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ABSTRACT

In this paper, we propose two distributed meta-learning meth-
ods implementable over a distributed peer-to-peer network.
We consider a distributed problem where each computa-
tional node possesses a local model along with a private
dataset used for training that model. Every node aims to
minimize the local loss using the private data and the global
loss through a weight-mixing strategy. All nodes undergo
training using a few-shot multi-task learning method: model-
agnostic meta-learning (MAML). We consider adapt, learn,
and share methodology, where each model adapts to some
private data samples to capture generalizable characteris-
tics. Subsequently, each model learns by minimizing the
loss using a different set of samples from the private dataset.
Finally, each node shares certain model parameters with the
neighboring nodes and updates the local parameters through
aggregation. The goal is to train the local models across a
diverse range of tasks, enabling them to quickly learn new
tasks using a limited set of training examples. We use node-
level MAML and network-level weight-mixing techniques
for few-shot multi-task distributed meta-learning. We show
numerical experiments to illustrate the performance of the
proposed methods on real-world datasets.

Index Terms— Distributed optimization, model-agnostic
meta-learning, few-shot learning, peer-to-peer networks.

1. INTRODUCTION
Machine learning methods gained huge interest in the past
decade due to their applications in signal processing, image
classification, and robotics [1–4]. The accuracy of conven-
tional methods depends upon the access to information. For
optimal performance, they require large-scale datasets to train
the models. This is usually not feasible because, in many
practical applications, we either do not have enough data to
train the model or the data is geographically distributed. To
solve the first problem, several few-shot multi-task learning
methods were proposed [5–7]. The most significant recent
work discusses a model agnostic meta-learning (MAML) [7]
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framework, which leverages gradient descent to understand
the commonalities among various tasks such that a few ex-
amples from a new task will produce good results. The sec-
ond problem (of data distribution) can be solved using various
weight-mixing methodologies [8, 9].

Conventional machine learning methods are trained on a
dataset to learn a single task (e.g., the classification of images
or text). Although the performance of such models drasti-
cally improved over the years [2,10], they cannot adapt to new
tasks with limited data examples. To this aim, several multi-
task learning methods were introduced in [5,6] for facilitating
rapid task adaptation. This involves training a model on mul-
tiple related or unrelated tasks (e.g., facial expression and age
estimation using a single model). Some methods achieve this
goal by sharing features learned from different tasks, while
some models are trained using a joint loss function (the model
minimizes the combined loss for multiple tasks).

Meta-learning [11, 12] proposes another approach to im-
prove the model’s capabilities to generalize well. The goal is
to acquire generalizable knowledge from a diverse set of tasks
and then use it to learn new (possibly unseen) tasks from a few
examples. The model generally adapts its parameters using a
few data samples (known as the support set) and then it uti-
lizes these adapted parameters and another set of data samples
(often called the query set) to update the model parameters.
This methodology is also known as “learning to learn”.

MAML [13–16] combines both multi-task learning and
meta-learning while using a diverse set of tasks for training
the model. It learns a good initialization (using gradient de-
scent steps) and quickly adapts to new tasks using a few data
samples. While MAML has been extensively studied for its
flexibility and efficiency, it faces limitations when dealing
with geographically distributed data. In such scenarios, we
need new strategies to efficiently train the models.

Distributed methods are well-studied in the literature on
optimization theory [8, 9] due to their diverse applications in
signal processing, controls, and game theory [17–20]. Sev-
eral distributed architectures (based on network connectivity)
have been explored. For well-connected environments, feder-
ated learning methods [8, 21] gained popularity. These meth-
ods rely upon several client devices connected to a central
server. Although useful, this architecture is vulnerable due to
a single point of failure (the central server). Some work on ar-
bitrary peer-to-peer (P2P) networks can be found in [22, 23].
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In this paper, we propose two distributed MAML meth-
ods designed for P2P networks. These methods follow the
strategy to adapt, learn, and share. They use two weight-
mixing methodologies: (i) We propose P2P-MAML, where
each node shares its model parameters with the neighbor-
ing nodes; (ii) We also propose P2P-MAML+, where each
node shares the model parameters and the gradients computed
for loss minimization with its neighboring nodes. We show
numerical experiments to illustrate that P2P-MAML outper-
forms independently trained local MAML by a significant mar-
gin. Moreover, we demonstrate that P2P-MAML+ surpasses
the performance results of P2P-MAML using an additional
gradient estimation step for updating the local model.

2. PROBLEM FORMULATION

We begin by describing the centralized model agnostic meta-
learning framework, followed by an explanation of the dis-
tributed P2P problem setup.

2.1. Model Agnostic Meta Learning Framework

Meta-learning methods generally follow two steps: (i) an in-
ner loop that evaluates meta-data; (ii) an outer loop that up-
dates model parameters. Unlike conventional machine learn-
ing, where the target is to train the model by minimizing the
loss function L for different batches in the training set, MAML
is trained over a set of tasks T = {τ1, · · · , τm} following a
probability distribution p(T ). We consider a parameterized
function f(x) (model) with parameters x ∈ Rp. Then for
each task, MAML evaluates the auxiliary parameters x̃j ∈ Rp

using a single or multiple steps of gradient descent:

x̃j = x− α∇LTj (f(x)), (1)

where α is a hyperparameter that can be adaptive or fixed.
This task-based initialization (x̃j) is then used to learn

min
x

{∑
τj∼p(T ) Lτj (f(x̃j)) =

∑m
j=1 p(τj)Lj(f(x̃j))

}
.

Thus, for learning rate β, meta-optimization is performed
across all tasks to evaluate new model parameters

x← x− β ·
∑

τj∼p(T )∇Lτj (f(x̃j)). (2)

As shown in Figure 1, each task τj is split into a support
set DS

j and a query set DQ
j , where j ∈ {1, · · · ,m}. The sup-

port set helps the model in acquiring a good initialization x̃j .
Subsequently, the model parameters are updated by minimiz-
ing the task-specific loss functions, utilizing the new initial-
ization (x̃j) along with the data samples from the query set.
The model is updated using adapt and learn strategy:

• Adapt: Evaluate auxiliary parameters

x̃j = x− α∇Lτj (f(x),DS
j ), (3)

• Learn: Update model parameters

x← x− β ·
∑

τj∼p(T )∇Lτj (f(x̃j),DQ
j ). (4)

Fig. 1. MAML data segmentation.

The model adapts the initial parameters using the support
set (3) and updates the (initialized) model parameters using
the query set (4). This learning methodology helps the model
to comprehend new tasks very quickly.

2.2. Distributed Learning Setup

The distributed learning methods consider a global problem
divided among n nodes communicating over a strongly con-
nected network. The global problem aims to minimize the
average of local loss functions and can be written as:

P : min
x∈Rp

{
L(x) := 1

n

∑n
i=1 Li(x)

}
,

where Li is local loss function private to node i such that
i ∈ {1, · · · , n}. Several distributed optimization methods are
proposed [9,24] to solve P. Of significance is distributed gra-
dient descent (DGD) which uses a weight aggregation strategy
for model parameters based on network connectivity. We de-
fine W = {wi,j} as the weight matrix that represents the net-
work connectivity and let xk

i be the state vector estimate of
model parameters at node i evaluated at k-th iteration. Then
at each iteration, DGD updates as follows:

xk
i =

∑n
r=1 wi,r

(
xk−1
r − α∇Li(x

k−1
r )

)
, ∀k > 1.

This weight-mixing strategy is widely recognized in the liter-
ature on distributed optimization for its straightforward im-
plementation and notable enhancement of performance re-
sults. However, it can be theoretically shown [17] that the lo-
cal models do not converge to the solution of the global prob-
lem P due to the heterogeneous nature of data distribution
among the network of nodes. To fix this error, [9] discusses
a gradient tracking technique to estimate the global gradient
iteratively. At each node i, the proposed method evaluates:

yk+1
i =

∑n
r=1 wi,r

(
yk
r +∇Li(x

k+1
r )−∇Li(x

k
r )
)
. (5)

This results in updating the local state estimates xk
i to move

in the negative of the direction of gradient tracking term yk
i .

Furthermore, it can be verified [9] that at each node, the gra-
dient tracking term converges to the gradient of the global
problem, i.e., yk

i → ∇L.
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2.3. Distributed Model Agnostic Meta Learning

In this section, we propose a distributed MAML framework
that uses the advantages of multi-task meta-learning as well
as the flexibility of distributed setups. We consider a P2P
network of n nodes communicating over a strongly connected
graph. Each node i possesses a local datasetDi = {DS

i ,D
Q
i }

consisting of tasks Ti = {τi,1, · · · , τi,mi
} (provided that each

node i possesses mi tasks) sampled following the probabil-
ity distribution p(Ti). We denote Di,j = {DS

i,j ,D
Q
i,j} as the

set of data samples used for training the local model fi(x) on
the j-th task. Each node aims to minimize its loss by adap-
tation using the support set and then learning new parameters
using the query set as described below:

x̃i,j = xi − α∇Lτi,j (fi(xi),DS
i,j), (6)

xi ← xi − β · ∇
(∑

τi,j∼p(Ti)
Lτi,j (f(x̃i,j),DQ

i,j)
)
, (7)

for all i ∈ {1, · · · , n}, and j ∈ {1, · · · ,mi}. The distributed
MAML problem can be mathematically written as:

P : min
x∈Rp

{
L(x) := 1

n

∑n
i=1 Li(x)

}
,

where Li(x) :=
∑mi

j=1 p(τi,j) · Lτi,j (fi(x),Di,j).

2.4. P2P-MAML and P2P-MAML+

In this paper, we propose two distributed model-agnostic
meta-learning methods that use weight-mixing of model pa-
rameters (P2P-MAML) and gradient tracking (P2P-MAML+).
Firstly, we describe P2P-MAML, such that each node under-
takes the meta-initialization process by adapting to the sup-
port set as described in (6). Subsequently, it learns new model
parameters using query set, as outlined in (7). Finally, every
node shares its model parameters with the neighboring nodes
and evaluates a weighted aggregation based on the network
connectivity. In addition to P2P-MAML, P2P-MAML+ evalu-
ates a gradient tracking term yi (at each node) similar to (5).
This gradient estimate is shared with neighboring nodes, and
an aggregation of gradients is then used to evaluate gradient
descent, leading to the update of the local parameters.

Fig. 2. Node level update procedure for peer-to-peer dis-
tributed model-agnostic meta-learning P2P-MAML+.

Figure 2 describes an update of P2P-MAML+ where the black
arrows symbolize node-level updates, while the blue arrows
represent network-level interactions. The dashed lines depict
the steps involved in estimating the global gradient. Omitting
these steps would lead to the representation of P2P-MAML.

Algorithm 1 P2P-MAML at each node i

Require: x0
i ∈ Rp, α, β > 0, {wij},Di, p(Ti)

1: for k = 0, 1, 2, · · · do
2: Sample batch of tasks τi,j ∼ p(Ti)
3: for all τi,j do
4: x̃i,j ← xk

i − α · ∇Lτi,j (fi(x
k
i ,DS

i,j))
5: end for
6: xk+1

i ←
∑n

r=1 wir

(
xk
r

− β · ∇
∑

τi,j∼Ti
Lτj (fi(x̃i,j ,DQ

i,j))
)

7: end for

P2P-MAML is formally described in Algorithm 1. We
assume that the weight matrix representing the network con-
nectivity W = {wir} is doubly stochastic (a common as-
sumption in the literature on distributed optimization [18]).
Each node initializes the local model parameters xi ran-
domly. In each iteration, every node calculates task-specific
meta-learning parameters x̃i,j through a gradient descent step
(or multiple steps). These parameters are computed using the
support set associated with each task τi,j , where the tasks are
sampled from the node’s local task set Ti with a probability
of p(Ti). Subsequently, the model parameters are updated
using the query set DQ

i,j and x̃i,j . Finally, each node shares
its local xi and collectively updates them through a weighted
aggregation process. This weight-mixing strategy encourages
each node to acquire knowledge from the neighboring nodes,
leading to a significant improvement in the performance of
local models when faced with new (unseen) tasks.

Algorithm 2 P2P-MAML+ at each node i

Require: x0
i ∈ Rp, α, β > 0, {wij},Di, p(Ti)

1: for k = 1, 2, 3, · · · do
2: Sample batch of tasks τi,j ∼ p(Ti)
3: for all τi,j do
4: x̃k

i,j ← xk
i − α · ∇Lτi,j (fi(x

k
i ,DS

i,j))
5: end for
6: tki ← ∇

∑
τi,j∼Ti

Lτi,j (fi(x̃
k
i,j ,D

Q
i,j))

7: If k = 1: yk
i ← tki

8: Else: yk
i ←

∑n
r=1 wir

(
yk−1
r + tkr − tk−1

r

)
9: xk+1

i ←
∑n

r=1 wir

(
xk
r − β · yk

r

)
10: end for

Algorithm 2 formally describes P2P-MAML+ method.
The first iteration is similar to Algorithm 1. Starting from
the second iteration onwards, it uses an additional gradient
tracking step, where yk

i estimates the gradient of the global
loss L using the current tki and the previous local gradients
tk−1
i . This gradient estimate yk

i is then used by each node to
update its local models.
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Fig. 3. Performance comparison of local MAML with P2P-MAML and P2P-MAML+. Each plot shows the classification accuracy
of each node for the Omniglot dataset using 20-way 5-shots setup.

Datasets Methods 8-way 5-shots 8-way 1-shot 20-way 5-shots 20-way 1-shot
local MAML 24.3 % 24.1 % 23.2 % 21.9 %

Omniglot [25] P2P-MAML 91.9 % 87.3 % 85.7 % 82.5 %
P2P-MAML+ 99.9 % 99.8 % 98.9 % 98.5 %
local MAML 23.5 % 22.8 % 18.4 % 12.7 %

CIFAR-FS [26] P2P-MAML 84.7 % 81.4 % 72.6 % 58.5 %
P2P-MAML+ 88.8 % 86.7 % 79.3 % 68.2 %

Table 1. Average accuracy for classification of Omniglot and CIFAR-FS datasets over all nodes.

3. EXPERIMENTAL EVALUATION

In this section, we illustrate the performance of proposed
methods using different numerical experiments. The goal
is to evaluate the improvement in accuracy of local models
using P2P-MAML and P2P-MAML+ as compared to the cen-
tralized implementation. For consistency with prior work, we
follow the standards for few-shot learning benchmarks and
consider different permutations of N-way K-shots training,
i.e., each task has N classes and K instances of each class.

In our problem setup, we consider a network of four nodes
communicating over a P2P network. Each node can com-
municate with its neighbors but sharing of training data is
prohibited. Furthermore, we assume that the local data has
non-overlapping tasks (the i-th node has no knowledge of the
tasks possessed by the other nodes). The goal is to train the
local models using private dataset and a weight-mixing strat-
egy, such that they accurately classify the tasks possessed by
all nodes. We next describe the architecture of local models.

To ensure fair evaluations, we use an identical model ar-
chitecture for each node, which consists of 4 Convolutional
modules connected serially as discussed in [27]. Each mod-
ule has: (i) a convolution layer and (ii) batch normalization
followed by (iii) a rectified linear unit and (iv) max pooling.
The dimensionality of each hidden layer is set to 64 and the
hyperparameters are α = β = 0.01. We focus on image clas-
sification tasks, where the number of channels in the Convo-
lutional module is chosen based on the type of images.
3.1. Classification results
We consider the classification accuracy of images from Om-
niglot [25] and CIFAR-FS [26] datasets. Omniglot contains
1623 handwritten characters drawn by 20 people with a total
of 50 unique alphabets, while CIFAR-FS has images from 100
classes, selected from the CIFAR-100 dataset. We consider
the classification problems for (i) 8-way 5-shots, (ii) 8-way 1-

shot, (iii) 20-way 5-shots, and (iv) 20-way 1-shot training se-
tups. For each of the above, every node possesses one-fourth
of the total data. To model heterogeneity, we assume that the
classes are unique among neighboring nodes. We only plot
the results for 20-way 5-shots setup for Omniglot dataset due
to space limitation.

Figure 3 illustrates the performance comparison of lo-
cal MAML, P2P-MAML, and P2P-MAML+ using Omniglot
dataset. The blue curve shows the accuracy for local MAML
when the model parameters are not shared with the neigh-
bors. The magenta and the red curves depict the performance
of P2P-MAML and P2P-MAML+ methods. They both outper-
form local MAML with a significant margin, using parameter
sharing and aggregation strategies. Notably, the accuracy
of P2P-MAML+ is comparable to the centralized MAML [7].
However, the weight-mixing strategies add to the communi-
cation bandwidth (to an order of magnitude that is common
in federated learning [8]). We further tabulate the accuracy
of all aforementioned methods in Table 1 for Omniglot and
CIFAR-FS datasets. P2P-MAML achieves better performance
results compared to the local MAML, while P2P-MAML+
consistently outperforms the other methods.

4. CONCLUSION
In this paper, we propose two distributed MAML methods for
learning over P2P networks. We use adapt, learn, and share
methodology. Each node evaluates an initialization by adapt-
ing the model parameters using the support set. Subsequently,
it learns new parameters through the minimization of the lo-
cal loss, using the adapted parameters and the query set. Fi-
nally, each node shares these newly learned model parame-
ters, which are then aggregated based on the network connec-
tivity. We propose P2P-MAML and P2P-MAML+ methods
and provide numerical experiments to illustrate their perfor-
mance advantage over local MAML method.
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