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Recordings
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Abstract—Enabling continuous and unobtrusive monitoring of stress is essential for delivering personalized stress interventions at
opportune moments. To achieve automatic stress detection on a time-continuous basis, reliable moment-to-moment ratings of stress
are required. However, the current research lacks a large-scale multimodal dataset that provides time-continuous ratings of perceived
stress. Existing datasets mainly consist of single-valued self-reported ratings obtained after the stress-inducing task or rely on
audio-visual recordings to capture moment-to-moment ratings from multiple annotators. The collection of time-continuous ratings of
stress based solely on audio recordings has not been extensively explored. In this paper, we introduce an updated version of the
publicly available VerBIO dataset that contains moment-to-moment ratings of perceived stress from multiple annotators. These
annotators rated their perception of stress by listening to participants who had conducted a public speaking task. Time-continuous
ratings of stress are obtained from four annotators using 22 hours of audio recordings from 339 public speaking sessions performed by
53 individuals. These time-continuous ratings of stress perception were obtained from the annotators solely based on speech, without
incorporating the visual modality as an expressive marker. We examine the reliability of the annotation scheme employed in this study
and investigate the factors contributing to the observed variation in perceived stress among annotators. Next, we introduce an
annotation fusion technique based on expectation-maximization to obtain a reliable gold standard rating by aggregating the ratings
from multiple annotators. Results indicate that the proposed annotation fusion technique yields aggregated ratings that can be
estimated more reliably using acoustic features compared to the ratings yielded from conventional annotation fusion techniques. The
newly generated annotations are publicly available within the proposed updated version of the existing VerBIO dataset, facilitating
research in the field of continuous stress detection.

Index Terms—Stress, speech, dataset, annotation fusion, moment-to-moment rating.
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1 INTRODUCTION

S TRESS can be defined as an individual’s physiological
and psychological response towards a challenge coming

from a threatening environment or situation [1], [2]. These
challenges can include demanding work environments [3],
tasks involving cognitive load [4], [5], physically burden-
some activities [6], [7], or anxiety in interpersonal com-
munication [8]–[10]. Stress exerts a significant influence on
human performance. While exposure to a certain level of
stress can enhance performance, high stress is known to
decrease performance and cause burnout [11]. Prolonged
exposure to stress can result in heightened levels of anxiety
and fear, negatively impacting both physical and mental
well-being. Long-term exposure to stress has been related to
adverse health effects, such as cardiovascular diseases, men-
tal health complications, and sleeping disorders [12], [13].
Due to its enduring impact on physical and psychological
health, stress is often regarded as a modern epidemic [14],
[15]. Consequently, the monitoring and detection of stress
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have become active areas of research in affective computing
and human-computer interaction.

Stress, as an affective state, is associated with negative
valence and high arousal, therefore it can be mapped in
the top-left quadrant of the circumplex model of affect [16].
Stress is manifested via the physiological response of the
autonomic nervous system (ANS) of the human body. The
ANS comprises of two components–the sympathetic (SNS)
and parasympathetic (PNS) nervous systems. The SNS is
responsible for the “flight-or-fight” response under stress
that causes physiological reactivity such as sweating or
racing heart [17], [18]. Stress is also manifested via muscle
activity that causes pupil dilation, change in facial expres-
sion, and increased vocal fold tension [19]–[21]. To enable
continuous stress monitoring, it is beneficial to record these
multimodal indices and further analyze them using signal
processing and machine learning algorithms [22]–[24]. Prior
work has produced several multimodal datasets [3], [10],
[25] that have been valuable for the task of automatic stress
detection. However, these datasets typically provide single-
valued labels or ratings of stress obtained at the conclusion
of the stress-inducing task.

To enhance the implementation of continuous stress de-
tection on a more granular temporal level, it is necessary to
obtain reliable moment-to-moment ratings of stress. While
obtaining self-reported ratings of stress would be ideal, it
is often burdensome and can be confounded by personal
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subjectivity and recall bias [26]. To address this, multiple
annotators are typically employed to rate their perception
of the extent to which the target individual is stressed
while observing the individual undergoing a stressful sit-
uation [6], [7], [27]. Annotators usually rely on audiovisual
data either by observing the situation as it happens or by ret-
rospectively reviewing the recorded videos. However, rating
the perception of stress based solely on audio recordings is
hardly explored. Once ratings are obtained from multiple
annotators, they need to be aggregated to construct gold
standard ratings [28], [29] that can act as an approximation
of the latent ground truth rating of stress. Previous research
has actively investigated this process focusing primarily
on valence and arousal dimensions of affect [28], [30]–
[33]. Yet, annotation fusion in the context of stress ratings
remains unexplored, presenting an opportunity to construct
a multimodal dataset with continuous ratings of stress.

The most commonly used techniques for fusing ratings
of affect dimensions (i.e., valence, arousal) are feature-
independent since they solely rely on the ratings provided
by the annotators without considering any behavioral cues
(e.g., acoustic, visual) present in the data that is observed by
the annotators [28], [34]. Among these feature-independent
annotation fusion techniques, calculating the mean rating
across all annotators is widely employed in affect recog-
nition [28], [35]. While this method is straightforward to
implement, it does not account for the inter-individual
differences among annotators, which can be addressed by
assigning weights to each annotator via a weighted annota-
tion fusion approach [29], [36].

Prior work on feature-independent methods has over-
looked the potential reaction delay in annotator ratings due
to the time lag between observing an affective state and pro-
viding the corresponding rating using an annotation tool. To
overcome this challenge, prior work on feature-dependent
annotation fusion techniques has primarily focused on
aligning visual features extracted from the individual ex-
pressing the emotion with the moment-to-moment rating
from multiple annotators who observed the individual [37],
[38]. These feature-dependent techniques leverage both in-
dividual annotator ratings and observable features and have
been developed using algorithms such as Canonical Time
Warping (CTW) [39], expectation-maximization (EM) [38],
[40], delay estimation [32], triplet embedding [41], [42]. Pre-
vious research on feature-dependent annotation fusion has
predominantly focused on the video modality, as the visual
features have shown stronger correlations with affect ratings
compared to audio data, which typically exhibit weaker
correlations [32], [37]. Consequently, in scenarios where
acoustic features are only relied upon, feature-independent
techniques may be considered more suitable for annotation
fusion compared to feature-dependent ones.

Moreover, previous studies on annotation fusion tech-
niques have taken into account the reaction lag of annotators
but have overlooked the adjustment shift, which refers to
the temporal shift that annotators introduce when refining
and revising their ratings using continuous-time annotation
tools [28], [43], as they try to compensate for the pre-existing
reaction time lag in their annotation. Additionally, most of
the existing work employs the valence-arousal space for ob-
taining the rating of the perceived stress from the annotators

while they observe video recordings of individuals experi-
encing stressful situations. The exploration of rating stress
through a single time-continuous scale is limited, especially
when considering only speech (i.e., audio recording) as the
observable expressive behavior. Furthermore, stress is rec-
ognized as a sparsely occurring state [5], [44], which means
it does not conform to the commonly assumed Gaussian dis-
tribution when developing computational frameworks [38],
[40]. The distribution of stress labels exhibits skewness [5],
yet skewness is often disregarded to maintain simplicity in
stress models and their implementation.

To bridge the existing gap in current literature, we in-
vestigate how continuous (i.e., moment-to-moment) ratings
of perception of stress can be obtained from multiple an-
notators when tasked with rating stress based on speech as
the sole marker of expressive behavior, in the absence of
rich visual information. Speech was investigated because
of its ability to effectively detect stress [20], [45], while
depicting reduced privacy leakage concerns compared to
video data [46], [47]. We inspect the reliability of the an-
notation scheme and delve into the factors contributing
to variations in perceived stress among annotators. Next,
motivated by previous work [33], [38], [40], we propose
a modified EM-based technique for fusing these moment-
to-moment ratings of perceived stress to obtain the gold
standard rating in a feature-independent manner. The mod-
ifications we introduced include accounting for adjustment
shifts in addition to previously studied reaction delays, as
well as incorporating the Skew-Normal distribution [48],
[49] to accommodate the skewness in stress ratings. Finally,
to evaluate the effectiveness of our proposed modifications
compared to conventional feature-independent annotation
fusion methods, we conducted prediction experiments as-
sessing reliability and generalization. We assume that the
reliable gold standard moment-to-moment ratings would
maximally correlate with the input features (e.g., speech,
physiology), hence machine learning models would be able
to learn the mapping more effectively. This would maximize
the prediction performance of the regressors, which is a
commonly used assumption in related literature [41], [50],
[51]. For this purpose, we have used VerBIO dataset [52],
a publicly available dataset containing approximately 22
hours of audio data captured during a stress-inducing task
involving public speaking. In addition, we inspect a multi-
task learning framework to estimate individual annotator
ratings which avoids annotation fusion and incorporates all
available annotator ratings during training in an end-to-end
manner. Its performance is compared with the predictive
performance of the model trained with fused annotation to
understand the necessity of obtaining gold standard ratings
through annotation fusion and compare the performance
of fused annotation with individual annotation. Moreover,
we have examined how the fused gold standard time-
continuous ratings of stress are associated with self-reported
anxiety scores as well as the physiological indices available
in the dataset. Finally, we investigate the performance of the
proposed annotation fusion method on a synthetic dataset
with a known ground truth developed in [41], [53], where
multiple annotators performed two time-continuous rating
tasks to rate the green color intensity values while watching
a video of continuously changing green colored frames
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TABLE 1
Summary of Existing Datasets Available for Stress Detection Research Where Labels for Stress Are Available Along With Multimodal Data.

Modalities May Include Acoustic (A), Visual (V), Linguistic (L), And/or Physiological (P) Features.

Dataset #Participants Modalities Annotation #Annotators Stressor task Duration Year
Driver Stress Data [6] 9 V, P Continuous 2 Driving 36 hours 2005

SWELL-KW [3] 25 V, P Single-valued Self-reports Knowledge work 75 hours 2014

WESAD [10] 15 P Single-valued Self-reports Public speaking,
Mental arithmetic N/A 2018

AffectiveROAD [7] 10 V, P Continuous 1 Driving 11 hours 2018
MuSE [25] 28 A, V, L, P Single-valued Self-reports Monologue 10 hours 2020

Ulm-TSST [27] 69 A, V, L, P Continuous 3 Public speaking 6 hours 2021

VerBIO 53 A, P Single-valued [52]
Continuous (this work)

Self-reports
4 Public speaking 22 hours 2022

2023

where actual intensity values of the video frames are known.
The aim of this experiment is to analyze the efficacy of the
proposed method in fusing annotations from multiple anno-
tators to approximate the known ground truth and compare
the performance with multiple feature-independent and
feature-dependent annotation fusion techniques. The result-
ing gold standard moment-to-moment ratings of stress from
the VerBIO data, obtained through the proposed method,
along with the individual annotators ratings1 will be added
to the existing VerBIO dataset and become publicly avail-
able, facilitating research in the field of continuous stress
detection and intervention (Appendix A).

The rest of this paper is organized as follows. Section 2
provides an overview of the available datasets for stress
detection research and the previous work on annotation fu-
sion. Section 3 outlines the process of obtaining moment-to-
moment ratings of stress from multiple annotators using the
VerBIO data. Section 4 describes the problem formulation,
the proposed method of annotation fusion, and the evalu-
ation methods that are employed to compare the proposed
approach with existing methods. Next, Section 5 presents
the results, and Section 6 provides the corresponding dis-
cussion of the findings and limitations of this work. Finally,
the conclusion is provided in Section 7.

2 RELATED WORK
2.1 Annotation Fusion for Aggregating Moment-to-
Moment Affect Ratings
Utilizing multiple annotators to rate their perception of
affect for a target individual can be a valuable approach
to reduce bias stemming from the subjectivity of a single
annotator. Several frameworks exist for obtaining moment-
to-moment affect dimension ratings [26], [43], [54], [55].
Annotation fusion is employed to aggregate these moment-
to-moment ratings from multiple raters, aiming to approxi-
mate the latent ground truth of affect, and the aggregated
ratings are referred to as the gold standard ratings [28],
[29], [56]. However, obtaining a reliable gold standard
time-continuous rating that captures the subjective nature
of human state from multiple annotators is not straight-
forward, given the inter-individual variability in percep-
tion. Consequently, this area has been actively explored
in previous research. Findings from prior work point to-
wards two different approaches—feature-independent and
feature-dependent annotation fusion methods.

The feature-independent approach aims to fuse moment-
to-moment affect ratings from multiple annotators using

1. The moment-to-moment ratings of stress used in this paper are
available at https://tinyurl.com/mr2w592n

various statistical properties of the obtained ratings, without
relying on the associated multimodal features. In many
studies, the arithmetic mean of continuous-time ratings has
been commonly employed for annotation fusion [28], [35].
However, alternative methods have been explored to assign
weights to the annotators rather than treating them equally.
One such approach is the Evaluator Weighted Estimator
(EWE) [36], which calculates the weight of annotators by
quantifying the similarity between individual annotator rat-
ings and mean rating. Metallinou et al. proposed construct-
ing a union set of selective annotators who exhibit a certain
level of inter-annotator agreement with other annotators,
and obtained the mean rating of this selective set [57].
The authors evaluated this method on the USC-CreativeIT
data [34]. Their choice of inter-annotator agreement metric
was Pearson’s r with a threshold value of r = 0.45. Two
additional feature-independent fusion techniques, namely
the Dynamic Time Warping (DTW) [58] Based Barycen-
ter Averaging (DBA) and the Rater Aligned Annotation
Weighting (RAAW) [27], have been introduced in the MuSe-
toolbox [29]. In DBA, a gold standard rating is estimated
which acts as a barycenter that minimizes the DTW distance
between multiple ratings. The RAAW incorporates Generic
CTW to account for the reaction delay and EWE to capture
annotator reliability through a weighted mean. Although
the feature-independent methods are straightforward to
compute, they are primarily evaluated empirically (e.g.,
via visual inspection of the original and fused ratings). A
formal quantitative evaluation of these methods has not
been conducted in prior work.

Feature-dependent methods leverage multimodal fea-
tures, typically video, that demonstrate a high correlation
with the target state being estimated through annotation fu-
sion. Mariooryad et al. [32] estimated annotator-dependent
lags (i.e., reaction delays) by maximizing the mutual in-
formation between visual features and individual ratings.
Gupta et al. [38] and Ramakrishna et al. [40] treated indi-
vidual annotators as a Linear Time Invariant (LTI) filter,
where the ratings are modeled as a noisy and distorted
version of the latent gold standard affect content. The latent
gold standard affect content can be retrieved through an
EM-based optimization that accounts for annotator-specific
reaction delays. This approach of EM optimization extends
the seminal work by Raykar et al. [33] to time-continuous
ratings, providing a general framework for fusing single-
valued labels. Kossaifi et al. [39] utilized CTW for annotation
fusion while curating the SEWA DB dataset. Booth et al. [41],
[53] employed a triplet embedding scheme to fuse time-
continuous annotations using a synthetic dataset (i.e., green
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intensity task data) with known ground truth. Using the
same dataset, Mundnich et al. [42] introduced a novel way of
obtaining annotator ratings, where annotators were asked to
compare between three samples and choose the closest pair
from the triplet, instead of a time-continuous annotation
process. Instead of obtaining fused gold standard ratings,
Huang et al. [59] utilized a multi-task learning by setting up
a crowd layer consisting of ratings from multiple annotators
and learning the input features’ mapping to all ratings. The
majority of these methods present a comparative evaluation
of the annotation fusion methods through stress estimation
experiments. These methods predominantly rely on visual
features due to their inherent association with affect ratings.
Acoustic features, are rarely utilized for feature-dependent
annotation fusion due to their weak individual correlation
profile [32]. Furthermore, these methods do not account for
the adjustment shift introduced by the annotators.

2.2 Current Datasets Available For Stress Detection
Over the past two decades, a considerable amount of re-
search has been conducted in the area of multimodal detec-
tion of stress [24], [27], [45]. However, only a small portion
of these studies have made their data publicly available.
Table 1 provides an overview of the currently available
datasets that include labels or ratings of perception of stress
along with multimodal indices (e.g., acoustic, visual, lin-
guistic, physiological). The ratings in the previous studies
have been obtained either through self-reports or external
annotators. In terms of temporal granularity, these labels
can be single-valued acquired as a post-stressor task rating,
or moment-to-moment captured in a continuous manner.

In one of the earliest studies on stress detection using
physiological signals, Healey et al. [6] utilized a driving task
to induce stress in participants. The video recordings of
the driving task were independently coded by two raters,
and a continuous stress metric was derived based on a
filtered version of the frequencies of observable driving
events sampled at a rate of 1 Hz. All modalities except
the stress metric from this work are publicly available.
A similar approach was taken by Haouij et al. [7] in the
development of the AffectiveROAD dataset. In this study, an
experimenter sat in the rear seat while the participant drove,
and provided a continuous stress metric by assessing the
complexity of the driving scene and the perceived workload.
This metric was validated by the participants at the end of
the experiment, and adjusted, if necessary. Most recently,
two widely used datasets for stress detection include the
SWELL-KW [3] and WESAD [10]. SWELL-KW involved
stress-inducing knowledge work tasks (e.g., writing reports,
making presentations, checking emails). Participants self-
reported their level of perceived stress after performing each
stressor task using a visual analog 10-point Likert scale. In
WESAD, participants engaged in public speaking followed
by mental arithmetic tasks. Their perceived stress levels
were assessed through validated questionnaires (e.g., Posi-
tive and Negative Affect Schedule (PANAS) [60], State-Trait
Anxiety Inventory (STAI) [61]). Jaiswal et al. [25] introduced
a multimodal dataset where participants performed a mono-
logue in response to a set of emotion-evoking questions and
self-reported stress levels using the Perceived Stress Scale
(PSS) [1], [62]. In a more recent work, Stappen et al. [27] pre-

sented the Ulm-TSST dataset, where three annotators rated
their perception of participants’ stress levels during a public
speaking task. The rating was provided in a moment-to-
moment manner and the annotators rated both the arousal
and valence dimensions while watching the video record-
ings of the public speaking sessions. Yadav et al. developed
the VerBIO dataset [52] where participants completed mul-
tiple public speaking tasks in a longitudinal study and self-
reported their anxiety using the STAI questionnaire. This
discussion underscores the scarcity of datasets that include
both multimodal indices and continuous ratings of stress for
facilitating continuous stress detection. To address this gap
in the literature, a larger multimodal dataset with moment-
to-moment ratings of stress is necessary.

2.3 Proposed study contributions
The major contributions of this work to the current state of
knowledge are as follows:

• We examine the feasibility of obtaining annotators’
perception of stress based on audio recordings, and
investigate the level of agreement or disagreement
among annotators in relation to the acoustic proper-
ties of the corresponding audio and the characteris-
tics (e.g., variance) of the individual annotations.

• We propose a modified version of the annotation
fusion technique presented by Gupta et al. [38] that
enables feature-independent annotation fusion, in-
corporates an adjustment shift in addition to the
previously proposed reaction delays (Section 1), and
accommodates the inherent skewness in stress labels.

• We conduct a formal evaluation of the proposed
feature-independent annotation fusion method
through a prediction experiment and compare
the performance of the proposed fusion method
in automatically detecting stress from acoustic
features with conventional feature-independent
techniques [29], [36], [57].

• We introduce an enhanced version of the Ver-
BIO dataset [52], which now includes moment-to-
moment ratings of stress provided by individual
annotators’ ratings and the gold standard ratings
obtained using the proposed annotation fusion tech-
nique (Appendix A).

3 DATA DESCRIPTION

3.1 VerBIO Dataset
VerBIO dataset [52] is a publicly available multimodal signal
corpus of individuals’ affective responses during a public
speaking task. This dataset consists of multimodal signals
(e.g., speech, physiology) and self-reported measures (e.g.,
personality traits, anxiety rating) from 55 participants in
a longitudinal research study, where the participants per-
formed 344 public speaking tasks. Participants were asked
to complete 10 public speaking sessions (i.e., 2 with real-
life audience, 8 in virtual reality (VR)), distributed over
4 days, within a span of 2 weeks. In each session, par-
ticipants were given a news article about a general topic
and were provided 10 minutes to prepare a speech. Next,
they spoke about the topic in front of a real or virtual
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audience, depending on the day of the study and the study
protocol. After completing each session, participants self-
reported their level of anxiety by responding to the 20-
item State Anxiety Enthusiasm (SAE) questionnaire [63].
Physiological reactivity of the participants was captured
using the Empatica E4 wristband [64] which recorded the
electrodermal activity (EDA) at a sampling rate of 4 Hz.
The audio data of each public speaking session has been
recorded via a Creative lavalier microphone at a sampling
rate of 16 kHz and 16-bit encoding. Audio recordings of
two participants who completed only the first session were
removed as their speeches were unintelligible due to the
presence of excessive background noise. The total number of
available audio files in the dataset is 340 which comes from
53 participants. One file has been excluded from this work
due to technical issues resulting in ratings from 339 audio
files. This results in a large audio corpus of an approximate
duration of 22 hours. An overview of the dataset used in
this work is presented in Table 2. Fig. 1(a) presents the
distribution of the duration of each public speaking session
(i.e., audio file). The smallest sessions are approximately 2
minutes long, while the longest sessions are over 6 minutes.

It is to be noted that only 25 out of 53 participants
(i.e., 47.2%) completed all 10 sessions. Out of the total
participants, 17 participants (i.e., 32.1%) dropped out after
completing only the first session. The rest of the participants
dropped out in the middle of the study. Therefore, the
number of available sessions (i.e., audio files) is different
for each participant, as demonstrated Fig. 1(b).

3.2 Obtaining Moment-To-Moment Ratings of Stress

We have used the audio files of the public speaking ses-
sions in the VerBIO dataset to obtain continuous time rat-
ings of stress from multiple annotators. Instead of collect-
ing continuous-valued ratings in a time-continuous man-
ner [26], [54], we have aimed to obtain a continuous rating
of stress from the audio signals on a 5-point Likert scale.
The reasoning behind this design decision is that emotion is
often considered ordinal in nature, and perceiving and la-
beling the change of stress between consecutive timestamps
in an audio stream is easier than continuously providing
ratings [65]–[67]. The definition of each point of the Likert
scale and its associated perceived stress level is exhibited
in Table 3. The choice of scale is consistent with prior work
where a similar range of annotations has been employed
to rate affect [68], [69] and stress [25], [45]. The Noldus
Observer XT software [43] is selected as the annotation tool
for our purpose since it is widely used in behavioral and
social sciences [70], [71]. The points of the Likert scale has
been mapped to the corresponding numeric button on the

TABLE 2
Overview of VerBIO Dataset

Factor Value
Number of Participants 53

Number of Female Participants 23
Average age (years) 22.32
Number of Sessions 339

Total audio duration (hh:mm:ss) 22:28:31
Average session length (m:ss) 3:58

Average number of sessions per participant 6.4
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Fig. 1. Properties of the Audio Data in the VerBIO Dataset.

keyboard (i.e., 1-5). While listening to the audio, whenever
annotators perceive a change in how stressed the participant
was, they press the button associated with the current level
of their perceived stress for the considered participant. The
level stays the same until the annotator perceive another
change in stress, and therefore, select another level. For all
audio files, the initial rating is manually set to 1 (i.e., No
Stress), which annotators have the option to change.

In order to obtain moment-to-moment ratings of stress,
we have recruited four annotators (one male, three female)
who are undergraduate students in psychology. Two of
the annotators were college seniors, while the remaining
two were college juniors at the time when they started
working on this task. Two annotators had 2 years of
experience in emotion annotation, and the others had 1
year of experience. In terms of ethnicity, three annotators
were White/Caucasian and the other annotator was His-
panic/Latino. Each annotator is assigned an identity (ID),
namely R1, R2, R4, and R5. Before starting the tasks, the
annotators have been trained to work with the Observer XT
software. Fig. 2 shows the typical layout of the Observer
XT tool the annotators used. Annotators are instructed to
first listen to the entire audio file and then rate the per-
ceived change in stress in a moment-to-moment basis while
listening to the audio the second time. To reduce individual
response delays, annotators are asked to listen to each audio
two to three times and modify their annotations accordingly.
All audio files have been rated by all the annotators. Con-
tinuous ratings from the annotators are sampled at 1 Hz,
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TABLE 3
Definition on Perceived Stress Level for Annotation
Point on Likert Scale Perceived Stress Level

1 No Stress
2 Low Stress
3 Moderate Stress
4 High Stress
5 Extremely High Stress

which results in four time series of ratings per audio file.
Note that the annotators are not asked to rate stress on a
second-to-second basis; the 1 Hz sampling rate is used by
the software so that it can register any potential changes that
the annotators mark with a 1 second resolution. The ratings
from each annotator are re-scaled from [1, 5] range to [0, 1]
range for further processing. Inter-annotator agreement is
measured through Spearman’s correlation, ρ, between rat-
ings from two annotators, which can be aggregated to obtain
average ρ for all possible pairs of annotators of an audio file
using the Fisher’s z-transformation [72].

Fig. 3 presents examples of continuous-time ratings of
stress from four annotators for two audio files. Fig. 3(a)
shows that the annotators agree in most of the transitions
(Average Spearman’s ρ = 0.541) and there are slight delays
in the transition among the annotators. The trends are
similar among the ratings, despite the different amplitude
of the ratings. Although this audio exhibits high agreement,
there are more local variations by R4 between 60-80 seconds
compared to others. This highlights the inter-individual
differences between annotators. On the other hand, Fig. 3(b)
shows a scenario where the annotators exhibit low inter-
rater agreement (Average Spearman’s ρ = −0.029). In this
case, R4 and R5 showed opposite trends, while R1 did
not exhibit variance. By examining these scenarios, it is
clear that conventional approaches (i.e., arithmetic mean,
weighted mean) might not result in a reliable fused anno-
tation. This calls for a sophisticated method of annotation
fusion to obtain the fused ratings of perceived stress.

3.3 Green Intensity Task Data: Evaluation with a Syn-
thetic Dataset

In order to understand how good the fused ratings are in
approximating ground truth, a dataset with known ground
truth is needed. However, VerBIO dataset [52] does not
contain the objective ground truth of stress rating. Mean-
while, Booth et al. [41], [53] introduced the green intensity
task data, a synthetic dataset with known ground truth that
can be used to evaluate the goodness of annotation fusion
techniques in fusing multiple ratings to approximate the

Fig. 2. Observer XT tool layout for moment-to-moment stress annota-
tion.
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(a) Participant: P044, Session: TEST08, ρ = 0.541
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(b) Participant: P037, Session: POST, ρ = −0.029

Fig. 3. Moment-to-moment ratings of stress by four annotators for (a) a
high inter-rater agreement session, and (b) a low inter-rater agreement
session.

ground truth. The dataset contains time-continuous ratings
from 10 annotators who were shown two videos of green
color with varying intensity and were asked to rate the
intensity in a time-continuous manner while watching the
videos. This was done to mimic the subjective nature of
affect annotation but the ground truth of the green intensity
values of the video frames were known a priori unlike affect
content (e.g., stress, valence, arousal). In the first video (Task
A), the intensity values of green-colored frames changed at
different times and speeds without abrupt transitions, while
in the second video (Task B), the green intensity values
featured a slow oscillation. The ratings are sampled at a rate
of 1 Hz. We use the annotator ratings and the known ground
truth to examine the efficacy of the proposed annotation
fusion method.

4 METHODOLOGY

4.1 Motivation
A common theme among the feature-dependent annotation
fusion methods is the choice of feature modality. Visual
features (e.g., facial landmark points, action unit intensity)
are found to be most correlated with the affect dimensions
being rated, therefore, these features have been used in
previous methods to estimate the gold standard continuous-
time rating of affect [32], [39]. In our case, the VerBIO dataset
does not contain any visual information such as the videos
of the public speaking sessions. The annotators are asked to
rate the stress in a time-continuous manner while listening
to the audio. Preliminary analysis show that the extracted
acoustic feature time series exhibit poor correlation (i.e.,
mean correlation in the range [−0.165, 0.142]) with the
individual annotator ratings (i.e., when computing correla-
tions between individual feature time-series and individual
annotator ratings), which is consistent with prior work [32],
[37]. Therefore, incorporating the acoustic features in the an-
notation fusion might result in an unreliable gold standard
of continuous-time rating of stress, thus the acoustic features
are not used in the proposed annotator fusion method.

This article has been accepted for publication in IEEE Transactions on Affective Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2024.3435502

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on August 14,2024 at 14:40:23 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. X 7

0 1 2 3 4 5
Perceived Stress Level

0.0

0.1

0.2

0.3

0.4

0.5

0.6
No

rm
al
ize

d 
Fr
eq

ue
nc

y
α = 0
α = 40.8

(a) R1

0 1 2 3 4 5
Perceived Stress Level

0.0

0.1

0.2

0.3

0.4

No
rm

al
ize

d 
Fr

eq
ue

nc
y

α = 0
α = 0.25

(b) R2

0 1 2 3 4 5
Perceived Stress Level

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d 
Fr
eq

ue
nc

y

α = 0
α = 0.67

(c) R4

0 1 2 3 4 5
Perceived Stress Level

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ize

d 
Fr
eq

ue
nc

y

α = 0
α = 4.34

(d) R5

Fig. 4. Annotator-wise distribution of moment-to-moment ratings of
stress and the fitted Gaussian (α = 0) and Skew-Normal (α ̸= 0)
distributions, where α refers to the shape parameter of the Skew-Normal
distribution.

Next, visual inspection of the annotator ratings (Fig. 3)
shows that there are temporal shifts in the trends among
annotators, which might have originated from the reaction
delays or the adjustment shifts from multiple rounds of
annotation. Prior work addressed the annotator-specific de-
lays, but the adjustment-related shift has not been discussed.
Hence, in order to exploit the strengths of both types of
annotation fusion methods (i.e., feature-independent and
feature-dependent) and address the abovementioned issues,
we propose a feature-independent EM-based optimization
scheme for annotation fusion, expanding upon the method
proposed by Gupta et al. [38] and Ramakrishna et al. [40].

In addition, annotator ratings for commonly rated affect
dimensions (e.g., valence, arousal) in public datasets [27],
[39] tend to exhibit Gaussian distribution, as neutral emo-
tions are more prominent than their positive and negative
extremes. However, stress does not exhibit such two-sided
extremes and the likelihood of stress has been found to be
skewed [4], [5], which is not effectively modeled through
a Gaussian distribution. The Skew-Normal distribution is
a modification of the Gaussian distribution, introducing
an extra parameter, known as shape parameter, α, that
determines the degree of skewness. Negative values of α
correspond to a left-skewed distribution, while positive
values indicate a right-skewed distribution. When the shape
parameter α is equal to 0, this results in the Gaussian
distribution [48], [49]. Fig. 4 shows the distribution rating
of each annotator over all sessions. R1 and R5 exhibit
Skew-Normal distribution instead of Gaussian. Therefore,
in order to account for this observed skewness, we propose
a skew-normal approximation of annotation distribution, in
contrast to the Gaussian distribution used in [38], [40].

4.2 Problem Formulation
Let S represent the number of sessions included in the
dataset, and N be the number of annotators who have
completed the moment-to-moment perceived stress rating
for each session while listening to the associated audio file.
The duration of s-th session is Ts, where s = 1, . . . , S. The

latent gold standard rating of stress for the s-th session is
as ∈ RTs and the rating obtained from the n-th annotator is
as
n ∈ RTs . Motivated by prior work [38], [40], we consider

each annotator acting as a Linear Time-Invariant (LTI) filter,
since we can assume that each annotator observes the latent
gold standard stress rating by listening to the corresponding
audio file, and provides a noisy and distorted version of
this gold standard rating. Therefore, we model the behavior
of each annotator as a combination of an LTI filter of
length W , an additive bias, and an annotator-specific noise
vector of length Ts. The LTI filter is centered on the current
timestamp and contains Wd windows on the left to account
for the annotator-specific reaction delay, and Wa windows
on the right for adjustment shift. Therefore, the total filter
length is W = Wd + Wa + 1. We can represent the filter
coefficient vector dn ∈ RW as dn = [dn(−Wd), dn(−(Wd −
1)), . . . , dn(−1), dn(0), dn(1), . . . , dn(Wa−1), dn(Wa)]. This
is a generalized version of the LTI filter used in [38], [40],
where Wa = 0. The additive bias term and the noise vector
are represented as dbn ∈ R and ϕn ∈ RTs . Based on the
problem formulation, as

n can be expressed as–

as
n = (dn ∗ as) + (dbn × 1s) + ϕn (1)

In (1), the operator ‘∗’ refers to the convolution oper-
ation, and 1s ∈ RTs refers to a column vector of ones.
The variable ϕn is traditionally assumed as a zero mean
Gaussian noise i.e., ϕn ∼ N (0, σ2

n × Is), where σ2
n is

annotator-specific variance that is assumed constant over
all sessions for the simplified calculation. Therefore, the
likelihood an annotator’s rating given the parameters of the
Gaussian distribution for session s can be modeled as in (2)–

p(as
n|as,dn, d

b
n, σn) ∼ N ((dn∗as)+(dbn×1s), σn×Is) (2)

Here, in addition to the Gaussian noise, we propose a
Skew-Normal approximation of noise, ϕn ∼ SN (0, σ2

n ×
Is, αn × 1s), where SN (·, ·, ·) refers to the Skew-normal
distribution, to account for the skewness present in the
perceived stress rating of annotators. This approximation
adds an additional shape parameter αn ∈ R, which is
annotator-specific, time-independent, and constant over all
sessions. Hence, for the skew-normal approximation, the
likelihood presented in (2) is modified as follows–

p(as
n|as,dn, d

b
n, σn, αn) ∼ SN ((dn∗as)+(dbn×1s), σ

2
n×Is, αn×1s)

(3)
In order to simplify the optimization process, the skew-
normal distribution in (2) can be expressed as a function
of Gaussian distribution and a complementary error func-
tion [49], [73], as shown in Appendix C. This is demon-
strated in (4) –

p(as
n|as,dn, d

b
n, σn, αn) ∼ N ((dn ∗ as) + (dbn × 1s), σn × Is)×

erfc(
αn√
2σn

(as
n − dn ∗ as − dbn × 1s))

(4)
Given the annotator rating as

n and the initial values for
the annotator-specific LTI filter parameters (dn, d

b
n, σn, αn),

the latent gold standard rating of perceived stress, as,
for all N annotators and S sessions can be obtained by
maximizing the likelihood (i.e., minimizing the loss) over
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the entire dataset. For the Gaussian approximation in (2),
the associated loss function is shown in (5). The derivation
of the loss function is provided in Appendix B and the
optimization problem is solved via the EM algorithm [74]
(Section 4.3.2).

LN =
S∑

s=1

N∑
n=1

(Ts log(
√
2πσn)

+
1

2σ2
n

∥as
n − dn ∗ as − dbn × 1s∥22)

(5)

Similarly, the loss function for the skew-normal approxi-
mation can be expressed as (6) and the details of derivation
are available in Appendix C. The corresponding optimiza-
tion problem is solved via the EM algorithm (Section 4.3.3).

LSN = LN −
S∑

s=1

N∑
n=1

log(erfc(
αn√
2σn

∥(dn ∗ as)

+ (dbn × 1s)− as
n∥))

(6)

4.3 Annotation Fusion Methods
4.3.1 Initialization
In this work, we experiment with two different types of
initialization of the gold standard rating as to investigate
how weighing annotators differently can affect the final
outcome. These two types of initialization are referred to
as ‘mean initialization’ and ‘selective initialization’. In the
first case, we assign the arithmetic mean of all annotators’
ratings to a session as the initial value of as. In the latter
case, we calculate the Spearman’s correlation ρ between
all possible combinations of annotator pairs for a session
and select the set of annotators who exhibit Spearman’s ρ
over a threshold value with at least one other annotator.
The arithmetic mean over the set of selected annotators is
assigned as the initial value of as. If the corresponding set
is empty, the mean value over all annotators is assigned. The
initialization process of as has changed the ratings from
discrete variables to continuous variables in the range of
[0, 1], which is a common practice in prior work [68], [75].
Therefore, we have chosen to use continuous distributions
(i.e., Gaussian, Skew-Normal) for noise vector ϕn, instead
of discrete distributions (i.e., Binomial, Geometric). We as-
signed ρ > 0.4 as the threshold value for the ‘selective
initialization’, which is chosen based on prior work [76] and
preliminary inspection of our data.

4.3.2 Gaussian Approximation
The loss function for the Gaussian approximation in (5) can
be solved analytically for both the E-step and the M-step
of the optimization, as shown in [40]. During the E-step,
the current estimate of the gold standard rating of stress
is obtained, while the annotator-specific parameters are cal-
culated during the M-step. This iterative process continues
until the rate of decrease in the loss value reaches a certain
tolerance level (Appendix D). The analytical solution for the
parameters is as follows-

as = (
N∑

n=1

FT
n Fn)

−1(
N∑

n=1

(FT
n as

n − FT
n (dbn × 1s))) (7)

dn = (
S∑

s=1

(As)TAs)−1(
S∑

s=1

((As)Tas
n − (As)T (dbn × 1s)))

(8)

dbn =

∑S
s=1(1

T
s a

s
n − 1T

s Fna
s)∑S

s=1 Ts

(9)

σn =

√√√√∑S
s=1 ∥as

n − dn ∗ as − dbn × 1s∥22∑S
s=1 Ts

(10)

In the above, Fn and As are the matrix representation of dn

and as, respectively, where dn ∗ as = Fna
s = Asdn.

4.3.3 Skew-Normal Approximation
The loss function for the skew-normal approximation in (6)
does not have a closed-form solution for the optimization
problem. Therefore, we used gradient descent for minimiz-
ing the loss in both the E- and M-steps. During the E-step
the loss function is minimized over all annotators for a given
session through the SGD optimizer with a 0.001 learning
rating and for 200 epochs. The current estimate of the gold
standard rating of stress is obtained at this step. Meanwhile,
during the M-step, the loss function is minimized over
all sessions for a given annotator via the Adam optimizer
with a 0.005 learning rate and for 100 epochs in order to
compute the annotator-specific parameters. In both steps,
batch size is set as the size of the entire training data and an
early stopping is performed if no performance improvement
over 15 consecutive epochs is observed or the decrease in
loss in consecutive epochs falls below a tolerance value of
10−5. Both steps are repeated for 50 iterations with an early
stopping criteria based on the tolerance value of 0.0005 for
the overall loss function. The aforementioned optimization
parameters are chosen empirically.

4.4 Evaluation
In order to evaluate the proposed annotation fusion method
and the effect of various design choices, we train a machine
learning model to estimate the fused rating of stress using
acoustic features. We have divided the VerBIO dataset into
training and testing partitions. As there might be multiple
sessions available for each participant, we have decided to
stratify the dataset so that a participant’s data is available
in either the training or the testing set only. For each
session, the Spearman’s ρ over all possible annotator pair
combinations is measured, and a selective set of annotators
who exhibit ρ > 0.4 with at least one other annotator is
formed. Participants who have a non-empty selective set
for more than half of their total sessions are selected for
the training partition. The rest of the participants are placed
in the test set. This is conducted so that the training set
contains reliable annotations so that the EM algorithm can
effectively learn the LTI filter parameters. This results in 203
sessions from 32 participants in the training set, and 136
sessions from the remaining 21 participants in the test set.
The list of the participant IDs used in the training and test
sets is provided in Appendix A. The sessions of the training
set are used in estimating the annotator-specific parameters
(i.e., dn, dbn, σn, αn) as well as the fused ratings of stress (i.e.,
as) in the training set. The annotator-specific parameters
obtained in the previous step are used for calculating the
fused rating of stress in the test set.
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4.4.1 Feature Extraction

We use the OpenSMILE [77] to extract acoustic fea-
tures from the audio signals. We extract 88 features of
the extended Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) [78], as this feature set is concise and is widely
used in the affective computing [25], [27]. It consists of
frequency-related parameters (e.g., pitch, jitter, formant
frequencies), energy estimates (e.g., shimmer, loudness,
Harmonics-to-noise ratio), and spectral features (e.g., Alpha
ratio, Hammarberg Index, MFCCs). These features are com-
puted over a 600 ms window and then averaged over the
1 second segments of the public speaking sessions to match
the sampling rate of the moment-to-moment ratings of stress
with the acoustic measures. These acoustic features are used
to examine potential associations between acoustic parame-
ters and perceived stress rating by the different annotators.
These features are used as the input to the machine learning
algorithm that estimated the gold standard stress ratings
that resulted from the annotation fusion.

4.4.2 Estimation of Gold Standard Stress Rating

A long short-term memory (LSTM) neural network is used
for estimating the gold standard stress rating based on
the aforementioned acoustic features (Section 4.4.1). The
LSTM model is deemed appropriate for our purpose since
it was used as a baseline model in the MUSE-STRESS sub-
challenge of the MuSe 2021 challenge [27], where the goal
was to predict the valence and arousal in stressful situations
using multimodal features. The LSTM model consists of 4
hidden layers each containing 64 hidden states and a fully
connected layer before the output layer. The 88-dimensional
acoustic feature time series is given as input and the goal
of the model was to estimate the fused ratings of stress.
The model is trained using the training data with a learning
rate of 0.0002 for 200 epochs, with an early stopping if no
performance improvement over 15 consecutive epochs was
observed. Next, the model is used in estimating the gold
standard time-continuous ratings of stress in the test set. The
experiment is repeated 20 times for each configuration to
account for any randomness. The Concordance Correlation
Coefficient (CCC) loss is used to optimize the LSTM model
and CCC is used as the evaluation metric to measure the
predictive performance of the model on the testing data.
We compare the proposed feature-independent annotation
fusion technique with previous frequently used annotation
fusion methods, namely Mean [28], DBA [29], EWE [36],
RAAW [27], and Selective [76] through their predictive per-
formance measured by the CCC. The underlying assump-
tion is that the reliable gold standard moment-to-moment
ratings would maximally correlate with the acoustic features
and it will help the LSTM model to learn the mapping
more effectively. Therefore, the prediction performance of
the LSTM model would be higher for better and more
reliable gold standard ratings. In addition, we evaluate how
different design decisions (i.e., initialization, length of de-
lay and adjustment windows, distribution approximation)
affect the predictive performance of the model.

4.4.3 Association of Gold Standard Rating with Self-reports
and Physiological Signals

In order to evaluate the reliability of the gold-standard
time-continuous ratings of stress obtained by the proposed
method, we investigate how these ratings are associated
with other measures of stress, such as self-reported anxiety
scores and physiological indices. First, we examine the de-
gree of association between self-reported ratings of stress in
the VerBIO dataset and moment-to-moment fused ratings of
stress. However, self-reported moment-to-moment ratings
of stress are not available in the VerBIO dataset. Instead, a
single-valued SAE score is available for each session. The
SAE score ranges between 20 and 100, where a higher SAE
score indicates higher self-reported stress. The difference in
temporal resolution renders it difficult to perform any direct
comparison between the self-report and fused annotation of
stress. Therefore, the Pearson’s r is measured between the
SAE score and the mean fused ratings of each session to
examine their association, similar to prior work [79].

Next, to examine the association between fused time-
continuous ratings and physiological signals, we utilize
the EDA signals of each session available in the dataset.
Skin Conductance Level (SCL) (i.e., tonic part of EDA) is
extracted from the EDA signal using NeuroKit toolbox [80],
as SCL is a well-known indicator of stress and it is known to
increase when individuals experience higher stress [8], [21],
[81]. Pearson’s r correlation between the mean SCL signal
and mean fused ratings of stress over 10 second window
is measured for each session and the median value of the
correlation coefficients is reported to exhibit the association.

4.4.4 Estimation of Individual Annotator Rating Instead of
Annotation Fusion

Instead of performing annotation fusion, some of the prior
work often relies on end-to-end learning by utilizing ratings
available from all the annotators to train a machine learn-
ing model for affect detection [59]. The rationale behind
this approach is that the annotation fusion step can be
bypassed through the end-to-end learning, allowing the
machine learning model to benefit from jointly learning the
representation between the input features and the output
ratings of all annotators. One of the common frameworks
used for this purpose is multi-task learning, where the
goal is to learn a feature embedding by maximizing the
prediction performance of ratings from all annotators. To
assess the effectiveness of constructing the gold standard
rating through annotation fusion compared to such meth-
ods, we use a multi-task learning model to estimate in-
dividual annotator ratings (instead of the aggregate gold
standard rating). We formulate a crowd layer similar to [59]
by modifying the LSTM model to contain four separate fully
connected layers followed by four output layers (i.e., each
corresponding to an annotator), instead of one output layer
(i.e., corresponding to a fused annotation). There is a fully
connected layer after the hidden layers, which acts as a
bottleneck and is shared by the crowd layer. The goal of
the multi-task learning model is to maximize the prediction
performance for estimating the ratings provided by all an-
notators using the acoustic features as the input, without
needing to perform any annotation fusion step. The CCC
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loss is calculated for each output layer and the total loss is
computed as the sum of CCC loss values from individual
annotators. The CCC between the actual rating by each
annotator and the predicted rating by the multi-task model
for the same annotator is reported as the evaluation metric
that measures the predictive performance of the multi-task
model. The prediction experiment is repeated 20 times by
keeping the same model hyperparameters and the set of
random seed values to ensure consistency in the evaluation.

4.4.5 Effectiveness in Approximating Known Ground Truth
In order to understand how close the fused ratings are to
the actual ground truth, we have used the green intensity
task data (i.e., Task A, Task B), a synthetic dataset devel-
oped in [41], [53] (Section 3.3). We have used the moment-
to-moment ratings from the annotators to construct the
gold standard ratings for both tasks of the dataset. The
fused ratings are obtained by both the proposed method,
the baseline feature-independent annotation fusion methods
(Section 4.4.2), and previously proposed feature-dependent
methods (i.e, Triplet embedding [41], EM [38], Triplet com-
parison [42]). We compute the Mean Squared Error (MSE)
and Pearson’s r between the gold standard rating and the
known ground truth rating. These metrics evaluate the
performance of the annotation fusion methods in approx-
imating the known ground truth.

5 RESULTS

5.1 Inspecting the Quality of Moment-to-Moment Anno-
tation of Stress

5.1.1 Analyzing Inter-annotator Agreement
Here, we provide an analysis of the inter-annotator agree-
ment that is achieved in our task. Spearman’s ρ is computed
for all six possible annotator pair combinations for a session,
and they are aggregated to obtain the average ρ value
for that session using Fisher’s z-transformation. Fig. 5(a)
presents the distribution of ρ values obtained from 339
sessions, where the average value of ρ is 0.237. It is to be
noted that majority of the sessions exhibit positive average
correlation among annotator ratings, over half of the ses-
sions indicate ρ > 0.2, and 30% sessions have moderate to
strong (i.e., ρ >= 0.3) inter-annotator agreement [82], [83].
However, this distribution presents the aggregated Spear-
man’s ρ for each session that can be affected by some pairs
of annotators exhibiting lower agreement compared to other
pairs. In order to understand the inter-annotator agreement
for pairs of annotators at the session level, a selective set
of annotators who exhibit Spearman’s ρ over a threshold
value with at least one other annotator is constructed for
each session. A non-empty selective set would indicate that
at least two annotators exhibited some degree of agreement
when rating stress. An empty selective annotator set would
suggest no or low agreement. Fig. 5(b) exhibits the effect of
the threshold ρ = 0.3, 0.35, . . . , 0.7 on the distribution of the
number of sessions based on the selective annotator set. The
number of sessions with a non-empty selective annotator
set decreases as ρ increases. With a lower threshold, more
sessions contain a non-empty selective set, but this might
cause reduced inter-annotator agreement. Conversely, the
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Fig. 5. Inter-annotator agreement of the audio files in the VerBIO
dataset.

selection of a higher threshold would ensure the quality
of inter-annotator agreement in the sessions at the cost of
a reduced number of sessions. Based on inspection of the
results (Fig. 5(b)), ρ = 0.4 has been selected as the threshold
for constructing the selective annotator set for each session,
which ensured a more balanced distribution between the
number of sessions with high inter-annotator agreement
(i.e., 203 sessions where at least one annotator exhibits
Spearman’s ρ > 0.4 with at least one other annotator)
and low inter-annotator agreement (i.e., 103 sessions where
no annotator exhibits Spearman’s ρ > 0.4 with another
annotator). We have used the same threshold to construct
the training and test partition for evaluation (Section 4.4).
Note, that the average value of Spearman’s ρ for sessions in
the high agreement group is 0.505, which is significantly
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higher than the average Spearman’s ρ of 0.237 when all
the sessions are considered. This is consistent with prior
work [57], [76] where a similar ρ value has been used as
a threshold for inter-annotator agreement.

Fig. 5(c) presents the contribution of each annotator
in developing the selective set. The diagonal elements of
the heatmap show the number of sessions for which the
corresponding annotator (marked in the row or column)
exhibited ρ > 0.4 with at least one other annotator. The
non-diagonal elements of the heatmap visualize the number
of sessions where the annotator of the corresponding row
exhibited ρ > 0.4 with the annotator of the corresponding
column. From Fig. 5(c), it is evident that among all the
possible rater pairs, (R1, R2) and (R2, R4) agreed the most in
rating the perceived stress, while (R4, R5) agreed the least.
Overall, in terms of annotator agreement, R2 exhibited the
highest with other annotators, followed by R1, R4, and lastly
R5. This suggests that not all annotators rated stress in the
same fashion, and that the simple averaging of annotators’
ratings might not yield reliable fused ratings of stress.

5.1.2 Effect of Perceived Stress on Inter-Annotator Agree-
ment
We examine how the overall variation of perceived stress
rated by the annotators affects the inter-annotator agree-
ment. For this purpose, we measure the mean and stan-
dard deviation of perceived stress ratings from the mean
rating of all annotators for each session. We compare these
statistics between the 203 sessions with high inter-annotator
agreement (i.e., sessions with non-empty selective set; Sec-
tion 5.1.1) and 136 with low inter-annotator agreement
(i.e., sessions with empty selective set; Section 5.1.1) via an
independent t-test. Results indicate that annotators tend to
agree more when both the mean and the standard deviation
of perceived stress are higher (Table 4(a)). Annotators tend
to exhibit more agreement when they perceive a higher vari-
ation of stress during a session (t(337) = 10.84, p < 0.0005)
and overall higher mean stress (t(337) = 4.12, p < 0.0005).
Sessions with a lower variation of perceived stress present
lower inter-annotator agreement which suggests that the
subtle variation of stress might be difficult to perceive.

5.1.3 Effect of Acoustic Features on Inter-Annotator Agree-
ment
Next, we investigate the effect of acoustic features on the
inter-annotator agreement in perceived ratings of stress. For
this purpose, we examine seven acoustic features from the
eGeMAPS feature set [78] that are commonly associated
with stress [21] and can be intuitively interpreted, namely,
fundamental frequency (F0), 1st/2nd/3rd formant frequen-
cies (F1-F3), jitter, shimmer, and frequency of loudness peaks
of speakers. These features are averaged over the entire
session. We compare the aforementioned features between
the 203 sessions with high inter-annotator agreement and
136 with low inter-annotator agreement via independent t-
tests, similar to Section 5.1.2. In order to compensate for the
multiple comparisons [84], we present the result without
Bonferroni correction (i.e., p < 0.05) and with Bonferroni
correction (i.e., p < 0.0005) in Table 4(b). The high and
low inter-annotator agreement sessions depict significant
differences in terms of formant frequencies (i.e., F1-F3), jitter,

TABLE 4
t-test Results Identifying Significant Differences between Sessions with
High Inter-Annotator Agreement and Low Inter-Annotator Agreement
Based on the Statistics of Perceived Ratings of Stress and Acoustic

Features.

(a) Statistics of Perceived Ratings of Stress

Feature
High ρ

Sessions
µ± σ

Low ρ
Sessions
µ± σ

t-test
Results

Mean 2.484± 0.43 2.284± 0.45 t(337) = 4.12∗∗

Standard
Deviation 0.394± 0.09 0.299± 0.05 t(337) = 10.84∗∗

∗: p <0.05, ∗∗: p <0.0005
(b) Statistics of Acoustic Features

Feature
High ρ

Sessions
µ± σ

Low ρ
Sessions
µ± σ

t-test
Results

F0 151.20± 37.92 159.43± 37.03 t(337) = −1.52
F1 579.26± 75.32 596.61± 72.59 t(337) = −2.10∗

F2 1475.9± 93.9 1503.8± 77.1 t(337) = −2.87∗

F3 2367.2± 133.7 2416.5± 102.4 t(337) = −3.63∗∗

Jitter 0.029± 0.005 0.030± 0.006 t(337) = −2.29∗

Shimmer 1.25± 0.17 1.27± 0.17 t(337) = −0.78
Loudness
Peaks/sec 3.62± 0.40 3.71± 0.77 t(337) = −2.19∗

∗: p <0.05, ∗∗: p <0.0005

and frequency of loudness peaks of the speakers. Pitch or
shimmer did not yield any significant difference. Sessions
with high inter-annotator agreement tend to contain speech
with lower F1-F3 and jitter compared to the low agreement
counterparts. This indicates that annotators tend to agree
in terms of the perceived rating of stress when jitter or F1-
F3 are lower. An increase in jitter and an increase in F1-F3
indicates an increase in psychological stress. However, the
aforementioned features are also dependent on the overall
vocal characteristics of a person. If a speaker depicts high
jitter and F1-F3 overall, the annotators might not be able
to perceive when the speaker is under stress, since these
acoustic parameters are always high. This phenomenon
portrays the complexity of the task when annotators are
asked to rate using the audio modality only.

5.2 Examining the Outcomes of Annotation Fusion

5.2.1 Selecting the Delay and Adjustment Window Length
In order to identify the proper window length for both
annotator-specific reaction delay and adjustment shift of
the proposed annotation fusion algorithm (Section 4.3), we
initially obtain the fused annotation of perceived stress for
two cases, namely only delay window (i.e., Wa = 0) and
only adjustment window (i.e., Wd = 0). A 6-second window
length was used for this purpose since it is unlikely for both
reaction delay and adjustment shift to depict a duration
longer than 6 seconds [32]. Fig. 6 shows the annotator-
specific filter weights for both cases. The filter weights for
all annotators tend to saturate after 3 seconds when only
the adjustment shift window is used. This suggests that the
annotators are mostly able to compensate for reaction time
lag in their annotation while they are refining their ratings,
but they might make smaller adjustment shift (i.e., 1-3
seconds) that can be considered as overcompensation. On
the contrary, the filter weights that account for the reaction
delay depict variation among annotators throughout the
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Fig. 6. Annotator-specific filter weights for (a) delay window only, and (b)
adjustment window only cases for Gaussian approximation and selective
initialization. The left graph is flipped to emulate the filter window on the
left for delay window only cases.

considered 6 seconds. R1 shows a peak at 1 second and then
the weight diminishes, while R2 and R4 have maximum
weight after 3 seconds. Prior work suggests that annotator-
specific reaction delay can be in a range of 2-6 seconds [32],
[38]. Therefore, we have selected 4-6 second length for the
delay window and 1-3 second length for the adjustment
window. We have varied these window lengths to obtain
results based on the fused ratings of stress for different
configurations.

5.2.2 Evaluating the Baseline Methods
Results of the prediction experiment using fused ratings of
perceived stress obtained from the baseline methods are pre-
sented in Table 5. The prediction performance is expressed
as the combination of the mean and standard deviation of
CCC metric over 20 repetitions for each method. The Mean
label approach performed the best among the baseline meth-
ods, while DBA performed the worst. A one-way ANOVA
test is conducted comparing the CCC values among the
different baseline methods which reveals significant differ-
ences (F (4, 95) = 74.488 , p < 0.01). The Tukey HSD test
is performed as a post-hoc test for pairwise comparisons
between the baseline methods. Results indicate that CCC
for the Mean label approach is significantly higher than the
other methods, while DBA shows significantly low CCC
compared to the rest of the methods. There is no significant
difference among CCC values obtained from EWE, RAAW,
and Selective methods. Therefore, the proposed annotation
fusion methods are compared against the performance of
Mean label approach.

5.2.3 Evaluating the Proposed Method
Table 6 shows the result of the prediction experiment using
ratings of perceived stress constructed by the proposed
method. Different configurations are tested (i.e., Gaussian
vs. Skew-Normal distribution approximation, Mean vs Se-
lective initialization, and different window lengths for re-
action delay and adjustment shift). Results indicate that
CCC is comparatively lower when only the adjustment shift
window is used (i.e., Wd = 0). This is expected as the
annotator-specific reaction delays are not considered in this
configuration. Meanwhile, the configuration that only ac-
counts for the delay window (i.e., Wa = 0) usually performs
better, as this configuration considers the reaction delay.
This suggests that taking into account the reaction delay
is more beneficial when fusing stress ratings from multiple

TABLE 5
Prediction Performance Measured by CCC (µ± σ) Obtained from

Fused Ratings of Perceived Stress Using Baseline Methods.

Baseline method CCC
Mean [28] 0.2987± 0.031
EWE [36] 0.2608± 0.020
DBA [29] 0.1610± 0.020

RAAW [29] 0.2659± 0.019
Selective [76] 0.2610± 0.038

annotators compared to the adjustment shift. Incorporating
both the reaction delay and adjustment shift results in better
predictive performance in the majority of cases. The best
performance is obtained by the fused rating with a 6 second
delay window (i.e., Wd = 6) and 2 second adjustment
window (i.e., Wa = 2), resulting in a 9 second window (i.e.,
W = 9) for both Gaussian and Skew-Normal distribution
assumptions and selective initialization.

We perform an independent t-test between the CCC val-
ues in the best-performing baseline method (i.e., Mean) and
the best-performing configuration of the proposed method
(i.e., Wd = 6 ,Wa = 2). Results indicate that the CCC values
obtained from the proposed method are significantly higher
than the baseline method (t(38) = −3.46 , p < 0.01). This
suggests that incorporating both reaction delay and adjust-
ment shift in fusing ratings from multiple annotators helps
in constructing reliable ratings instead of merely averaging
the ratings. The delay window length of this configuration
is similar to prior work [32], [68].

In general, the selective initialization performed better
than the mean initialization. Instead of initializing the gold
standard rating of perceived stress, as with the mean rat-
ing at the beginning of the EM optimization, the selective
initialization provides a weighted mean of the most reliable
annotators (i.e., the ones who depicted Spearman’s ρ > 0.4
for at least one other annotator) and empirically performs
better than the mean initialization. Although the selective
method does not outperform the mean rating as a baseline
method, the incorporation of the selection set during the
initialization phase yields better predictive performance as
the EM optimization might have been able to capture the
comparative weights of different annotators. Finally, ratings
obtained from the Skew-Normal approximation perform
significantly worse than the mean rating and the ratings
from the Gaussian approximation. However, they show sig-
nificantly higher CCC than the worst baseline method (i.e.,
DBA). The Gaussian distribution assumption appears to ex-
hibit better generalization in the test data compared to mean
ratings, since the corresponding fused ratings obtained the
best-performing configuration (i.e., Wd = 6 ,Wa = 2).
Therefore, in the publicly available version of the VerBIO
dataset [52], we provide this setting as the gold standard
rating of perceived stress in addition to the ratings from the
individual annotators.

5.2.4 Association of Gold Standard Rating with Self-reports
and Physiological Signals
Next, we explore how the fused time-continuous ratings of
stress are associated with self-reported anxiety scores (i.e.,
SAE score) and physiological indices (i.e., SCL features). For
this purpose, we choose the fused ratings obtained by the
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TABLE 6
Prediction Performance Measured by CCC (µ± σ) Obtained From Fused Ratings of Perceived Stress for Different Configurations of the Proposed

Method.

Distribution Wd Wa CCC (Mean initialization) CCC (Selective initialization)

Gaussian

4 0 0.3216± 0.023 0.3117± 0.020
5 0 0.3299± 0.025 0.3231± 0.027
6 0 0.3169± 0.023 0.3131± 0.034
0 1 0.2978± 0.026 0.3003± 0.024
0 2 0.2952± 0.019 0.2837± 0.038
0 3 0.2834± 0.028 0.2766± 0.042
4 1 0.3178± 0.022 0.3035± 0.030
4 2 0.3180± 0.029 0.3113± 0.031
4 3 0.3187± 0.027 0.3027± 0.031
5 1 0.3168± 0.029 0.3179± 0.030
5 2 0.3048± 0.024 0.3131± 0.028
5 3 0.3130± 0.028 0.3089± 0.024
6 1 0.3049± 0.026 0.3120± 0.028
6 2 0.3084± 0.015 0.3320± 0.029
6 3 0.3250± 0.025 0.3124± 0.020

Skew-Normal

4 0 0.2101± 0.023 0.2239± 0.025
5 0 0.1944± 0.024 0.2242± 0.028
6 0 0.2197± 0.034 0.2187± 0.036
0 1 0.2251± 0.026 0.2332± 0.030
0 2 0.2292± 0.028 0.2329± 0.024
0 3 0.2408± 0.025 0.2284± 0.027
4 1 0.2016± 0.027 0.2273± 0.033
4 2 0.2181± 0.023 0.2263± 0.037
4 3 0.2062± 0.029 0.2427± 0.030
5 1 0.2350± 0.020 0.2341± 0.021
5 2 0.2171± 0.026 0.2419± 0.036
5 3 0.2312± 0.023 0.2375± 0.029
6 1 0.1702± 0.022 0.2117± 0.027
6 2 0.2255± 0.033 0.2440± 0.023
6 3 0.1810± 0.029 0.2044± 0.026

best-performing configuration (i.e., Gaussian distribution,
Selective initialization, Wd = 6 ,Wa = 2) described in
Section 5.2.3. Table 7(a) presents the Pearson’s correlation
coefficient (r) between the mean value of the fused ratings
and the SAE scores of the corresponding sessions. Time-
continuous ratings obtained by the proposed annotation

TABLE 7
Correlation between Fused Time-continuous Ratings of Stress and

Different Indicators of Stress (e.g., Self-report, Physiology).
(a) Pearson’s r between the Mean Value of the Fused Ratings and

the Self-Reported State Anxiety Enthusiasm (SAE) Score.

Annotation Fusion Method Pearson’s r

Mean [28] 0.1858
EWE [36] 0.1806
DBA [29] 0.1948

RAAW [29] 0.1809
Selective [76] 0.1670

Proposed method
(Gaussian distribution, Selective
initialization, Wd = 6 ,Wa = 2)

0.1905

(b) Median Value of Pearson’s r between Fused Ratings and
Skin Conductance Level (SCL) Features.

Annotation Fusion Method Pearson’s r

Mean [28] 0.1318
EWE [36] 0.1291
DBA [29] 0.1037

RAAW [29] 0.1324
Selective [76] 0.1389

Proposed method
(Gaussian distribution, Selective
initialization, Wd = 6 ,Wa = 2)

0.1929

fusion method exhibits higher correlation (i.e., r = 0.1905)
with self-reported SAE scores, compared to all baseline
methods, except DBA (r = 0.1948) which has slightly
higher correlation coefficient. This might have been caused
by the loss of temporal information due to the aggregation
of fused ratings into mean values for comparison with
SAE scores. Nevertheless, the prediction performance of
the fused ratings obtained by DBA is the worst among the
baseline methods. Table 7(b) shows the association of fused
time-continuous ratings with SCL features, in terms of the
median value of Pearson’s r over all sessions. Moment-to-
moment ratings of stress generated by the proposed fusion
method yield higher correlation (r = 0.1929) than ratings
obtained from baseline feature-independent annotation fu-
sion techniques. These results suggest that the proposed
annotation fusion method is able to produce reliable time-
continuous ratings of stress that are better correlated with
other measures of stress, such as self-reported scores and
biomarkers.

5.2.5 Estimation of Individual Annotator Rating Instead of
Annotation Fusion
Table 8 exhibits the prediction performance of the multi-task
learning model using the crowd layer based on acoustic
measures. The model performs the best in estimating the
ratings from R1 (i.e., CCC (R1) = 0.2880 ± 0.019), while
the worst prediction performance is obtained for the ratings
from R2 (i.e., CCC (R2) = 0.1886±0.021). Results exhibit that
the CCC obtained for ratings of R1 is significantly lower
than the best-performing setting of the proposed method
(t(38) = −5.68 , p < 0.01). Therefore, fused gold stan-
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TABLE 8
Prediction Performance Measured by CCC (µ± σ) for Ratings from

Individual Annotators Using Multi-task Learning Framework.

Evaluation Metric CCC (µ± σ)
CCC (R1) 0.2880± 0.019
CCC (R2) 0.1886± 0.021
CCC (R4) 0.2222± 0.016
CCC (R5) 0.2835± 0.019

dard ratings obtained from the proposed annotation fusion
method can be better estimated from acoustic features by an
LSTM model compared to the individual ratings estimated
by the multi-task learning framework. This highlights the ef-
ficacy of the proposed annotation fusion method compared
to an end-to-end learning model that uses ratings from all
available raters during the training step by incorporating a
multi-task framework and does not perform any annotation
fusion during the process.

5.2.6 Effectiveness in Approximating Known Ground Truth
Table 9(a) presents the results of the analysis for Task A
of the green intensity task data, while Table 9(b) shows
the same for Task B data. Results indicate that the pro-
posed feature-independent annotation fusion method has
yielded lower MSE (i.e., 0.0186 for Task A, 0.0078 for
Task B) and higher Pearson’s r (i.e., 0.8389 for Task A,
0.9648 for Task B) than the feature-independent baseline
methods for both Tasks A and B. Moreover, the proposed
feature-independent method has outperformed the feature-
dependent triplet embedding method by the work that
introduced the green intensity dataset [41] in both tasks.
For Task A, our method performs worse in terms of MSE
and Peason’s r compared to the other feature-dependent
methods presented (i.e, EM [38], Triplet Comparison [42]).
However, the proposed method has resulted in Pearson’s r
similar to these methods for the Task B data. This might
have been caused by the difference in the nature of the
ground truth data between the two tasks. Task B featured a
time-series with slowly varying green intensity values that
mimics the progression of affect rating. Meanwhile, Task
A contained time interval with constant values and fast-
changing peaks, that might be difficult to estimate for the
proposed method as the fused annotation is constructed
based on neighboring values. In contrast, the triplet com-
parison approach proposed by [42] can potentially better
handle abrupt changes in values within the time-series,
since it relies on relative comparisons, thus performing
well for Task A. The proposed feature-independent method
performs better than the baseline feature-independent meth-
ods and one of the feature-dependent methods (i.e., the
triplet embedding method [41]) in constructing the time-
continuous gold standard rating from multiple annotators,
when evaluated using data with known ground truth. The
performance of the proposed method is worse than the
remaining feature-dependent annotation fusion methods
presented, which might stem from the different annota-
tion process (i.e., time-continuous annotation approach vs.
triplet comparison annotation approach) and the type of an-
notation fusion method (i.e., feature-independent vs feature-
dependent).

TABLE 9
Mean Squared Error (MSE) and Pearson’s r between the Ground Truth

and the Gold Standard Rating Constructed by Different Annotation
Fusion Methods Using the Green Intensity Task Data [41], [53].

(a) Task A

Method
Type

Annotation Fusion
Method MSE Pearson’s r

Feature-
independent

Mean [28] 0.0338 0.7816
EWE [36] 0.0339 0.7816
DBA [29] 0.0187 0.8001

RAAW [29] 0.0346 0.7776
Selective [76] 0.0385 0.7723

Feature-
dependent

Triplet Embedding [41] 0.0364 0.7762
EM [38] 0.0049 0.903

Triplet Comparison [42] 0.0013 0.975

Feature-
independent

Proposed method
(Gaussian distribution,

Mean initialization,
Wd = 0 ,Wa = 2)

0.0186 0.8389

(b) Task B

Method
Type

Annotation Fusion
Method MSE Pearson’s r

Feature-
independent

Mean [28] 0.0084 0.9540
EWE [36] 0.0085 0.9542
DBA [29] 0.0162 0.8778

RAAW [29] 0.0090 0.9512
Selective [76] 0.0103 0.9562

Feature-
dependent

Triplet Embedding [41] 0.0101 0.9594
EM [38] 0.0024 0.975

Triplet Comparison [42] 0.0029 0.971

Feature-
independent

Proposed method
(Gaussian distribution
Selective initialization,
Wd = 0 ,Wa = 1)

0.0078 0.9648

6 DISCUSSION

This paper investigates the process of obtaining moment-
to-moment ratings of perception of stress from multiple
annotators based on audio recordings, and proposes a
feature-independent EM-based annotation fusion technique
to aggregate these ratings to formulate gold standard ratings
of perceived stress. For this purpose, we use the publicly
available VerBIO dataset [52] which contains 22 hours of
audio recordings of public speaking sessions from 53 par-
ticipants. Recalling our contributions to the existing state of
work (Section 2.3), we inspect how continuous time ratings
of perception of stress can be collected from annotators who
had access to the audio recordings of the public speaking
sessions only, in the absence of video recording which is
the most common modality being used in the annotation
process [7], [27], [76]. Although there have been studies that
used audio recordings to collect moment-to-moment ratings
of affect dimensions, they mainly focused on the overall
emotion in terms of valence and arousal [28], [39] instead of
specific affect dimensions such as stress. We aim to bridge
this gap in the current literature by collecting moment-to-
moment ratings of perception of stress from four annotators
who were asked to listen to the audio recording of 339 public
speaking sessions.

We analyze multiple aspects of the inter-annotator agree-
ment of this process which is measured by Spearman’s ρ
(Section 5.1.1). We find that 30% sessions have an average
ρ >= 0.3 which is an indicator of moderate to strong inter-
annotator agreement [82], [83]. However, this average ρ is
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computed by aggregating ρ values from all possible pairs
of annotators, and it might be affected by lower agreement
between some pairs. To further investigate this issue, for
each session, we construct a selective set of annotators who
exhibited ρ value over a threshold with at least one other
annotator. This approach of annotation quality analysis is
similar to Metallinou et al. [57], [76]. Their empirical choice
of threshold was 0.45 which resulted in ∼80% recordings
having at least one annotator pair with higher than thresh-
old agreement. Meanwhile, we have varied the threshold
ρ to examine the distribution of sessions (Fig. 4), and
findings from our work indicate that selecting ρ = 0.4 as
the threshold value resulted in ∼60% sessions with at least
one annotator pair with higher than threshold agreement.
This suggests that our selected threshold agreement metric
to divide sessions into high agreement and low agreement
groups is similar to prior work [28], [76]. However, there is
a slight difference in the percentage of sessions in the high
agreement group between our work and Metallinou et al.’s
research [57], [76] (i.e., 60% vs. 80%). This can be attributed
to the difference in available modality between the two
studies. In our work, the annotators had access to the audio
recordings only in order to rate the perceived stress, while
in [76], annotators rated the overall emotion while watching
the audio-visual recordings of the sessions. This suggests
that agreement between annotators might be affected when
only audio modality is present or a specific affect dimension
such as stress is being rated. Despite the lower percentage of
sessions that is considered for the high agreement group, the
average ρ for this group is 0.505, which is comparable to the
agreement metric obtained in [28], [34], [76]. This indicates
that the annotator agreement in our work based on only
audio modality is on par with prior work where annotators
relied on the audio-visual recording.

We examine the annotation characteristics (Section 5.1.2)
and the acoustic properties of the audio (Section 5.1.3)
between the high agreement and low agreement sessions.
Annotators tend to exhibit increased agreement when they
perceived a higher variation of stress during a session (i.e.,
SD = 0.394±0.09 in high agreement sessions) compared to
the sessions with lower variation (i.e., SD = 0.299± 0.05 in
low agreement sessions). This iterates that annotators might
find it difficult to perceive the subtle variation of stress.
This observation is in line with prior work which points
out that annotators are better at rating emotions in relative
terms compared to absolute values [65], [85] and that higher
variation of perceived emotions can help in more effectively
recognizing one’s affect state [67]. Similar differences are
also found between the high agreement and low agreement
sessions in terms of the acoustic features. High agreement
sessions tend to contain speech with overall lower F1-F3
and jitter compared to the audios in low agreement sessions.
However, an increase in jitter and an increase in F1-F3
are normally associated with an increase in psychological
stress [21]. This discrepancy might have been caused by the
fact that features were averaged over the entire duration
of a public speaking session, therefore they might be also
dependent on the overall vocal characteristics of a person
and the annotators might not be able to perceive whether
the speaker is under stress or whether the higher values of
the features are due to the vocal characteristics. This sheds

light on the complexity of the task of rating the perception
of stress using the audio modality only.

Next, we propose a feature-independent, EM-based an-
notation fusion technique to obtain gold standard ratings
of stress by introducing a modification in the methods
presented in [38], [40]. We have incorporated the adjustment
shift window along with the previously studied annotator-
specific reaction delay. Based on the preliminary results
(Section 5.2.1), the delay window length has been varied
within a 4-6 seconds range, while 1-3 seconds is considered
for adjustment window length. In addition, we experiment
with the initialization (i.e., Mean vs. Selective) of the gold
standard rating as well as the label distribution (i.e., Gaus-
sian vs. Skew-Normal). Fused ratings are computed through
the proposed technique by using different combinations
of the aforementioned parameters. Unlike prior work in
feature-independent annotation fusion [29], [36] that relied
on empirical evaluation through visual inspection, we have
conducted a formal evaluation through a prediction exper-
iment. Our assumption is that the reliable gold-standard
moment-to-moment ratings would maximally correlate with
the input features (e.g., speech, physiology) that would
maximize the prediction performance of the machine learn-
ing models [41], [50], [51]. We investigate the association
between fused ratings and the corresponding modality used
in the annotation process by measuring how good these rat-
ings were in training a model that could estimate the fused
ratings in the test set using the acoustic features. Among
the baseline methods of annotation fusion (Section 5.2.2),
Mean ratings exhibit the best predictive performance (i.e.,
CCC = 0.2987 ± 0.031). This performance is surpassed by
the proposed method with different combinations of design
parameters (Section 5.2.3). The best-performing combina-
tion consisted of a 9 second window (Wd = 6 ,Wa = 2)
with selective initialization and Gaussian distribution ap-
proximation that resulted in CCC = 0.3320 ± 0.029, a
significantly higher predictive performance than the base-
line methods. This indicates that the proposed feature-
independent annotation fusion technique can construct gold
standard ratings that are better associated with the corre-
sponding modality and are more generalizable compared to
conventional methods [28], [29], [36].

Findings from the evaluation suggested that 6 second de-
lay window (i.e., Wd = 6) and 2 second adjustment window
(i.e., Wa = 2) constituted the best-performing configuration.
Prior work indicates that annotators can have reaction delay
between 2 and 6 seconds [32], [37], [38]. A delay window of
a 6 second length would be able to account for this range
of annotator-specific delay found in the literature. Although
adjustment shift has not been previously incorporated in
annotation fusion, several studies tried to align ratings from
multiple annotators by shifting ratings in [−2, 2] second
range [28], [32], where the positive end of the range can be
considered as a proxy of the adjustment shift proposed in
our work. The choice of adjustment shift window length in
our case is in line with the temporal range for the alignment
of ratings.

Furthermore, we explore the degree of association be-
tween the fused time-continuous ratings and other mea-
sures of stress, such as self-reported anxiety scores and
physiological indices (Section 5.2.4). Findings indicate that
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the time-continuous ratings obtained by the proposed
method exhibit higher correlation (i.e., r = 0.1905) than
the majority of the baseline methods. The overall low range
of the correlation might be attributed to the aggregation of
ratings into mean values for comparison. However, such
low correlation between self-reported and external observer
affect ratings is common in prior work [63], [79]. In addition,
our results indicate higher association between the fused
ratings and SCL features from the EDA signal which is a
commonly used biomarker of stress [8], [21], compared to
baseline annotation fusion methods. Therefore, these find-
ings suggest that the proposed annotation fusion method
is able to construct reliable gold standard time-continuous
ratings of stress that not only maximizes the predictive
performance of machine learning models, but also exhibits
better association with different measures of stress captured
through self-reports and physiological signals compared to
the baseline methods.

Next, we investigate whether the fused gold stan-
dard ratings obtained from the proposed annotation fusion
method can be better estimated from acoustic features by an
LSTM model, compared to the individual ratings estimated
from the multi-task learning framework [59] that does not
involve annotation fusion. Results suggest that the model
is able to estimate the gold standard rating better than
the individual ratings. This highlights the efficacy of the
proposed annotation fusion method in generating a better
gold standard rating compared to the individual ratings.
Finally, we examine how efficient the proposed method is in
approximating ground truth. For this analysis, we have used
the green intensity task data, a synthetic dataset with known
ground truth [41], [53], as this analysis would not be possible
with the VerBIO dataset due to the lack of objective ground
truth of stress ratings. The goodness of approximation of
the known ground truth by the fused rating is evaluated
using MSE and Pearson’s r. Overall, the proposed method is
able to approximate the ground truth better than the feature-
independent baseline methods, as well as one of the feature-
dependent methods, triplet embedding method [41]. This
indicates that the proposed method is able to construct gold
standard ratings that can better approximate ground truth,
if one exists.

Despite the promising results, the work presented in this
paper poses several limitations. Although the annotators
are provided with detailed instructions before starting the
annotation tasks, there is no frame-of-reference training [86]
and annotators are not given examples of the different
labels [35], [68]. This might have introduced more bias
caused by subjectivity from the inter-individual differences
of the annotators. In addition, the annotators are not chosen
from medical professionals, to reduce the logistic load of the
annotation process. The quality of annotation of stress might
have been enhanced by incorporating medical professionals
as they tend to have higher expertise compared to our
chosen annotator pool. Next, the fused ratings constructed
using Skew-Normal approximation perform worse than the
mean rating and the ratings from the Gaussian approxima-
tion. A possible reason behind the poor performance of the
Skew-Normal approximation might be the EM optimization
scheme that is being used. Unlike the Gaussian approxima-
tion case, the Skew-Normal approximation does not have a

closed-form solution [49] for the parameters that are being
optimized. Although gradient descent optimizers have been
employed in estimating the parameters of the Skew-Normal
approximation, the choice of the optimization parameters
has been done empirically. A more methodical and sophis-
ticated approach might resolve this problem which we plan
to address as part of our future work.

7 CONCLUSION

In this paper, we investigated the feasibility of collecting
moment-to-moment ratings of perceived stress from multi-
ple annotators using only audio signals as the behavioral
marker and proposed an EM-based feature-independent
annotation fusion technique to construct the gold standard
rating. The proposed technique accounts for the annotator-
specific reaction delay as well as the adjustment shift. Fused
ratings obtained through different configurations of the
design parameters are compared to the conventional meth-
ods (i.e., Mean, EWE). Instead of empirical evaluation, this
comparison is performed by conducting a formal evaluation
through a prediction experiment to estimate the ratings of
stress using acoustic features. Results from the experiments
conducted on the VerBIO dataset [52] indicate that moderate
inter-annotator agreement can be achieved when multiple
annotators are asked to provide continuous time ratings
of stress based on audio recordings only. In addition, the
proposed fusion technique using filter windows for both
reaction delay and adjustment shift is capable of construct-
ing better gold standard ratings in terms of association
with mutimodal features, self-reports, and generalization,
as they were estimated significantly better by the acoustic
features compared to the ratings from baseline methods.
These ratings are going to be augmented with the current
version of the VerBIO dataset, which has the potential to be a
useful resource for researchers in the domain of data-driven
stress detection. This work lays the foundation for the
development of a computational model to detect stress in
a time-continuous manner using multimodal signals. Such
models are indispensable in designing stress intervention
modules to alleviate the negative effect of stress among the
general population [23], [24].
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[77] F. Eyben, M. Wöllmer, and B. Schuller, “Opensmile: the munich
versatile and fast open-source audio feature extractor,” in Proceed-
ings of the 18th ACM international conference on Multimedia, 2010,
pp. 1459–1462.

[78] F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, E. André,
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