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ABSTRACT

In this paper, we propose a first-order optimization method
for solving saddle-point problems when the data is distributed
over a strongly connected weight-balanced network of nodes.
Our solution is based on the gradient descent-ascent where
each node iteratively computes partial gradients of its local
cost function to implement the corresponding steps. The
proposed method further uses gradient tracking for both de-
scent and ascent updates to tackle the local versus global
cost gaps. We show that the proposed method converges
linearly to the unique saddle-point when the global problem
is strongly concave-convex. The numerical experiments il-
lustrate the performance comparison of the proposed method
with related work for different classes of problems.

Index Terms— Distributed min-max optimization, first-
order methods, saddle-point problems

1. INTRODUCTION AND RELATED WORK

Many applications related to signal processing, machine
learning, and robust optimization naturally take the form of
min-max problems [1-8]. The objective is to simultaneously
minimize and maximize the cost function with respect to
specific variables such that we find the point of equilibrium
(or the saddle-point). In this paper, we consider the cost
function F' : RP=*Py — R; and assume that F' is convex in x
and concave in y, where x € RPz and y € RPv, Thus, the
objective is to find the saddle-point (x*, y*) by minimizing F'
with respect to x and maximizing F' with respectto y, i.e.,
2, o Feey)

A natural way to solve the above problem is by using
a gradient-based method: gradient descent-ascent (GDA) [8—
10]. GDA is well studied in literature due to its extensive ap-
plications in constrained optimization, robust regression, im-
age reconstruction, and generative adversarial networks [4—
7]. For each iteration, GDA requires the evaluation of par-
tial gradients of F' with respect to x and with respect to y,
ie., VI and V F respectively. However, for very large-
scale applications, data is often divided over a network of ge-
ographically distributed nodes. Therefore, the evaluation of
V. F and VI is practically not possible, and we can only

121

evaluate the partial gradients with respect to the local data,
i.e., for each node 4, V. f; and V, f; (where f; is the local
cost function). Moreover, heterogeneous data setting leads to
local versus global cost gaps. Therefore, the local partial gra-
dients are often very different from the global partial gradi-
ents, i.e.,, Vi, ||Vofi — Vo F| #0 and |V, fi — V,F| #0,
which leads to inexact convergence.

Existing work on distributed optimization has mainly fo-
cused on minimization problems [11-14]. Early work in-
cludes [11], which converges to an error ball around the op-
timal solution at a linear rate using a constant step size (and
to the exact solution with a decaying step size at a sublinear
rate). This error arises due to data dissimilarity across nodes.
To eliminate this problem, the methods described in [12, 13]
use gradient tracking and converge to the optimal solution at a
linear rate; see [14] for a detailed overview. [15-17] are also
of interest where the authors propose distributed stochastic
optimization methods for online problems.

Due to the distributed nature of data in several practical
applications, some distributed variants of GDA are proposed
recently [18-21]. In [18], the authors consider GDA in fed-
erated settings and use bounds on the dissimilarity of local
cost functions possessed by the nodes using dissimilarity con-
stants. [19] generalizes the distributed gradient descent-ascent
method to any strongly connected undirected network topol-
ogy but still uses similarity constants. [20,21] use gradient
tracking to eliminate this problem but require strong assump-
tions on the cost functions (quadratic in x and y).

In this paper, we propose a distributed first-order gradient
descent-ascent method (GT—GDA) that uses gradient tracking
for both descent and ascent updates. The main contributions
are: (i) GT-GDA addresses the data heterogeneity using gra-
dient tracking; (ii)) We use a unique analysis methodology
that leverages the matrix perturbation theory of semi-simple
eigenvalues to show that for (small enough) constant step-
sizes, GT—GDA linearly converges to the unique saddle-point
when the global cost function is strongly concave-convex.

We now describe the rest of the paper. Section 2 provides
the problem formulation and the necessary assumptions. Sec-
tion 3 discusses the algorithm development. Section 4 pro-
vides the main results along with the convergence analysis.
Section 5 illustrates the performance of GT—GDA in different
numerical experiments. Section 6 concludes the paper.
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2. PROBLEM FORMULATION

In this paper, we consider a saddle-point problem distributed
over a strongly connected network of n nodes, i.e.,

) —;fox,y)},
i=1

where the local cost function, at node ¢, is defined as:

fi(x,y) = gi(x) + {y, Pix) — hi(y), Vi,
for P, € RPv*P= and, the global cost is F'(x,y) := G(x) +
(y,Px)—H(y), for P:=21 3" | P;. We next describe some
assumptions necessary to ensure the convergence of GT-GDA.

P : min max {Fx

xERPz yeRPY

Assumption 1 (Network connectivity). The nodes communi-
cate over a strongly connected weight-balanced graph. The
corresponding weight matrices W := {w; ; } associated with
the network are primitive and doubly stochastic, i.e., W1, =
1, and IIW = 12, where 1,, is a vector of n ones.

Assumption 2 (Smoothness and convexity). Each local g; is
{1-smooth and each h; is {o-smooth, where {1, {5 are arbi-
trary positive constants. Furthermore, the global G is convex
and the global H is p-strongly convex.

Assumption 3 (Full ranked coupling matrix). The global
coupling matrix P := 711 >, P has full column rank.

The above-mentioned assumptions are common in the lit-
erature on distributed optimization. Assumption 1 is used to
ensure average consensus [14] when the nodes communicate
over a network. Assumptions 2 and 3 are necessary for the
existence of a unique saddle-point [9] in min-max problems.

3. ALGORITHM DEVELOPMENT

To motivate the significance of gradient tracking, we first de-
scribe a well-known distributed optimization method: dis-
tributed gradient descent (DGD) [11]. For a strongly con-
vex cost function G(x) := 1/n Y 1 ; g;(x), distributed over
a network of n nodes, DGD aims to find the unique mini-
mum x* (of G) iteratively by implementing:

k+1
sz "

However, due to data heterogeneity, there exists a local
versus global cost gap, i.e., Vi, ||Vgi(x) — VG(x)| # 0.
Therefore, DGD converges to an error ball around x*. To
eliminate this error, GT—-DGD uses a gradient tracking tech-
nique [12, 13] which replaces Vg* with a gradient tracking
term qf’ evaluated as follows:

E w’L’I’

It can be verified that for all i, q¥ — VG(x). Thus,
GT-DGD converges to the unique minimum x*. In this paper,
we use a similar gradient tracking technique for both descent
and ascent updates. Algorithm 1 formally describes GT-GDA.

—aVgh), Vk > 0.

Ly vek—veEh,  VE>o.
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Algorithm 1 GT-GDA at each node ¢
Require: x{ € R+, y? e RPv PP = P {w;, }"_;,a > 0,

8>0,q) = V. fi(x),y9),t) = V, fi(x],¥?7)
1: for k=0,1,2,...,do,
2: P e 3w PE
3 o e YT v (xE - a-qp)
g Q= T win(af 4 VeI = VL fF)
s yit e S wi(yF + 8- th)
6 t?“ 2 win(tF + Vy £ =V, fF)
7: end for

At each node i, the two state vectors x¥ and y* are ini-
tialized randomly. For some positive constant step-sizes «
and 3, GT-GDA iteratively evaluates: (i) Pl-k, the estimate of
global coupling matrix P; (ii) gradient descent step for x¥
updates and the corresponding gradient tracking term q;
(iii) gradient ascent step for y* updates and the correspond-
ing gradient tracking term t¥. Tt can be verified that for
all i, P* — P, q¥ — V,F, and t¥ — V,F. Therefore, the
state vectors x¥ and y* are updated using the estimates of
global partial gradients q¥ and t¥ respectively, and not the
local partial gradients V. f; and V,, f;.

4. MAIN RESULTS AND CONVERGENCE
ANALYSIS

Now we describe the main theorem that establishes the con-
vergence properties of GT—GDA.

Theorem 1. Consider P under Assumptions 1,2, and 3.
For small enough positive step-sizes a, 5 > 0, GT—GDA con-
verges linearly to the unique saddle-point (x*,y*) of F.

Theorem 1 states that GT—GDA converges to the ex-
act solution (x*,y*) at a linear rate. To establish this
result, we first formulate an LTI system that governs the
error dynamics of GT-GDA. Then we show that the er-
rors decay to zero at a linear rate. For evaluating the error
quantities, we first define the state vectors xk,qk € R"P=
and y*,t* € R"v that concatenate the local vectors x¥, q¥
and y¥, t¥ for all i. Moreover, we define the average vectors

k:%Z? 1Xk v ':lZ?ﬁ’f? q* '=l2? 1C1£'€7

<k
andt := 13" | t¥. We now describe the error quantities.

(i) Agreementerrors, ||x* — 1, ® X" and ||y* — 1, @ ¥"|I:
This error quantifies the gap between the network’s es-
timate and the agreement (where ® denotes the Kro-
necker product);

(i) Optimality gaps, ||X* — x*|| and ||[7* — VH*(Px")]:
This error quantifies the discrepancy between the net-
work average and the optimal solution (x*,y™*);

Authorized licensed use limited to: TUFTS UNIV. Downloaded on January 13,2025 at 14:59:55 UTC from IEEE Xplore. Restrictions apply.



2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

(iii) Gradient tracking error terms, |q* —1, ® g*|| and

ItF -1, ® fk||: This error quantifies the gap between
the gradient tracking estimates and the global gradients.

We now describe Lemma 1 to establish the system dy-
namics of GT—GDA using these error quantities.

Lemma 1. Consider GT-GDA described in Algorithm 1 un-
der Assumptions 1, 2, and 3. Let sk, ek € RS pe defined as

Ix* — 1, @ %F| " |
V[ — x| Iy
ko gt -1, o k. 0 .
- ”yk - ]-n ®yk” ’ ¢ = 0 ’
Vily* — VH*(Px")|| 0
HeE -1, 0 0

and N, € RS be such that it has o and B at the (2,1)
and (1,5) locations, respectively, and zeros everywhere
else. Furthermore, for some positive oy > o, > 0, we

define oy, < || P;|| < on for all i. Then Vk > 0 and some
positive step-sizes 0 < a < %, (where Q0 > 1)and B > 0,
the LTI system governing the error dynamics of GT—GDA can
be described by the following relation:

sFHL < (Mo + BM) s* + N, se"\u, (1)

where v 1= \/% Dy |H P, — F| |2, the matrix M, € R6%6

is defined as:
A 00 0 00
0 1.0 0 00
D N | D 2 " B
— [
Mo : 0 00 X 0 0]
0 00 0 10
A0 0 A 0 A
and M € RS*S takes the form:
[0 0 x 0 0 0 ]
o p?
X —In 0 0 g 0
M= X X X X X X
' 0 0 0 0 0 x |’
X Ly 0 x A—p 0
L X X X X X X ]

where ‘X’ are the “don’t care” terms (will be clarified later),
A= p(W —limy 0o WF), £ =max{ly,ls}, and w is a
positive constant such that 0 < f/w < a.

We note that Lemma 1 establishes the system dynamics of
GT-GDA. The proof is omitted due to space limitations,
see [22] for details. Next, we describe a useful lemma that is
essential for proving the convergence properties of GT-GDA
using matrix perturbation theory for semi-simple eigenvalues.

Lemma 2. [23] Consider a matrix Mg € R"*™, of the
form Mg := My + M, depends smoothly on a real pa-
rameter 3 > 0. Assume My has | < n equal eigenvalues,
A1 = --- =\, associated with independent left and right
eigenvectors uy,--- ,u; and vy, --- , vy, respectively, i.e.

uy

[ v1 vi | =1,

Y

such that I) € R is an identity matrix. Let \;(B) de-
note the i-th eigenvalue of Mg, as a function of 3, cor-
responding to \;, where i € {1,...,l}, and the matrix
M = dMg/dB|s=0. Then d\;/dB|s=¢ is the i-th eigenvalue
of the following | X | matrix:

u/ Mv, u] Mv;
S =

u Mv, u Mv,

Proof of Theorem 1. Now we analyze the error dynamics
of GT-GDA described in Lemma 1 and evaluate the con-
vergence rate. Equation (1) shows the evolution of error
with time. If ||s¥|| — 0 at a linear rate, it essentially proves
that GT-GDA converges to (x*,y*) linearly. We observe
that the second term on the right-hand side of (1) converges
to Og (a vector of six zeros) exponentially because A € [0, 1)
and \¥ — 0 exponentially. Therefore, it is sufficient to show
that the spectral radius p(My + SM) < 1. By observing the
structure of My, it can be verified that the eigenvalues of
the matrix are the elements at the main diagonal. Therefore,
when ( =0, the spectral radius p(My+ SM) =1 (and is
governed by the two semi-simple eigenvalues of Mj). To
understand the perturbation effect of the step-size 3 on these
repeated eigenvalues, we use the result from Lemma 2. It
can be verified that the left eigenvectors corresponding to the
two semi-simple eigenvalues of My are uj =[01000 0]
andug = [000 0 1 0], and the right eigenvectors are vi = u;
and vy = ug. Thus, the dA; /dB|s=0 and d)2/df| 3= are the
eigenvalues of the following 2 x 2 matrix:

2 2
T T _ Om 123
| m Mvy uy Mvsy _ i Gorr
’ UTMV1 UTMVQ I oM B
2 2 QO‘]\/[ + Q ﬁ ,LL

If both eigenvalues of S matrix are negative, it is sufficient
proof to show that both semi-simple eigenvalues become less
than 1 with a small change in (. It can be verified that both
diagonal terms of S are negative. Thus, the sum of eigen-
values of S is negative (trace is equal to the sum of eigenval-
ues). This implies that at least one eigenvalue of .S is negative.
Next, we observe the determinant of S. If the determinant is
positive, then both eigenvalues must possess the same (nega-

123

Authorized licensed use limited to: TUFTS UNIV. Downloaded on January 13,2025 at 14:59:55 UTC from IEEE Xplore. Restrictions apply.



2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

tive in our case) sign. To establish that, we find a bound on 2:

o2 1 12 o2 "
n—(1—-—=) - 0+ M1 0
weg( Q) QJM<1+u>QaM>’
o2 1 3 o?
= 2 (l-=)> 25 (6+H
i (ma) >ty (0 5).
2
CQ>maX{w'L;€12€2 w/é€2,2}.
OM%m Om

When () satisfies the above bound, both eigenvalues of S are
negative. Thus, the spectral radius p(My + M) < 1 and the
theorem follows. O

5. NUMERICAL EXPERIMENTS

In this section, we describe some numerical experiments to
compare the performance of GT-GDA with D—GDA (a dis-
tributed variant of GDA that does not use gradient tracking).
For the generality of results, we consider two types of net-
works based on the structure and connectivity of nodes: (i) di-
rected exponential graph with n = 16 nodes (see Figure 1,
left) and (ii) undirected geometric graph with n = 200 nodes
(see Figure 1, right).
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Fig. 1. (left) Directed exponential graph with n = 16 nodes
and (right) undirected geometric graph with n = 200 nodes.

We consider the saddle-point equivalent of the regres-
sion problem such that each node ¢ has access to its private
cost: fi(x,y) == (y,b;) — Iyl — (y, Px) + ARy (x).
where b; € RPv is the local vector, P; € RPv*P= js the local
data matrix, R;(x) is the local regularizer, and \g is the reg-
ularization constant. The global objective is to evaluate the
saddle-point by computing:

: : RS
2ip, Jog Fooy) = min, g 50D £i6a)
i=

In this section, we consider two different regularizers and
evaluate the performance by computing the optimality gap,
ie., ¢ —x*|| + |¥* — y*| forall k > 0.

Smooth and strongly convex regularizer: We first use a
smooth and strongly convex regularizer for every node i,
i.e., R;j(x) = ||x||%. It can be verified that the global cost F
is strongly convex and strongly concave. Figure 2 shows the
performance results of GT—-GDA and D—-GDA. The left figure
shows the evolution of optimality gap when the problem is

distributed over a strongly connected directed exponential
network of n = 16 nodes. The figure on the right shows
the performance when the underlying graph is geometric
with n = 200 nodes. For both cases, it can be seen that the
optimality gap of D—GDA initially decreases and then stays
constant. This steady-state error is caused by the global ver-
sus local cost gaps due to heterogeneous data distribution.
However, GT-GDA converges to the unique saddle-point us-
ing gradient tracking.

B D peb D b D D oD D oD D b D D
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Fig. 2. Performance comparison of D—GDA and GT—-GDA over
a network of n = 32 nodes (left) and n = 200 nodes (right).

Smooth and convex regularizer: Next, we consider a
smooth and convex regularizer (but not strongly convex) such

that R;(x) := ai ?il [log(1 + e*%) + log(1 + e~ *%4)],
Vi. Figure 3 shows the performance results of GT—-GDA

and D—-GDA. For both graphs (exponential on the left and
geometric on the right), it can be observed that D—GDA con-
verges to an error ball around the unique saddle-point of F'.
However, GT-GDA converges to the exact solution (x*,y*).
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Fig. 3. Performance comparison of D—GDA and GT—-GDA for
smooth and convex regularizer.

6. CONCLUSION

In this paper, we propose a first-order optimization method
that solves distributed saddle-point problem when the global
cost can be described as F(x,y) := G(x) + (y, Px) — H(y).
The proposed method GT-GDA uses gradient tracking to deal
with the error caused by data heterogeneity and converges
to the unique saddle-point (x*,y*) at a linear rate when F’
is strongly concave-convex. We develop an LTI system gov-
erning the error dynamics of GT—GDA and use matrix per-
turbation theory for semi-simple eigenvalues to prove the
convergence results. Numerical experiments illustrate the
performance of GT—-GDA and compare it with related work
that does not use gradient tracking.
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