively correlated (in the sense that all h′
i,j(p)

described in Lemma 2 are non-negative). If the orderings of dimensions in terms of ranking

of ∆L
i and ∆R

i are the same (πL = πR) defined in the proof of Lemma 2, then the sequential

procedure achieves the first-best payoff for all priors and (positive) correlations. Furthermore,

if the orderings are not the same, no sequential procedure can reach the first-best payoff for
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a sufficiently high correlation. The intuition is the same as in the proof of Proposition 1. We

can start with the receiver with the smallest ∆i and induce the concavification thresholds.

Since the ∆′
is are nested, we do not “jump over” the concavification thresholds for other

receivers even with perfect correlation. When correlation is imperfect, the posteriors on the

other dimensions are even closer to the starting priors.

Second, when the correlations are negative, having the receivers ranked in the same

order in both directions is not enough. Note that if there are more than two receivers and

a general imperfect negative correlation, it may be impossible to change the definition of

states to ensure that all pairwise correlations are positive. The reason is that when we move

xi to xR
i , even though we are guaranteed not to overshoot any xR

j , we may overshoot some

xL
j . In that case, a sufficient condition for the sequential procedure to achieve the first-best

payoff for all correlations is that for all i, j, if ∆R
i < ∆R

j , then both ∆L
i < ∆L

j and ∆R
i < ∆L

j .

That condition is also tight in the following sense. If one of the inequalities is reversed, for

some correlation structure (positive or negative), the optimal sequential procedure does not

achieve the first-best payoff.

6 Persuading Acceptance

In this section, we specialize the model so that receivers make binary decisions - accept or

reject. This allows us to obtain additional results and relax some of the assumptions we have

made before. We assume that the receivers’ payoffs are such that there is a closed convex

set of posterior beliefs under which that receiver accepts (and rejects for the complement of

those beliefs). Further, we assume that for every receiver there is a state that, if revealed,

he accepts. Note that while it is more restrictive than what we have considered before, all

the examples we have analyzed satisfy these more restrictive assumptions.

We begin by characterizing the optimal sequence of persuasion. We then consider non-

additive payoffs induced by voting on a common decision by a committee. Finally, we

partially extend Theorem 1 beyond binary states and explain why Theorem 2 does not

generically extend.

6.1 Optimal Sequence of Persuasion

Recall from the previous section the definition of optimal concavification thresholds xL
i and

xR
i . In the case of persuasion to accept, it must be that either xL

i = 0 or xR
i = 1 (or both

are equal to the prior if it is already in the acceptance set).

Consider the following notion of alignment between the receivers:
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Definition 4. The receivers are aligned if

1. States are positively correlated: For any i, if the information is revealed about state

i that conditional on ωi is independent of the other states, and the realized signal

increases the posterior belief xs,i, then all the other beliefs xs,−i weakly increase.

2. For each receiver the acceptance set includes state ωi = H.

A special case of alignment is when the states are perfectly correlated. Naturally, the

receivers then have a common prior and vary only in the smallest belief, xR
i , necessary for

receiver i to accept.

In the case of accept/reject decisions of aligned receivers, we get the following full char-

acterization of the optimal sequential procedure, which is a corollary of Proposition 1 and

the result in Section 5.2:

Corollary 1. If receivers make accept/reject decisions and are aligned, then the optimal

sequential procedure ranks the receivers based on ∆R
i = xR

i − xi and achieves the first-best

payoff.

6.2 Non-additive payoffs - Persuading Voters

A natural application for persuasion of multiple receivers making accept/reject decisions is

the persuasion of voters or committee members. However, since committee decisions are

based on a certain majority, this requires that we consider non-additive payoffs.

Consider first the case of a unanimous vote. The sender’s payoff is one if all receivers

approve and zero otherwise. The receivers’ payoff is zero if the vote fails and the payoff

is state-dependent if all receivers approve. Would the sender benefit from a sequential

procedure in that case?

Recall Example 1, in which there is a perfect negative correlation. With a simultaneous

procedure, the sender will never be able to convince both receivers to approve. But as we saw

above, in the additive case, the sequential procedure results in a positive probability that both

receivers approve. However, this result depended on the preferences of the receivers being

independent of the other receivers’ actions. Consider a sequential vote requiring unanimous

approval. Let Agent 1 vote first. If Agent 1 would approve when his beliefs were above 0.8 he

would not be forward-looking because this decision would ignore that later Agent 2 approves

only if the beliefs drop below 0.2. If Agent 1 were forward-looking, he would condition his

decision on the fact that his vote matters only in the event that later Agent 2 approves. If

so, he should not approve even when his belief is above 0.8.

We argue that this observation generalizes:
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Proposition 2. Assuming forward-looking agents and a unanimous vote, the optimal se-

quential procedure leads to the same payoff as the optimal simultaneous one.

Proof. Consider the optimal sequential mechanism. Without loss of generality, we can re-

strict attention to binary signals. Each agent accepts if and only if he observes a signal

realization of one. We prove the claim by induction. Consider first the case of n = 2 agents.

Agent 2’s decision is relevant only when Agent 1 approves. Assuming forward-looking be-

havior, Agent 1’s decision is based on the pivotal event in which Agent 2 approves; thus,

Agent 1 never regrets his decision. This implies that if we reveal to Agent 1 the signal that

Agent 2 obtains, he would behave the same. Hence, this simultaneous mechanism would lead

to the same outcome. Assume it holds for n agents and consider n+1. Given the induction

assumption, we can restrict attention to a mechanism in which in the first step Agent 1

receives a signal and decides. In the second step, the remaining n agents receive a joint

simultaneous signal ∈ {0, 1}n, where si = 1 is a recommendation to approve and si = 0 to

reject. Being forward-looking, Agent 1 conditions on the event that all future agents observe

the signal vector 1n. Hence, even if he observed the joint signal, he would not change his

decision, and the mechanism could be made simultaneous.

We next consider the case of a majority vote and argue that the sender may strictly

prefer a sequential procedure.

Example 4. Suppose that there are 3 agents, and the sender seeks approval by a majority.

The states of agents 1 and 2 are perfectly correlated, and they are perfectly negatively corre-

lated with the third state. The thresholds for approval for agents 1, 2, and 3 are 0.7, 0.8, and

0.8, respectively. The prior for all three states is 0.5.

Claim 1. Assuming forward-looking agents, in Example 4 a sequential procedure generates

a higher sender’s payoff than a simultaneous one.

Proof. In the case of the optimal simultaneous procedure, the only case in which the sender

is able to secure a majority vote is by convincing agents 1 and 2. Optimally, the sender must

induce a posterior of 0.8 or zero for states 1 and 2. Both agents will approve when their

posterior is 0.8 which occurs with a probability of 5/8.

In a sequential procedure, the sender will induce a posterior of 0 and 0.7 for states 1 and

2 and ask agent 1 to approve which will occur with a probability of 5/7. After convincing

receiver 1, the sender induces a posterior of 0.8 and 0.2 for states 1 and 2, which implies

a posterior of 0.2 and 0.8 for state 3 because of the perfect negative correlation. Thus,

the sender can obtain approval either from Agent 2 or Agent 3 with certainty. Thus the

sequential procedure does strictly better.
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6.3 Beyond Binary Case

In all our analysis so far we have assumed that each receiver cares only about a binary state.

While that is a good assumption for some applications, it may be a restrictive assumption

for others.

We now show that after (suitably generalized) alignment of the receivers, Theorem 1 can

be extended to the multidimensional case, but Theorem 2 generically does not.

To study the case of the multi-dimensional state, we assume that, without loss of gen-

erality, there is one state ω that has K potential realizations ωk with k ∈ {1, ..., K}. The

receivers have a common prior x that is a vector with elements xk = Pr{ω = ωk} and without

loss of generality we assume that the prior is fully mixed (assigns positive probability to all

ωk).

In the space of beliefs, each receiver has an acceptance region that contains at least one

of the extreme beliefs (i.e., xk = 1 for some k). We assume that the acceptance sets are

convex and closed.

We extend the definition of alignment as follows:

Definition 5. In the case of multidimensional states, the receivers are aligned and nested if

• Their acceptance sets contain the same set of extreme beliefs.

• The receivers can be ordered in a way that their acceptance sets are nested, with receiver

1 acceptance set containing the acceptance set of receiver 2, and so on.

Moreover, the receivers are strictly nested if there exists ϵ > 0 such that for any fully mixed

beliefs on the boundary of any two receivers’ acceptance sets, there is at least an ϵ distance

between those beliefs.

An example with k = 3 and 2 receivers is shown in Figure 2. The vertices of the triangle

represent the extreme beliefs. The orange triangle is the acceptance set of receiver 1, and the

blue triangle is the acceptance region of receiver 2. The prior (without loss of generality) is

outside both acceptance sets. Note that the sets are strictly nested - while they share parts

of the boundaries with beliefs that rule out one of the states, for all fully mixed beliefs on

the boundary of the orange set, there is a strictly positive distance to any belief in the blue

set.

Proposition 3. In the case of aligned and strictly nested receivers, if the prior is outside

any of the acceptance sets:

1) The optimal sequential procedure strictly improves upon the simultaneous procedure.

2) The optimal order of receivers in a sequential procedure coincides with the nesting order.

3) Generically, the sequential procedure does not achieve the first-best payoff.
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We present the full proof in the appendix, but the intuition is as follows. For parts 1 and

2 the intuition is analogous to the intuitions we presented above for the binary states. The

intuition for part 3 depends on the multidimensionality of the state.

First, the first-best payoff (with private messages) is achieved by finding for each receiver

two posteriors, one on the (closure of) the fully mixed boundary of the acceptance set of

that receiver and another one on the boundary of the rejection set. These two beliefs lie on

the same line as the prior belief. Generically (part 3), these lines are unique and different for

every receiver. Hence, it is impossible to replicate that outcome via any sequential procedure

(or FSP) since achieving the first-best payoff for one of the receivers implies getting away

from the optimal lines for other receivers. In the two-dimensional state case the lines are

constrained to be in just one dimension, which explains the difference from Theorem 2.

Second (part 2), as before, in the optimal procedure we want receivers to accept with the

least possible information because it increases the probability they would accept and reduces

the amount of information leakage that constraints the sender’s ability to persuade future

receivers. This implies that in the optimal sequential procedure if receiver i were called to

accept before receiver j with a larger acceptance set, then we are providing j with too much

information. We could get the same payoff by changing the order of the receivers. Moreover,

we could get a strict payoff improvement by garbling some information (combining the signal

that recommended i to accept with some signals that recommended j to reject) to bring the

posterior belief at the time j accepts closer to the boundary of his set, but still inside the

set. That would increase the probability that j accepts without changing the behavior of

the other receivers.

Third (part 1), the optimal simultaneous procedure either provides too little information

by making only a subset of the receivers accept or too much information by persuading all of

them to accept. In the first case, we can improve by a sequential procedure by fully revealing

the state after the first set of receivers accepts (and thus getting additional receivers to accept

with a positive probability). In the latter case (all accepting), we can improve by having the

receivers that are easiest to persuade (i.e., those with the largest acceptance sets) to move

first with less information.16

16In the statement of the Proposition we assumed that the prior is in the rejection set of every receiver.
This can be generalized. First, if the prior is inside the smallest acceptance set, then no persuasion is
necessary, and hence the simultaneous procedure achieves the first-best payoff. Second, if it is in the second-
smallest acceptance set, then the sequential procedure achieves the first-best payoff by telling n−1 receivers
to act first with no information and then doing the optimal persuasion of just one receiver. However, the
simultaneous procedure does not achieve the first-best payoff. Finally, if the prior is outside the second-
smallest acceptance set, all the statements in the proposition hold, just that the order in part 2 may not be
uniquely optimal.
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prior
nested acceptance

sets

Figure 2: Strictly Nested Aligned Receivers.

7 Conclusion

In this paper, we have analyzed a sender who provides information to influence multiple

receivers. We have shown that if states are correlated, the receiver may suffer from revealing

information publicly, instead of sending receivers private messages. Our main result is that

in the case of binary states and additive preferences, whenever public communication hurts

the sender, he strictly benefits from sequential communication and decision-making by the

receivers. We show how to construct such improving communication strategies in two cases

- when the sender has to pre-commit to the sequence of actions and when he has even more

flexibility and can adjust the order of receivers based on the realized information. In the

latter case, the sender can recover full first-best payoffs. We finish the paper discussing a

subclass of problems where receivers take binary actions: accept or reject. We show that with

unanimous voting and forward-looking receivers, the sender cannot benefit from sequential

persuasion, but in some cases with majority voting, he can. Finally, we analyzed aligned

receivers with multi-dimensional states and have shown how to extend our Theorem 1 and

why Theorem 2 (generically) does not work.
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8 Appendix

8.1 Analysis of Binary Decisions

To understand better the conditions under which the simultaneous procedure achieves the

first-best payoff, we consider a setup that is based on our examples. We assume that there

are two receivers with the same threshold belief, α. They take actions ai = 1 if their posterior

belief is above α and ai = 0 otherwise. The sender maximizes the sum of a′is. We allow for

imperfect correlation of the states. We assume without loss of generality that x1 ≥ x2 and

focus on the case where x2 ≤ x1 < α (so the sender would like to persuade both receivers).

To describe the prior belief, we introduce the following notation. The overall state of the

world is ω = (ω1, ω2). It can take the following values: ωij = (ω1 = i, ω2 = j) and the prior

belief is xij = Pr(ω = ωij). For example, xHL is the prior probability that ω1 = H and

ω2 = L.

In this setup, our result is that the simultaneous procedure fails to achieve the first-best

outcome, if and only if α > 1
2
and ω1 and ω2 are sufficiently strongly negatively correlated.

Formally we argue that:

Proposition 4. The simultaneous procedure achieves the first-best outcome if and only if

one of the following two inequalities hold:

(i) xHH ≥ xLH
2α−1
1−α

, or

(ii) xHL + xLH ≤ xLL
α

1−α
+ 2xHH

1−α
2α−1

.

While we provide formal proof below, we start with providing the main intuition. A

simultaneous procedure is equivalent to choosing a joint distribution of signal S and state

of the world ω. A simultaneous procedure achieves the first-best outcome if and only if the

support of the marginal distribution of the posterior ω, conditional on S = sij, is {0, α}.
Consider the following joint distribution of S and ω for some parameters {b, c, d, e, g}:

S\ω ωHH ωHL ωLH ωLL

sHH xHH b b c

sHL 0 xHL − b 0 d

sLH 0 0 xLH − b e

sLL 0 0 0 g

If a joint distribution that achieves the first-best payoff exists, then a signal S that has

the distribution of this form (for appropriate values of the parameters) also achieves the

first-best payoff. To see this, note that if it is possible to achieve the first-best payoff, it
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is sufficient to do it with a signal S that has at most four realizations that correspond to

the posteriors that induce the receivers to take one of the four action combinations. Both

receivers take action a1 = 1 if the signal is sHH . Only receiver 1 takes the desired action if

the signal is sHL. Only receiver 2 takes the desired action if the signal is sLH . Finally, if

the signal is sLL, no receivers take the desired action. For the first-best payoff, it has to be

that when both receivers take action ai = 0, their posterior belief is that both states are L

(which we denote ωLL). This explains the necessity of the last row of this joint probability

distribution. Similarly, when only one of the receivers takes ai = 0 the belief that ωi = H

has to be α and the belief about the other state has to be 0, which explains the other zeros

in the table.

Finally, consider the joint probability Pr(sHH ∩ ωHH) (the top left entry in the table).

The reason it must be equal to xHH is that when the state is ωHH in the first-best outcome,

both receivers take action ai = 1 for sure. If that entry were not equal to xHH , there would

be a signal realization after which at least one of the receivers would not take the desired

action, despite assigning a positive probability to both states being H. Such a procedure

would fail to achieve the first best.

With this observation, the rest of the proof of Proposition 4 consists of identifying

conditions in terms of α and the prior distribution of ω for which there exist parameters

{b, c, d, e, g} such that such a joint distribution is feasible and achieves the first-best out-

come.

Formally we argue the following:

Proof of Proposition 4

Proof. ‘If’ direction.

Say condition (i) xHH ≥ xLH
2α−1
1−α

holds. Then the following signal is feasible: b = xLH ,

c = xHH
1−α
α

+ xLH
1−2α
α

, d = [xHL − xLH ]
1−α
α

, e = 0 and g = xLL − c− d.

First, we show that the suggested signal satisfies obedience constraints.17

xsHH ,i =
xHH + xLH

xHH + xLH + xLH + xHH
1−α
α

+ xLH
1−2α
α

=
xHH + xLH

(xHH + xLH)
1
α

= α (3)

xsHL,1 =
xHL − xLH

(xHL − xLH) + (xHL − xLH)
1−α
α

=
xHL − xLH

(xHL − xLH)
1
α

= α (4)

Equation (3), for example, shows that given the signal realization sHH expectation for

dimension i is α, for i = 1, 2.

17Obedience constraints mean that the receivers find it optimal to take actions (a1, a2) = (k, l) when the
signal realization is skl.
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Now we show that the suggested signal is also a feasible joint distribution. To do this

we must show that c+ d+ e ≤ xLL. Expressing xLL as a complementary probability, yields

xLL = 1− xHH − xHL − xLH .

Therefore, c+ d+ e ≤ xLL ⇐⇒

xHH
1− α

α
+ xLH

1− 2α

α
+ [xHL − xLH ]

1− α

α
≤ 1− xHH − xHL − xLH . (5)

This expression simplifies to:

xHH
1

α
+ xHL

1

α
≤ 1, (6)

which holds, since we assume that xi ≤ α.

Now suppose that (i) is violated, but condition (ii): xHL + xLH ≤ xLL
α

1−α
+ 2xHH

1−α
2α−1

is satisfied. Then the following signal is feasible: b = xHH
1−α
2α−1

, c = 0, d = (xHL −
xHH

1−α
2α−1

)(1−α
α

) and e = (xLH − xHH
1−α
2α−1

)(1−α
α

).

First, we show that obedience constraints are satisfied.

xsHH ,i =
xHH + xHH

1−α
2α−1

xHH + xHH
1−α
2α−1

+ xHH
1−α
2α−1

= α (7)

xsHL,1 =
xHL − xHH

1−α
2α−1

xHL − xHH
1−α
2α−1

+ (xHL − xHH
1−α
2α−1

)1−α
α

=
1

1 + 1−α
α

= α (8)

xsLH ,2 =
xLH − xHH

1−α
2α−1

xLH − xHH
1−α
2α−1

+ (xLH − xHH
1−α
2α−1

)1−α
α

=
1

1 + 1−α
α

= α. (9)

Feasibility means that d+ e ≤ xLL, i.e.:

(xHL − xHH
1− α

2α− 1
)(
1− α

α
) + (xLH − xHH

1− α

2α− 1
)(
1− α

α
) ≤ xLL (10)

which is equivalent to condition (ii):

xHL + xLH ≤ xLL
α

1− α
+ 2xHH

1− α

2α− 1
. (11)

‘Only if’ direction.

If both conditions (i) and (ii) do not hold, then we claim that, for any feasible signal (S),

at least one of the obedience constraints does not bind. This is so because if all constraints

bind, then c + d + e > xLL, i.e., the signal (S) is not a feasible joint distribution. We now

prove this claim.

Since condition (i) is violated, we consider the following recommendation rule:
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b = b̃ := xHH
1−α
2α−1

, c = c̃ := 0, d = d̃ := (xHL − xHH
1−α
2α−1

)(1−α
α

) and e = ẽ := (xLH −
xHH

1−α
2α−1

)(1−α
α

).

We have shown in equations (7) − (9), that the suggested signal satisfies the obedience

constraints. The feasibility constraint becomes: c̃ + d̃ + ẽ ≤ xLL, which upon substituting

for c̃+ d̃+ ẽ yields

(xHL − xHH
1− α

2α− 1
)(
1− α

α
) + (xLH − xHH

1− α

2α− 1
)(
1− α

α
) ≤ xLL. (12)

(12) is equivalent to condition (ii), which is a contradiction.

Now we show that no other feasible signal exists that achieves the first-best payoff. Thus,

we consider a signal with c = c′ > 0. Then, the following is true:

c′ + d′ + e′ > c̃+ d̃+ ẽ > xLL, (13)

where c′, d′, and e′ are the values of the suggested new signal. Condition (13) holds

because for any signal that achieves the first-best payoff, b is decreasing in c, whereas d and

e are decreasing in b. To see this, suppose that c = c′ > c̃, then we claim that b′ < b̃. If not,

then

xsHH ,i =
xHH + xHH

1−α
2α−1

xHH + xHH
1−α
2α−1

+ xHH
1−α
2α−1

+ c′
< α, (14)

and the obedience constraint for sHH is violated. If a recommendation rule achieves the

first-best payoff, then d′ = (xHL − b′)(1−α
α

) and e′ = (xLH − b′)(1−α
α

), i.e., the obedience

constraints for sHL and sLH bind, so b′ < b̃ implies that d′ > d̃ and e′ > ẽ, as we claimed,

establishing (13). This completes the argument.

This means that if both conditions are violated, then there does not exist a feasible signal

that induces a distribution of marginal posteriors with support {0, α}.

8.2 Additional Proofs.

Proof that the sequential procedure in Example 1 is optimal.

Proof. As we discussed in Section 5.1, when the states are perfectly correlated, the highest

payoff from sequential persuasion is

U∗
Seq(x) = max{cav(f1 + cavf2)(x), cav(f2 + cavf1)(x)},

Since in this problem the two actions are symmetric, we need only consider a single order.
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We have

(f1 + cavf2)(x) = 1 +
x

0.8
if x ≤ 0.2

= min{ x

0.8
, 1} if x > 0.2.

Concavification of that function gives us:

cav(f1 + cavf2)(x) = 1 +
x

0.8
if x ≤ 0.2

= 1 +
1

4

1− x

0.8
if x > 0.2

In particular, if we start with a prior x = 1
2
the highest sequential payoff is

U∗
Seq (p) = 1 +

1

4

1− 0.5

0.8
= 1. 1563.

Lemma 3. Suppose that X is a random variable and there are two values x1 < x2 ∈ R such

that:

• Pr(X ∈ (x1, x2)) = 0.

• E[X] ∈ (x1, x2)

Then there exists a binary random variable X ′ which is a garbling of X with realizations

x′
1, x

′
2, such that E[X|X ′ = x′

1] = x1, and E[X|X ′ = x′
2] = x2.

Proof. We first note that Pr(X ≤ x1), P r(X ≥ x2) > 0. We also argue that without loss of

generality, we can consider binary signals S with only two realizations a and b where a ≤
x1 < x2 ≤ b. This follows from the fact that we can define a signal Ŝ where Ŝ = E(S|S ≤ x1)

when S ≤ x1 and Ŝ = E(S|S ≥ x2) where S ≥ x2. Since Ŝ is garbling of S, garbling of Ŝ is

also garbling of S.

Consider a signal Sz indexed by z; the signal is binary with realizations {s1, s2} that occur

with probabilities {1− z, z}, respectively. Specifically, s2 occurs with probability α · z when

S = a and with probability (1− α) · z when S = b, where α ∈ [0, 1] is defined by:

x2 = (1− α) · a+ α · b.

As a result we have that ∀z: E(S|Sz = s2) = x2. The feasible range for z is [0,min{Pr(S=x2)
α

, Pr(S=x1)
1−α

}].
We first note that Pr(S=x2)

α
≤ Pr(S=x1)

1−α
. This implies that the feasible range for z is [0, Pr(S=x2)

α
].
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To see why this holds, note that:

Pr(S = x2)

α
>

Pr(S = x1)

1− α
⇒ Pr(S = x2)

Pr(S = x1)
>

α

1− α
.

This would imply that E(S) > x2 which is a contradiction. Consider the other realization

s1 and let H(z) ≡ E(S|Sz = s1). The claim follows from the intermediate value theorem as

H(0) = E(S) and H(Pr(S=x2)
α

) = a < x1. Hence, we conclude that there exists z∗ so that

H(z∗) = E(S|Sz∗ = s1) = x1.

Proof of Lemma 2

Proof. Note that:

hi,j(p) = p · Pr(ωj = H|ωi = H) + (1− p) · Pr(ωj = H|ωi = L)

= Pr(ωj = H|ωi = L) + p · [Pr(ωj = H|ωi = H)− Pr(ωj = H|ωi = L)]

The proof then follows from Pr(ωj = H|ωi = H), P r(ωj = H|ωi = L) ∈ [0, 1].

Proof of Proposition 3

Proof. Part 1) First, suppose the simultaneous procedure induces (with positive probability)

a posterior belief such that some receivers accept and some do not. Then a sequential

procedure can further improve the sender’s payoff by letting those that accept in the original

case accept first and then reveal the ω, causing some additional receivers to accept with

positive probability.18

Second, suppose that with a positive probability, the simultaneous procedure induces a

posterior belief such that all receivers accept. Then, note that the line that connects that

belief and the prior belief has to cross the acceptance boundaries of all receivers (with the

possible exception of the receiver with the smallest acceptance set). Then the following

sequential procedure improves upon the simultaneous procedure: Start with garbling all the

signals so that instead of the posterior being in the smallest acceptance set, it would be on

the boundary of the receiver with the largest acceptance set. If that belief is realized, the

receiver with the largest acceptance set is asked to accept first, and then the sender reveals

the original signal. That increases the probability of acceptance of one receiver without

changing the probability of acceptance of all the other receivers.

Part 2) Suppose without loss of generality that the optimal procedure does not induce

in the first round beliefs on the boundary of the receiver with the largest acceptance set.

18This step uses the assumption that all acceptance sets contain the same set of extreme beliefs, so if not
all receivers accept, the beliefs assign positive but less than one probability to the acceptance states.
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Then using the same garbling argument as in part 1, the sender can improve its payoff by

increasing the probability of acceptance by that receiver. By inductive argument, the rest

of order follows.

Part 3) In the first best, where the sender persuades each of the receivers privately,

the optimal persuasion of each receiver induces binary beliefs: One on the (closure of the)

fully mixed boundary of the acceptance set and one outside the acceptance set. The line

connecting these two beliefs crosses through the prior. Generically, these lines do not coincide

for different receivers. Hence, even a fully flexible procedure would not be able to replicate

the outcome of the first-best procedure: To replicate the first-best for receiver i, it would

need to induce a particular belief on the boundary of that receiver’s acceptance set. But

then, generically, this belief would not be on the correct line connecting the prior and the

optimal point on the boundary of receiver j.
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