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Abstract coming from the environment [16, 35]. Continued exposure to

Time-continuous ratings of stress are necessary for designing ro-
bust stress detection algorithms that operate in real-time. Common
methods for obtaining these ratings in the field of affective com-
puting are through self-reports or by employing multiple external
observers. However, limited research has explored the association
between these two methods, as well as their respective relation with
multimodal bio-behavioral features. Using a mock job interview as
a stress inducing task, this paper investigates time-continuous rat-
ings of stress from self-reports and external observers. By analyzing
the data from 223 question/answer exchanges from 31 participants,
results suggest that observer ratings display low correlation with
self ratings (r = 0.145,p < 0.05) and this degree of association
varies depending on the inter-rater reliability of external observers.
Findings also indicate that multimodal bio-behavioral features show
higher association with observer ratings compared to self ratings,
and therefore, machine learning models based on this multimodal
data can estimate observer ratings (CCC = 0.4688 + 0.247) better
than self ratings (CCC = 0.2172 + 0.205).
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1 Introduction

Stress is ubiquitous in the modern world and is experienced by a
considerable portion of the general population [33, 61]. It is defined
as an individual’s physiological and psychological response to chal-
lenges (i.e., cognitive demands [1, 50], social interaction [29, 62])
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stress has been linked to the deterioration of physical and mental
well-being (e.g., mental health complications, cardiovascular dis-
eases) [22, 28]. Therefore, monitoring and detecting stress are nec-
essary steps to reduce such adverse health outcomes. Continuous
and unobtrusive detection of stress for providing timely interven-
tions has been an active focus of research in affective computing
and human-computer interaction domains. Stress is manifested by
bio-behavioral signals from various modalities (e.g., speech, phys-
iology, language, video), and analyzing these multimodal indices
can contribute to continuous stress monitoring [15, 37, 57]. How-
ever, implementing successful continuous stress detection models
requires access to reliable moment-to-moment ratings of stress
that can be obtained from self-reports or external observers. Self-
reported rating of stress (or ‘self rating’) involves an individual
reporting their own ‘felt’ stress [1, 59]. On the other hand, ‘ob-
server ratings’ involve external observers rating the ‘perceived’
stress of the target individual (i.e., how stressed the target individ-
ual seems to be) [51, 57]. Self ratings and observer ratings tend
to capture different elements of the perception of stress, therefore
the outcome of the continuous stress detection models developed
through machine learning (ML) depends heavily on the choice of
the type of ratings used to train these models [36, 38].

Differences between the self ratings and observer ratings of af-
fect have been theorized in the Brunswik’s lens model [9] and its
subsequent modified versions [53]. According to these models, the
expression of an emotion by individuals and the corresponding per-
ception of the emotion by external observers follow encoding and
decoding steps. Individuals express their mental state by altering
their communication cues (e.g., facial expression, speech), referred
to as distal cues, to encode their felt emotion. External observers per-
ceive these transmitted cues, known as proximal cues, and decode
them to understand the perceived emotion. Although the proximal
cues are based on the distal cues, their perception to observers might
not be same as intended initially, due to the individual differences
among individuals and ambiguity of emotion [10, 11, 54]. Prior work
has extensively studied the mismatch between self ratings and ob-
server ratings in terms of categorical emotion labels (e.g., happy,
sad, angry) or affect dimensions (e.g., arousal, valence) [8, 14, 42, 49].
These studies highlighted that there remains a low to moderate
association between affect ratings obtained from self and observers.
Findings from these studies also indicate that observer ratings of
perceived emotion are predicted better by ML models, compared
to self ratings of felt emotion [58, 60]. However, the majority of
these studies used single-valued and discrete affect ratings. Few
studies have explored the mismatch in self and observer ratings
using time-continuous (i.e., moment-to-moment) ratings obtained
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from both parties [42]. Prior work mostly focused on general affect
dimensions or labels (i.e., categorical emotion, valence, arousal).
Differences in ratings obtained from self and observer in the context
of specific affect content, such as stress, have not been received
much attention in the literature. Moreover, the effect of inter-rater
reliability on the association between self and observer ratings
has not been explored. Finally, in order to develop a robust con-
tinuous stress detection model, it is necessary to understand how
bio-behavioral measures from different modalities are associated
with time-continuous ratings of stress, and how the association
varies between self ratings and observer ratings. However, this has
also not received much attention in prior work.

In this paper, we aim to address these research gaps in prior
work by examining different aspects of time-continuous ratings of
stress obtained from self-reports and multiple external observers,
and investigating their association with multimodal bio-behavioral
features. We pose the following research questions to facilitate
further analysis:

RQ1: What is the degree of association between time-continuous
self and observer ratings of the perception of stress? In which
aspects are observer ratings different from self ratings?

RQ2: Which bio-behavioral features are most associated with
self and observer ratings? Is there a difference in the degree of
association across different modalities and raters?

RQ3: Does the prediction performance of ML models in contin-
uous estimation of stress vary between self ratings and observer
ratings when these ratings are employed as labels?

For this purpose, we conducted a study to collect self-reported
time-continuous ratings of stress from 31 participants who were
asked to complete a stressful task. The job interview is used as
the stress-inducing task in this study as it is known to elicit stress
among individuals due to being a zero-acquaintance high-stake
interaction between an interviewer and an interviewee [3, 44]. Self
ratings were provided at the end of the interview by each partici-
pant when they were asked to retrospectively watch the recorded
video of the interview and rate their felt stress in a continuous
manner. Next, we employed four raters as external observers to
obtain their ratings of perceived stress of the participants while
viewing video recordings of the participants who completed the
job interview. Results from analyzing 223 question/answer (Q&A)
exchanges indicate that time-continuous observer ratings of per-
ceived stress display low correlation (i.e., r = 0.145, p < 0.05) with
self-reported ratings of felt stress, and this degree of association is
significantly affected by the inter-rater reliability of the external
observers. Moreover, multimodal bio-behavioral features exhibit
higher association with observer ratings, and therefore, these rat-
ings can be estimated better (i.e., CCC = 0.4688 + 0.247) by ML
models compared to self ratings (i.e., CCC = 0.2172 + 0.205).

2 Related Work

Prior work in affective computing has examined the relationship
between the self ratings and observer ratings in various domains,
such as public speaking anxiety [8, 49], emotion [10, 14, 42, 59],
and stress detection [1, 46]. Busso et al. indicated that self ratings
of affect tend to contain more extreme values compared to observer
ratings [10]. Behnke et al. hypothesized that the anxiety rating
obtained from self-reports and the level of anxiety perceived by
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external observers would exhibit a low to moderate correlation [8].
To test this hypothesis, they conducted a study with 95 participants
who performed a public speaking task in front of an audience in a
classroom setting and then self-reported their anxiety. Audience
members also provided their perception of the degree of anxiety
the participant felt which were moderately correlated (i.e., Pear-
son’s r = 0.37,p < 0.01) with self-reported anxiety, supporting
their initial hypothesis. In a similar work, P6rhél4 found a low,
positive correlation (i.e., r = 0.10, p-value not reported) between
self-reported trait anxiety and the external observers’ perceived
anxiety during a public speaking performance completed by 47
participants in front of their peers [49]. Cheng et al. reported an
even lower correlation (i.e., Pearson’s r = 0.08 — 0.21, p-value not
reported) between self-reported and observed affect [14]. However,
the self and observer ratings used in these studies were not time-
continuous, rather they were single-valued in nature offering an
aggregate perception of a focal construct over the entire session.

Few studies have investigated the relationship between moment-
to-moment affect ratings from self and observer. Truong et al. ob-
tained time-continuous ratings of affect dimensions (i.e., valence,
arousal) from 28 participants who self-reported their affect after a
study involving multi-player gaming [59, 60]. Three external raters
also provided their perceived affect rating in the same manner while
watching the participants’ video recording. Low to medium corre-
lation (i.e., r = 0.35 — 0.41 for valence, r = 0.24 — 0.33 for arousal,
p-value not reported) has been observed between these ratings from
the two sources. Their study also indicated that ML models trained
using observer ratings exhibited better prediction performance. In
AMIGOS dataset [42], Miranda-Correa et al. obtained self-reported
single-valued valence and arousal scores from participants after
they watched emotional videos. In addition, the authors collected
multiple time-continuous valence and arousal ratings from external
observers who watched the video recordings of the participants.
They compared the mean external observer rating with self-reports
and found a significant positive correlation (i.e., r = 0.44, p < 0.05
for valence, r = 0.15, p < 0.05 for arousal). Aigrain et al. obtained
self-reported stress ratings from 25 participants who completed
mental arithmetic tasks and compared the ratings to the perceived
stress ratings obtained from external observers [1]. A moderate cor-
relation (i.e., r = 0.41, p < 0.05) was found between these ratings.
The large magnitude of the correlation is potentially attributed to
the well-defined and constrained stressors.

Collectively, these studies suggest that there is a low to moderate
correlation between the self-reported and external observer ratings
across various affect dimensions. The magnitude of the association
depends on several factors, such as the affect content being eval-
uated, the emotion elicitation process, and the nature of ratings
(i.e., continuous/singled-valued). However, there are limitations in
prior work in terms of investigating the conditions under which the
self-observer mismatch occurs and examining the effect of different
multimodal bio-behavioral features on the self-observer mismatch.
In addition, the effect of inter-rater reliability on the association
between self and observer ratings has not been studied. This paper
addresses these limitations and contributes to the current body
of research in the following ways: (1) analyzing the association
between time-continuous ratings of stress from both self-reports
and external observers obtained from 223 Q&A exchanges from a
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research study involving mock job interviews; (2) examining the re-
lationship between inter-rater reliability and the mismatch found in
self and observer ratings; and (3) investigating how bio-behavioral
features from various modalities exhibit different association with
ratings from the two sources, and how this affects the performance
of ML models that estimate stress in a time-continuous manner.

3 Data Description
3.1 Stress Elicitation through the Job Interview

In order to simulate a stress-inducing situation, we conducted a
user study involving mock job interviews that were used as a
stress-inducing task similar to prior work [6, 43]. We recruited
31 participants (27 male, 4 female) through campus-wide emails
and advertisements for this study who participated as interviewees
in the mock job interview. The average age of the participants
was 38.48 years (SD = 10.48). Participants were military veterans
who were transitioning (or had transitioned) to the civilian life
after completing their military service. In order to make the mock
interview more realistic, the job interviews were conducted by
11 interviewers who were industry representatives with prior ex-
perience in conducting interviews and recruiting personnel. The
interview was conducted in a hybrid format, where the participants
(i-e., the interviewees) came to our lab, while the industry repre-
sentatives (i.e., the interviewers) participated remotely via Zoom
video conferencing [63]. Before the day of the interview session,
a customized mock job posting was crafted for each participant
based on their résumé which they shared with the research team.
The interviewers were provided with the résumé and the mock job
posting for the corresponding participants, and they were asked to
conduct the interviews as they would normally do as part of their
work. Meanwhile, the participants were instructed to approach the
task as if they had applied for the custom job posting and were
interviewing for it. To motivate them further, they were informed
to consider the interview as an opportunity to also practice their
interviewing skill. These measures were implemented to ensure a
naturalistic interaction during the mock job interview that would
mimic the real-life interaction.

On the day of the interview, participants arrived at the lab and
were briefed about the study. They were instructed to wear two
wearable devices that captured their physiological signals during
the entire duration of the study. These devices were the wrist-
worn Empatica E4 wristband [21] and the chest-worn Actiheart
5 device [13]. The E4 wristband obtained electrodermal activity
(EDA) signal sampled at 4 Hz, while the Actiheart 5, a single-lead
electrocardiogram (ECG) recording device, collected ECG data at
512 Hz. Next, participants completed a set of measures pertaining
to their demography, prior daily experience, and individual dif-
ferences [5, 12, 18, 26, 27, 56]. After completing the measures, a
relaxation session was administered in which the participants were
shown a video of natural images with soothing music for 10 minutes
to obtain their physiological reactivity at rest. Next, participants
were introduced to the interviewer, who was connected through
Zoom. Members of the research team were not present in the room
during the interview. Audio and video of the interview session
were recorded and downloaded from Zoom. Transcripts were also
generated by Zoom and were later manually checked. In addition
to the Zoom recording, a separate webcam was used to record only
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the participants. The interview sessions lasted approximately 19.2
minutes on average (SD = 5.7). After the interview, participants com-
pleted another set of measures where they recorded their thoughts
about their performance in the interview. The study took about 2
hours for each participant to complete and provided multimodal
data from different modalities, such as audio (i.e., speech), video,
physiology (i.e., E4, Actiheart), and language (i.e., transcript).

3.2 Obtaining the Self Ratings of Felt Stress

After the completion of the interview session, participants were
asked to provide a time-continuous self ratings of stress felt during
the interview. For this purpose, we used the CARMA software [25]
which is widely used in affective computing research. Participants
watched their interview videos and provided moment-to-moment
ratings of their stress using the computer mouse while watching the
video in CARMA. The ratings were done on a continuous scale from
1 (‘No Stress’) to 5 (‘High Stress’). The ratings were sampled at a
rate of 1 Hz. The videos used for obtaining the self ratings included
only the participants recorded by the separate webcam and did not
include the interviewers that were available in the Zoom recording.
This was done to expedite the process as the Zoom recordings were
not available immediately after the end of the interview.

3.3 Obtaining the Observer Ratings of Perceived
Stress

In order to obtain moment-to-moment ratings of perceived stress
from external observers, we recruited four raters (one male, three
female) who were undergraduate students majoring in psychology
and had prior experience in emotion annotation tasks. They were
trained to work with the CARMA software [25] before they started
the tasks. The raters were asked to rate how stressed the participants
were during the interview using the same scale as participants while
watching the video. They watched the videos recorded by Zoom
that captured both the participants and the interviewers.

As the videos of the entire interview session of individual par-
ticipants were long in duration, providing ratings for the whole
videos might cause fatigue, resulting in ratings with reduced qual-
ity [40, 52]. To address this issue, the interview videos were seg-
mented into smaller videos of Q&A exchanges, where an exchange
contained a question asked by the interviewers, the corresponding
responses from the participants, and the back-channeling conversa-
tion during the questions and responses. The segmentation process
resulted in 223 exchanges from 31 participants’ interviews. The
exchanges were approximately 2 minutes long on average (SD =
1.06). Raters were instructed to first watch all the videos of a partic-
ipant so that they were aware of the context of the conversation
before attempting to rate the perceived stress of the participants.
Moreover, they were asked to rate the exchanges of the same par-
ticipants in sequence to be uniform with the self-reported ratings.
Continuous ratings from the raters were sampled at 1 Hz. A total of
80 exchanges from 12 participants were rated by four raters, while
the remaining 143 exchanges from 19 participants were rated by
three raters. The subsequent analysis presented in this paper is
performed using the exchanges obtained from the segmentation
instead of the whole videos. Therefore, the self ratings were also
segmented into exchanges that are used in further analysis for
uniform comparison with the ratings obtained from the raters.



ICMI °24, November 04-08, 2024, San Jose, Costa Rica

4 Methodology

4.1 Inter-rater Reliability and Association
between Self and Observer Ratings

The Pearson’s correlation coefficient, r is chosen as a metric to
quantify inter-rater reliability in the process of obtaining observer
ratings of perceived stress (Section 3.3). For each exchange, the
Pearson’s r is computed for ratings obtained by all possible pairs of
raters. There are six possible pairs for exchanges rated by four raters
and three pairs for exchanges rated by three raters. An aggregated
Pearson’s r is obtained for each exchange using the Fisher’s z-
transformation [55]. An overall agreement metric for the entire
dataset is also obtained by computing aggregated Pearson’s r over
all exchanges in a similar way.

Next, the arithmetic mean of the ratings from all raters for an
exchange is used as the fused rating for that exchange and the
mean rating is considered as a representation of the observer rat-
ings. Computing the mean for fusing time-continuous ratings from
multiple ratings is a common practice in prior work [40, 51]. In
investigating the degree of association between self and observer
ratings (RQ1), the association between self ratings and observer
ratings is obtained for each exchange by computing the Pearson’s
r between self ratings and fused observer ratings. Similar to the
inter-rater reliability, an overall association metric between the self
ratings and observer ratings is computed by employing Fisher’s
z-transformation [55] to aggregate Pearson’s r over all exchanges.

We identify the exchanges that exhibited higher inter-rater reli-
ability compared to other exchanges. For this purpose, we inspect
the Pearson’s r for all possible rater pairs for each exchange and
select the exchanges that had at least one pair of raters exhibiting
Pearson’s r over a given threshold value r;;. We choose r;, = 0.4
empirically based on prior work [41] and the preliminary observa-
tion of our data. The exchanges that have at least one pair of raters
exhibiting r > r;j, are considered to be in the ‘High reliability’
group, while the remaining exchanges are assigned to the ‘Low
reliability’ group. We examine the effect of inter-rater reliability on
the association between the self-reports and the observer ratings
by performing a t-test between Pearson r metrics obtained for the
exchanges in these groups.

Finally, we inspect how the self ratings of stress differ from ob-
server ratings by examining their distribution over all participants
and exchanges. To quantify potential differences, we build a linear
mixed effect (LME) model with the self ratings and the observer
ratings as the independent variable and the dependent variable, re-
spectively. Along with the fixed effect of self ratings on the observer
ratings, both random intercept and random slope are considered
for the LME model to account for the individual differences of the
participants. The model is defined as:

Lj _ ij
Fobs = (ﬂ0+ﬁ0i)+(ﬁ1+ﬁ1i)xrse[f (1)
where v/ and r™/ _ refer to the self rating and observer rating
obs self

obtained at the timestamp j for participant i. fp and f; denote
the fixed intercept and slope, respectively while fy, and f;, indi-
cate the random intercept and slope, respectively for participant
i. We inspect the model parameters (fo, f1, fo,, f1,) to quantify the
differences between self and observer ratings of stress.
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4.2 Feature Extraction from Multimodal
Bio-behavioral Signals

In order to identify the bio-behavioral features associated with self
and observer ratings of stress and examine the difference among
different ratings to answer RQ2, we perform a set of pre-processing
and feature extraction steps on the obtained multimodal signals
(Section 3.1). We extract features from different modalities, namely,
acoustic, visual, physiological, and linguistic modalities.

4.2.1 Acoustic Features. Audio signals obtained from the Zoom
recording of the interviews contain speech signals from both the
participants and the interviewers. The transcripts associated with
the recording contain the timestamps corresponding to both speak-
ers. Voice activity detection (VAD) is performed at the timestamps
during which only the participants were speaking. Next, these
segments are further used for acoustic feature extraction using
the OpenSMILE toolkit [24]. For our experiment, we choose the ex-
tended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [23]
due to its conciseness and extensive usage in prior work [6, 32,
57]. The eGeMAPS feature set consists of 88 features that include
amplitude-related parameters (e.g., loudness, shimmer), frequency-
related features (e.g., formants, jitter), and spectral parameters (e.g.,
Alpha ratio, harmonic difference). Features are computed over a
600 ms window with 100 ms overlap, and then averaged over non-
overlapping 1 second windows similar to the ratings of stress.

4.2.2  Visual Features. We use the OpenFace toolkit [7] to capture
visual features from the participants’ video recordings during the
interview session. Different types of visual features are obtained,
such as 2 gaze-related features, 3 head pose features, and 17 facial
expression features. The gaze-related features include the eye gaze
direction in radians in world coordinates along both X- and Y-axes.
These features are related to the participants’ eye contact with the
interviewer, which is found to be an indicator of stress [4, 30]. Head
pose features consist of head rotation angles around X-, Y- and
Z-axes that are widely used in prior work related to job interview
analysis [29, 44]. Finally, the facial expression features provide
the intensity of 17 facial action units (AUs) in the frames of the
video. These AUs are defined by the Facial Action Coding System
(FACS) [20], and different AUs are found to be associated with stress
and anxiety [1, 29]. These features are extracted at the same rate
as the video frame rate and then aggregated over non-overlapping
1 second window using the mean and maximum values. This has
resulted in 44-dimensional visual features for further analysis.

4.2.3  Physiological Features. Visual inspection is performed on
both the EDA signals and ECG signals to identify visible artifacts,
followed by outlier removal and noise suppression [45]. In order
to extract the features from clean EDA signals, the NeuroKit tool-
box [39] is utilized. Five features are extracted from EDA signals,
specifically, skin conductance level (SCL) parameters (i.e., mean,
standard deviation) and skin conductance response (SCR) param-
eters (e.g., amplitude, onset and peak frequency). These features
are extracted over a 10 second window with 1 second step size to
match the sampling rate of the ratings of stress. Meanwhile, 23 heart
rate variability (HRV) features are computed from the R-R interval
series obtained from ECG signals over a 4 second window with 1
second step size using hrv-analysis toolbox [31]. These features
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contain 16 time-domain features (e.g., functionals of the N-N inter-
val (NNI), heart rate (HR)) and 7 frequency-domain features (e.g.,
low frequency (LF), and high frequency (HF) power components,
LF-HF ratio). Therefore, the physiological modality is characterized
by a 28-dimensional feature set for each exchange.

4.24  Linguistic Features. To understand the psycholinguistic con-
tent of participants’ speech, we utilize the Linguistic Inquiry and
Word Count (LIWC) toolbox [48]. LIWC computes the count or
percentage of words describing various constructs known as LIWC
categories. The LIWC categories consist of general descriptors (e.g.,
word count, words per sentence), summary constructs (e.g., ana-
lytical thinking, clout), linguistic dimensions (e.g., nouns, verbs),
psychological concepts (e.g., cognition, emotion), and informal lan-
guage identifiers (e.g., filler words, confluency). Punctuation re-
lated features are excluded from the analysis. Overall, 81 linguistic
features are computed for each exchange using the participants’
responses to the questions asked by the interviewer. It is to be noted
that the linguistic features extracted in this work are not time-series
sampled at 1 Hz for each exchange. This is because these features
are not continuous time signals and require the context of the en-
tire exchange to be reliably computed. Instead, the 81-dimensional
feature set is computed over the entire exchange.

4.3 Estimation of Time-continuous Ratings of
Stress using Multimodal Features

We use a long short-term memory (LSTM) neural network to esti-
mate the time-continuous self and observer ratings of stress using
the multimodal bio-behavioral features (Section 4.2) to answer RQ3.
Features obtained from acoustic, visual, linguistic, and physiological
modalities are employed for this purpose. This model is similar to
the baseline model in the MUSE-STRESS sub-challenge of the MuSe
2021 challenge [57]. The LSTM model consists of 2 hidden layers
where each layer contains 64 hidden states, followed by a fully
connected layer with 64 states before the output layer. For incorpo-
rating the static linguistic features into the ML model with other
time-continuous modalities, we employ a two-layer feedforward
neural network (64 hidden states, 64 output states) parallel to the
LSTM to obtain their embeddings, and fuse them with the embed-
dings from LSTM before feeding them to the fully connected layer.
A window size of 60 seconds and hop size of 10 seconds are chosen
for the LSTM model. The model is trained with a learning rate of
0.005 with a scheduler with 5 epoch patience and L2-regularization
penalty of 0.001. These model hyperparameters are chosen based
after a set of experiments involving hyperparameter tuning. The
model is trained for 200 epochs, with an early stopping criterion of
no performance improvement over 15 consecutive epochs. A cus-
tom loss £ based on the concordance correlation coefficient (CCC)
loss (i.e., Lcce = 1 — CCC ) and mean square error (MSE) loss (i.e.,
Lpske ) is used to optimize the model where £ = Lece + LysE-
This is done to prioritize both the increase of CCC and decrease
of MSE, as these metrics do not always exhibit one-to-one map-
ping [47]. The model is trained via a leave-one-subject-out cross
validation scheme using 223 exchanges from 31 participants. Train-
ing and testing of ratings from two sources are performed separately.
The experiments are repeated 10 times for each configuration to
account for any randomness. Both CCC and MSE metrics are used
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Figure 1: Distribution of inter-rater reliability measured by
aggregated Pearson’s r over all exchanges.

as the evaluation metric to measure the performance of the model
in estimating the moment-to-moment self or observer ratings of
stress using the multimodal features.

5 Results

5.1 Examining Observer Ratings: Inter-rater
Reliability and Association with Self Ratings

The aggregated Pearson’s r for all possible rater pairs is used as
the inter-rater reliability metric in this work. Fig. 1 exhibits the
distribution of the reliability metric over the entire dataset (i.e.,
223 exchanges from 31 participants). The distribution is bimodal
in nature with a larger peak around r = 0.1 and a smaller peak
around r = 0.7. The mean Pearson’s r of over all exchanges is
r =0.282,p < 0.05 which indicates a low to moderate inter-rater
reliability when raters were asked to rate the perceived stress of the
participants [2, 17]. Such low correlation has been found in prior
work [59], as the perception of affect content such as stress is subjec-
tive. However, this distribution presents the aggregated Pearson’s
r for each exchange, and the aggregated r can be affected by some
rater pairs showing lower agreement compared to other pairs. To
examine this, the exchanges are separated into a ‘High Reliability’
and a ‘Low Reliability’ group based on whether an exchange has
a pair of raters with Pearson’s r higher than the threshold value
of ripres = 0.4 (Section 4.1). This results in 144 exchanges falling
into the ‘High Reliability’ group, while the remaining 79 exchanges
being assigned to the ‘Low Reliability’ group. The inter-rater re-
liability for the exchanges in ‘High Reliability’ group is found to
be r = 0.453, p < 0.05 compared to the ‘Low Reliability’ group (i.e.,
r =—0.0714, p < 0.05), which is higher than the overall reliability.

Next, we investigate the association between the self ratings and
the observer ratings by computing Pearson’s r, where the observer
rating is obtained by computing the arithmetic mean over ratings
from all raters for an exchange. A low correlation has been found
(i.e., r = 0.145, p < 0.05) between the self and observer ratings of
stress, which is consistent with prior work [14, 42, 59]. However,
a significant difference in the self-observer rating association is
found between the exchanges of the ‘High Reliability’ and ‘Low
Reliability’ groups, as shown in Fig. 2. The t-test confirms (i.e.,
£(221) = 3.409, p < 0.05) that the exchanges in the ‘High Reliability’
group exhibit higher correlation (i.e., r = 0.216, p < 0.05) between
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Figure 2: Difference in the distribution of the association
between self-reported ratings and observed ratings based on
the inter-rater reliability of the exchanges.

self and observer ratings, compared to the correlations (ie., r =
0.015, p < 0.05) in the ‘Low Reliability’ group. Therefore, the result
indicates that the inter-rater reliability plays an important role
on the association between self ratings of felt stress and observer
ratings of perceived stress.

Next, we examine the difference in the nature of ratings of felt
stress from the participants’ self-reports and the rating of perceived
stress by the observers for the corresponding exchanges. A scat-
ter plot showing the self ratings and the corresponding observer
ratings is presented in Fig. 3. It is evident that the observer ratings
rarely exceeded 3 on the 1-5 point scale, and in very few cases, the
observer ratings were around 4. Conversely, the self ratings tend
to contain more extreme values, even when the observer rating is
lower. In Fig. 3, the majority of the data points (i.e., 60.01%) fall be-
low the identity line y = x. Significant fixed effects are found by the
LME model, where the fixed intercept is fo = 1.208,p < 0.05 and
the fixed slope is 1 = 0.17, p < 0.05. The variance of the random
intercept and random slope are 0.216 and 0.05, respectively. The
fitted line in Fig. 3 is described by considering the fixed effects in (1),
while the shaded area denotes the 95% confidence interval resulting
from the random effects. Results suggest that self-reported ratings
contain more extreme values than the observer ratings, and the
participants tend to consider themselves more stressed even when
they are perceived as being less stressed by external observers.

5.2 Inspecting the Association between
Bio-Behavioral Features and Stress Ratings

To answer RQ2, we investigate the association between the bio-
behavioral features and time-continuous self and observer ratings
of stress. In case of time-continuous modalities (i.e., acoustic, visual,
and physiological), the Pearson’s r is computed for each exchange
and the aggregated Pearson’s r is computed over all exchanges.
However, a different approach is taken for the static linguistic
features as they were computed over the entire duration of an ex-
change, and they do not have the same temporal resolution as the
ratings. Therefore, the Pearson’s r between the linguistic features
and the maximum rating of exchanges is obtained, since the max-
imum rating captures the most salient rating in terms of felt or
perceived stress. Table 1 presents the correlation of the features
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Figure 3: Self-reported ratings and the corresponding ob-
server ratings for all the timestamps of all exchanges. The
colorbar on the right shows the density of the scatter plot.

from different modalities with self ratings and observer ratings
of stress. Detailed correlations for all extracted features are avail-
able in the supplementary material. From the result, it is clear that
all types of features exhibit stronger associations with observer
ratings compared to self ratings. This might have been attributed
to the process of obtaining the ratings. The raters had to watch
the audio-visual recording of the interview multiple times to un-
derstand the context to provide the ratings. On the other hand,
participants performed the retrospective rating after completing
the interview and they might have relied on recalling their expe-
rience based on the linguistic content, instead of relying on the
audio-visual recording. Among the different modalities, observer
ratings depict the highest correlations with acoustic features, while
self ratings depict the highest correlations with linguistic features.
Despite the magnitude of correlations, the most predictive features
are similar for both self and observer ratings. The most prominent
acoustic features are the formant frequencies (i.e., F3, F2), funda-
mental frequency, and shimmer. Among the visual features, head
rotation and gaze angle, potentially associated with eye contact and
head movement [29, 43], are positively correlated with ratings of
stress. The use of nonfluencies and informal language are found to
be positively correlated, while the word count is negatively corre-
lated with both self-reported ratings and observer ratings of stress.
Finally, mean SCL and HR are the more prominent physiological
features exhibiting positive correlations with observer ratings.

5.3 Estimating Moment-to-moment Stress using
Bio-Behavioral Features

Finally, we answer RQ3 by training an LSTM model with multi-
modal bio-behavioral features to estimate the moment-to-moment
ratings of stress obtained from self-reports and external observers
(Section 4.3). Features from different combinations of the available
modalities (i.e., Audio, Video, Physiology, Language) are provided
as input to the model. Table 2 presents the outcome of the predic-
tion experiments in terms of CCC and MSE metrics. Results sug-
gest that the observer ratings are easier to estimate by the LSTM
model using unimodal or multimodal features, compared to the self-
reported ratings. The best performance (i.e., CCC = 0.4688 + 0.247,
MSE = 0.0988 + 0.141) is obtained when audio-visual features
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Table 1: Aggregated Pearson’s correlation coefficient (r) be-
tween bio-behavioral features from different modalities and
ratings of stress obtain from self-reports and raters.

Modality | Feature Self | Observer
F3 frequency 0.1234 | 05577
F2 frequency 0.1234" | 05564
Audio F0 frequency 0.1119" | 05116
Shimmer 0.1017 | 0.4439"
Jitter 0.0789" | 0.3282°
AU25 (Lips part) 0.0919 | 03639
Head rotation (Y-axis) 0.0484" 0.1720"
AUO1 (Inner Brow Raiser) | 0.0382° | 0.1413
Video Gaze angle (X-axis) 0.0446" 0.1385
AU09 (Nose Wrinkler) 0.0387" 0.1174"
Head rotation (X-axis) 0.0338" 0.1144"
AU07 (Lid Tightener) 0.0160" | 0.1028"
Mean SCL 0.0564 | 0.2242°
Physiology Mean HR 0.0132: 0.1777:
Max HR 0.0152" | 0.1743
SCR Frequency 0.0159" | 0.1026"
Nonfluencies 0.1915 | 0.2703
Informal language 0.1669 | 0.2589"
Language Words per sentence 0.1951° 0.2209"
Clout -0.0498 | 0.0780
Filler words 0.1337 | 0.0716
Word count -0.0971 | -0.1413"
*1p <0.05

fused with linguistic features are employed in estimating the ob-
server ratings of perceived stress. Meanwhile, the self-reported
ratings of felt stress are estimated the best in terms of CCC (i.e.,
CCC = 0.2172+0.205, MSE = 0.5962+0.729) by the model that com-
bines linguistic features with audio-visual features, and in terms
of MSE (i.e., CCC = 0.2079 + 0.186, MSE = 0.5801 =+ 0.682) by the
model combining physiological features with audio-visual ones.
These observations are further confirmed by performing one-way
ANOVA test on CCC values obtained for different cases. Signifi-
cant differences are found for CCC from different modalities for
both self (i.e., F(9,90) = 95.9, p < 0.01) and observer ratings (i.e.,
F(9,90) =595.7, p < 0.01). Post-hoc Tukey HSD tests indicate that
best combination (A+V+L) for observer ratings significantly out-
performs other combinations. An independent t-test is conducted
between the best cases for self and observer ratings. CCC for ob-
server ratings is significantly higher (i.e., t(18) = —48.5,p < 0.01)
than self ratings. The inclusion of the physiological feature does not
improve the prediction performance of the observer rating. This
is expected as the raters only relied on the audio-visual recording
while rating their perceived stress of the participants. On the other
hand, physiological indices are known to capture the participants’
reactivity when stressed, and therefore, they can be used to im-
prove the estimation of the self-reported ratings of stress. Among
the unimodal features, acoustic features are found to be the best
performing features in estimating both self-reported and observer
ratings of stress. The inclusion of linguistic features to the acoustic
features seems to improve the performance for the observer ratings.
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The visual features further improve the predictive performance for
observer ratings when added to the acoustic and linguistic mea-
sures. These suggest that external observers rely on the multimodal
content of the video when rating, while self observers tend to rely
mostly on acoustic and linguistic features.

6 Discussion

In this work, we investigate the interplay between self-reported
ratings of felt stress and external observers’ ratings of perceived
stress in terms of their association with multimodal bio-behavioral
signals. Although prior work examined the mismatch between self
and observer ratings [10, 42, 59], this has not been examined for
time-continuous ratings in the context of stress. Using data from
223 Q&A exchanges from 31 participants’ mock job interviews, we
pose three research questions to address this knowledge gap. In
RQ1, we investigate the inter-rater reliability of the ratings ob-
tained from the four raters in our study and determine how the
reliability of the observer rating affects its association with self
ratings. Time-continuous observer ratings of perceived stress ob-
tained from the raters exhibit low to moderate inter-rater reliability
(i.e., r = 0.282). This is not unprecedented as rating affect content
is a complex process, influenced by ambiguity and subjectivity in
perceiving emotion [19, 40]. The time-continuous nature of the
ratings introduces additional complexity to the rating process. The
exchanges in the ‘High Reliability’ group exhibit higher reliability
(i.e., r = 0.453) compared to the remaining exchanges, which attests
to the ambiguity in the process of rating perceived stress. There
is also a significant difference between exchanges in ‘High Relia-
bility’ and ‘Low Reliability’ groups in terms of their association
with self-reported ratings (i.e., r = 0.216 and r = 0.015 for ‘High
Reliability’ and ‘Low Reliability’ group, respectively). Although the
overall correlation between self and observer ratings is low in our
work, similar to prior work [14, 42], these findings indicate that
certain exchanges exhibit less ambiguity compared to others. When
interpreting these findings through the lens of Brunswik’s lens
model [9], it could imply that exchanges categorized in the ‘High
Reliability’ group may present proximal cues (i.e., transmitted cues
perceived by the raters) that are easily decoded and interpreted by
the raters. These proximal cues likely convey similar information
to the distal cues (i.e., how cues are encoded by the individuals
experiencing the stressor), resulting in a high degree of association
between self and observer ratings. On the contrary, the proximal
and distal cues within the ‘Low Reliability’ group might present
high ambiguity, leading to a very weak association between self
and observer ratings.

Furthermore, we highlight the difference in the nature of ratings
obtained from self and observer. Data from our study suggest that
participants generally consider themselves more stressed than they
are perceived by others for the majority of the interview duration
(i.e., 60%). Self ratings exhibit more extreme values compared to
the corresponding observer ratings, a trend observed also in prior
research [10, 34, 59]. This mismatch might have been caused by
the ambiguity of distal cues for the extreme values that might have
increased the complexity of the decoding process for the raters.
Next, RQ2 examines how bio-behavioral features from different
modalities (i.e., acoustic, visual, linguistic, physiological) exhibit
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Table 2: Prediction performance of the LSTM model in estimating self and observer ratings of stress using features from
different modalities (i.e., acoustic (A), visual (V), physiological (P), linguistic (L)). CCC (u = o) and MSE (u + o) are reported as the

evaluation metrics.

. CCC(uxo MSE (u+ o

Modality Self b Ol))server Self e Oi)server
A 0.1987 £ 0.188 | 0.3916 +0.286 0.6285 +0.751 | 0.1186 = 0.167
\'% 0.1141 £ 0.117 | 0.3166 £ 0.228 0.6761 £ 0.896 | 0.1218 +0.151
P 0.0848 + 0.134 | 0.2016 £ 0.152 0.7126 £ 0.876 | 0.1510 £ 0.192
A+L 0.2002 = 0.190 | 0.4396 + 0.257 0.6278 £ 0.750 | 0.1102 + 0.157
V+L 0.1658 £ 0.184 | 0.3840 £ 0.212 0.6118 £ 0.716 | 0.1047 £ 0.123
P+L 0.1338 £ 0.153 | 0.2872 +0.145 0.6437 +£0.787 | 0.1184 +0.162
A+V 0.2027 £ 0.172 | 0.4092 £ 0.272 0.6243 + 0.827 | 0.1045 +0.115
A+V+L 0.2172 £ 0.205 | 0.4688 + 0.247 0.5962 +0.729 | 0.0988 + 0.141
A+V+P 0.2079 £ 0.186 | 0.3939 + 0.257 0.5801 £ 0.682 | 0.1125 +0.146
A+V+P+L 0.1886 = 0.192 | 0.4448 + 0.241 0.5979 £ 0.758 | 0.1045 £ 0.150

association with moment-to-moment ratings of stress from self
and observer. The acoustic features depict the highest association
with observer ratings, followed by the visual and linguistic fea-
tures. This suggests that as the raters watched the videos of the
exchanges to rate the perceived stress, they might have focused
heavily on the acoustic, visual, and linguistic cues. Conversely, the
self ratings exhibit the highest correlations with linguistic features,
followed by acoustic features, and very low correlations with visual
features. This indicates that the participants might have focused
more on the content of the interviews while rating their felt stress
retrospectively, instead of relying on the visual cues.

Finally, we inspect the variation of the prediction performance
of ML model in estimating time-continuous ratings of stress from
self and observer as part of RQ3. We find that observer ratings
are better estimated by ML models than self ratings, and this is
the case across all modalities. This suggests that perceived stress
might be easier to be modeled by multimodal indices, compared
to felt stress [58, 59]. ML models trained and tested using observer
ratings perform the best when acoustic, visual, and linguistic fea-
tures are used. This result comes as no surprise as these features
exhibit higher association with observer ratings. Also, these are the
modalities that the raters perceived as proximal cues. Physiological
features did not contribute to improved performance for observer
ratings, as raters did not have access to these cues. However, the ad-
dition of physiological features with audio-visual features resulted
in a slightly better performance for estimating self ratings. Physio-
logical indices act as distal cues, as they are more related with felt
stress, due to their association with individuals’ reactivity to their
exposure to stressful situation [8, 62]. The variation of the results
for self and observer ratings across different modalities suggests
that the choice of feature modality and rating source has important
implications for the design of continuous stress detection systems.
Self ratings are found to be more difficult to estimate compared
to observer ratings, which is consistent with prior work [1, 14].
However, self ratings were obtained from different participants
while observer ratings were obtained from the same raters who
have had the chance to review all participants [59]. This might
have introduced more subjectivity from individual differences in
the self ratings compared to the observer ratings, which adds to
the complexity of the estimation of self rating by ML model, as
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we used a participant-independent (i.e., leave-one-subject-out) ex-
perimental design. A participant-dependent framework might be
a better option in training ML models to estimate self ratings of
stress, which can serve as a future research direction.

Results from this study highlight the importance in understand-
ing the nuances of time-continuous rating of stress from self-reports
and multiple observers. Different elements of affective processes
are captured while obtaining the ratings of felt stress and perceived
stress from self and observer, respectively. This results in the dif-
ferences in ratings obtained from two sources which in turn, can
affect the ML models being used in estimating moment-to-moment
stress ratings. Therefore, understanding the difference in the per-
ception of stress in terms of multimodal bio-behavioral signals is
needed to ensure effective continuous stress detection. Results from
the current study come with some limitations. The job interview
as a stress-inducing task is not as well-defined and constrained as
other stressors (e.g., mental arithmetic task, cold pressor) commonly
used in prior work [1, 6]. This might have introduced additional
subjectivity in the time-continuous ratings. Next, the number of
raters used as external observers is not very high, which might
have decreased the generalizability of the result. Finally, the lin-
guistic features had lower temporal resolution than features from
other modalities, which makes it difficult to perform a uniform
comparison in terms of their association with ratings of stress.

7 Conclusion

This work investigates how the perception of stress differs across
time-continuous ratings from self-report and multiple observers.
Association between self and observer ratings has been explored
and the effect of inter-rater reliability on this association has been
investigated. Findings indicate that observer ratings of stress are
better correlated with multimodal indices and these ratings are
better estimated by ML models. As part of future work, we plan to
examine the individual differences of the participants and the raters,
and inspect their effect on the mismatch between time-continuous
ratings of stress obtained from self and observer.
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