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Abstract 
This demonstration paper presents an artifcial intelligence (AI)-
powered interactive interface designed to enhance interview train-
ing for military veterans transitioning to civilian jobs. The interface 
uses large language models (LLMs) to provide real-time feedback 
on veterans’ responses to common interview questions, classify-
ing answers as under-explained, succinct, comprehensive, or over-
explained. The system further ofers a justifcation of its decision, 
potentially enhancing the user’s understanding of their responses 
and identifying areas for improvement. This tool aims to bridge the 
gap between military and civilian employment, addressing unique 
challenges faced by veterans and potentially extending to other 
sensitive groups in future applications. 

CCS Concepts 
• Human-centered computing → Interaction design process 
and methods; • Applied computing → Interactive learning envi-
ronments. 
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1 Introduction 
Military veterans bring diverse experiences, a wide range of skills, 
and the benefts of their military training to the civilian workforce 
[13]. They work well in a team, depict a sense of responsibility 
and accountability for completing the job tasks, are organized and 
disciplined, and possess a strong work ethic. Yet, many veterans 
struggle with integrating to the civilian workforce due to several 
factors [7]. Civilian interviewers with little or no experience in the 
military domain are often asked to interview veterans, thus, they 
might not be aware of the unique challenges associated to returning 
to civilian life [7]. This can result in military veterans being subject 
to discrimination, negative stereotypes, stigma, and exclusion [8]. 
In addition, veterans may struggle to articulate the relevance of 
their military-specifc skills and may not be adequately prepared 
for the civilian job interview [5]. 

The employment interview is the most common method used to 
assess a job candidate [6]. Despite their strong qualifcations, veter-
ans might depict several weaknesses when engaging in the civilian 
job interview, including inefective translation and communication 
of relevant technical skills acquired in the military, use of mili-
tary jargon, and over-explaining their responses [12, 13]. Existing 
programs for preparing veterans for the civilian job interview are 
limited and often rely on a “one-fts-all" solution. For example, the 
U.S. Department of Labor ofers a one-day employment overview 
that teaches military veterans how to build a resume and prepare 
for an interview, along with an e-learning curriculum to support 
service members and their spouses. While these programs have 
been efective in helping veterans to fnd a job after leaving the 
military or transition to a better job [9], they may not always ad-
dress the individual needs and backgrounds of veterans, nor provide 
tailored support necessary for efective job market integration. 

Interactive interfaces that rely on artifcial intelligence (AI) for 
facilitating interview training have received increased interest in 
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several research domains, such as afective computing and human 
computer interaction (HCI). These assistive technologies help the 
users in practicing their communication skills by allowing them to 
answer mock job interview questions and provide feedback related 
to their verbal and non-verbal cues [1, 3, 4]. Hoque et al. devel-
oped the My Automated Conversation coacH (MACH) system that 
employed virtual avatars as interviewers to simulate a job inter-
view scenario [4]. Users were asked questions by the avatars and 
their responses were recorded. By analyzing the facial expression 
and verbal cues, MACH generated a visual feedback for the users 
about their performance. Anderson et al. proposed a gamifed in-
terface named TARDIS where users interacted with a virtual agent 
to improve their communication skill [1, 2]. TARDIS analyzed the 
non-verbal cues related to facial expressions and gestures to provide 
users a quantitative feedback about their performance. Similarly, 
Yadav et al. focused on developing an assistive interface to pro-
vide feedback to the users about their conversational engagement 
and behavioral cues during interviews. However, these systems do 
not take into account the linguistic content of the responses. That 
causes the users to miss out on feedback related to the quality of 
their response. The proposed demonstration aims to fll this gap 
in the literature via leveraging large language models (LLMs) due 
to their ability to understand and generate human-like text and 
provide feedback on a sentence-level or even word-level. 

This demonstration paper presents a AI-based interactive in-
terface for interview training of military veterans. The interface 
simulates an interview scenario. The user views each question and 
has the ability to verbally respond or type their answer. A backend 
system that is based on LLMs classifes the degree of explanation of 
the user’s response to each question (i.e., under-explained, succinct, 
comprehensive, over-explained), and provides a justifcation of its 
decision. In this way, the system can analyze the unique verbal 
behaviors of a veteran user on a moment-to-moment basis ofer-
ing personalized feedback and adaptive training that can pinpoint 
specifc parts of responses for improvement. This demonstration is 
discussed in terms of its generalizability to other sensitive groups. 

2 Implementation 
2.1 Interface Design 
We developed a web application utilizing React for the front end and 
Flask for the back end. The application leverages the Whisper API 
to enable near real-time audio transcription. When a user submits 
their response, the back end processes and classifes the response 
as under-explained, succinct, over-explained, or comprehensive, 
providing a detailed reasoning for the classifcation. This interface 
can be deployed on the cloud for wide accessibility through a web 
link, while also supporting local deployment to ensure user privacy. 

During the simulated interview session, users are presented with 
a series of eight questions from various categories that simulate 
common behavioral interview questions. The categories include 
introduction, mental capability, knowledge and skills, basic person-
ality tendencies, communication and interpersonal skills, leader-
ship, persuasion and negotiation, interests and preferences, and 
conclusion. The application is designed with a user-friendly inter-
face (Figure 1), featuring intuitive buttons for navigating between 
questions, starting over, submitting answers, recording responses, 

Figure 1: System interface 

and resetting drafts. Users have the option to type their answers 
or dictate them using the web browser’s microphone, and they can 
combine both typed and dictated responses. 

2.2 System Design 
2.2.1 Data. In order to design the AI-based system to identify the 
degree of explanation in the responses to interview questions, we 
used the interview dataset introduced in [10] for prompting the 
LLMs. This dataset consists of data from a study where 38 U.S. mili-
tary veterans participated in a mock job interview conducted by ex-
perienced interviewers via Zoom. Audio recordings and transcripts 
of the interviews were obtained from Zoom. Collectively, the par-
ticipants responded to 286 interview questions. To label the degree 
of explanation of these responses, three annotators were employed. 
Based on their annotation, each response was labeled as one of the 
following four possible categories [14]. Under-explained: Short 
and incomplete; Succinct: Concise and to-the-point; Comprehen-
sive: Detailed and complete; and Over-explained: Unnecessarily 
long. 

2.2.2 Automatic speech recognition (ASR). For automatically tran-
scribing the user responses, we evaluated multiple speech-to-text 
models by calculating their word error rates (WER) and transcrip-
tion times. Previously recorded participants’ audio and correspond-
ing transcripts [10, 14] served as the ground truth for these evalu-
ations. The models compared included Whisper, Faster-Whisper, 
Distil-Whisper, and Whisper Large-v2. Among these, Whisper Large-
v2 achieved the lowest WER of 0.315. However, to balance the 
trade-of between transcription time and accuracy for near real-
time processing, we selected the Whisper Medium model for local 
deployment. Whisper Medium transcribed an average of 16 minutes 
of audio in 146.26 seconds, compared to Whisper Large-v2’s 205.47 
seconds. Despite its slightly higher WER of 0.326, Whisper Medium 
ofers faster transcription due to its smaller model size. 

2.2.3 Large Language Models (LLMs) for identifying degree of ex-
planation. Diferent LLMs were tested across various experimental 
setups to classify a response into a specifc degree of explanation. 
These classifcations were performed through 2-way comparisons: 
Succinct vs. Under-explained (task 1) and Comprehensive vs. Over-
explained (task 2). We used a Chain-of-Thought approach [15] with 
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few-shot learning. In our system, n-shot learning means that the 
prompt includes n examples from each class. The experimentation 
involved modifying the prompts by including various elements 
such as context from previous questions, domain knowledge on 
the linguistic characteristics of each type of response, and justi-
fcations for the assigned labels of the n training examples. The 
context refers to the number of previously asked questions the 
model has access to when answering the current question. This 
context is maintained separately for each participant and increases 
as the number of questions asked to the participant grows. Do-
main knowledge was integrated by adding to the prompt specifc 
linguistic characteristics of each type of response, such as the use 
of tentative language, polite expressions, and language related to 
achievement and politics, as measured by the Linguistic Inquiry and 
Word Count (LIWC) [11]. Justifcations for each of the n training 
examples were generated by the experimenter according to the 
annotation manual. The models that yielded the most promising 
results were integrated into the backend to classify queries from 
the frontend ASR model into their respective categories. 

For task 1, the best model employed Gemini 1.5 Pro, using 1-shot 
learning and the context of previous questions. The most signifcant 
performance improvement was observed when context was pro-
vided to the model, yielding macro F1-score of 0.54. This improve-
ment likely indicates that the Gemini model, with its large context 
window, has a better ability to understand and utilize context. Ad-
ditionally, the results suggest that integrating domain knowledge 
to the prompt may not yield signifcant performance improvement 
for this classifcation task. For task 2, we utilized GPT 3.5 Turbo 
with 2-shot learning. The model considers the justifcation of labels 
for 2 examples per class and context of previous questions. The 
prompt also includes information from domain knowledge. The 
combination of the three aforementioned design elements yielded 
a macro F1-score of 0.61 for this task. 

3 Discussion 
By ofering personalized feedback in a controlled environment, the 
proposed interface can potentially help veterans articulate their 
skills and experiences more efectively, thus promoting their in-
tegration to the civilian workforce. The interface can also help 
civilian interviewers to better understand the specifc challenges 
faced by candidates from the military, potentially raising awareness 
about the difculties these candidates encounter. Yet, the proposed 
interface has the following limitations that can be addressed in 
future work. It would be valuable to conduct a formal evaluation of 
the efectiveness of the interface in interview training and assess 
not only the classifcation performance of the interface in unknown 
data, but also the quality of generated justifcations. The interface 
focuses on the specifc population of military veterans, but the 
framework and methodology could be applied to other sensitive 
groups, such as individuals with disabilities, those re-entering the 
workforce after incarceration, and immigrants or refugees. The 
system can help individuals with disabilities practice articulating 
their strengths and accommodations needs, assist former inmates 
in framing their past experiences positively, and aid immigrants 
in overcoming language barriers and cultural diferences in job 
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interviews. Finally, another way to improve the system would be 
to make the interface adaptive based on the user’s skills. 

4 Conclusion 
This paper presents an interactive interface that is based on LLMs 
to help military veterans efectively translate their military skills to 
the civilian job interview. The interface utilizes React for the front 
end and Flask for the back end. LLMs including Gemini 1.5 Pro 
and GPT 3.5 Turbo conduct the automatic classifcation task of the 
degree of explanation of a response in the interview. Ultimately, this 
interface can ofer personalized feedback to military veterans and 
help them articulate their skills and experiences more efectively. 
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