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ABSTRACT

In this paper, we propose a first-order optimization method

for solving saddle-point problems when the data is distributed

over a strongly connected weight-balanced network of nodes.

Our solution is based on the gradient descent-ascent where

each node iteratively computes partial gradients of its local

cost function to implement the corresponding steps. The

proposed method further uses gradient tracking for both de-

scent and ascent updates to tackle the local versus global

cost gaps. We show that the proposed method converges

linearly to the unique saddle-point when the global problem

is strongly concave-convex. The numerical experiments il-

lustrate the performance comparison of the proposed method

with related work for different classes of problems.

Index Terms— Distributed min-max optimization, first-

order methods, saddle-point problems

1. INTRODUCTION AND RELATED WORK

Many applications related to signal processing, machine

learning, and robust optimization naturally take the form of

min-max problems [1–8]. The objective is to simultaneously

minimize and maximize the cost function with respect to

specific variables such that we find the point of equilibrium

(or the saddle-point). In this paper, we consider the cost

function F : Rpx×py → R; and assume that F is convex in x

and concave in y, where x ∈ R
px and y ∈ R

py . Thus, the

objective is to find the saddle-point (x∗,y∗) by minimizing F
with respect to x and maximizing F with respect to y, i.e.,

min
x∈Rpx

max
y∈R

py
F (x,y).

A natural way to solve the above problem is by using

a gradient-based method: gradient descent-ascent (GDA) [8–

10]. GDA is well studied in literature due to its extensive ap-

plications in constrained optimization, robust regression, im-

age reconstruction, and generative adversarial networks [4–

7]. For each iteration, GDA requires the evaluation of par-

tial gradients of F with respect to x and with respect to y,

i.e., ∇xF and ∇yF respectively. However, for very large-

scale applications, data is often divided over a network of ge-

ographically distributed nodes. Therefore, the evaluation of

∇xF and ∇yF is practically not possible, and we can only

evaluate the partial gradients with respect to the local data,

i.e., for each node i, ∇xfi and ∇yfi (where fi is the local

cost function). Moreover, heterogeneous data setting leads to

local versus global cost gaps. Therefore, the local partial gra-

dients are often very different from the global partial gradi-

ents, i.e., ∀i, ∥∇xfi −∇xF∥ ̸= 0 and ∥∇yfi −∇yF∥ ̸= 0,

which leads to inexact convergence.

Existing work on distributed optimization has mainly fo-

cused on minimization problems [11–14]. Early work in-

cludes [11], which converges to an error ball around the op-

timal solution at a linear rate using a constant step size (and

to the exact solution with a decaying step size at a sublinear

rate). This error arises due to data dissimilarity across nodes.

To eliminate this problem, the methods described in [12, 13]

use gradient tracking and converge to the optimal solution at a

linear rate; see [14] for a detailed overview. [15–17] are also

of interest where the authors propose distributed stochastic

optimization methods for online problems.

Due to the distributed nature of data in several practical

applications, some distributed variants of GDA are proposed

recently [18–21]. In [18], the authors consider GDA in fed-

erated settings and use bounds on the dissimilarity of local

cost functions possessed by the nodes using dissimilarity con-

stants. [19] generalizes the distributed gradient descent-ascent

method to any strongly connected undirected network topol-

ogy but still uses similarity constants. [20, 21] use gradient

tracking to eliminate this problem but require strong assump-

tions on the cost functions (quadratic in x and y).

In this paper, we propose a distributed first-order gradient

descent-ascent method (GT-GDA) that uses gradient tracking

for both descent and ascent updates. The main contributions

are: (i) GT-GDA addresses the data heterogeneity using gra-

dient tracking; (ii) We use a unique analysis methodology

that leverages the matrix perturbation theory of semi-simple

eigenvalues to show that for (small enough) constant step-

sizes, GT-GDA linearly converges to the unique saddle-point

when the global cost function is strongly concave-convex.

We now describe the rest of the paper. Section 2 provides

the problem formulation and the necessary assumptions. Sec-

tion 3 discusses the algorithm development. Section 4 pro-

vides the main results along with the convergence analysis.

Section 5 illustrates the performance of GT-GDA in different

numerical experiments. Section 6 concludes the paper.
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2. PROBLEM FORMULATION

In this paper, we consider a saddle-point problem distributed

over a strongly connected network of n nodes, i.e.,

P : min
x∈Rpx

max
y∈R

py

{

F (x,y) :=
1

n

n
∑

i=1

fi(x,y)

}

,

where the local cost function, at node i, is defined as:

fi(x,y) := gi(x) + ïy, Pixð − hi(y), ∀i,
for Pi ∈ R

py×px and, the global cost is F (x,y) := G(x)+
ïy, Pxð−H(y), for P := 1

n

∑n
i=1

Pi. We next describe some

assumptions necessary to ensure the convergence of GT-GDA.

Assumption 1 (Network connectivity). The nodes communi-

cate over a strongly connected weight-balanced graph. The

corresponding weight matrices W := {wi,j} associated with

the network are primitive and doubly stochastic, i.e., W1n =
1n and 1¦

nW = 1¦
n , where 1n is a vector of n ones.

Assumption 2 (Smoothness and convexity). Each local gi is

ℓ1-smooth and each hi is ℓ2-smooth, where ℓ1, ℓ2 are arbi-

trary positive constants. Furthermore, the global G is convex

and the global H is µ-strongly convex.

Assumption 3 (Full ranked coupling matrix). The global

coupling matrix P := 1

n

∑

i Pi has full column rank.

The above-mentioned assumptions are common in the lit-

erature on distributed optimization. Assumption 1 is used to

ensure average consensus [14] when the nodes communicate

over a network. Assumptions 2 and 3 are necessary for the

existence of a unique saddle-point [9] in min-max problems.

3. ALGORITHM DEVELOPMENT

To motivate the significance of gradient tracking, we first de-

scribe a well-known distributed optimization method: dis-

tributed gradient descent (DGD) [11]. For a strongly con-

vex cost function G(x) := 1/n
∑n

i=1
gi(x), distributed over

a network of n nodes, DGD aims to find the unique mini-

mum x∗ (of G) iteratively by implementing:

xk+1
i =

n
∑

r=1

wi,r(x
k
r − ³∇gkr ), ∀k g 0.

However, due to data heterogeneity, there exists a local

versus global cost gap, i.e., ∀i, ∥∇gi(x)−∇G(x)∥ ̸= 0.

Therefore, DGD converges to an error ball around x∗. To

eliminate this error, GT-DGD uses a gradient tracking tech-

nique [12, 13] which replaces ∇gkr with a gradient tracking

term qk
i evaluated as follows:

qk
i =

n
∑

r=1

wir(q
k−1
r +∇gkr −∇gk−1

r ), ∀k > 0.

It can be verified that for all i, qk
i → ∇G(x). Thus,

GT-DGD converges to the unique minimum x∗. In this paper,

we use a similar gradient tracking technique for both descent

and ascent updates. Algorithm 1 formally describes GT-GDA.

Algorithm 1 GT-GDA at each node i

Require: x0
i ∈ R

px ,y0
i ∈ R

py , P 0
i = Pi, {wir}nr=1, ³ > 0,

´ > 0,q0
i = ∇xfi(x

0
i ,y

0
i ), t

0
i = ∇yfi(x

0
i ,y

0
i )

1: for k = 0, 1, 2, . . . , do,

2: P k+1
i ←∑n

r=1
wirP

k
r

3: xk+1
i ←

∑n
r=1

wir(x
k
r − ³ · qk

r )

4: qk+1
i ←∑n

r=1
wir(q

k
r +∇xf

k+1
r −∇xf

k
r )

5: yk+1
i ←

∑n
r=1

wir(y
k
r + ´ · tkr )

6: tk+1
i ←∑n

r=1
wir(t

k
r +∇yf

k+1
r −∇yf

k
r )

7: end for

At each node i, the two state vectors xk
i and yk

i are ini-

tialized randomly. For some positive constant step-sizes ³
and ´, GT-GDA iteratively evaluates: (i) P k

i , the estimate of

global coupling matrix P ; (ii) gradient descent step for xk
i

updates and the corresponding gradient tracking term qk
i ;

(iii) gradient ascent step for yk
i updates and the correspond-

ing gradient tracking term tki . It can be verified that for

all i, P k
i → P , qk

i → ∇xF , and tki → ∇yF . Therefore, the

state vectors xk
i and yk

i are updated using the estimates of

global partial gradients qk
i and tki respectively, and not the

local partial gradients∇xfi and ∇yfi.

4. MAIN RESULTS AND CONVERGENCE

ANALYSIS

Now we describe the main theorem that establishes the con-

vergence properties of GT-GDA.

Theorem 1. Consider P under Assumptions 1, 2, and 3.

For small enough positive step-sizes ³, ´ > 0, GT-GDA con-

verges linearly to the unique saddle-point (x∗,y∗) of F .

Theorem 1 states that GT-GDA converges to the ex-

act solution (x∗,y∗) at a linear rate. To establish this

result, we first formulate an LTI system that governs the

error dynamics of GT-GDA. Then we show that the er-

rors decay to zero at a linear rate. For evaluating the error

quantities, we first define the state vectors xk,qk ∈ R
npx

and yk, tk ∈ R
npy that concatenate the local vectors xk

i ,q
k
i

and yk
i , t

k
i for all i. Moreover, we define the average vectors

xk := 1

n

∑n
i=1

xk
i , yk := 1

n

∑n
i=1

yk
i , qk := 1

n

∑n
i=1

qk
i ,

and t
k
:= 1

n

∑n
i=1

tki . We now describe the error quantities.

(i) Agreement errors, ∥xk − 1n ¹ xk∥ and ∥yk − 1n ¹ yk∥:
This error quantifies the gap between the network’s es-

timate and the agreement (where ¹ denotes the Kro-

necker product);

(ii) Optimality gaps, ∥xk − x∗∥ and ∥yk −∇H∗(Pxk)∥:
This error quantifies the discrepancy between the net-

work average and the optimal solution (x∗,y∗);
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(iii) Gradient tracking error terms, ∥qk − 1n ¹ qk∥ and

∥tk − 1n ¹ t
k∥: This error quantifies the gap between

the gradient tracking estimates and the global gradients.

We now describe Lemma 1 to establish the system dy-

namics of GT-GDA using these error quantities.

Lemma 1. Consider GT-GDA described in Algorithm 1 un-

der Assumptions 1, 2, and 3. Let sk, ek ∈ R
6 be defined as

sk :=

















∥xk − 1n ¹ xk∥√
n∥xk − x∗∥

ℓ−1∥qk − 1n ¹ qk∥
∥yk − 1n ¹ yk∥√

n∥yk −∇H∗(Pxk)∥
ℓ−1∥tk − 1n ¹ t

k∥

















, ek :=

















∥xk∥
∥yk∥
0
0
0
0

















;

and N³,´ ∈ R
6×6 be such that it has ³ and ´ at the (2, 1)

and (1, 5) locations, respectively, and zeros everywhere

else. Furthermore, for some positive ÃM g Ãm > 0, we

define Ãm f |||Pi ||| f ÃM for all i. Then ∀k > 0 and some

positive step-sizes 0 < ³ f ´µ2

ΩÃ2

M

, (where Ω > 1) and ´ > 0 ,

the LTI system governing the error dynamics of GT-GDA can

be described by the following relation:

sk+1 f (M0 + ´M) sk +N³,´e
k¼k¿, (1)

where ¿ :=

√

1

n

∑n
i=1

∣

∣

∣

∣

∣

∣Pi − P
∣

∣

∣

∣

∣

∣

2
, the matrix M0 ∈ R

6×6

is defined as:

M0 :=

















¼ 0 0 0 0 0
0 1 0 0 0 0

¼ 0 ¼ ¼ÃM

ℓ
0 0

0 0 0 ¼ 0 0
0 0 0 0 1 0

¼ÃM

ℓ
0 0 ¼ 0 ¼

















,

and M ∈ R
6×6 takes the form:

M :=



















0 0 × 0 0 0

× − Ã2

m

Éℓ2
0 0 µ2

ΩÃM
0

× × × × × ×
0 0 0 0 0 ×
× µℓ1

ΩÃM
+ ÃM

Ω
0 × µ

Ω
− µ 0

× × × × × ×



















,

where ‘×’ are the “don’t care” terms (will be clarified later),

¼ := Ä(W − limk→∞ W k), ℓ = max{ℓ1, ℓ2}, and É is a

positive constant such that 0 < ´/É f ³.

We note that Lemma 1 establishes the system dynamics of

GT-GDA. The proof is omitted due to space limitations,

see [22] for details. Next, we describe a useful lemma that is

essential for proving the convergence properties of GT-GDA

using matrix perturbation theory for semi-simple eigenvalues.

Lemma 2. [23] Consider a matrix M´ ∈ R
n×n, of the

form M´ := M0 + ´M , depends smoothly on a real pa-

rameter ´ g 0. Assume M0 has l < n equal eigenvalues,

¼1 = · · · = ¼l, associated with independent left and right

eigenvectors u1, · · · ,ul and v1, · · · ,vl, respectively, i.e.







u1

...

ul







[

v1 · · · vl

]

= Il,

such that Il ∈ R
l×l is an identity matrix. Let ¼i(´) de-

note the i-th eigenvalue of M´ , as a function of ´, cor-

responding to ¼i, where i ∈ {1, . . . , l}, and the matrix

M := dM´/d´|´=0. Then d¼i/d´|´=0 is the i-th eigenvalue

of the following l × l matrix:

S :=







u¦
1 Mv1 · · · u¦

1 Mvl

...
. . .

...

u¦
l Mv1 · · · u¦

l Mvl






.

Proof of Theorem 1. Now we analyze the error dynamics

of GT-GDA described in Lemma 1 and evaluate the con-

vergence rate. Equation (1) shows the evolution of error

with time. If ∥sk∥ → 0 at a linear rate, it essentially proves

that GT-GDA converges to (x∗,y∗) linearly. We observe

that the second term on the right-hand side of (1) converges

to 06 (a vector of six zeros) exponentially because ¼ ∈ [0, 1)
and ¼k → 0 exponentially. Therefore, it is sufficient to show

that the spectral radius Ä(M0 + ´M) < 1. By observing the

structure of M0, it can be verified that the eigenvalues of

the matrix are the elements at the main diagonal. Therefore,

when ´ = 0, the spectral radius Ä(M0 + ´M) = 1 (and is

governed by the two semi-simple eigenvalues of M0). To

understand the perturbation effect of the step-size ´ on these

repeated eigenvalues, we use the result from Lemma 2. It

can be verified that the left eigenvectors corresponding to the

two semi-simple eigenvalues of M0 are u¦
1 = [0 1 0 0 0 0]

and u¦
2 = [0 0 0 0 1 0], and the right eigenvectors are v1 = u1

and v2 = u2. Thus, the d¼1/d´|´=0 and d¼2/d´|´=0 are the

eigenvalues of the following 2×2 matrix:

S :=

[

u¦
1 Mv1 u¦

1 Mv2

u¦
2 Mv1 u¦

2 Mv2

]

=

[

− Ã2

m

Éℓ2

µ2

ΩÃM
µℓ1
ΩÃM

+ ÃM

Ω

µ
Ω
− µ

]

.

If both eigenvalues of S matrix are negative, it is sufficient

proof to show that both semi-simple eigenvalues become less

than 1 with a small change in ´. It can be verified that both

diagonal terms of S are negative. Thus, the sum of eigen-

values of S is negative (trace is equal to the sum of eigenval-

ues). This implies that at least one eigenvalue of S is negative.

Next, we observe the determinant of S. If the determinant is

positive, then both eigenvalues must possess the same (nega-
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tive in our case) sign. To establish that, we find a bound on Ω:

Ã2
mµ

Éℓ2

(

1− 1

Ω

)

− µ2

ΩÃM

(

ℓ1 +
Ã2
M

µ

)

µ

ΩÃM

> 0,

⇐⇒ Ã2
mµ

Éℓ2

(

1− 1

Ω

)

>
µ3

Ω2Ã2
M

(

ℓ1 +
Ã2
M

µ

)

,

⇐= Ω > max

{

Éµ2ℓ1ℓ2
Ã2
MÃ2

m

+
Éµℓ2
Ã2
m

, 2

}

.

When Ω satisfies the above bound, both eigenvalues of S are

negative. Thus, the spectral radius Ä(M0 + ´M) < 1 and the

theorem follows.

5. NUMERICAL EXPERIMENTS

In this section, we describe some numerical experiments to

compare the performance of GT-GDA with D-GDA (a dis-

tributed variant of GDA that does not use gradient tracking).

For the generality of results, we consider two types of net-

works based on the structure and connectivity of nodes: (i) di-

rected exponential graph with n = 16 nodes (see Figure 1,

left) and (ii) undirected geometric graph with n = 200 nodes

(see Figure 1, right).

Fig. 1. (left) Directed exponential graph with n = 16 nodes

and (right) undirected geometric graph with n = 200 nodes.

We consider the saddle-point equivalent of the regres-

sion problem such that each node i has access to its private

cost: fi(x,y) := ïy,bið − 1

2
∥y∥2 − ïy, Pixð+ ¼RRi(x),

where bi ∈ R
py is the local vector, Pi ∈ R

py×px is the local

data matrix, Ri(x) is the local regularizer, and ¼R is the reg-

ularization constant. The global objective is to evaluate the

saddle-point by computing:

min
x∈Rpx

max
y∈R

py
F (x,y) = min

x∈Rpx
max
y∈R

py

1

n

n
∑

i=1

fi(x,y).

In this section, we consider two different regularizers and

evaluate the performance by computing the optimality gap,

i.e., ∥xk − x∗∥+ ∥yk − y∗∥ for all k > 0.

Smooth and strongly convex regularizer: We first use a

smooth and strongly convex regularizer for every node i,
i.e., Ri(x) = ∥x∥2. It can be verified that the global cost F
is strongly convex and strongly concave. Figure 2 shows the

performance results of GT-GDA and D-GDA. The left figure

shows the evolution of optimality gap when the problem is

distributed over a strongly connected directed exponential

network of n = 16 nodes. The figure on the right shows

the performance when the underlying graph is geometric

with n = 200 nodes. For both cases, it can be seen that the

optimality gap of D-GDA initially decreases and then stays

constant. This steady-state error is caused by the global ver-

sus local cost gaps due to heterogeneous data distribution.

However, GT-GDA converges to the unique saddle-point us-

ing gradient tracking.

Fig. 2. Performance comparison of D-GDA and GT-GDA over

a network of n = 32 nodes (left) and n = 200 nodes (right).

Smooth and convex regularizer: Next, we consider a

smooth and convex regularizer (but not strongly convex) such

that Ri(x) :=
1

ai

∑px

j=1
[log(1 + eaixj ) + log(1 + e−aixj )],

∀i. Figure 3 shows the performance results of GT-GDA

and D-GDA. For both graphs (exponential on the left and

geometric on the right), it can be observed that D-GDA con-

verges to an error ball around the unique saddle-point of F .

However, GT-GDA converges to the exact solution (x∗,y∗).

Fig. 3. Performance comparison of D-GDA and GT-GDA for

smooth and convex regularizer.

6. CONCLUSION

In this paper, we propose a first-order optimization method

that solves distributed saddle-point problem when the global

cost can be described as F (x,y) := G(x) + ïy, Pxð −H(y).
The proposed method GT-GDA uses gradient tracking to deal

with the error caused by data heterogeneity and converges

to the unique saddle-point (x∗,y∗) at a linear rate when F
is strongly concave-convex. We develop an LTI system gov-

erning the error dynamics of GT-GDA and use matrix per-

turbation theory for semi-simple eigenvalues to prove the

convergence results. Numerical experiments illustrate the

performance of GT-GDA and compare it with related work

that does not use gradient tracking.

2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

124
Authorized licensed use limited to: TUFTS UNIV. Downloaded on January 13,2025 at 14:59:55 UTC from IEEE Xplore.  Restrictions apply. 



7. REFERENCES

[1] E. L. Hall, J. J. Hwang, and F. A. Sadjadi, “Com-

puter Image Processing And Recognition,” in Optics

in Metrology and Quality Assurance, Harvey L. Kas-

dan, Ed. International Society for Optics and Photonics,

1980, vol. 0220, pp. 2 – 10, SPIE.

[2] Y. Malitsky and M. K. Tam, “A forward-backward split-

ting method for monotone inclusions without cocoerciv-

ity,” SIAM Journal on Optimization, vol. 30, no. 2, pp.

1451–1472, 2020.

[3] C. Y. Chen and P. P. Vaidyanathan, “Quadratically con-

strained beamforming robust against direction-of-arrival

mismatch,” IEEE Transactions on Signal Processing,

vol. 55, no. 8, pp. 4139–4150, 2007.

[4] A. Sinha, H. Namkoong, and J. Duchi, “Certifiable dis-

tributional robustness with principled adversarial train-

ing,” in International Conference on Learning Repre-

sentations, 2018.

[5] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solu-

tion of saddle point problems,” Acta Numerica, vol. 14,

pp. 1–137, 2005.

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-

gio, “Generative adversarial nets,” in Advances in Neu-

ral Information Processing Systems, Z. Ghahramani,

M. Welling, C. Cortes, N. Lawrence, and K. Q. Wein-

berger, Eds. 2014, vol. 27, Curran Associates, Inc.

[7] T. Liang and J. Stokes, “Interaction matters: A note on

non-asymptotic local convergence of generative adver-

sarial networks.,” CoRR, vol. abs/1802.06132, 2018.

[8] T. Lin, C. Jin, and M. Jordan, “On gradient descent

ascent for nonconvex-concave minimax problems,” in

Proceedings of the 37th International Conference on

Machine Learning. 13–18 Jul 2020, vol. 119 of Pro-

ceedings of Machine Learning Research, pp. 6083–

6093, PMLR.

[9] S. S. Du and W. Hu, “Linear convergence of the primal-

dual gradient method for convex-concave saddle point

problems without strong convexity,” 2019.

[10] A. Mokhtari, A. Ozdaglar, and S. Pattathil, “A uni-

fied analysis of extra-gradient and optimistic gradient

methods for saddle point problems: Proximal point ap-

proach,” in Proceedings of the Twenty Third Interna-

tional Conference on Artificial Intelligence and Statis-

tics. 26–28 Aug 2020, vol. 108, pp. 1497–1507, PMLR.
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