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Abstract 
Time-continuous ratings of stress are necessary for designing ro-
bust stress detection algorithms that operate in real-time. Common 
methods for obtaining these ratings in the feld of afective com-
puting are through self-reports or by employing multiple external 
observers. However, limited research has explored the association 
between these two methods, as well as their respective relation with 
multimodal bio-behavioral features. Using a mock job interview as 
a stress inducing task, this paper investigates time-continuous rat-
ings of stress from self-reports and external observers. By analyzing 
the data from 223 question/answer exchanges from 31 participants, 
results suggest that observer ratings display low correlation with 
self ratings (� = 0.145, � < 0.05) and this degree of association 
varies depending on the inter-rater reliability of external observers. 
Findings also indicate that multimodal bio-behavioral features show 
higher association with observer ratings compared to self ratings, 
and therefore, machine learning models based on this multimodal 
data can estimate observer ratings (��� = 0.4688 ± 0.247) better 
than self ratings (��� = 0.2172 ± 0.205). 

CCS Concepts 
• Human-centered computing → Ubiquitous computing; • 
Computing methodologies → Supervised learning. 
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1 Introduction 
Stress is ubiquitous in the modern world and is experienced by a 
considerable portion of the general population [33, 61]. It is defned 
as an individual’s physiological and psychological response to chal-
lenges (i.e., cognitive demands [1, 50], social interaction [29, 62]) 
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coming from the environment [16, 35]. Continued exposure to 
stress has been linked to the deterioration of physical and mental 
well-being (e.g., mental health complications, cardiovascular dis-
eases) [22, 28]. Therefore, monitoring and detecting stress are nec-
essary steps to reduce such adverse health outcomes. Continuous 
and unobtrusive detection of stress for providing timely interven-
tions has been an active focus of research in afective computing 
and human-computer interaction domains. Stress is manifested by 
bio-behavioral signals from various modalities (e.g., speech, phys-
iology, language, video), and analyzing these multimodal indices 
can contribute to continuous stress monitoring [15, 37, 57]. How-
ever, implementing successful continuous stress detection models 
requires access to reliable moment-to-moment ratings of stress 
that can be obtained from self-reports or external observers. Self-
reported rating of stress (or ‘self rating’) involves an individual 
reporting their own ‘felt’ stress [1, 59]. On the other hand, ‘ob-
server ratings’ involve external observers rating the ‘perceived’ 
stress of the target individual (i.e., how stressed the target individ-
ual seems to be) [51, 57]. Self ratings and observer ratings tend 
to capture diferent elements of the perception of stress, therefore 
the outcome of the continuous stress detection models developed 
through machine learning (ML) depends heavily on the choice of 
the type of ratings used to train these models [36, 38]. 

Diferences between the self ratings and observer ratings of af-
fect have been theorized in the Brunswik’s lens model [9] and its 
subsequent modifed versions [53]. According to these models, the 
expression of an emotion by individuals and the corresponding per-
ception of the emotion by external observers follow encoding and 
decoding steps. Individuals express their mental state by altering 
their communication cues (e.g., facial expression, speech), referred 
to as distal cues, to encode their felt emotion. External observers per-
ceive these transmitted cues, known as proximal cues, and decode 
them to understand the perceived emotion. Although the proximal 
cues are based on the distal cues, their perception to observers might 
not be same as intended initially, due to the individual diferences 
among individuals and ambiguity of emotion [10, 11, 54]. Prior work 
has extensively studied the mismatch between self ratings and ob-
server ratings in terms of categorical emotion labels (e.g., happy, 
sad, angry) or afect dimensions (e.g., arousal, valence) [8, 14, 42, 49]. 
These studies highlighted that there remains a low to moderate 
association between afect ratings obtained from self and observers. 
Findings from these studies also indicate that observer ratings of 
perceived emotion are predicted better by ML models, compared 
to self ratings of felt emotion [58, 60]. However, the majority of 
these studies used single-valued and discrete afect ratings. Few 
studies have explored the mismatch in self and observer ratings 
using time-continuous (i.e., moment-to-moment) ratings obtained 
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from both parties [42]. Prior work mostly focused on general afect 
dimensions or labels (i.e., categorical emotion, valence, arousal). 
Diferences in ratings obtained from self and observer in the context 
of specifc afect content, such as stress, have not been received 
much attention in the literature. Moreover, the efect of inter-rater 
reliability on the association between self and observer ratings 
has not been explored. Finally, in order to develop a robust con-
tinuous stress detection model, it is necessary to understand how 
bio-behavioral measures from diferent modalities are associated 
with time-continuous ratings of stress, and how the association 
varies between self ratings and observer ratings. However, this has 
also not received much attention in prior work. 

In this paper, we aim to address these research gaps in prior 
work by examining diferent aspects of time-continuous ratings of 
stress obtained from self-reports and multiple external observers, 
and investigating their association with multimodal bio-behavioral 
features. We pose the following research questions to facilitate 
further analysis: 

RQ1: What is the degree of association between time-continuous 
self and observer ratings of the perception of stress? In which 
aspects are observer ratings diferent from self ratings? 

RQ2: Which bio-behavioral features are most associated with 
self and observer ratings? Is there a diference in the degree of 
association across diferent modalities and raters? 

RQ3: Does the prediction performance of ML models in contin-
uous estimation of stress vary between self ratings and observer 
ratings when these ratings are employed as labels? 

For this purpose, we conducted a study to collect self-reported 
time-continuous ratings of stress from 31 participants who were 
asked to complete a stressful task. The job interview is used as 
the stress-inducing task in this study as it is known to elicit stress 
among individuals due to being a zero-acquaintance high-stake 
interaction between an interviewer and an interviewee [3, 44]. Self 
ratings were provided at the end of the interview by each partici-
pant when they were asked to retrospectively watch the recorded 
video of the interview and rate their felt stress in a continuous 
manner. Next, we employed four raters as external observers to 
obtain their ratings of perceived stress of the participants while 
viewing video recordings of the participants who completed the 
job interview. Results from analyzing 223 question/answer (Q&A) 
exchanges indicate that time-continuous observer ratings of per-
ceived stress display low correlation (i.e., � = 0.145, � < 0.05) with 
self-reported ratings of felt stress, and this degree of association is 
signifcantly afected by the inter-rater reliability of the external 
observers. Moreover, multimodal bio-behavioral features exhibit 
higher association with observer ratings, and therefore, these rat-
ings can be estimated better (i.e., ��� = 0.4688 ± 0.247) by ML 
models compared to self ratings (i.e., ��� = 0.2172 ± 0.205). 

2 Related Work 
Prior work in afective computing has examined the relationship 
between the self ratings and observer ratings in various domains, 
such as public speaking anxiety [8, 49], emotion [10, 14, 42, 59], 
and stress detection [1, 46]. Busso et al. indicated that self ratings 
of afect tend to contain more extreme values compared to observer 
ratings [10]. Behnke et al. hypothesized that the anxiety rating 
obtained from self-reports and the level of anxiety perceived by 

external observers would exhibit a low to moderate correlation [8]. 
To test this hypothesis, they conducted a study with 95 participants 
who performed a public speaking task in front of an audience in a 
classroom setting and then self-reported their anxiety. Audience 
members also provided their perception of the degree of anxiety 
the participant felt which were moderately correlated (i.e., Pear-
son’s � = 0.37, � < 0.01) with self-reported anxiety, supporting 
their initial hypothesis. In a similar work, Pörhölä found a low, 
positive correlation (i.e., � = 0.10, p-value not reported) between 
self-reported trait anxiety and the external observers’ perceived 
anxiety during a public speaking performance completed by 47 
participants in front of their peers [49]. Cheng et al. reported an 
even lower correlation (i.e., Pearson’s � = 0.08 − 0.21, p-value not 
reported) between self-reported and observed afect [14]. However, 
the self and observer ratings used in these studies were not time-
continuous, rather they were single-valued in nature ofering an 
aggregate perception of a focal construct over the entire session. 

Few studies have investigated the relationship between moment-
to-moment afect ratings from self and observer. Truong et al. ob-
tained time-continuous ratings of afect dimensions (i.e., valence, 
arousal) from 28 participants who self-reported their afect after a 
study involving multi-player gaming [59, 60]. Three external raters 
also provided their perceived afect rating in the same manner while 
watching the participants’ video recording. Low to medium corre-
lation (i.e., � = 0.35 − 0.41 for valence, � = 0.24 − 0.33 for arousal, 
p-value not reported) has been observed between these ratings from 
the two sources. Their study also indicated that ML models trained 
using observer ratings exhibited better prediction performance. In 
AMIGOS dataset [42], Miranda-Correa et al. obtained self-reported 
single-valued valence and arousal scores from participants after 
they watched emotional videos. In addition, the authors collected 
multiple time-continuous valence and arousal ratings from external 
observers who watched the video recordings of the participants. 
They compared the mean external observer rating with self-reports 
and found a signifcant positive correlation (i.e., � = 0.44, � < 0.05 
for valence, � = 0.15, � < 0.05 for arousal). Aigrain et al. obtained 
self-reported stress ratings from 25 participants who completed 
mental arithmetic tasks and compared the ratings to the perceived 
stress ratings obtained from external observers [1]. A moderate cor-
relation (i.e., � = 0.41, � < 0.05) was found between these ratings. 
The large magnitude of the correlation is potentially attributed to 
the well-defned and constrained stressors. 

Collectively, these studies suggest that there is a low to moderate 
correlation between the self-reported and external observer ratings 
across various afect dimensions. The magnitude of the association 
depends on several factors, such as the afect content being eval-
uated, the emotion elicitation process, and the nature of ratings 
(i.e., continuous/singled-valued). However, there are limitations in 
prior work in terms of investigating the conditions under which the 
self-observer mismatch occurs and examining the efect of diferent 
multimodal bio-behavioral features on the self-observer mismatch. 
In addition, the efect of inter-rater reliability on the association 
between self and observer ratings has not been studied. This paper 
addresses these limitations and contributes to the current body 
of research in the following ways: (1) analyzing the association 
between time-continuous ratings of stress from both self-reports 
and external observers obtained from 223 Q&A exchanges from a 
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research study involving mock job interviews; (2) examining the re-
lationship between inter-rater reliability and the mismatch found in 
self and observer ratings; and (3) investigating how bio-behavioral 
features from various modalities exhibit diferent association with 
ratings from the two sources, and how this afects the performance 
of ML models that estimate stress in a time-continuous manner. 

3 Data Description 
3.1 Stress Elicitation through the Job Interview 
In order to simulate a stress-inducing situation, we conducted a 
user study involving mock job interviews that were used as a 
stress-inducing task similar to prior work [6, 43]. We recruited 
31 participants (27 male, 4 female) through campus-wide emails 
and advertisements for this study who participated as interviewees 
in the mock job interview. The average age of the participants 
was 38.48 years (SD = 10.48). Participants were military veterans 
who were transitioning (or had transitioned) to the civilian life 
after completing their military service. In order to make the mock 
interview more realistic, the job interviews were conducted by 
11 interviewers who were industry representatives with prior ex-
perience in conducting interviews and recruiting personnel. The 
interview was conducted in a hybrid format, where the participants 
(i.e., the interviewees) came to our lab, while the industry repre-
sentatives (i.e., the interviewers) participated remotely via Zoom 
video conferencing [63]. Before the day of the interview session, 
a customized mock job posting was crafted for each participant 
based on their résumé which they shared with the research team. 
The interviewers were provided with the résumé and the mock job 
posting for the corresponding participants, and they were asked to 
conduct the interviews as they would normally do as part of their 
work. Meanwhile, the participants were instructed to approach the 
task as if they had applied for the custom job posting and were 
interviewing for it. To motivate them further, they were informed 
to consider the interview as an opportunity to also practice their 
interviewing skill. These measures were implemented to ensure a 
naturalistic interaction during the mock job interview that would 
mimic the real-life interaction. 

On the day of the interview, participants arrived at the lab and 
were briefed about the study. They were instructed to wear two 
wearable devices that captured their physiological signals during 
the entire duration of the study. These devices were the wrist-
worn Empatica E4 wristband [21] and the chest-worn Actiheart 
5 device [13]. The E4 wristband obtained electrodermal activity 
(EDA) signal sampled at 4 Hz, while the Actiheart 5, a single-lead 
electrocardiogram (ECG) recording device, collected ECG data at 
512 Hz. Next, participants completed a set of measures pertaining 
to their demography, prior daily experience, and individual dif-
ferences [5, 12, 18, 26, 27, 56]. After completing the measures, a 
relaxation session was administered in which the participants were 
shown a video of natural images with soothing music for 10 minutes 
to obtain their physiological reactivity at rest. Next, participants 
were introduced to the interviewer, who was connected through 
Zoom. Members of the research team were not present in the room 
during the interview. Audio and video of the interview session 
were recorded and downloaded from Zoom. Transcripts were also 
generated by Zoom and were later manually checked. In addition 
to the Zoom recording, a separate webcam was used to record only 

the participants. The interview sessions lasted approximately 19.2 
minutes on average (SD = 5.7). After the interview, participants com-
pleted another set of measures where they recorded their thoughts 
about their performance in the interview. The study took about 2 
hours for each participant to complete and provided multimodal 
data from diferent modalities, such as audio (i.e., speech), video, 
physiology (i.e., E4, Actiheart), and language (i.e., transcript). 
3.2 Obtaining the Self Ratings of Felt Stress 
After the completion of the interview session, participants were 
asked to provide a time-continuous self ratings of stress felt during 
the interview. For this purpose, we used the CARMA software [25] 
which is widely used in afective computing research. Participants 
watched their interview videos and provided moment-to-moment 
ratings of their stress using the computer mouse while watching the 
video in CARMA. The ratings were done on a continuous scale from 
1 (‘No Stress’) to 5 (‘High Stress’). The ratings were sampled at a 
rate of 1 Hz. The videos used for obtaining the self ratings included 
only the participants recorded by the separate webcam and did not 
include the interviewers that were available in the Zoom recording. 
This was done to expedite the process as the Zoom recordings were 
not available immediately after the end of the interview. 

3.3 Obtaining the Observer Ratings of Perceived 
Stress 

In order to obtain moment-to-moment ratings of perceived stress 
from external observers, we recruited four raters (one male, three 
female) who were undergraduate students majoring in psychology 
and had prior experience in emotion annotation tasks. They were 
trained to work with the CARMA software [25] before they started 
the tasks. The raters were asked to rate how stressed the participants 
were during the interview using the same scale as participants while 
watching the video. They watched the videos recorded by Zoom 
that captured both the participants and the interviewers. 

As the videos of the entire interview session of individual par-
ticipants were long in duration, providing ratings for the whole 
videos might cause fatigue, resulting in ratings with reduced qual-
ity [40, 52]. To address this issue, the interview videos were seg-
mented into smaller videos of Q&A exchanges, where an exchange 
contained a question asked by the interviewers, the corresponding 
responses from the participants, and the back-channeling conversa-
tion during the questions and responses. The segmentation process 
resulted in 223 exchanges from 31 participants’ interviews. The 
exchanges were approximately 2 minutes long on average (SD = 
1.06). Raters were instructed to frst watch all the videos of a partic-
ipant so that they were aware of the context of the conversation 
before attempting to rate the perceived stress of the participants. 
Moreover, they were asked to rate the exchanges of the same par-
ticipants in sequence to be uniform with the self-reported ratings. 
Continuous ratings from the raters were sampled at 1 Hz. A total of 
80 exchanges from 12 participants were rated by four raters, while 
the remaining 143 exchanges from 19 participants were rated by 
three raters. The subsequent analysis presented in this paper is 
performed using the exchanges obtained from the segmentation 
instead of the whole videos. Therefore, the self ratings were also 
segmented into exchanges that are used in further analysis for 
uniform comparison with the ratings obtained from the raters. 
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4 Methodology 
4.1 Inter-rater Reliability and Association 

between Self and Observer Ratings 
The Pearson’s correlation coefcient, � is chosen as a metric to 
quantify inter-rater reliability in the process of obtaining observer 
ratings of perceived stress (Section 3.3). For each exchange, the 
Pearson’s � is computed for ratings obtained by all possible pairs of 
raters. There are six possible pairs for exchanges rated by four raters 
and three pairs for exchanges rated by three raters. An aggregated 
Pearson’s � is obtained for each exchange using the Fisher’s �-
transformation [55]. An overall agreement metric for the entire 
dataset is also obtained by computing aggregated Pearson’s � over 
all exchanges in a similar way. 

Next, the arithmetic mean of the ratings from all raters for an 
exchange is used as the fused rating for that exchange and the 
mean rating is considered as a representation of the observer rat-
ings. Computing the mean for fusing time-continuous ratings from 
multiple ratings is a common practice in prior work [40, 51]. In 
investigating the degree of association between self and observer 
ratings (RQ1), the association between self ratings and observer 
ratings is obtained for each exchange by computing the Pearson’s 
� between self ratings and fused observer ratings. Similar to the 
inter-rater reliability, an overall association metric between the self 
ratings and observer ratings is computed by employing Fisher’s 
�-transformation [55] to aggregate Pearson’s � over all exchanges. 

We identify the exchanges that exhibited higher inter-rater reli-
ability compared to other exchanges. For this purpose, we inspect 
the Pearson’s � for all possible rater pairs for each exchange and 
select the exchanges that had at least one pair of raters exhibiting 
Pearson’s � over a given threshold value ��ℎ . We choose ��ℎ = 0.4 
empirically based on prior work [41] and the preliminary observa-
tion of our data. The exchanges that have at least one pair of raters 
exhibiting � > ��ℎ are considered to be in the ‘High reliability’ 
group, while the remaining exchanges are assigned to the ‘Low 
reliability’ group. We examine the efect of inter-rater reliability on 
the association between the self-reports and the observer ratings 
by performing a �-test between Pearson � metrics obtained for the 
exchanges in these groups. 

Finally, we inspect how the self ratings of stress difer from ob-
server ratings by examining their distribution over all participants 
and exchanges. To quantify potential diferences, we build a linear 
mixed efect (LME) model with the self ratings and the observer 
ratings as the independent variable and the dependent variable, re-
spectively. Along with the fxed efect of self ratings on the observer 
ratings, both random intercept and random slope are considered 
for the LME model to account for the individual diferences of the 
participants. The model is defned as: 

�, � �, � 
� = (�0 + �0� ) + (�1 + �1� ) × � (1)
��� ��� � 

�, � �, � where � and � refer to the self rating and observer rating
��� ��� � 

obtained at the timestamp � for participant � . �0 and �1 denote 
the fxed intercept and slope, respectively while �0� and �1� indi-
cate the random intercept and slope, respectively for participant 
� . We inspect the model parameters (�0, �1, �0� , �1� ) to quantify the 
diferences between self and observer ratings of stress. 

4.2 Feature Extraction from Multimodal 
Bio-behavioral Signals 

In order to identify the bio-behavioral features associated with self 
and observer ratings of stress and examine the diference among 
diferent ratings to answer RQ2, we perform a set of pre-processing 
and feature extraction steps on the obtained multimodal signals 
(Section 3.1). We extract features from diferent modalities, namely, 
acoustic, visual, physiological, and linguistic modalities. 

4.2.1 Acoustic Features. Audio signals obtained from the Zoom 
recording of the interviews contain speech signals from both the 
participants and the interviewers. The transcripts associated with 
the recording contain the timestamps corresponding to both speak-
ers. Voice activity detection (VAD) is performed at the timestamps 
during which only the participants were speaking. Next, these 
segments are further used for acoustic feature extraction using 
the OpenSMILE toolkit [24]. For our experiment, we choose the ex-
tended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [23] 
due to its conciseness and extensive usage in prior work [6, 32, 
57]. The eGeMAPS feature set consists of 88 features that include 
amplitude-related parameters (e.g., loudness, shimmer), frequency-
related features (e.g., formants, jitter), and spectral parameters (e.g., 
Alpha ratio, harmonic diference). Features are computed over a 
600 ms window with 100 ms overlap, and then averaged over non-
overlapping 1 second windows similar to the ratings of stress. 

4.2.2 Visual Features. We use the OpenFace toolkit [7] to capture 
visual features from the participants’ video recordings during the 
interview session. Diferent types of visual features are obtained, 
such as 2 gaze-related features, 3 head pose features, and 17 facial 
expression features. The gaze-related features include the eye gaze 
direction in radians in world coordinates along both X- and Y-axes. 
These features are related to the participants’ eye contact with the 
interviewer, which is found to be an indicator of stress [4, 30]. Head 
pose features consist of head rotation angles around X-, Y- and 
Z-axes that are widely used in prior work related to job interview 
analysis [29, 44]. Finally, the facial expression features provide 
the intensity of 17 facial action units (AUs) in the frames of the 
video. These AUs are defned by the Facial Action Coding System 
(FACS) [20], and diferent AUs are found to be associated with stress 
and anxiety [1, 29]. These features are extracted at the same rate 
as the video frame rate and then aggregated over non-overlapping 
1 second window using the mean and maximum values. This has 
resulted in 44-dimensional visual features for further analysis. 

4.2.3 Physiological Features. Visual inspection is performed on 
both the EDA signals and ECG signals to identify visible artifacts, 
followed by outlier removal and noise suppression [45]. In order 
to extract the features from clean EDA signals, the NeuroKit tool-
box [39] is utilized. Five features are extracted from EDA signals, 
specifcally, skin conductance level (SCL) parameters (i.e., mean, 
standard deviation) and skin conductance response (SCR) param-
eters (e.g., amplitude, onset and peak frequency). These features 
are extracted over a 10 second window with 1 second step size to 
match the sampling rate of the ratings of stress. Meanwhile, 23 heart 
rate variability (HRV) features are computed from the R-R interval 
series obtained from ECG signals over a 4 second window with 1 
second step size using hrv-analysis toolbox [31]. These features 
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contain 16 time-domain features (e.g., functionals of the N-N inter-
val (NNI), heart rate (HR)) and 7 frequency-domain features (e.g., 
low frequency (LF), and high frequency (HF) power components, 
LF-HF ratio). Therefore, the physiological modality is characterized 
by a 28-dimensional feature set for each exchange. 

4.2.4 Linguistic Features. To understand the psycholinguistic con-
tent of participants’ speech, we utilize the Linguistic Inquiry and 
Word Count (LIWC) toolbox [48]. LIWC computes the count or 
percentage of words describing various constructs known as LIWC 
categories. The LIWC categories consist of general descriptors (e.g., 
word count, words per sentence), summary constructs (e.g., ana-
lytical thinking, clout), linguistic dimensions (e.g., nouns, verbs), 
psychological concepts (e.g., cognition, emotion), and informal lan-
guage identifers (e.g., fller words, confuency). Punctuation re-
lated features are excluded from the analysis. Overall, 81 linguistic 
features are computed for each exchange using the participants’ 
responses to the questions asked by the interviewer. It is to be noted 
that the linguistic features extracted in this work are not time-series 
sampled at 1 Hz for each exchange. This is because these features 
are not continuous time signals and require the context of the en-
tire exchange to be reliably computed. Instead, the 81-dimensional 
feature set is computed over the entire exchange. 

4.3 Estimation of Time-continuous Ratings of 
Stress using Multimodal Features 

We use a long short-term memory (LSTM) neural network to esti-
mate the time-continuous self and observer ratings of stress using 
the multimodal bio-behavioral features (Section 4.2) to answer RQ3. 
Features obtained from acoustic, visual, linguistic, and physiological 
modalities are employed for this purpose. This model is similar to 
the baseline model in the MUSE-STRESS sub-challenge of the MuSe 
2021 challenge [57]. The LSTM model consists of 2 hidden layers 
where each layer contains 64 hidden states, followed by a fully 
connected layer with 64 states before the output layer. For incorpo-
rating the static linguistic features into the ML model with other 
time-continuous modalities, we employ a two-layer feedforward 
neural network (64 hidden states, 64 output states) parallel to the 
LSTM to obtain their embeddings, and fuse them with the embed-
dings from LSTM before feeding them to the fully connected layer. 
A window size of 60 seconds and hop size of 10 seconds are chosen 
for the LSTM model. The model is trained with a learning rate of 
0.005 with a scheduler with 5 epoch patience and L2-regularization 
penalty of 0.001. These model hyperparameters are chosen based 
after a set of experiments involving hyperparameter tuning. The 
model is trained for 200 epochs, with an early stopping criterion of 
no performance improvement over 15 consecutive epochs. A cus-
tom loss L based on the concordance correlation coefcient (CCC) 
loss (i.e., L��� = 1 − ��� ) and mean square error (MSE) loss (i.e., 
L��� ) is used to optimize the model where L = L��� + L��� . 
This is done to prioritize both the increase of CCC and decrease 
of MSE, as these metrics do not always exhibit one-to-one map-
ping [47]. The model is trained via a leave-one-subject-out cross 
validation scheme using 223 exchanges from 31 participants. Train-
ing and testing of ratings from two sources are performed separately. 
The experiments are repeated 10 times for each confguration to 
account for any randomness. Both CCC and MSE metrics are used 
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Figure 1: Distribution of inter-rater reliability measured by 
aggregated Pearson’s � over all exchanges. 

as the evaluation metric to measure the performance of the model 
in estimating the moment-to-moment self or observer ratings of 
stress using the multimodal features. 

5 Results 
5.1 Examining Observer Ratings: Inter-rater 

Reliability and Association with Self Ratings 
The aggregated Pearson’s � for all possible rater pairs is used as 
the inter-rater reliability metric in this work. Fig. 1 exhibits the 
distribution of the reliability metric over the entire dataset (i.e., 
223 exchanges from 31 participants). The distribution is bimodal 
in nature with a larger peak around � = 0.1 and a smaller peak 
around � = 0.7. The mean Pearson’s � of over all exchanges is 
� = 0.282, � < 0.05 which indicates a low to moderate inter-rater 
reliability when raters were asked to rate the perceived stress of the 
participants [2, 17]. Such low correlation has been found in prior 
work [59], as the perception of afect content such as stress is subjec-
tive. However, this distribution presents the aggregated Pearson’s 
� for each exchange, and the aggregated � can be afected by some 
rater pairs showing lower agreement compared to other pairs. To 
examine this, the exchanges are separated into a ‘High Reliability’ 
and a ‘Low Reliability’ group based on whether an exchange has 
a pair of raters with Pearson’s � higher than the threshold value 
of ��ℎ��� = 0.4 (Section 4.1). This results in 144 exchanges falling 
into the ‘High Reliability’ group, while the remaining 79 exchanges 
being assigned to the ‘Low Reliability’ group. The inter-rater re-
liability for the exchanges in ‘High Reliability’ group is found to 
be � = 0.453, � < 0.05 compared to the ‘Low Reliability’ group (i.e., 
� = −0.0714, � < 0.05), which is higher than the overall reliability. 

Next, we investigate the association between the self ratings and 
the observer ratings by computing Pearson’s � , where the observer 
rating is obtained by computing the arithmetic mean over ratings 
from all raters for an exchange. A low correlation has been found 
(i.e., � = 0.145, � < 0.05) between the self and observer ratings of 
stress, which is consistent with prior work [14, 42, 59]. However, 
a signifcant diference in the self-observer rating association is 
found between the exchanges of the ‘High Reliability’ and ‘Low 
Reliability’ groups, as shown in Fig. 2. The �-test confrms (i.e., 
� (221) = 3.409, � < 0.05) that the exchanges in the ‘High Reliability’ 
group exhibit higher correlation (i.e., � = 0.216, � < 0.05) between 
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Figure 2: Diference in the distribution of the association 
between self-reported ratings and observed ratings based on 
the inter-rater reliability of the exchanges. 

self and observer ratings, compared to the correlations (i.e., � = 
0.015, � < 0.05) in the ‘Low Reliability’ group. Therefore, the result 
indicates that the inter-rater reliability plays an important role 
on the association between self ratings of felt stress and observer 
ratings of perceived stress. 

Next, we examine the diference in the nature of ratings of felt 
stress from the participants’ self-reports and the rating of perceived 
stress by the observers for the corresponding exchanges. A scat-
ter plot showing the self ratings and the corresponding observer 
ratings is presented in Fig. 3. It is evident that the observer ratings 
rarely exceeded 3 on the 1–5 point scale, and in very few cases, the 
observer ratings were around 4. Conversely, the self ratings tend 
to contain more extreme values, even when the observer rating is 
lower. In Fig. 3, the majority of the data points (i.e., 60.01%) fall be-
low the identity line � = � . Signifcant fxed efects are found by the 
LME model, where the fxed intercept is �0 = 1.208, � < 0.05 and 
the fxed slope is �1 = 0.17, � < 0.05. The variance of the random 
intercept and random slope are 0.216 and 0.05, respectively. The 
ftted line in Fig. 3 is described by considering the fxed efects in (1), 
while the shaded area denotes the 95% confdence interval resulting 
from the random efects. Results suggest that self-reported ratings 
contain more extreme values than the observer ratings, and the 
participants tend to consider themselves more stressed even when 
they are perceived as being less stressed by external observers. 

5.2 Inspecting the Association between 
Bio-Behavioral Features and Stress Ratings 

To answer RQ2, we investigate the association between the bio-
behavioral features and time-continuous self and observer ratings 
of stress. In case of time-continuous modalities (i.e., acoustic, visual, 
and physiological), the Pearson’s � is computed for each exchange 
and the aggregated Pearson’s � is computed over all exchanges. 
However, a diferent approach is taken for the static linguistic 
features as they were computed over the entire duration of an ex-
change, and they do not have the same temporal resolution as the 
ratings. Therefore, the Pearson’s � between the linguistic features 
and the maximum rating of exchanges is obtained, since the max-
imum rating captures the most salient rating in terms of felt or 
perceived stress. Table 1 presents the correlation of the features 

Figure 3: Self-reported ratings and the corresponding ob-
server ratings for all the timestamps of all exchanges. The 
colorbar on the right shows the density of the scatter plot. 

from diferent modalities with self ratings and observer ratings 
of stress. Detailed correlations for all extracted features are avail-
able in the supplementary material. From the result, it is clear that 
all types of features exhibit stronger associations with observer 
ratings compared to self ratings. This might have been attributed 
to the process of obtaining the ratings. The raters had to watch 
the audio-visual recording of the interview multiple times to un-
derstand the context to provide the ratings. On the other hand, 
participants performed the retrospective rating after completing 
the interview and they might have relied on recalling their expe-
rience based on the linguistic content, instead of relying on the 
audio-visual recording. Among the diferent modalities, observer 
ratings depict the highest correlations with acoustic features, while 
self ratings depict the highest correlations with linguistic features. 
Despite the magnitude of correlations, the most predictive features 
are similar for both self and observer ratings. The most prominent 
acoustic features are the formant frequencies (i.e., F3, F2), funda-
mental frequency, and shimmer. Among the visual features, head 
rotation and gaze angle, potentially associated with eye contact and 
head movement [29, 43], are positively correlated with ratings of 
stress. The use of nonfuencies and informal language are found to 
be positively correlated, while the word count is negatively corre-
lated with both self-reported ratings and observer ratings of stress. 
Finally, mean SCL and HR are the more prominent physiological 
features exhibiting positive correlations with observer ratings. 

5.3 Estimating Moment-to-moment Stress using 
Bio-Behavioral Features 

Finally, we answer RQ3 by training an LSTM model with multi-
modal bio-behavioral features to estimate the moment-to-moment 
ratings of stress obtained from self-reports and external observers 
(Section 4.3). Features from diferent combinations of the available 
modalities (i.e., Audio, Video, Physiology, Language) are provided 
as input to the model. Table 2 presents the outcome of the predic-
tion experiments in terms of CCC and MSE metrics. Results sug-
gest that the observer ratings are easier to estimate by the LSTM 
model using unimodal or multimodal features, compared to the self-
reported ratings. The best performance (i.e., ��� = 0.4688 ± 0.247, 
��� = 0.0988 ± 0.141) is obtained when audio-visual features 
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Table 1: Aggregated Pearson’s correlation coefcient (� ) be-
tween bio-behavioral features from diferent modalities and 
ratings of stress obtain from self-reports and raters. 

Modality Feature Self Observer 
F3 frequency 0.1234* 0.5577* 
F2 frequency 0.1234* 0.5564* 

Audio F0 frequency 0.1119* 0.5116* 
Shimmer 0.1017* 0.4439* 
Jitter 0.0789* 0.3282* 
AU25 (Lips part) 0.0919* 0.3639* 
Head rotation (Y-axis) 0.0484* 0.1720* 
AU01 (Inner Brow Raiser) 0.0382* 0.1413* 

Video Gaze angle (X-axis) 0.0446* 0.1385* 
AU09 (Nose Wrinkler) 0.0387* 0.1174* 
Head rotation (X-axis) 0.0338* 0.1144* 
AU07 (Lid Tightener) 0.0160* 0.1028* 

Physiology 

Mean SCL 
Mean HR 
Max HR 
SCR Frequency 

0.0564* 
0.0132* 
0.0152* 
0.0159* 

0.2242* 
0.1777* 
0.1743* 
0.1026* 

Nonfuencies 0.1915* 0.2703* 
Informal language 0.1669* 0.2589* 

Language Words per sentence 
Clout 

0.1951* 
-0.0498 

0.2209* 
0.0780 

Filler words 0.1337* 0.0716 
Word count -0.0971 -0.1413* 

∗: � <0.05 

fused with linguistic features are employed in estimating the ob-
server ratings of perceived stress. Meanwhile, the self-reported 
ratings of felt stress are estimated the best in terms of CCC (i.e., 
��� = 0.2172±0.205, ��� = 0.5962±0.729) by the model that com-
bines linguistic features with audio-visual features, and in terms 
of MSE (i.e., ��� = 0.2079 ± 0.186, ��� = 0.5801 ± 0.682) by the 
model combining physiological features with audio-visual ones. 
These observations are further confrmed by performing one-way 
ANOVA test on CCC values obtained for diferent cases. Signif-
cant diferences are found for CCC from diferent modalities for 
both self (i.e., � (9, 90) = 95.9, � < 0.01) and observer ratings (i.e., 
� (9, 90) = 595.7, � < 0.01). Post-hoc Tukey HSD tests indicate that 
best combination (A+V+L) for observer ratings signifcantly out-
performs other combinations. An independent t-test is conducted 
between the best cases for self and observer ratings. CCC for ob-
server ratings is signifcantly higher (i.e., � (18) = −48.5, � < 0.01) 
than self ratings. The inclusion of the physiological feature does not 
improve the prediction performance of the observer rating. This 
is expected as the raters only relied on the audio-visual recording 
while rating their perceived stress of the participants. On the other 
hand, physiological indices are known to capture the participants’ 
reactivity when stressed, and therefore, they can be used to im-
prove the estimation of the self-reported ratings of stress. Among 
the unimodal features, acoustic features are found to be the best 
performing features in estimating both self-reported and observer 
ratings of stress. The inclusion of linguistic features to the acoustic 
features seems to improve the performance for the observer ratings. 

The visual features further improve the predictive performance for 
observer ratings when added to the acoustic and linguistic mea-
sures. These suggest that external observers rely on the multimodal 
content of the video when rating, while self observers tend to rely 
mostly on acoustic and linguistic features. 

6 Discussion 
In this work, we investigate the interplay between self-reported 
ratings of felt stress and external observers’ ratings of perceived 
stress in terms of their association with multimodal bio-behavioral 
signals. Although prior work examined the mismatch between self 
and observer ratings [10, 42, 59], this has not been examined for 
time-continuous ratings in the context of stress. Using data from 
223 Q&A exchanges from 31 participants’ mock job interviews, we 
pose three research questions to address this knowledge gap. In 
RQ1, we investigate the inter-rater reliability of the ratings ob-
tained from the four raters in our study and determine how the 
reliability of the observer rating afects its association with self 
ratings. Time-continuous observer ratings of perceived stress ob-
tained from the raters exhibit low to moderate inter-rater reliability 
(i.e., � = 0.282). This is not unprecedented as rating afect content 
is a complex process, infuenced by ambiguity and subjectivity in 
perceiving emotion [19, 40]. The time-continuous nature of the 
ratings introduces additional complexity to the rating process. The 
exchanges in the ‘High Reliability’ group exhibit higher reliability 
(i.e., � = 0.453) compared to the remaining exchanges, which attests 
to the ambiguity in the process of rating perceived stress. There 
is also a signifcant diference between exchanges in ‘High Relia-
bility’ and ‘Low Reliability’ groups in terms of their association 
with self-reported ratings (i.e., � = 0.216 and � = 0.015 for ‘High 
Reliability’ and ‘Low Reliability’ group, respectively). Although the 
overall correlation between self and observer ratings is low in our 
work, similar to prior work [14, 42], these fndings indicate that 
certain exchanges exhibit less ambiguity compared to others. When 
interpreting these fndings through the lens of Brunswik’s lens 
model [9], it could imply that exchanges categorized in the ‘High 
Reliability’ group may present proximal cues (i.e., transmitted cues 
perceived by the raters) that are easily decoded and interpreted by 
the raters. These proximal cues likely convey similar information 
to the distal cues (i.e., how cues are encoded by the individuals 
experiencing the stressor), resulting in a high degree of association 
between self and observer ratings. On the contrary, the proximal 
and distal cues within the ‘Low Reliability’ group might present 
high ambiguity, leading to a very weak association between self 
and observer ratings. 

Furthermore, we highlight the diference in the nature of ratings 
obtained from self and observer. Data from our study suggest that 
participants generally consider themselves more stressed than they 
are perceived by others for the majority of the interview duration 
(i.e., 60%). Self ratings exhibit more extreme values compared to 
the corresponding observer ratings, a trend observed also in prior 
research [10, 34, 59]. This mismatch might have been caused by 
the ambiguity of distal cues for the extreme values that might have 
increased the complexity of the decoding process for the raters. 
Next, RQ2 examines how bio-behavioral features from diferent 
modalities (i.e., acoustic, visual, linguistic, physiological) exhibit 
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Table 2: Prediction performance of the LSTM model in estimating self and observer ratings of stress using features from 
diferent modalities (i.e., acoustic (A), visual (V), physiological (P), linguistic (L)). CCC (� ± �) and MSE (� ± �) are reported as the 
evaluation metrics. 

Modality CCC (� ± �) MSE (� ± �) 
Self Observer Self Observer 

A 
V 
P 

0.1987 ± 0.188 
0.1141 ± 0.117 
0.0848 ± 0.134 

0.3916 ± 0.286 
0.3166 ± 0.228 
0.2016 ± 0.152 

0.6285 ± 0.751 
0.6761 ± 0.896 
0.7126 ± 0.876 

0.1186 ± 0.167 
0.1218 ± 0.151 
0.1510 ± 0.192 

A + L 
V + L 
P + L 
A + V 

0.2002 ± 0.190 
0.1658 ± 0.184 
0.1338 ± 0.153 
0.2027 ± 0.172 

0.4396 ± 0.257 
0.3840 ± 0.212 
0.2872 ± 0.145 
0.4092 ± 0.272 

0.6278 ± 0.750 
0.6118 ± 0.716 
0.6437 ± 0.787 
0.6243 ± 0.827 

0.1102 ± 0.157 
0.1047 ± 0.123 
0.1184 ± 0.162 
0.1045 ± 0.115 

A + V + L 
A + V + P 

A + V + P + L 

0.2172 ± 0.205 
0.2079 ± 0.186 
0.1886 ± 0.192 

0.4688 ± 0.247 
0.3939 ± 0.257 
0.4448 ± 0.241 

0.5962 ± 0.729 
0.5801 ± 0.682 
0.5979 ± 0.758 

0.0988 ± 0.141 
0.1125 ± 0.146 
0.1045 ± 0.150 

association with moment-to-moment ratings of stress from self 
and observer. The acoustic features depict the highest association 
with observer ratings, followed by the visual and linguistic fea-
tures. This suggests that as the raters watched the videos of the 
exchanges to rate the perceived stress, they might have focused 
heavily on the acoustic, visual, and linguistic cues. Conversely, the 
self ratings exhibit the highest correlations with linguistic features, 
followed by acoustic features, and very low correlations with visual 
features. This indicates that the participants might have focused 
more on the content of the interviews while rating their felt stress 
retrospectively, instead of relying on the visual cues. 

Finally, we inspect the variation of the prediction performance 
of ML model in estimating time-continuous ratings of stress from 
self and observer as part of RQ3. We fnd that observer ratings 
are better estimated by ML models than self ratings, and this is 
the case across all modalities. This suggests that perceived stress 
might be easier to be modeled by multimodal indices, compared 
to felt stress [58, 59]. ML models trained and tested using observer 
ratings perform the best when acoustic, visual, and linguistic fea-
tures are used. This result comes as no surprise as these features 
exhibit higher association with observer ratings. Also, these are the 
modalities that the raters perceived as proximal cues. Physiological 
features did not contribute to improved performance for observer 
ratings, as raters did not have access to these cues. However, the ad-
dition of physiological features with audio-visual features resulted 
in a slightly better performance for estimating self ratings. Physio-
logical indices act as distal cues, as they are more related with felt 
stress, due to their association with individuals’ reactivity to their 
exposure to stressful situation [8, 62]. The variation of the results 
for self and observer ratings across diferent modalities suggests 
that the choice of feature modality and rating source has important 
implications for the design of continuous stress detection systems. 
Self ratings are found to be more difcult to estimate compared 
to observer ratings, which is consistent with prior work [1, 14]. 
However, self ratings were obtained from diferent participants 
while observer ratings were obtained from the same raters who 
have had the chance to review all participants [59]. This might 
have introduced more subjectivity from individual diferences in 
the self ratings compared to the observer ratings, which adds to 
the complexity of the estimation of self rating by ML model, as 

we used a participant-independent (i.e., leave-one-subject-out) ex-
perimental design. A participant-dependent framework might be 
a better option in training ML models to estimate self ratings of 
stress, which can serve as a future research direction. 

Results from this study highlight the importance in understand-
ing the nuances of time-continuous rating of stress from self-reports 
and multiple observers. Diferent elements of afective processes 
are captured while obtaining the ratings of felt stress and perceived 
stress from self and observer, respectively. This results in the dif-
ferences in ratings obtained from two sources which in turn, can 
afect the ML models being used in estimating moment-to-moment 
stress ratings. Therefore, understanding the diference in the per-
ception of stress in terms of multimodal bio-behavioral signals is 
needed to ensure efective continuous stress detection. Results from 
the current study come with some limitations. The job interview 
as a stress-inducing task is not as well-defned and constrained as 
other stressors (e.g., mental arithmetic task, cold pressor) commonly 
used in prior work [1, 6]. This might have introduced additional 
subjectivity in the time-continuous ratings. Next, the number of 
raters used as external observers is not very high, which might 
have decreased the generalizability of the result. Finally, the lin-
guistic features had lower temporal resolution than features from 
other modalities, which makes it difcult to perform a uniform 
comparison in terms of their association with ratings of stress. 

7 Conclusion 
This work investigates how the perception of stress difers across 
time-continuous ratings from self-report and multiple observers. 
Association between self and observer ratings has been explored 
and the efect of inter-rater reliability on this association has been 
investigated. Findings indicate that observer ratings of stress are 
better correlated with multimodal indices and these ratings are 
better estimated by ML models. As part of future work, we plan to 
examine the individual diferences of the participants and the raters, 
and inspect their efect on the mismatch between time-continuous 
ratings of stress obtained from self and observer. 
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