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ABSTRACT

This paper proposes AB—SAGA, a first-order distributed
stochastic optimization method to minimize a finite sum
of smooth and strongly convex functions distributed over an
arbitrary directed graph. AB—SAGA removes the uncertainty
caused by the stochastic gradients using node-level variance
reduction and subsequently employs network-level gradient
tracking to address the data dissimilarity across the nodes.
Unlike existing methods that use the nonlinear push-sum
correction to cancel the imbalance caused by the directed
communication, the consensus updates in AB—SAGA are lin-
ear and use both row and column stochastic weights. We
show that for a constant stepsize, AB-SAGA converges lin-
early to the global optimal. We quantify the directed nature
of the underlying graph using an explicit directivity constant
and characterize the regimes in which AB-SAGA achieves
a linear speed-up over its centralized counterpart. Numeri-
cal experiments illustrate the convergence of AB—SAGA for
strongly convex and non-convex problems.

Index Terms— Stochastic optimization, variance reduc-
tion, first-order methods, directed graphs.

1. INTRODUCTION

Stochastic optimization is relevant in many signal process-
ing, machine learning, and control applications [1,2]. In
large-scale problems, data is usually geographically dis-
tributed making centralized methods practically infeasible.
Distributed solutions are thus preferable where individual
nodes perform local updates using data fusion among the
nearby nodes [3-5]. The problem of interest can be written as

m;

P: min F(x):= %Zfz(x)y fi(x) = miZf”(x),
i=1 Lj=1

xERP

where each local cost function f; : RP — R is private to
node ¢ and is further decomposed into m; component cost
functions {f; ; : R? — R}7",. When the underlying prob-
lem is smooth and strongly convex, the goal is to find the
unique minimizer x* of the global cost F, given that the
nodes communicate over a strongly connected directed graph.

Distributed first-order stochastic methods for problem P
are well studied in the literature. Early work includes [6, 7]

that is applicable to undirected graphs. SGP (stochastic
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gradient push [8]) extends DSGD (distributed stochastic gra-
dient descent [6]) to directed graphs using push-sum con-
sensus [9]. Both DSGD and SGP suffer from a steady-state
error caused by the difference in global and local cost func-
tions, i.e., |[VF(x*)— Vf;(x*)|, and the variance intro-
duced by the stochastic gradients. Over arbitrary directed
graphs, S—ADDOPT [10] compensates for the heterogene-
ity of local cost functions using gradient tracking [11-13].
However, the steady-state error remains in effect due to the
variance. A recent work Push—SAGA [14] benefits from
a variance reduction technique [15] to eliminate this error.
Both S-ADDOPT and Push—-SAGA use nonlinear push-sum
corrections to ensure agreement by dividing by the estimates
of the right Perron eigenvector of the underlying column
stochastic weight matrix which slows down the convergence
and adds to the computational cost. Such correction is not
required when the weights are doubly stochastic as is the case
over undirected graphs; see [16-20] for related work.

In this paper, we present AB—SAGA, a first-order dis-
tributed stochastic optimization method that is applicable
to arbitrary directed graphs. Similar to [14, 18], AB-SAGA
eliminates the uncertainty caused by the stochastic gradients
using variance reduction and addresses the global versus local
cost gaps using gradient tracking. Unlike Push—SAGA [14],
however, AB-SAGA uses both row and column stochastic
weights for consensus, thus eliminating the need to estimate
the Perron eigenvector required in push-sum methods. The
main contributions of this paper are summarized next: (i) We
analytically establish the linear convergence of AB—SAGA
to the global optimizer x* for smooth and strongly convex
problems; (ii) We quantify the performance of AB-SAGA
over directed graphs and encapsulate the directed nature of
the communication in a directivity constant ¢ > 1, which is 1
for undirected graphs; (iii) We provide explicit expressions
for the gradient computation and communication complexi-
ties, and show that AB—SAGA achieves linear speedup over
its centralized counterpart.

We now describe the rest of the paper. Section 2 motivates
the algorithm development and formally describes AB—SAGA.
Section 3 describes the assumptions and the main results.
Section 4 provides the detailed convergence analysis. Sec-
tion 5 presents the numerical experiments on strongly convex
and non-convex problems. Section 6 concludes the paper.
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Basic Notation: We use upper case letters to represent
matrices and lower case bold letters for vectors. We de-
fine I,, as n X n identity matrix and 1,, as a column vector
of n ones. From Perron Frobenius theorem [21], for a prim-
itive row stochastic matrix A € R™*™ (column stochastic
matrix B € R™*™), we define A™ := limy_,o, A" =x 1,
(B® := limy_,00 B¥ = 1 7,), where m,. is the left eigen-
vector of A (7. is the right eigenvector of B), corresponding
to the unique eigenvalue 1. We further denote the largest
element of a vector 7, as 7, and the smallest element as 7,.,

and define the ratios h, :=7,./m,. and h.:=7./m,. We
denote the spectral radius of matrix A as p(A), while || - ||2
denotes the vector two-norm and || - |||, denotes the matrix

norm induced by this vector norm. Since p(A — A™) < 1
and p(B — B*) < 1, it can be shown that there exist matrix
norms || - ||, and ||| ._, formally defined in [22], such that
oa= A=A, <landop:=|[B-B*||,, <1

2. ALGORITHM DEVELOPMENT

We motivate the proposed algorithm with the help of a recent
work GT-DSGD [17,23], which adds gradient tracking to the
well-known DSGD [6]. The GT-DSGD algorithm can be de-
scribed as follows. Let W = {w,,.} be the network weight
matrix such that w,, # 0, if and only if node ¢ can receive
information from node r. Let xf,wf, both in RP, be the
state vectors at each node ¢ and iteration k. Then, Vk > 0,
GT-DSGD at each node is given by

k+1 _ E
X wzr r

W§+1 = wawf + vfi,sf"*'l (X7]J€+1) - Vfi,sf (Xf) )

where s¥

index set {1,---

is an index drawn uniformly at random from the
,m;} and Vf; (x}) is the gradient of
the s¥-th component cost function Ji s+ (and not the full

local gradient V f;). The w¥-update in GT-DSGD is based
on dynamic average consensus [24] and essentially tracks
the global gradient VF, asymptotically, see [11-13] for
more details. The x¥-update consequently implements a de-
scent in the global gradient direction w¥. Assuming that
the variance of local stochastic gradients is bounded, i.e.,
E [V o (x5) = VAi(xF)[3 | 5] < 02, and the global
cost is /- smooth and - strongly convex, GT DSGD converges
linearly to the neighborhood of the optimal solution, i.e.,

2. .2
lim sup — ZEHX x| = (ﬁa2+ﬁ02>,

k— o0
for a sufficiently small constant stepsize «, where (1 — \) is
the spectral gap of W and & is the condition number of F'. We
note that the steady-state error depends on the variance o2
of the stochastic gradients and GT-DSGD, in general, is not
applicable to arbitrary directed graphs since it requires W to
be doubly stochastic.

Algorithm 1 AB-SAGA at each node ¢
W? = gz Vfi(x

Require: x? € R?, 9, vi,; =x7,

Vie{l,--,mi},a>0, {aw}r:h {birre1s
Gradient table: {V f; ;(x{)}72,
1. fork=0,1,2,... do
2 XL S a(xF —a-wh)
3 Select sFT! uniformly at random from {1,...,m;}
4: ngrl — Vf k+1( k+1) — Vf ket (ijkl-%—l)

+*Z sz,]( k+1)
5: Replace Vf k+1( k+1) by Vf k+1( +1) in the
gradlent table

6 withe S by (wh o+ ghtt — gF)

7: 1f] = sI" then v T2« x[t else vi T2« viH!
8 end if

9: end for

In this paper, we propose AB—SAGA that removes the steady
state error in GT-DSGD with the help of a SAGA-based vari-
ance reduction technique [15]. The complete implementa-
tion details are provided in Algorithm 1. We note that for
each x¥ and w¥ updates, AB-SAGA requires c € Nandd € N
communication rounds, respectively. For ease of notation,
we write the ir-th element of A° as {a;.} and B? as {bir},
for some ¢,d € N, formally defined later. Each node ¢ up-
dates x¥, which estimates the global minimum x*, and w?,
which tracks the global gradrent VF(xF) using SAGA based
local gradient update g; R We remark that each node re-
quires additional storage O(pm;) to maintain the gradient ta-
ble {Vf; j(vF ;)}iZ, as is standard in SAGA. This storage
cost can be reduced to O(m;) for certain problems [15]. Fi-
nally, we note that AB—SAGA is applicable to arbitrary di-
rected graphs as it does not require the corresponding weight
matrices, A and B, to be doubly stochastic.

3. ASSUMPTIONS AND MAIN RESULTS

We first describe the assumptions below.
Assumption 1. The network of nodes communicates over a
strongly connected arbitrary directed graph.

Assumption 2. The global cost function F is p-strongly con-
vex and each component cost f; ; is £-smooth.

Assumption 1 ensures that the matrices A = {a,,.} and
B = {b;, } can be chosen to be irreducible, primitive, row and
column stochastic, respectively. In particular, if each node ¢
has the knowledge of its in-degree d' and its out-degree d9™,
then the weights can be locally chosen as a;, = 1/d for
each incoming neighbor 7, and b;, = 1/d$" for each outgo-
ing neighbor r. Next, Assumption 2 ensures that the global
cost F' has a unique minimizer x*. We note that the local cost
functions f;’s are not necessarily strongly convex, which is
a relaxed condition than the one for Push—SAGA. Based on
these assumptions, we now present our main results.
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Theorem 1. Consider problem P under Assumptions I and 2.
For the stepsize « € (0,a), @ >0 formally defined later,
AB-SAGA linearly converges to x*. In particular, when
« = @, AB=SAGA achieves an e-optimal solution in

r=0 (max {m/}, H:,V[’M} log %)

gradient computations, with (c + d) communication rounds
per iteration, for all c = [ ¢ | and d = [ d | such that

90512n Mk hrhe [ 1265 nMh
10g< ZBd) !I' L) — IOg( T - m <

Ty e T, T

C:.=

log é ?

where M := max; m;, m := min; m;, K := £/ is the condi-

tion number, and v := n(?ﬁ% is the directivity constant.
The formal proof of the Theorem 1 is provided in Sec-

tion 4. The following remarks summarize its key attributes.

Remark 1. We note that for well-connected networks, i.e.,
when o4 and o are small, we have that ¢ <1 and d < 1.
Thus, we get c = 1 and d = 1, and AB—SAGA converges with
a single round of communication per iteration.

Remark 2. Theorem 1 describes an explicit directivity con-
stant ) 1= —lehe

n(w! 7w,
AB-SAGA aigdrits c)onvergence proof are naturally applicable
to undirected graphs.

Remark 3. When each node possess a large dataset such
that M ~ m > k*v, AB-SAGA achieves an e-optimal solu-
tion in O (M log 6_1) gradient computations per node. We
note that this complexity is n times better than the centralized
complexity O (nM log 6_1) of SAGA [15] that processes all
data at a single location.

4. CONVERGENCE OF AB-SAGA

In this section, we formalize the convergence analysis. It can
be verified that AB—SAGA described in Algorithm 1 can be
compactly written in a vector-matrix format as
xFH = A¢(xF — awh), (1a)
whtl = Bl(wh 4 ght1 _ gh). (1b)
where x*, w* and g” are the global state vectors in RP" con-
catenating the local state vectors x¥, w¥ and g in R”, respec-
tively. Similarly, A := A ® I, and B := B ® I, in RP"*P",
are the global weight matrices, whereas ¢ and d denote the
communication rounds per iterate. We next define four error
terms to aid the convergence analysis of AB—SAGA:
(i) Network agreement error: E||x* — A>x*||2;
(ii) Optimality gap: E[|x* — x*||%;
(iii) Mean auxiliary gap: E[t*];
(iv) Gradient tracking error: E

, which is 1 for undirected networks. Thus

|Wk _ Boowk”Q;

where X% := 7 [xFand t¥ := 377 | (7300 v, — x*([3).

i=1\m;

We establish the linear convergence of AB—SAGA by showing
that all of these error terms linearly decay to zero, leading

Lemma 1. Consider AB-SAGA under Assumptions 1 and 2.

i L u _log(4n) _
ywlgrmn{Swv%ﬁz’%&w%wIma}’CZ Toa(1/o ) 9nd
log(4
d2 bgo(gl(i/:z)a)" then Yk > 0,u*™! < Gou¥, where u* € R*

and G, € R*** are defined as:

E[||x* — A%x*|7 ]

W | BRI =] o
E[tk] )
-2 k o0k ||2
E[0~2|w™ — B=w"|% ]
3 2 2 2. 2 2. 2
Vi ofgioy° « 922‘7AC ag3oy’
o e7e7) 1—ags a“ge agr
= 2 l — i
@ m,. m 1 M 0
146n0% 97no 2l 260%! 3
(1-om,m, (1-of)m, (1-of)z, 4
and the corresponding constants are given by
400%n |7, |27 1602 || 7. || 27 8027, .,
g1 = %7 g2 ‘= %7 g3 ‘= 1_7;272 s
A A A
. 8nww, . pnw!w.
g4 = o, ) gs ‘= 4 )
a2 (T N2 _ 52w ]I,
g6 := 30n(w,. 7.)%, g7:= Prar et

The proof of Lemma 1 is standard and follows similar pro-
cedures as in [14,22]. With the help of this lemma, we next
prove Theorem 1 based on the following key result.

Lemma 2. [2]1] Let A € R™*"™ be a non-negative matrix and
x € R™ be a positive vector. If Ax < (Bx, for some 5 > 0,
then p(A) < || A%, < B, where || A||%, is the matrix norm
induced by the weighted max-norm || - ||%,, given that x > 0,,.
Proof of Theorem 1: First note that the system matrix G, is
non-negative. From Lemma 2, if there exists a positive vec-
tor 6 and a constant ;y such that G,0 < 74 element-wise,
then p(G,) < || Ga |5, < 7. To this aim, let § have all posi-
tive elements [§; J2 03 4] " and sety = (1 — Jags), then the
following set of inequalities must hold:

o 020 1
295 %4 (0102 + a®gads + a’g30s) < =, (3)
2 4 4
gs (52 51 54
< %% 0 & 4
age < 5 5 9463 9753, 4
ags _ 1 _2mto 20 )
2 — M m 03 mds’
ags _ 1 _ o (Mbnm; 0, 4 97ndy —2665)
2 T 4 dam.(1 — o) .

We note that (4), (5) and (6) are valid for a range of
stepsizes and communication rounds ¢ and d, when their
right hand sides are positive. To this aim, we first fix the
elements of & independent of the stepsize and then find

. 2 27
the bounds on a, i.e., 61 =1, §y = 64;2“ , 03 = 130;2: M

=r =r

r * ] i R 40000nk2 Ma ta T
to x; — x*, at each node ¢. We next establish an LTI sys and &, = %’ when 0%, < Zime [_m_ ang
tem that governs the convergence rate of AB—SAGA in the R e
following L 7y = 1 — 20000nop v Mhe . q | __ 40000nk®Mh,
orowing Lemma L m(l—o3)(w me)? "2 T (wlme)2mim(l—o3d)”
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Fig. 1. (Left) Directed (doubly stochastic) exponential graph (top) with n = 16 nodes and directed geometric graph (bottom)
with n = 500 nodes. (Center) Optimality gap for logistic regression classifier trained over directed exponential graph (top) and
directed geometric graph (bottom); (right) Test accuracy and training loss for neural networks trained over a geometric graph.

It can be verified that for these values of §, the right hand
sides of (4), (5) and (6) are positive. We next solve for finding
arange for the stepsize a. From (4), we have

< J5%2 _ gad _ grda

e <
296 03 g6 03 g 03’ « >

—__m _
135 M kl(mw ) 7we) "

Similarly, plugging these values of 4, in (5) yields

1
mgs 03 = OMp(w ] w.)

To find a bound on « from (6), we need to ensure that

ol < meme [Tm_ and therefore, we have
B = 1265k \/ nMh. ’

1 o3 (292nz, 1 614194n52 —5203)

< 1 _
a= 295 gs56am, (1—o2?)

1 1
< 2250 (n(wjﬂﬁ) )

We note that (3) has solution if we bound o < & - —2—
u o bn(wlw.)

for the first term, o < ﬁ for the rest of the terms and ensure

<— «

e _ o _m(l—o%)  mr(l—o¥)(1-o3)
A <mm{51200nM72h,,> 6400001 Mhy hre :

To simplify the bounds on ¢4 and o4, it can be verified
c m(1—o%?) e 7'r;,r7'rC m

that 0% < oos1amire \ Fohe 1265k \/ nMh,
isfy all of the above bounds. We next define the smallest

upper bound @ on the stepsize as

_ . { 1
O = 1min

and o, < sat-

If o € (0, @], and the communication rounds,

m 1
350\/hrhe 288Mnkl(w ] m.)’ OuM (] w.) } ’

5. NUMERICAL EXPERIMENTS

In this section, we illustrate the performance of AB-SAGA
and compare it with the existing methods for directed graphs,
i.e., AB, S—AB, and Push—-SAGA [4, 14,22].

Logistic Regression: We consider binary classification, us-
ing logistic regression with a strongly convex regularizer,
for N = 12,000 labeled images, taken from the MNIST and
CIFAR-10 datasets, and distributed over strongly connected
directed exponential and geometric graphs. Fig. 1 plots the
optimality gaps F(X") — F(x*) versus the number of epochs,
where X* := 1 3" | x*. We note that one epoch is m; up-
dates for stochastic methods and a single update for AB. It
can be seen, in Fig. 1 (center), that AB—SAGA converges
linearly to the optimal solution outperforming all other meth-
ods. We note that Push—SAGA is potentially slower because
it requires additional iterations for eigenvector estimation.
Neural Networks: We next consider multi-class classifica-
tion over N = 60,000 (MNIST and CIFAR-10). Each node
trains a local neural network with a hidden layer of 64 neu-
rons and a fully connected output layer of 10 neurons. We
plot the training loss F'(X*) and test accuracy for the stochas-
tic methods: S—AB,Push—SAGA and AB-SAGA in Fig. 1
(right), trained over a directed geometric graph (n = 500). It
can be observed that AB-SAGA achieves a lower loss and an
improved test accuracy over the other methods.

6. CONCLUSIONS
This paper describes a first-order stochastic method to min-

m1—o2dy [7T . imize a distributed optimization problem over strongly con-
' B Ty Tc T, T T . .
log(s’%l?"ﬂ“ hrhe ) d 10g<m m) nected directed graphs. We show linear convergence of the
€= logoa ’ = logop ’ proposed method AB—-SAGA to the optimal solution under
. T weaker assumptions compared to the earlier work. Our results
from Lemma 2, the spectral radius p(G) < v =1 — 227 Te, . 1o patec I¢ L

Sk 8 provide a key insight by describing a directivity constant that
Furthermore, if v = @ and v := 77575, quantifies the directed nature of the communication network
1 m 1 and we further show linear speed-up of AB—SAGA as com-
p(Gy) <1 —min { ﬂ’ CRTIEIVR 9—M} . pared to its centralized counterpart. Numerical experiments
oR k illustrate the convergence guarantees for strongly convex re-

and the theorem follows. 0  gression problems and non-convex neural networks.
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