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ABSTRACT

This paper proposes AB-SAGA, a first-order distributed

stochastic optimization method to minimize a finite sum

of smooth and strongly convex functions distributed over an

arbitrary directed graph. AB-SAGA removes the uncertainty

caused by the stochastic gradients using node-level variance

reduction and subsequently employs network-level gradient

tracking to address the data dissimilarity across the nodes.

Unlike existing methods that use the nonlinear push-sum

correction to cancel the imbalance caused by the directed

communication, the consensus updates in AB-SAGA are lin-

ear and use both row and column stochastic weights. We

show that for a constant stepsize, AB-SAGA converges lin-

early to the global optimal. We quantify the directed nature

of the underlying graph using an explicit directivity constant

and characterize the regimes in which AB-SAGA achieves

a linear speed-up over its centralized counterpart. Numeri-

cal experiments illustrate the convergence of AB-SAGA for

strongly convex and non-convex problems.

Index Terms— Stochastic optimization, variance reduc-

tion, first-order methods, directed graphs.

1. INTRODUCTION

Stochastic optimization is relevant in many signal process-

ing, machine learning, and control applications [1, 2]. In

large-scale problems, data is usually geographically dis-

tributed making centralized methods practically infeasible.

Distributed solutions are thus preferable where individual

nodes perform local updates using data fusion among the

nearby nodes [3–5]. The problem of interest can be written as

P : min
x∈Rp

F (x) :=
1

n

n∑

i=1

fi(x), fi(x) :=
1

mi

mi∑

j=1

fi,j(x),

where each local cost function fi : R
p → R is private to

node i and is further decomposed into mi component cost

functions {fi,j : Rp → R}mi

j=1. When the underlying prob-

lem is smooth and strongly convex, the goal is to find the

unique minimizer x∗ of the global cost F , given that the

nodes communicate over a strongly connected directed graph.

Distributed first-order stochastic methods for problem P

are well studied in the literature. Early work includes [6, 7]

that is applicable to undirected graphs. SGP (stochastic

gradient push [8]) extends DSGD (distributed stochastic gra-

dient descent [6]) to directed graphs using push-sum con-

sensus [9]. Both DSGD and SGP suffer from a steady-state

error caused by the difference in global and local cost func-

tions, i.e., ∥∇F (x∗)−∇fi(x∗)∥, and the variance intro-

duced by the stochastic gradients. Over arbitrary directed

graphs, S-ADDOPT [10] compensates for the heterogene-

ity of local cost functions using gradient tracking [11–13].

However, the steady-state error remains in effect due to the

variance. A recent work Push-SAGA [14] benefits from

a variance reduction technique [15] to eliminate this error.

Both S-ADDOPT and Push-SAGA use nonlinear push-sum

corrections to ensure agreement by dividing by the estimates

of the right Perron eigenvector of the underlying column

stochastic weight matrix which slows down the convergence

and adds to the computational cost. Such correction is not

required when the weights are doubly stochastic as is the case

over undirected graphs; see [16–20] for related work.

In this paper, we present AB-SAGA, a first-order dis-

tributed stochastic optimization method that is applicable

to arbitrary directed graphs. Similar to [14, 18], AB-SAGA

eliminates the uncertainty caused by the stochastic gradients

using variance reduction and addresses the global versus local

cost gaps using gradient tracking. Unlike Push-SAGA [14],

however, AB-SAGA uses both row and column stochastic

weights for consensus, thus eliminating the need to estimate

the Perron eigenvector required in push-sum methods. The

main contributions of this paper are summarized next: (i) We

analytically establish the linear convergence of AB-SAGA

to the global optimizer x∗ for smooth and strongly convex

problems; (ii) We quantify the performance of AB-SAGA

over directed graphs and encapsulate the directed nature of

the communication in a directivity constant ψ ≥ 1, which is 1
for undirected graphs; (iii) We provide explicit expressions

for the gradient computation and communication complexi-

ties, and show that AB-SAGA achieves linear speedup over

its centralized counterpart.

We now describe the rest of the paper. Section 2 motivates

the algorithm development and formally describes AB-SAGA.

Section 3 describes the assumptions and the main results.

Section 4 provides the detailed convergence analysis. Sec-

tion 5 presents the numerical experiments on strongly convex

and non-convex problems. Section 6 concludes the paper.
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Basic Notation: We use upper case letters to represent

matrices and lower case bold letters for vectors. We de-

fine In as n× n identity matrix and 1n as a column vector

of n ones. From Perron Frobenius theorem [21], for a prim-

itive row stochastic matrix A ∈ R
n×n (column stochastic

matrix B ∈ R
n×n), we define A∞ := limk→∞Ak = π⊤

r 1n

(B∞ := limk→∞Bk = 1⊤
nπc), where πr is the left eigen-

vector of A (πc is the right eigenvector of B), corresponding

to the unique eigenvalue 1. We further denote the largest

element of a vector πr as πr and the smallest element as πr,

and define the ratios hr := πr/πr and hc := πc/πc. We

denote the spectral radius of matrix A as ρ(A), while ∥ · ∥2
denotes the vector two-norm and ||| · |||2 denotes the matrix

norm induced by this vector norm. Since ρ(A−A∞) < 1
and ρ(B −B∞) < 1, it can be shown that there exist matrix

norms ||| · |||
πr

and ||| · |||
πc

, formally defined in [22], such that

σA := |||A−A∞ |||
πr

< 1 and σB := |||B −B∞ |||
πc
< 1.

2. ALGORITHM DEVELOPMENT

We motivate the proposed algorithm with the help of a recent

work GT-DSGD [17, 23], which adds gradient tracking to the

well-known DSGD [6]. The GT-DSGD algorithm can be de-

scribed as follows. Let W = {wir} be the network weight

matrix such that wir ̸= 0, if and only if node i can receive

information from node r. Let xk
i ,w

k
i , both in R

p, be the

state vectors at each node i and iteration k. Then, ∀k ≥ 0,

GT-DSGD at each node is given by

xk+1
i =

n∑

r=1

wirx
k
r − αwk

i ,

wk+1
i =

n∑

r=1

wirw
k
r +∇fi,sk+1

i

(
xk+1
i

)
−∇fi,sk

i

(
xk
i

)
,

where ski is an index drawn uniformly at random from the

index set {1, · · · ,mi} and ∇fi,sk
i
(xk

i ) is the gradient of

the ski -th component cost function fi,sk
i

(and not the full

local gradient ∇fi). The wk
i -update in GT-DSGD is based

on dynamic average consensus [24] and essentially tracks

the global gradient ∇F , asymptotically, see [11–13] for

more details. The xk
i -update consequently implements a de-

scent in the global gradient direction wk
i . Assuming that

the variance of local stochastic gradients is bounded, i.e.,

Esk
i
[∥∇fi,sk

i
(xk

i )−∇fi(xk
i )∥22 | xk

i ] ≤ σ2, and the global

cost is ℓ-smooth and µ-strongly convex, GT-DSGD converges

linearly to the neighborhood of the optimal solution, i.e.,

lim sup
k→∞

1

n

n∑

i=1

E[∥xk
i − x∗∥22] = O

(
α
nµ σ

2 + α2κ2

(1−λ)3 σ
2
)
,

for a sufficiently small constant stepsize α, where (1 − λ) is

the spectral gap ofW and κ is the condition number of F . We

note that the steady-state error depends on the variance σ2

of the stochastic gradients and GT-DSGD, in general, is not

applicable to arbitrary directed graphs since it requires W to

be doubly stochastic.

Algorithm 1 AB-SAGA at each node i

Require: x0
i ∈ R

p, w0
i = g0

i = ∇fi(x0
i ), v

1
i,j = x0

i ,

∀j ∈ {1, · · · ,mi}, α > 0, {air}nr=1, {bir}nr=1,

Gradient table: {∇fi,j(x0
i )}mi

j=1

1: for k = 0, 1, 2, . . . do

2: xk+1
i ←∑n

r=1 air(x
k
r − α ·wk

r )

3: Select sk+1
i uniformly at random from {1, . . . ,mi}

4: gk+1
i ← ∇fi,sk+1

i
(xk+1

i )−∇fi,sk+1
i

(vk+1

i,sk+1
i

)

+ 1
mi

∑mi

j=1∇fi,j(vk+1
i,j )

5: Replace∇fi,sk+1
i

(vk+1

i,sk+1
i

) by∇fi,sk+1
i

(xk+1
i ) in the

gradient table

6: wk+1
i ←∑n

r=1 bir(w
k
r + gk+1

r − gk
r )

7: if j = sk+1
i , then vk+2

i,j ← xk+1
i , else vk+2

i,j ← vk+1
i,j

8: end if

9: end for

In this paper, we propose AB-SAGA that removes the steady

state error in GT-DSGD with the help of a SAGA-based vari-

ance reduction technique [15]. The complete implementa-

tion details are provided in Algorithm 1. We note that for

each xk
i and wk

i updates, AB-SAGA requires c ∈ N and d ∈ N

communication rounds, respectively. For ease of notation,

we write the ir-th element of Ac as {air} and Bd as {bir},
for some c, d ∈ N, formally defined later. Each node i up-

dates xk
i , which estimates the global minimum x∗, and wk

i ,

which tracks the global gradient ∇F (xk
i ) using SAGA-based

local gradient update gk+1
i . We remark that each node re-

quires additional storage O(pmi) to maintain the gradient ta-

ble {∇fi,j(vk
i,j)}mi

j=1 as is standard in SAGA. This storage

cost can be reduced to O(mi) for certain problems [15]. Fi-

nally, we note that AB-SAGA is applicable to arbitrary di-

rected graphs as it does not require the corresponding weight

matrices, A and B, to be doubly stochastic.

3. ASSUMPTIONS AND MAIN RESULTS

We first describe the assumptions below.

Assumption 1. The network of nodes communicates over a

strongly connected arbitrary directed graph.

Assumption 2. The global cost function F is µ-strongly con-

vex and each component cost fi,j is ℓ-smooth.

Assumption 1 ensures that the matrices A = {air} and

B = {bir} can be chosen to be irreducible, primitive, row and

column stochastic, respectively. In particular, if each node i
has the knowledge of its in-degree din

i and its out-degree dout
i ,

then the weights can be locally chosen as air = 1/din
i for

each incoming neighbor r, and bir = 1/dout
i for each outgo-

ing neighbor r. Next, Assumption 2 ensures that the global

cost F has a unique minimizer x∗. We note that the local cost

functions fi’s are not necessarily strongly convex, which is

a relaxed condition than the one for Push-SAGA. Based on

these assumptions, we now present our main results.
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Theorem 1. Consider problem P under Assumptions 1 and 2.

For the stepsize α ∈ (0, α], α >0 formally defined later,

AB-SAGA linearly converges to x∗. In particular, when

α = α, AB-SAGA achieves an ϵ-optimal solution in

Γ = O
(
max

{
κψ, κ

2M
m ,M

}
log 1

ϵ

)

gradient computations, with (c+ d) communication rounds

per iteration, for all c = ⌈ c ⌉ and d = ⌈ d ⌉ such that

c :=
log

(

90512nMκ

m(1−σ2d
B

)

√

hrhc

π
⊤
r πc

)

log 1
σA

, d :=
log

(

1265κ

π
⊤
r πc

√
nMhc

m

)

log 1
σB

,

whereM := maximi,m := minimi, κ := ℓ/µ is the condi-

tion number, and ψ :=
√
hrhc

n(π⊤
r πc)

is the directivity constant.

The formal proof of the Theorem 1 is provided in Sec-

tion 4. The following remarks summarize its key attributes.

Remark 1. We note that for well-connected networks, i.e.,

when σA and σB are small, we have that c ≤ 1 and d ≤ 1.

Thus, we get c = 1 and d = 1, and AB-SAGA converges with

a single round of communication per iteration.

Remark 2. Theorem 1 describes an explicit directivity con-

stant ψ :=
√
hrhc

n(π⊤
r πc)

, which is 1 for undirected networks. Thus

AB-SAGA and its convergence proof are naturally applicable

to undirected graphs.

Remark 3. When each node possess a large dataset such

that M ≈ m≫ κ2ψ, AB-SAGA achieves an ϵ-optimal solu-

tion in O
(
M log ϵ−1

)
gradient computations per node. We

note that this complexity is n times better than the centralized

complexity O
(
nM log ϵ−1

)
of SAGA [15] that processes all

data at a single location.

4. CONVERGENCE OF AB-SAGA

In this section, we formalize the convergence analysis. It can

be verified that AB-SAGA described in Algorithm 1 can be

compactly written in a vector-matrix format as

xk+1 = Ac(xk − αwk), (1a)

wk+1 = Bd(wk + gk+1 − gk); (1b)

where xk,wk and gk are the global state vectors in R
pn con-

catenating the local state vectors xk
i ,w

k
i and gk

i in R
p, respec-

tively. Similarly, A := A⊗ Ip and B := B ⊗ Ip, in R
pn×pn,

are the global weight matrices, whereas c and d denote the

communication rounds per iterate. We next define four error

terms to aid the convergence analysis of AB-SAGA:

(i) Network agreement error: E∥xk −A∞xk∥2;

(ii) Optimality gap: E∥x̂k − x∗∥2;

(iii) Mean auxiliary gap: E[tk];
(iv) Gradient tracking error: E∥wk −B∞wk∥2;

where x̂k := π⊤
r x

k and tk :=
∑n

i=1(
1
mi

∑mi

j=1 ∥vk
i,j − x∗∥22).

We establish the linear convergence of AB-SAGA by showing

that all of these error terms linearly decay to zero, leading

to xk
i → x∗, at each node i. We next establish an LTI sys-

tem that governs the convergence rate of AB-SAGA in the

following Lemma.

Lemma 1. Consider AB-SAGA under Assumptions 1 and 2.

If α ≤ min
{

1
35ℓ

√
hrhc

, µ
288nℓ2(π⊤

r πc)

}
, c ≥ log(4n)

log(1/σA) , and

d ≥ log(4n)
log(1/σB) ; then ∀k > 0,uk+1 ≤ Gαu

k, where uk ∈ R
4

and Gα ∈ R
4×4 are defined as:

uk :=




E[∥xk −A∞xk∥2πr
]

E[n∥x̂k − x∗∥22]
E[tk]

E[ℓ−2∥wk −B∞wk∥2πc
]


 , (2)

Gα :=




3
4 α2g1σ

2c
A α2g2σ

2c
A α2g3σ

2c
A

αg4 1− αg5 α2g6 αg7
2

mπr

2
m 1− 1

M 0
146nσ2d

B

(1−σ2d
B

)πrπc

97nσ2d
B

(1−σ2d
B

)πc

26σ2d
B

(1−σ2d
B

)πc

3
4


 ;

and the corresponding constants are given by

g1 :=
40ℓ2n∥πc∥2

2πr

1−σ2c
A

, g2 :=
16ℓ2∥πc∥2

2πr

1−σ2c
A

, g3 := 8ℓ2πrπc

1−σ2c
A

,

g4 :=
8ℓ2nπ⊤

r πc

µπr
, g5 :=

µnπ⊤

r πc

4 ,

g6 := 3ℓ2n(π⊤
r πc)

2, g7 :=
5ℓ2∥πr∥2

2πc

µπ⊤
r πc

.

The proof of Lemma 1 is standard and follows similar pro-

cedures as in [14, 22]. With the help of this lemma, we next

prove Theorem 1 based on the following key result.

Lemma 2. [21] LetA ∈ R
n×n be a non-negative matrix and

x ∈ R
n be a positive vector. If Ax ≤ βx, for some β > 0,

then ρ(A) ≤ |||A |||x∞ ≤ β, where |||A |||x∞ is the matrix norm

induced by the weighted max-norm ∥·∥x∞, given that x > 0n.

Proof of Theorem 1: First note that the system matrix Gα is

non-negative. From Lemma 2, if there exists a positive vec-

tor δ and a constant γ, such that Gαδ ≤ γδ element-wise,

then ρ(Gα) ≤ |||Gα |||δ∞ ≤ γ. To this aim, let δ have all posi-

tive elements [δ1 δ2 δ3 δ4]
⊤ and set γ =

(
1− 1

2αg5
)
, then the

following set of inequalities must hold:

αg5
2

+
σ2c
A

δ1

(
α2g1δ2 + α2g2δ3 + α2g3δ4

)
≤ 1

4
, (3)

αg6 ≤
g5
2

δ2
δ3
− g4

δ1
δ3
− g7

δ4
δ3
, (4)

αg5
2
≤ 1

M
− 2π−1

r

m

δ1
δ3
− 2

m

δ2
δ3
, (5)

αg5
2
≤ 1

4
− σ2d

B

(
146nπ−1

r δ1 + 97nδ2 − 26δ3
)

δ4πc(1− σ2d
B )

. (6)

We note that (4), (5) and (6) are valid for a range of

stepsizes and communication rounds c and d, when their

right hand sides are positive. To this aim, we first fix the

elements of δ independent of the stepsize and then find

the bounds on α, i.e., δ1 = 1, δ2 = 64τ2κ
2

πr
, δ3 = 130τ2κ

2M
mπr

and δ4 =
40000nκ2Mπ−1

r π−1
c

mτ1(1−σ2d
B

)
, when σd

B <
π

⊤

r πc

201κ

√
m

nMhc
and

τ1 := 1− 40000nσ2d
B κ2Mhc

m(1−σ2d
B

)(π⊤
r πc)2

, τ2 := 1 + 40000nκ2Mhc

(π⊤
r πc)2τ1m(1−σ2d

B
)
.
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