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ABSTRACT
Public speaking anxiety (PSA) is among the top social pho-
bias in the world. Quantifying PSA in a reliable and unobtru-
sive manner can lay the foundation toward personalized and
inexpensive technology-based interventions. Existing work
for quantifying PSA often relies on self-reported measures
and statistical aggregates of bio-behavioral indices, such as
physiology and speech. Such aggregated bio-behavioral in-
dices are not able to capture time-based trajectories of PSA
variation, that can be very useful for better understanding and
reliably predicting moments of anxiety. We tackle this prob-
lem by introducing temporal parametric models to quantify
bio-behavioral trajectories of PSA throughout a public speak-
ing encounter. Using data from 55 participants in a real-life
public speaking task, the parameters of the proposed models
are found to be significantly correlated with individuals’ trait
characteristics of general and communication-based anxiety,
outperforming aggregate mean bio-behavioral measures.

Index Terms— Public speaking anxiety, physiology,
speech, transient oscillation, quadratic polynomial

1. INTRODUCTION
Public speaking is an important aspect of human communi-
cation, since it enables individuals to present their ideas, per-
suade others, and make tangible impact [1]. Yet, recent statis-
tics indicate a large portion of people rank public speaking
as one of their top fears [2, 3]. This communication-based
phobia, often referred to as “public speaking anxiety” (PSA),
is known to elicit physiological arousal (e.g., increased heart
rate) and negative affect (e.g., feelings of disappointment) [4,
5]. Designing novel technologies for detecting, predicting,
and mitigating PSA might help people in various stages of
their academic and professional careers, potentially contribut-
ing to life-long learning and re-skilling. Also, the detection
of such anxiety in less obtrusive manner is necessary to help
people overcome this communication disorder.

PSA is often viewed as “state” (or situational) anxiety, ex-
perienced in-the-moment given a specific stimuli [6]. Indi-
viduals with higher “trait” anxiety, who are inherently prone
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to stress and negative emotions, may suffer more from state
PSA than their low trait anxiety counterparts [7]. Beyond
the conventional self-reported indices, PSA can present itself
as a change in bio-behavioral signals, such as voice intona-
tion, sweat secretion, and heart activity [8, 9, 10]. PSA fur-
ther depicts temporal variations throughout the public speak-
ing task, which might include decreasing (habituation) or in-
creasing (escalation) patterns over time, as well as increasing
patterns followed by a decrease (sensitization) [5]. However,
existing work relies heavily on aggregated measures of bio-
behavioral signals for modeling PSA, overlooking temporal
variations, which can be indicative of the various individual
traits [5]. For example, speakers with low trait anxiety de-
pict reduced escalation in their physiological patterns, com-
pared to their high trait anxiety counterparts [11]. Individuals
with higher sensitivity to public speaking depict strong sen-
sitization patterns [12]. These indicate the presence of high
inter-individual variability with respect to temporal PSA pat-
terns. Quantifying such differences can potentially help us
better predict momentary anxiety during public speaking, af-
ford us novel insights into the ways anxiety evolves through-
out the public encounter, and help us design in-the-moment
interventions with appropriate feedback mechanisms.

We quantify temporal trajectories of bio-behavioral sig-
nals within a public speaking task through two types of para-
metric models. A transient oscillation model mimics alter-
nating habituation and sensitization trajectories. A quadratic
polynomial model represents non-oscillatory escalation or ha-
bituation patterns. The considered bio-behavioral indices in-
clude acoustic and physiological measures, commonly used
for quantifying trait anxiety [13, 14, 10]. The parameters
of the proposed transient oscillation and quadratic polyno-
mial models are highly interpretable and serve as quantita-
tive descriptors of PSA trajectories, examined in association
to individuals’ trait-based general and communication anxi-
ety. Our results obtained in 55 participants indicate that the
proposed time-based representations of bio-behavioral mea-
sures can more reliably estimate participants’ characteristics
compared to the corresponding aggregate mean scores.
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Fig. 1. Theoretically-grounded time trajectories of public
speaking anxiety.

2. RELATED WORK

Spielberger [15] presented a clear distinction between “state”
and “trait” anxiety. The former corresponds to experiencing
stress at a particular scenario and time, while the later refers
to a general tendency to experience anxiety across situations
and time. Most works view PSA as state anxiety [10, 5].
Batrinca et al. [16] incorporated acoustic measures (inten-
sity, fundamental frequency, number of pauses) and gestures
(gaze, limb movement) for modeling PSA. Chen et al. [17]
proposed a multimodal approach to predict audience evalua-
tion scores from speech intonation, pitch, and other acoustic
measures. Yadav et al. [10] incorporated demographics with
a multimodal feature set to predict state anxiety.

While the aforementioned work has modeled PSA through
a single aggregated measure, other work indicates that the
time-based variability in “state” anxiety can be better ex-
plained when incorporating measures of “trait” anxiety, ner-
vousness, and demographics [18]. Bodie presented distinct
patterns of habituation and sensitization over time during a
public speaking encounter [5] (Fig. 1). Habituation refers to
higher stress anticipation at start. Sensitization corresponds
to experiencing a rise in anxiety at first, followed by a stable
state or a decrease. Escalation is associated with constantly
increasing anxiety. These findings indicate that the aggrega-
tion of bio-behavioral indices over time might fail to reveal
important information about the PSA. Motivated by these,
this paper quantifies temporal patterns of bio-behavioral
signals to model time trajectories of PSA within a public
speaking task. The contributions are the following: (1) We
propose to model temporal trajectories of PSA based on para-
metric transient oscillation and quadratic polynomial models
of bio-behavioral signals. The oscillatory model captures
alternating habituation and sensitization trajectories, while
the polynomial model represents non-oscillatory habituation,
escalation, or sensitization; (2) We examine the association
of the parameters of the aforementioned models to individu-
als’ psychological characteristics, in an effort to obtain new
insights into the ways different people experience the public
speaking task.

3. DATA DESCRIPTION
Our data includes 55 participants (23 female, 21 years aver-
age age) performing a public speaking task in front of a real
audience. Participants were given 10 minutes to prepare their
speech based on a randomly assigned news article from vari-
ous topics (e.g. history, business, well-being/healthcare). Fol-
lowing that, participants had to present the article in front of
the audience for 5 minutes. More details on the procedures
can be found in Yadav et al. [10].

For the acquisition of physiological and speech signals,
participants wore a wrist-mounted Empatica E4 watch [19]
and a Creative lavalier microphone. The Empatica E4 col-
lects electrodermal activity (EDA), sampled at 4 Hz, and av-
erage heart rate (HR), calculated from the photoplethysmog-
raphy (PPG) sensor and sampled at 1 Hz. Audio signals were
obtained at 16 kHz sampling rate and 16-bit encoding. Fea-
tures from these signals are extracted to model bio-behavioral
trajectories during a public speaking encounter with the pro-
posed transient oscillation and quadratic polynomial models.

In order to capture individuals’ trait characteristics, stan-
dardized surveys were administered before the public speak-
ing task, which included the Trait-Scale of the Trait Anxi-
ety Inventory (STAI) [15], Brief Fear of Negative Evalua-
tion (BFNE) survey [20], and the Personal Report of Public
Speaking Anxiety (PRPSA)[21]. The STAI and PRPSA mea-
sure general and communication-specific trait-anxiety, while
the BFNE captures feelings of apprehensions about others’
evaluation. These will be used to explore individual differ-
ences in terms of bio-behavioral trajectories.

4. PROPOSED METHOD

In this section, we describe the extraction of physiological
and acoustic features, which will comprise the bio-behavioral
time-series (Section 4.1). We then explain the proposed tran-
sient oscillation and quadratic fit models (Sections 4.2, 4.3).

4.1. Feature Extraction
Noise cancellation and outlier removal were performed on the
physiological data. Voice activity detection was applied in
speech [10]. Bio-behavioral features include the mean skin
conductance level (SCL), average heart rate, fundamental fre-
quency (F0), jitter, and shimmer, extracted over 15 second
analysis windows and scaled for each participant. In accor-
dance to previous studies [13, 14, 10], we expect that the pro-
posed bio-behavioral features are indicative of trait anxiety,
as experienced in-the-moment throughout the public speak-
ing session. Visual inspection of the resulting time-series
indicated that HR times-series depicted oscillatory patterns,
while the remaining signals followed a smoother quadratic
polynomial shape. For this reason, we used the transient os-
cillation model (Section 4.2) for HR, and the quadratic poly-
nomial model (Section 4.3) for SCL, F0, jitter, and shimmer.
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(a) Participant 1
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(b) Participant 2
Fig. 2. Transient oscillation model fit of heart rate time-series
for two participants. Model parameters are presented in the
equation on top of the figures.

4.2. Transient Oscillation Model
The transient oscillation model represents oscillatory time-
series through the following damped harmonic oscillation:

y(t) = Ae−τt sin (2πft+ φ) + c (1)

where y(t) is the HR at time t, and A, τ , f , φ, and c corre-
spond to amplitude, decay rate, oscillation frequency, initial
phase, and bias. Large values ofA and c indicate higher levels
of HR and oscillations of larger amplitude. High values of τ
depict a fast dampening oscillation. High values of f indicate
oscillations of higher frequency, while large φ suggests that
the first peak of the oscillation is closer to zero.

For each participant’s HR time-series, the above param-
eters are obtained by fitting the data to (1) using a nonlinear
least square regression. The approximate optimization pro-
cess of the non-linear least square regression requires a good
starting point for obtaining a good fit. The oscillation fre-
quency f is initialized using the frequency obtained by count-
ing the consecutive peaks and zero crossings. If this yielded
an initialization of f = 0, we set f = 0.01 and φ = π

2 to
avoid losing the oscillatory part of the model. Phase φ is ini-
tialized using a small number, e.g., φ = 0.01. In order to find
a good initialization point for Ao, τ , and co, the given HR
time-series is fitted into the exponential function:

y(t) = Aoe
−τot + co (2)

whose parameters hold the same meaning as in 1. Optimiza-
tion is performed through a non-linear least squares regres-
sion. Due to its lower complexity compared to (1) (i.e., 3
parameters to estimate), (2) can yield reliable starting points
for A, τ , and c, based on which (1) will be optimized.

Five transient oscillation features are obtained per partic-
ipant. Illustration of the proposed model using data from two
participants is presented in Figure 2. Participant 2 depicts
small value of τ , which indicates a slower dampening of the
HR compared to Participant 1.

4.3. Quadratic Polynomial Model
A quadratic model is fitted into the bio-behavioral features
which do not depict oscillatory patterns, i.e., mean SCL, F0,
jitter, and shimmer:

y(t) = a(t− to)
2 + b (3)
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(a) Participant 3
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(b) Participant 4
Fig. 3. Quadratic polynomial fit depicting (a) habituation pat-
terns of skin conductance levels; and (b) sensitization patterns
of shimmer.

where y(t) is the bio-behavioral time-series at time t, a
refers is the rate of temporal change, to is the time when
minima (or maxima) occurs, and b is the bias term. Posi-
tive values of a are likely to depict patterns of habituation
in terms of the bio-behavioral time-series, while negative a
indicates sensitization effects (Section 2, Figure 1). Higher
a and b indicate higher fluctuation. On the other hand, to
dictates how fast or slow bio-behavioral indices will reach a
maximum. Lower to suggests that the bio-behavioral times
series reaches a maximum faster in the case of sensitization.
Least squares regression is used to fit each time-series into
the model, resulting in 3 parameters per participant for each
bio-behavioral index. Examples of bio-behavioral time-series
and their quadratic polynomial fit are in Figure 3. Partici-
pant 3 depicts high positive values of a, reflecting habituation
over time, while Participant 4 has negative a values alluding
to sensitization.

4.4. Evaluation
We examine potential relationship between the proposed
models and participants’ trait characteristics by computing
the Pearson’s correlation between self-reports (i.e., STAI,
PRPSA, BFNE; Section 3) and the model parameters (i.e., A,
τ , f , φ, and c for the transient oscillation; a, b, and to for the
quadratic polynomial; Sections 4.2, 4.3). We further trained
a linear regression with a 10-fold cross-validation to estimate
participants’ trait scores using the model parameters as fea-
tures. The total experiment is repeated 20 times, to decrease
randomness by the 10-fold split. Since each participant cor-
responded to one sample, there is no contamination between
the train and test set. We reported the Spearman’s correlation
between the actual and estimated trait characteristics, since
the latter take integer values. As baseline, we employed a
linear regression model whose features included the mean
value of the bio-behavioral indices, computed over the public
speaking session.

5. RESULTS
5.1. Relation between Individuals’ Bio-Behavioral Time
Trajectories and Trait Characteristics
Table 1 presents the Pearson’s correlation coefficient (r) be-
tween the proposed model parameters and individuals’ trait
characteristics. For the transient oscillation model, the am-
plitude A and bias c are positively correlated with the trait
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Table 1. Pearson’s correlation coefficient between the bio-
behavioral time-trajectory model parameters and individuals’
trait characteristics (State-Trait Anxiety Inventory-STAI, Per-
sonal Report of Public Speaking Anxiety-PRPSA, Brief Fear
of Negative Evaluation-BFNE).

Modality Feature Trait Pearson’s r

Heart rate

c
BFNE 0.31*

PRPSA 0.22
STAI 0.28*

φ
BFNE -0.23

PRPSA -0.27*

STAI -0.23

A
BFNE 0.12

PRPSA 0.15
STAI 0.22

Skin conductance level a
BFNE 0.35**

PRPSA 0.30*

STAI 0.24

Fundamental frequency b
BFNE 0.29*

PRPSA 0.21
STAI 0.20

Jitter to

BFNE -0.19
PRPSA -0.26
STAI 0.01

∗: p <0.05, ∗∗: p <0.01

scores, indicating that individuals with higher trait anxiety
depict higher amplitude oscillations in their HR trajectories
compared to their low trait anxiety counterparts. Similarly,
HR for individuals with high PRPSA reaches a maximum
faster (i.e., lower φ values) compared to the ones with low
PRPSA. For the quadratic polynomial model, the a parame-
ter based on the mean SCL shows significant correlation with
all trait scores. Large positive values of a indicate narrower
polynomial curve, which might suggest that it takes a shorter
time for bio-behavioral signals of individuals with higher trait
anxiety to reach a minimum. The to parameter of the jitter
time-series exhibits negative correlation PRPSA, which indi-
cates that the maximum of the corresponding time-series is
reached faster for individuals with higher trait communica-
tion anxiety.

5.2. Estimation of Individuals’ Trait Characteristics
Since the physiological and acoustic trajectory measures ex-
hibit significant correlations with some of the self-reported
trait anxiety scores, we proceed to use them as features to esti-
mate individuals’ trait characteristics (Table 2). The proposed
feature sets, which model time-trajectories within a public
speaking session, tend to outperform the corresponding aver-
age measures of bio-behavioral features, used as our baseline.
Using both physiological and acoustic features, our model
achieves good predictive ability for the BFNE (ρ = 0.33,
p = 0.01), while physiological features only provided an
even better performance (ρ = 0.35, p < 0.01). Features of
the transient oscillation model appear to perform very well,
obtaining the highest Spearman’s correlation for the BFNE
estimation (ρ = 0.37, p < 0.01). On the other hand, the base-
line model displays non-significant correlations when using
separate groups of features, and low correlations approaching
significance with both modalities (ρ = 0.18, p = 0.2).

Table 2. Spearman’s correlation coefficient between ac-
tual and predicted trait scores using different bio-behavioral
modalities, for proposed transient oscillatory and quadratic
polynomial features, and the baseline average measures.

Modality Trait Our Method Baseline

Heart Rate only
BFNE 0.37** 0.04

PRPSA 0.29* -0.88**

STAI 0.31* -0.13

Physiological
BFNE 0.35** 0.08

PRPSA 0.15 -0.12
STAI 0.23 -0.07

Acoustic
BFNE 0.31* 0.10

PRPSA 0.11 0.12
STAI -0.04 -0.22

Physiological & Acoustic
BFNE 0.33* 0.18

PRPSA 0.16 0.11
STAI 0.17 -0.23

∗: p <0.05, ∗∗: p <0.01

6. DISCUSSION
The proposed transient oscillation and quadratic polyno-
mial approaches can provide highly interpretable models to
capture escalation, habituation, and sensitization patterns of
state-anxiety within a public speaking session. The param-
eters of the corresponding models can further quantify the
degree of such phenomena, yielding valuable insights into
the generative physiological processes that occur during the
public speaking encounter. Results indicate that our pro-
posed models can capture temporal bio-behavioral patterns,
which are significantly correlated with individuals’ general
and communication-based anxiety. Findings from this study
can have valuable implications toward personalized models
and time trajectories of state PSA during the public speak-
ing encounter, which can help toward reliable prediction of
state anxiety and in-the-moment interventions. Despite the
encouraging results, the proposed method only uses data col-
lected from up to 5 minutes of a public speaking task. The
model scalability needs to be explored in large data collection
settings. Also, the quadratic model can oversimplify existing
longitudinal trajectories, while more sophisticated models
might be more useful in this context.

7. CONCLUSION
We introduced transient oscillation and quadratic polynomial
models to quantify bio-behavioral time trajectories of habit-
uation, sensitization, and escalation during a public speaking
task. Significant correlations between the proposed model pa-
rameters and individuals’ general and communication-based
anxiety trait characteristics have been identified. The pro-
posed model parameters outperform a baseline model, whose
features include commonly used mean values of the corre-
sponding bio-behavioral signals, for automatically estimating
trait characteristics. As part of our future work, we will focus
on predicting in-the-moment anxiety using the trajectory fea-
tures developed in this paper. We will further leverage addi-
tional sources of information from electrocardiogram (EEG)
signals, and examine data-driven time trajectory models.
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