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ARTICLE INFO ABSTRACT

Keywords: This paper proposes two nonlinear dynamics to solve constrained distributed optimization problem for resource
Constrained distributed resource allocation allocation over a multi-agent network. In this setup, coupling constraint refers to resource-demand balance
Graph theory

which is preserved at all-times. The proposed solutions can address various model nonlinearities, for example,
due to quantization and/or saturation. Further, it allows to reach faster convergence or to robustify the solution
against impulsive noise or uncertainties. We prove convergence over weakly connected networks using convex
analysis and Lyapunov theory. Our findings show that convergence can be reached for general sign-preserving
odd nonlinearity. We further propose delay-tolerant mechanisms to handle general bounded heterogeneous
time-varying delays over the communication network of agents while preserving all-time feasibility. This work
finds application in CPU scheduling and coverage control among others. This paper advances the state-of-the-art
by addressing (i) possible nonlinearity on the agents/links, meanwhile handling (ii) resource-demand feasibility
at all times, (iii) uniform-connectivity instead of all-time connectivity, and (iv) possible heterogeneous and
time-varying delays. To our best knowledge, no existing work addresses contributions (i)-(iv) altogether.
Simulations and comparative analysis are provided to corroborate our contributions.

Convex analysis
Time-varying delays
Uniform-connectivity

1. Introduction etc. Distributed or decentralized optimization allows for scaling the
problem-solving process to handle larger and more complex optimiza-

1.1. Background tion problems by distributing the computational load across multiple
nodes. If one of the node fails, the others can still solve the remaining

Distributed algorithms have gained considerable attention because objective function and this makes distributed optimization inherently

more resilient to node-failures. Distributed resource allocation can use
parallel processing to speed up the optimization process. By dividing
the problem into sub-problems and solving them concurrently, the over-
all solution can be obtained faster and computationally more efficient
than a centralized approach. In this work, we propose a distributed
setup for resource allocation over general multi-agent systems with
constraints on the communication network or the agents.

of recent advances in the Internet of Things (IoT), cloud comput-
ing, and parallel processing. Distributed optimization over multi-agent
networks, in particular, has emerged as an effective solution in large-
scale applications ranging from machine-learning for large-scale data
mining [1,2] to power flow optimization over the smart grid [3-6].
Distributed/decentralized algorithms outperform centralized ones in
many aspects: no-single-node-of-failure, scalability, speed/efficiency,
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1.2. Challenges

In real-world applications, many model nonlinearities exist in prac-
tice, some of which stem from the inherent physical constraints, e.g., ac-
tuator saturation or quantized data exchange [7,8], and some are
purposely added, e.g., to improve the convergence rate [9,10] or ro-
bustness to impulsive noise and uncertainties [11]. For example, in
automatic generation control setup for power systems there exist ramp-
rate-limit (RRL) due to limited rate of power generation by the real-
world generators. In other words, the increase and decrease of the
power generation cannot follow any rate but is limited. Most existing
results in the literature cannot address this limit and therefore the
generators cannot follow the rates assigned by these solutions. An-
other example is when the information exchange among the agents
is quantized. Most existing linear solutions do not address quantized
information exchange among the agents and, in this aspect, the al-
gorithm is not realistic. Such unseen nonlinearities make networked
optimization (both constrained and unconstrained) more challenging
in terms of computation, accuracy, feasibility, optimality, and conver-
gence. Further, the network itself might be subject to time delays, or
asynchronous data-transmission [5,12-15]. The network also may lose
network connectivity over some intermittent time-intervals (e.g., due
to packet loss or link failure). The notion of constraint feasibility is
another challenging issue. The equality-constraint ensures the resource-
demand balance, and its violation may cause service disruption. This
paper aims to address general nonlinear solutions while handling net-
work latency, uniform network connectivity, and all-time feasibility.
The objective function is also nonlinear and this nonlinearity might be
due to addressing the box constraints as penalty terms.

1.3. Literature review

The literature on distributed optimization, both constrained and
unconstrained, mainly assumes linear models and no delay for data
exchange over the network. There exist a few nonlinear reinforcement-
learning-based models for resource allocation and economic dispatch
[16,17]. These works find optimal allocation with no prior knowledge
of the mathematical formulation of the actual generation costs. In [16]
a Neural-Network is used to learn the relationship between the demand
and the optimal output of each generation unit, while [17] combines
the state-action-value function approximation with a distributed op-
timization based on multiplier splitting. Some existing works focus
on one specific nonlinearity, e.g., quantized allocation/information-
sharing [7,18-23] or saturated dynamics [7,24]. Some others are de-
voted to address sign-based nonlinearities to improve the convergence
rate, e.g., to reach the optimal value in finite-time [25,26] or fixed-
time [9,10,27]. Such fixed/finite dynamics are also prevalent in consen-
sus literature [11,25,28] which also allow for robust and noise-resilient
design. However, these solutions are designed for a specific case and
cannot handle composition of two or more nonlinearities. Moreover,
in many applications, the network is dynamic (time-varying) due to,
e.g., agents’ mobility and may even get disconnected over some time
intervals. Therefore, it is more practical to assume uniform connectivity,
in contrast to all-time connectivity in many existing solutions [29,30].
Latency is another networking issue that may cause the optimization
algorithm to diverge. Few works in this literature address possible ho-
mogeneous delays at all links or asynchronous communication [15,31],
with no consideration of model nonlinearities. In the sum-preserving
constrained optimization, another challenge (other than stability) is
to preserve all-time feasibility [6,29] (in contrast to asymptotic fea-
sibility [15,32,33]). All-time feasibility implies that, as the solution
evolves, the constraint on the states always holds. For example, in
the economic dispatch problem (EDP), at any termination point of
the algorithm, the sum of the power states must be equal to the load
demand. Otherwise, it causes disruption, power delivery issues, and
even system breakdown [6,29]. Such all-time feasibility conditions
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cannot be addressed by dual-based solutions, e.g., alternating-direction-
method-of-multipliers (ADMM) methods [34-40]. These works claim
to reach feasibility fast enough within the running interval of the
algorithm. Besides, the mentioned nonlinearities, network variation,
uniform connectivity, and latency have not been addressed by the
existing ADMM solutions [34-39]. Some of the existing algorithms, on
the other hand, solve specific quadratic-form problems, for example,
consensus-based solutions for CPU scheduling [30] or economic dis-
patch [41]. In general, however, the objective could be non-quadratic,
e.g., because of additional penalty terms and barrier functions to handle
the so-called box constraints.

1.4. Motivations

What is missing in the existing literature is a general method to ad-
dress “model nonlinearitiy” to solve (general) non-quadratic objectives
while considering uniform connectivity, latency, and sum-preserving
all-time feasibility altogether. The nonlinearity of the node dynamics
might be due to, for example, ramp-rate-limit (RRL) of the genera-
tors in automatic generation control (AGC) [42]. The other common
issue is quantized information exchange in real-world communication
networks that motivates the use of algorithm which can handle such
a nonlinearity. In this work, we kept the application general and we
focus on general multi-agent systems with communication networks.
The communication networks often introduce delays due to packet
processing, transmission time, and network congestion. Additionally,
agents are subject to some processing time before state-update or
message-sharing. Therefore, the information sent from one agent/node
may reach the receiver agent with certain time-delay. These delays
may cause divergence of the solution and/or feasibility and optimality
gap. This motivates the need to introduce a delay-tolerant solution
for real-world applications. Furthermore, the network itself might be
subject to some changes and lose connectivity over intermittent time-
intervals due to, for example, agents’ mobility. This motivates the use of
algorithms to handle uniform-connectivity instead of all-time network
connectivity. Another motivation is to address all-time feasibility of the
equality-constraint to ensure resource-demand balance at all times. This
guarantees that there is no service disruption before the termination
of the algorithm at any time. This work finds many applications,
e.g., in CPU scheduling [43], coverage control [44], and plug-in electric
vehicle (PEV) charging coordination [45] among others.

1.5. Main contributions

In this work, we propose two general nonlinear solutions for dis-
tributed constrained convex optimization: one addressing the nonlin-
earity of the nodes and one of the links. Sufficient conditions on the
nonlinearity and network connectivity to ensure convergence are dis-
cussed. The Lyapunov-type proof analysis is irrespective of the specific
type of nonlinearity. Therefore, the algorithm can address certain inher-
ent physical model nonlinearity (e.g., quantization and/or saturation)
or purposely added nonlinearity (e.g., signum-based) to design fast-
convergent or robust-to-noise solutions. Our model can handle the
composition of more than one nonlinear mapping. In power networks,
for example, the saturated generator dynamics due to RRLs is not
addressed by the existing methods [4,6,26,31,41,46,47] in the AGC
setup. Our proposed general multi-agent network can be adapted to
communicate and transmit quantized information, address actuator
saturation, reach a tunable (or predefined) rate of convergence, em-
brace resiliency and impulsive-noise-tolerance, or any composition of
such nonlinear models. We prove coupling-constraint feasibility and
convergence subject to general upper/lower sector-bound nonlinearity.
In other words, sufficient conditions on the model’s nonlinearity are
derived to not violate all-time sum-preserving feasibility (resource-
demand balance) and convergence to the optimal value; see examples
in Section 8.
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We discuss both continuous-time (CT) and discrete-time (DT) so-
lutions. In the DT case, we design delay-tolerant solutions to handle
finite arbitrary and heterogeneous time delays over the network. We
prove constraint feasibility and convergence/stability under bounded
step sizes and certain assumptions on the time-delays. Two approaches
to handle network latency are given: (i) Case I, updating over a longer
time scale after receiving all delayed information, and (ii) Case II,
updating by all the information received at the same time scale as the
DT dynamics. The proposed delay-tolerant solutions lead to no feasibility
gap over switching and uniformly connected networks (instead of all-
time connectivity) and in the presence of heterogeneous delays and
model nonlinearity. This is in contrast to, e.g., the solution by [15] with
some feasibility gap. The uniform connectivity is motivated by appli-
cations in mobile sensor networks, where the links may come and go
as the mobile sensors (or robots) move into and out of line-of-sight (or
broadcast range) of each other. The network may sometimes even lose
connectivity due to link failure or even packet loss, while it maintains
uniform connectivity over some finite time intervals. Finally, we apply
our proposed solutions in distributed setup with (i) quadratic costs and
(i) non-quadratic costs with logarithmically quantized values.

We summarized our contributions in the following:

(i) Possible inherent and additive nonlinearity in the model dy-
namics can be addressed by our proposed resource allocation
model with general non-quadratic objective functions allowing
for consideration of penalty/barrier functions.

(ii) Our proposed delay-tolerant solution can handle possible hetero-
geneous and arbitrary delays of the links over general uniformly-
connected networks. The values of delays might be different
at the links and change over time while the network may lose
connectivity over some intermittent time-intervals.

(iii) Our proposed distributed resource allocation is all-time feasible
implying that at all times the resource-demand balance holds
even in the presence of time-delays and losing network connec-
tivity. This is in contrast to dual formulation methods in which
the feasibility gap asymptotically reduces over time. The all-time
resource-demand feasibility prevents service disruption at any
termination/assignment time of the algorithm.

To the best of our knowledge, no previous works in the literature
address contributions (i)-(iii) altogether.

1.6. Paper organization

We introduce the preliminary notions and some useful lemmas to set
up the problem in Section 2. The CT solutions are proposed in Section 3
and their convergence is discussed in Section 4. The DT counterparts
subject to time delays are discussed in Sections 5 and 6. Applications
and more simulations on sparse dynamic networks are presented in
Sections 7 and 8. Finally, Section 9 concludes the paper.

1.7. General notation

In this paper, we present the column vectors in bold small letters
and scalars with small letters. The matrices are denoted by capital
letters. For notation simplicity, df; and 92 f; denote % and %,
respectively. See the full list of notations in Table 1. l '

The communication network of agents (also referred to as the multi-
agent network) considered in this paper is modelled by a (possibly)
time-varying graph G(r) = {V, £(t)} with a set of time-dependent links
£(¢) and time-invariant set of nodes V = {1,...,n}. A link (i,j) € £@)
represents possible information exchange (communication) from the
agent i to the agent j, and further implies that the agent i is in the
neighbouring set of the agent j, defined as J\fj(t) = {i|(i,j) € E(t)}. The
link (j,i) € £(@t) is weighted by W;; > 0 and W (1) = [W;(1)] € ]R’;S"
represents the weight matrix of the network (7). Clearly, W (z) follows
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Table 1

List of notations.

X, z Column state vectors

1,0, column vector of ones and zeros of size n
x*, z* optimal state vector

§b, S, feasibility sets (associated with b) of z and x states
X; Z; element i of the state vector (state of node i)
t, k continuous and discrete time index

F() global cost function

GV, & network, set of nodes, set of links

VF(-) gradient of F(-)

d, network diameter

£ local cost function

W, L weight matrix, Laplacian matrix

af;() first derivative of f(-)

A ith eigenvalue of L

f,() second derivative of f;(-)

;; time-delay of link (j,i) (or j — i)

N, set of neighbours of node i

T global upper-bound on the time-delay

K, Lipschitz constant of f(-)

T sampling step

g() nonlinear mapping

() indicator function

n number of agents/nodes

absolute value, ceil function, floor function

the structure (zero-nonzero pattern) of the adjacency matrix associated
with G(#). In G(r), we define a spanning tree as a sub-graph of size n
(covering all nodes) in which there is only one path between every two
nodes [48]. This spanning tree is known to include minimum possible
links for connectivity [48]. Define the Laplacian matrix L(r) = [L;;(1)]
as,

v W),
L,,»(t):{ E;»Et) y(®
ij\t)

fori=j,

1
for i # . M
2. Problem setup

This paper considers equality-constraint optimization problems in
the primal nonlinear formulation over a multi-agent network. The
objective of the problem is to minimize the cost function while satis-
fying the (weighted) resource-demand balance constraint. This balance
equality-constraint ensures that the weighted sum of resources meets
the demand by the user, otherwise it may cause service disruption in
the application under consideration. The mathematical formulation is
as follows:

in Fz):= Y fi(z)
mzm z ; z @

T

st. za=b

where element z; € R represents the state variable at agent i, Column
vector z = [z};...;z,] € R" is the collective vector state,’ and column
vector a = [a;;...;a,] € R" and b € R are the constraint parameters.
fi : R~ R is the local cost (or loss) function at agent i, and the overall
cost function is F : R” ~ R. The problem can be also extended to
consider box constraints on the states, i.e., z; < z; < Z;. In this case, one
can eliminate these extra constraints by adding proper exact (nonlinear)
penalty functions to every local objective; for example, changing the
local objectives to f7(z) = fi(z) + c([z; — Z,]* + [z; — z]"), with
[u]t* = max{u,0}°, 6 € N, and ¢ € R*. Some other example penalties
and barrier functions are discussed in [51]. In general, such penalty (or
barrier) functions are non-quadratic and nonlinear, which makes the
objective function non-quadratic and nonlinear; see examples in [29,

! In its most general form, the problem can be extended to z, € R" with
m > 1 (as in [49,50]). Considering m = 1 is for the sake of simplifying the
proof analysis in Sections 4 and 5.
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49]. Feasible initialization algorithms under such local constraints are
discussed, for example, in [6].

The problem is generally stated in the following standard sum-
preserving form

min F(x) = ' f;(x)

., ®3)
s.t. Z x;=b

i=1
which can be obtained from (2) by simple change of variables z;q; =:
x;, with box constraints transformed into ¢;z, < x; < a;z; for ¢; > 0
and reversed otherwise. We aim to provide general nonlinear dynamics
to solve problem (3) over a multi-agent network for different appli-
cations. The proposed solutions need to be distributed, implying that
the information available at each agent i includes its own information
(for example, its state and local objective) and the data received from
agents j € WN; (its direct neighbours). This work addresses the case
that agents/links are constrained with some nonlinearity. Moreover,
the proposed distributed solution remains feasible (i.e., E:’z LX) = b,
Vt > 0) and delay-tolerant (under heterogeneous time-delays). Further,
it is possible that the communication network changes over time and
loses connectivity at some bounded time-intervals. The assumptions on
the objective function convexity (to include possible penalty terms),
the network connectivity, feasibility, and the time-delay model are
essential in the problem setup, as discussed next.

2.1. Useful lemmas and definitions on convexity

Definition 1 (Lipschitz Condition). Let h : R — R represent a nonlinear
mapping. Function A(y) is called Lipschitz continuous if there exists a
real constant K, such that for any y,,y, € R,

[A(y) — h()| < Kplyy =yl (©)]

Definition 2 (Strict Convexity). A function f : R — R is strictly convex
if Vy,,», €R, Vk € (0,1),

Sy + (1 =x)yy) <xf(y)+ (1 =x)f(y)- %)

It is known that for a smooth strictly convex function, 0> f(y) > 0
for y e R [52].

Assumption 1. The local cost/objective functions f;(x;) : R ~ R,
i €{1,...,n} are smooth and strictly convex, i.e., 9 f;(x;) > 0.

Note that the penalized objective function f; is also Lipschitz since
[u]* is Lipschitz for 6 € N,,. Recalling the Taylor series expansion, the
following holds.

Lemma 1 ([46]). Given a continuous strictly-convex function f(y), two
points y,y,, and Ay =: y, — y,, there exist y := ky; + (1 —k)y,,0 <k < 1
such that,

FOD) = f(n) + VF(y) Ay + %AyTaZf@Ay. )

Lemma 2 ([52]). For cost function f; : R — R, assume 2v < 02f,- < 2u
with 0 < v < u < o0.? Then, for two points x|,x, € R, and Ax = x; — x,,
the following statements hold:

F(x)) < F(xp) + VF(x|)Ax + udxAx. 7)
F(xy) > F(x,) + VF(x|)Ax + vAxAx.

2 The condition 2v < 9*f,(x,) implies that the cost function f; is strongly
convex, see Assumption 5 in Section 5.1.
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Lemma 3. Let Assumption 1 hold. The unique optimal solution x* =
[XT; 3 xr] to problem (3) is in the form,

VF(x*) = ¢*1,, (8)

with 1, as the column vector of 1s, 0f; € R as the gradient of the local
function £,(-), VF(x*) = [0,(x});...:0f,(x})] € R, and ¢* € R.

Proof. The proof follows from the KKT condition and the Lagrange
multipliers method [46,52]. []

Similarly, the unique solution of problem (2) is in the form VF(z*) =
@*a. Note that, in the presence of the box constraints, the above lemma
assumes that z* meets those constraints, i.e., z, < z/ <%, for all i.

Throughout the paper, we refer to the feasibility condition as de-
scribed below.

Definition 3 (Feasibility). Define the feasible sets §b ={zeR"z"a=b}
in(2orsS, ={x¢€ R"lel,, = b} in (3). A feasible solution then is
defined asx € S, orz € S,

Lemma 4. Let Assumption 1 hold. Initializing from any feasible set S,
there is only one unique point z* € S, such that VF(z*) = ¢*a for ¢* € R.
Similarly, there is unique x* € S, such that VF(x*) = ¢*1,.

Proof. The proof follows from the strict convexity of the function F(x)
(and F(x)) based on Assumption 1. For detailed proof based on level-set
analysis see [18,49]. [

2.2. Recall on graph theory

Assumption 2. The following assumptions hold.®

(a) Every link in G(¢) is bidirectional with the same weight on both
sides at all times. This implies that the weight matrix W (r) is
symmetric and balanced for 7 > 0.

(b) G() is uniformly connected over time-window B > 0 (or B-
connected), implying that there exists B > 0 such that the (edge)
union graph Gg(7) = {V, E(1)} includes a spanning tree for every
t > 0 where,

t+B

e =Jew.
1

The bidirectional condition in Assumption 2 holds, for example,
when agents/nodes have similar broadcasting levels and their com-
munication range is the same. Therefore, if i € .A/'j(t) then j € N;(1)
while the assigned weights are the same W; (1 = W) at all time.
Later in the paper, this assumption is extended to weight-balanced
directed networks with ¥, W;;(t) = X_, W,;(1) for some particular
cases. This B-connectivity condition in Assumption 2 is considerably
weaker than all-time connectivity in many works (e.g., the ADMM
solutions [34-40]). In particular, this allows G to lose connectivity over
some time intervals. In other words, the connectivity requirement needs
to be satisfied over longer time intervals in the case of links arbitrarily
coming and going over the dynamic network. Such an assumption
is known to be the least-connectivity assumption in consensus and
distributed optimization literature [53,54]. An example contradicting
this condition is the case when §(¢) contains two separate sub-graphs
G,() and G,(r) with no path between them for ¢ > r,, implying that
no consensus can be achieved between the two. Recall that the sparse
connectivity in Assumption 2(b) is strong enough for our algorithm to
ensure convergence over the network (as shown later).

3 In this paper, we generally assume that the network is undirected for the
delay-tolerant case. Extension to balanced directed graphs is discussed later in
Remark 5.
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Remark 1. The network conditions in Assumption 2 are less restrictive
than the existing literature. In particular, the weight-balanced and
symmetric condition (a) relaxes the weight-stochasticity in [30,35],
while uniform-connectivity (b) relaxes all-time connectivity in [6,29,
34,46]. These further motivate analysis of dynamic networks under link
removal and packet loss, with no need to re-adjust (update) the link
weights for ensuring stochasticity [55].

The next lemma gives an intuition to relate the dispersion of the
entries in x with the eigen-spectrum of L. This mainly follows from the
Courant-Fischer theorem and, for example, gives an estimate on the
disagreement value in consensus algorithms [56].

Lemma 5. Consider a symmetric Laplacian matrix L (of a graph Q)T and
1'x

vector x € R". Define the so-called dispersion state vector as X =: x— =1,
The following statements hold:

X' Lx=%" LX, (©)]
AlIXI2 < x"Lx < 4,IIXI12, 10)

with A, and 4, as the largest and smallest non-zero eigenvalue* of L,
respectively. The results also hold for a weight-balanced (WB) directed graph
(digraph) G by substituting L, = L+TLT in (9)-(10) with L as the Laplacian
of the digraph.

Proof. Following the definition of matrix L, vector 1, is in the null
space of L. Using this, the proof of (9) is straightforward since 17x = 0.
The proof of (10) follows from (9) and the positive definiteness of L.
See more details in [56]. [

Corollary 1. The results of Lemma 5, can be extended for handling two

variables X =: x — 1,;x 1, andy=:y- l'Ly 1, as follows:
x"Ly =X' Ly, an
LXy<x Ly <AX'y. 12)

Note that, for a (edge) union graph Gy, 4, < 4,5 and 4, < 4,p. Link
addition (may) increase the algebraic connectivity of the network [56,
58]. Therefore, given G = G,UG,, we have 1,(Q) > 1,(G;), 1,(G) = 4,(G,).
This can be extended, following the Assumption 2, to show 4,(Gp(1)) >
A, (G(1)). One can relate this to the fact that the algebraic connectivity
(for 0 — 1 adjacency matrices) satisfies 1,(G) > ﬁ (with d, as the
network diameter) [57, p. 571]. ¢

2.3. Time-delay model for the DT agents

In general, multi-agent systems rely on communication networks
to exchange information and coordinate actions. These communication
networks may introduce delays due to packet processing, transmission
time, and network congestion. These delays are typically quantized
in integer multiples of the communication time step. Additionally,
each node might have its processing time before sending a message
or updating its state. These transmission delays between agents can
introduce time delays.

Here, we define the time-delay model with k denoting the discrete
time index. Following the notation in [59-61], by 7,;(k) we denote
the delay on the transmission link from agent i to agent j at DT step
k= L%J + 1 with T as the sampling step and |-] as the floor function.
If a message sent from agent j at time #; reaches agent i before time
1> 1, thenz; = [%] - [%’J —1 (with [-] as the ceil function). Therefore,
for 1; —t; < T there is no delay over the link (j,/). However, typically

4 Recall that in graph theory, for (undirected) connected graphs with link-
weight equal to 1, 4, is the second smallest eigenvalue of associated Laplacian
matrix L and is a real-valued positive number. It is also known as the Fiedler
value or Algebraic connectivity [56,57].
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delays are defined in discrete-time and the sent message at time-step k
and received before time-step k + 7;; + 1 implies delay equal to ;.

Assumption 3. The followings hold for (integer) time-delay 7;;(k) on
link (j, i) € E(k):

() 7;;(k) <7, where 1 <7 < o is an integer representing maximum
possible delays on the transmission links (7 = 0 means no delay).
Upper-bound on 7 guarantees no lost information and implies
that the data from agent i at time k eventually is available to
agent j at step k + 7 + 1 (in finite number of time-steps).

(ii) 7;;(k) may change at different time-steps k and is heterogeneous
for different links, i.e., it may differ for agents and on different
links. The time-delays are upper-bounded by some 7.

(iii) The transmitted packets over every link are time-stamped and
every agent i knows the time ¢; at which agent j sent the
information over the link (j, 1), i.e., the delay ;;(k) is known.

(iv) For a shared mutual link between i and j, we consider the same
delay for both sides, i.e., 7;;(k) = 7;;(k).

(v) Atevery time k, at least one packet is delivered over the network
(possibly with some delay), i.e., at any time step k we have
7,;(k) # 0 for at least one pair (i, j) (and subsequently 7;;(k) # 0
due to (iv)).

Remark 2.  Assumption 3 is less restrictive than many existing
literature in distributed sensor networks. To clarify, part (i) only implies
no packet loss and data dropout over the network. Part (ii) generalizes
the existing literature with fixed delays at all links [56] by consider-
ing general heterogeneous delays as in [59,62]. In other words, the
delays may differ at different links. Part (iii) is a typical assumption in
consensus literature [56] and data transmission networks for example
for clock synchronization [63]. Part (iv) implies that both agents i, j
process their shared information simultaneously.® It can be relaxed for
asymmetric delays z;; # 7;;, by considering max{z;;,7;;} at both sides.
This is to fulfil the feasibility condition (as discussed later in Section 6).
Part (v) is only to ensure that at every time-step k (at least) two nodes
update their states.

Every agent needs to record its previous information at the last 7
time-steps to match them with the received information from agent
Jj € N; at the next-coming time-steps. Further, define Z,_,;; as the
indicator function capturing the delay 7;;(k) < 7 on the link (j,i) as

follows,

L
Ik.ij(r) = { 0

Define the temp graph G*(t) = {V,E%(¢)} as the temporary graph repre-
senting the neighbourhood of agents at time ¢ (and time-step k) based
on the delays 7;;. At time kT —T <t < kT if agent i receives a (possibly
delayed) packet from j, then (j,i) € £7(¢) for kT <t < kT +T, otherwise
(.0 & E).

if 7;;(k) =r,

otherwise. a3

Remark 3. For switching networks with B > 0 in Assumption 2(b),
(r + T needs to be less than switching period of G(¢). This implies
that in case of losing a link (i, j) due to a change in G(z), (at least) one
delayed packet from agent i reaches neighbouring agent j before the
link (i, j) disappears. Therefore, for any (i,j) € £(t) we have (i,j) €
£7(1), and thus, Uf;;*f G = Uf;,f}*f G(). In case of larger 7, (if
possible) uniform connectivity of ¢%_(¢) over a time-window B® > B
might be considered in Assumption 2.

5 The assumption that 7,;,7;, are known to both agents i, j is well-justified
in information-theoretic perspective. This follows from Assumption 3(iii) and
the assumption that when the packet data leaves the buffer it reaches the
receiver with a fixed delay [64]. One may also consider the upper-bound on

these delays as a more conservative approach.
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3. The proposed continuous-time solution
3.1. Proposed continuous-time dynamics

In this section, we provide two CT lIst-order dynamics to solve
problem (3); the solution for problem (2) similarly follows. Following
the auxiliary results in the previous section, it is clear that any x* for
which dfF = 9 f;‘ for all i, j must be invariant under the proposed
dynamics. To account for nonlinearities, in general, two models can
be considered: (i) the link-based nonlinearities associated with every
link/edge, and (ii) the node-based nonlinearities associated with every
agent/node. The proposed continuous-time dynamics are based on local
information available at each agent i and received from its neighbours
N;.

Node-based Nonlinear Solution:

== > Wyg(os,-or,), a4
JEN;

Link-based Nonlinear Solution:

% == Wy(s05)-801)), as
JEN;
where W;; and W, are time-dependent in general (Assumption 2). In

the rest of this paper, we discuss the properties of (14)-(15) as the
solutions of problem (3). For the sake of notation simplicity, we drop
the dependence of W;, N, and df; on t unless where needed. For g(x) =
x, (14) and (15) represent the classic linear solution given in [6,46].
However, unlike [46] (and many other papers in the literature) W is
not necessarily bi-stochastic but is only symmetric with positive entries.

As compared to many existing linear dynamics proposed in the
literature [4,6,14,33,46,47,50,65-68] or ADMM-based solutions pro-
posed in the literature [35-40], this work addresses nonlinearity g(-)
at the nodes or the links. This nonlinearity might be due to inherent
property of the system, e.g., quantized information exchange among the
nodes (see Section 8) or the RRLs in automatic-generation-control setup
(see Section 7). In this aspect, the existing simplified linear solutions
do not work properly and may result in an optimality gap. On the
other hand, our nonlinear model allows for improving the convergence
rate and finite/fixed-time convergence by adding sign-based functions
as nonlinearity g(-). This cannot be addressed by the existing linear
solutions [4,6,14,33,46,47,50,65-68] or dual-based solutions [35-40].

We make the following assumption on the nonlinear mapping g(-).

Assumption 4. Function g : R — R is a nonlinear odd mapping with
% #0at x = 0and xg(x) > 0 for x # 0, i.e., g(x) is strongly sign-
preserving. Further, there exists K,,e > 0 such that K,|x| > |g(x)| >
£|x|, referred to as the sector-bound conditions.®

Many existing nonlinearities satisfy the above assumption. As an
example, a monotonically increasing Lipschitz odd function g(-) satisfies
the conditions in Assumption 4. Some other examples are discussed in
the rest of this section.

Remark 4. Even though Eq. (14) and (15) represent separate nonlin-
earities at the nodes and the links, the results of this work hold for
their combination (with both node and link nonlinearities satisfying
Assumption 4). An example is given in Section 8.

6 As we discuss later, the condition e|x| < |g(x)| is needed for exact
convergence (sign-preserving versus “strongly” sign-preserving) and |g(x)| <
K,|x| is only needed for the DT case.
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3.2. Examples of practical nonlinearities in applications

In this section, we provide some practical nonlinear functions g(-).
First, define y := df; — df; and the odd function sgn*(y) as

sgn’(y) := yly[* ™, (16)

where |- | denotes the absolute value and v > 0. For v = 0, (16)
gives the well-known signum function denoted by sgn(y) for simplicity.
The following applications distinguish this work from many existing
literature.

Application I: Quantization
&1(y) = sgn(y) exp(g,(log(|yN)), a7

with g,(») :=6 [%] and 6 > 0 as the quantization level. In order to allow
quantized information processing at agents and transmission links [7],
one can substitute logarithmic quantizer g;(-) into (14) and (15). Note
that uniform quantizer g,(-) is not “strongly” sign-preserving but it is
sign-preserving.”

Application II: Saturation

g.() = xksgn(y) |yl > «, as)
y Iyl <k,

with « > 0 as the saturation (clipping) level. To account for the limited
range of sensors/actuators (saturation) and restriction on transfer of
analog/digital signals (signal clipping) [24,70], the nonlinear function
g.(+) can be substituted in (14) and (15). This might be due to physical
restrictions to follow the limited rate of increase or decrease in the
actuation input x;. An example in power grid applications is given in
Section 7.
Application III: Finite/Fixed-time Convergence

&5 (y) 1= sgn"(y) +sgn"(y), 19

where 0 < v; < 1, 1 < v, (fixed-time) or 0 < v, < 1 (finite-time).

Using this type of nonlinear optimization model some existing work on

consensus and optimization [9,10,18,25] show that convergence can be

achieved in finite/fixed-time. One may even adopt time-varying v,, v,

as in consensus algorithms [71] to reach convergence over a prescribed

time irrespective of the initialization and system parameters.
Application IV: Robustification

Lesgn(y) |yl > d
=q ed 20
8,(» {0 bl <d (20)

with 0 < € < 1, d > 0. In order to design protocols robust to
high-intensity outliers, for example in case of communication channels
corrupted with impulsive noise [11,28], one can replace the sign-
preserving function g,(-) in (15). A similar model can be considered
to suppress impulsive actuation nonlinearities in (14). However, since
Eq. (20) is only sign-preserving (not “strongly”), it may result in steady-
state bias from the optimizer, i.e., convergence ensures x to reach a
neighbourhood of x*.

Note that the sign-based nonlinear functions in Applications III-
IV are mostly used in CT. The applications of our proposed solutions
are not limited to these nonlinear models, but any g(-) satisfying
Assumption 4 might be adopted. For example, the composition of
mentioned nonlinear mappings (17)-(20) are also a valid choice for
g(+) in (14) and (15), or many other sector-bound nonlinearities which
satisfy Assumption 4.

7 Such uniformly quantized dynamics may result in (steady-state) residual
and bias from the equilibrium, where the bias (residual) scales with the
quantization level § and gets arbitrarily close to zero for sufficiently small &.
See [20,21,43,69] for some discussions on quantized discrete-time consensus.
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4. Convergence analysis in continuous-time

In this section, we analyse the convergence of the CT dynamics (14)
and (15) to the optimal value of constrained optimization (3). We first
check the feasibility and uniqueness of the solutions under the given
dynamics and then prove the convergence.

Lemma 6 (Feasibility). Suppose that Assumptions 2 and 4 hold. Initial-
izing by any x, € S,, the state of agents remain feasible under the CT
dynamics (14) and (15), i.e., x(t) € S, for all t > 0.

Proof. The proof of feasibility for CT dynamics (14) is given in [49].
For (15) similarly we have,

4T =3 S w (g0 d 21
L) ==Y ¥ wy(s@f) - 20s)). @1

i=1 jeN;

From Assumptions 2 and 4 we have,
W, (201 - 201)) = -W, (8050 - 5@1)).

which implies that %(XTI,,) = 0 in (21) and x'1, remains time-
invariant. Therefore, any feasible initialization xgl,, = b gives feasibility
over time x(f)T1, = b and x(t) € S, for all t > 0. []

In contrast to primal-dual solutions such as ADMM-based meth-
ods [35-40], Lemma 6 proves all-time feasibility of our proposed
solution. This means that at any termination time of the algorithm the
solution preserves feasibility while in the existing ADMM solutions [34-
40] there might be feasibility gap that converges to zero asymptotically.
This implies that the solution by [35-40] must be fast enough to gain
feasibility before the termination of the algorithm.

Note that for any x satisfying VF(x) = ¢1,, we have x; = 0 at
every agent i. Therefore, such x is an equilibrium (invariant-state) of
the solution dynamics (14) and (15). In the next theorem, we show that
such x* is unique for both proposed dynamics. Note that we assume x*
satisfies the local box constraints (if there are any).

Theorem 1 (Uniqueness in CT). Suppose that Assumptions 1, 2 and 4
hold. Let x* denote the equilibrium under CT dynamics (14) and (15). Then,
VF(x*) = ¢*1, with ¢* € R.

Proof. By contradiction assume VF(x*) = (A7];...; A¥) where A* # ¢*
and for (at least) two agents i, j,

A,* # A;f =of # af;, (22)
Define two agents a, § as,

a = argmax Ay, f = argmin A7. (23)
q€{l,...,n} qe{l,...,n}

From Assumption 2, the union graph Gp(7) is connected for every 7 > 0,

and therefore, there is a path in Gz(¢) from agent (node) « to every

other agent (node) including f. In this path, one can find (at least) two

nodes & and g with the set of neighbours N and Nﬁ’ respectively, such

that

A2 A A< Ay (24)
* B

where the strict inequalities in the above hold for (at least) one node
in N3 and one node in N5. Therefore, from Assumption 4, x; < 0 and
x% > 0 over any time-window of length B (for both proposed dynamics).
This contradicts our equilibrium assumption x* =0. []

In the virtue of Lemmas 4, 6, and Theorem 1, for a feasible initial
state x, € S, there exist only one equilibrium x* satisfying VF(x*) =
¢*1, under dynamics (14) and (15). In order to prove convergence to
x*, the following lemma is needed.
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Lemma 7 ([10]). For g(-) and W satisfying Assumption 2, 4 and y;,y; €

R,
n n "W,
1
2V 2 Wiyglwy —w) = X =y = v — ).
=l j=1 ij=1
Similarly,

Dovi X Wiiew)) - gw)
=1 j=1

n V‘/U
= X 5 W~ w)EW) — gw).

i,j=1

Theorem 2 (Convergence). Suppose that Assumption 1, 2, 4 hold and
Xy € S,. The proposed CT dynamics (14) and (15) converge to the optimal
value of (3) denoted by x* for which VF(x*) € span{1,}, or simply,

El(ﬂ* € R, af[* = af;k = (p*‘

Proof. The proof for dynamics (14) is given in the proof of [49,
Theorem 2]. Similar proofs hold for dynamics (15) with Lyapunov
function F(x) := F(x) — F(x*) and recalling from Lemma 7 that (a fi—

of, ) (s@) - g0r)) >0. O

It is worth mentioning that the existing literature [4,6,14,46,47,50,
65-68] mostly work over all-time connected networks, while, from The-
orem 1 and 2, our proposed solution works over uniformly-connected
networks that may lose connectivity over some time-intervals. Note that
from Theorem 1 to prove unique equilibrium of the solution we only
need the union network Gz(7) to be connected over some interval B.
This makes our solution applicable over mobile multi-agent systems
where the network is dynamic and the connectivity might be lost
temporarily. This is in contrast to many existing solutions [4,6,14,46,
47,50,65-68] where the network is static and/or all-time connected.

5. The proposed solution in discrete-time

In this section, first, we provide the discrete-time version of (14)—
(15) respectively as,

sk + D =x00-T Y, Wyg(os,00-05,0), 25)
JEN;
X,k + 1) = x,(k)
-1 Y Wy (s0skn-g(0r,m)). 26)
JEN;

with k > 1 and T as the time-step.

In the rest of the paper, we use a simplifying notation. Define the
anti-symmetric matrices D(k) = [D,;(k)] and D8(k) = [ij(k)], as the
weighted difference of the gradients over all links, i.e.,

D;;(k) = af (k) —of;(k), (27)
D,-gj(k) = g0 f;(k)) — g(af;(k)). 28)
The following theorem gives the proof of convergence assuming

sufficiently small T (as defined later in Section 5.1).

Theorem 3 (DT Feasibility/Uniqueness/Convergence). Under Assump-
tion 1, 2, 4 and initializing from a feasible point x, € S,, protocols (25)
and (26) converge to the feasible unique equilibrium point x* in the form
VF(x*) = ¢*1, (with ¢* € R) for sufficiently small (sampling) step T < T,
(T, is defined later in (44)).

Proof. Following (25) and (26), we get

Yxik+ =Y x(k) = 2T Y, Wyg(Dy (). 29)
i=1 i=1

=l jeN,;
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x(k+1)=) x;(k)= Y T W, DS (k). 30
;,(+>;,(>;j§,,,j<> (30)
For any link (i, j) and (j, i) in G(k), under the given assumptions we have
W, =W, Dj?’j(k) = —D/g.[(k), and g(D;;(k)) = —g(D;(k)), which implies
that,

n

i=

D, Wig(D;;(0) =0, @D
LjeN;

Bl

D W, Df (k) = 0, (32)
i=1 jeN;

and therefore, }7' | x;(k + 1) = Y x;(k) for all k > 0. Therefore,
initializing from x, € S, we have x(k) € S,, and the feasibility for
both DT protocols (48) and (49) follows. It should be mentioned that
the feasibility condition for the link-based nonlinear solution holds for
general weight-balanced directed networks. The proof of uniqueness
follows similar procedure as in Theorem 1, where instead of having
)% < 0 and x* > 0 in the CT case, we have %(k +1) —x;(k) <0 and

x%(k + 1) —x*(k) > 0 over any time-window of length B. The proof of
convergence and the bound on T is discussed later in Section 5.1. [J

Remark 5. For the link-based protocol (26), one can extend the
solution to weight-balanced (WB) directed networks. This is because
in the proof of Theorem 3, one can restate Eq. (32) for ZL] W, =
Z;’zl W;; over WB digraphs that proves feasibility and convergence as
Lemma 7 also holds for WB digraphs. Note that proof of uniqueness is
irrespective of the weights and only depends on the network connectiv-
ity. Similar reasoning proves feasibility in Lemma 6 and convergence
for CT dynamics (15) over WB digraphs. Distributed (weight) balancing
algorithms can be adopted to design such directed networks [72].

5.1. Rate of convergence

Next, to determine the rate of convergence of the proposed (delay-
free) protocols, we further make the following assumption.

Assumption 5. For the local cost functions f;(x;) : R~ R,

- there exists u < co such that 9% f;(x;) < 2u. This implies that d;(x;)
are Lipschitz continuous.
+ (Strong-convexity) there exists v > 0 such that 9> fi(xp) > 2v.

To incorporate a non-smooth penalty term or barrier function f7
for the box constraints [29,49], e.g., [u]" = max{u,0}° for ¢ = 1, one
can replace it with smooth equivalent L(u, u) = i log(1 + exp(uu)). This
is a typical reformulation in machine learning literature [1,73]. It is
known that £(z, y) — max{z,0} < l{ and the two functions can become
arbitrarily close by sufficiently large u [73]. [u]* with ¢ > 2 is another
alternative smooth option [74]. Assumption 5 helps to explicitly derive
a sufficient bound on the sampling step to ensure convergence. Based
on this assumption, we reformulate Lemma 2 as follows.

Lemma 8. Assume the function f; : R — R to be strongly convex
and 2v < 9%f,(x;) < 2u (Assumption 5). Then, for two feasible points
x(k+ 1), x(k) € S, and Ax =: x(k + 1) — x(k),

Fx(k + 1) > Fx(k)) + VF, AX + vAx Ax, (33)
FOxe+ 1) > Fx(k) = 3-VF, VFy, 34
and similarly,

F(x(k + 1)) < Fx(k)) + VF, Ax + usx" 4x, (35)
Fx(k + 1)) < FO() = 3-VF, VF, (36)

with gradient dispersion defined as WI = VFx(k+1)) - %(IIVF(x(k +
1)) e
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Proof. The proof follows from Lemma 2. See details in [6]. []
Corollary 2. As a direct result of Lemma 8, substituting x, = x* in (34)
and (36), for any feasible x € S, and F(k) := F(k) — F*,
| —=Tes _ = | =T

—VF VF<F(x)< —VF VF. 37
4u 4v

The above corollary follows from the strong convexity of F and
holds for general allocation dynamics; for example, a similar statement
is given for the linear solution in [6]. Using Assumption 5 and Lemma 8,
one can find the limit on the convergence rate under the proposed
CT and DT protocols (assuming no latency, i.e., 7 = 0). Recall that,
for the CT case, F = VF'x. In the following, we state the results for
(14) and the solution for (15) similarly follows. Using the definition of
Laplacian in (1), one can rewrite (14) (with some abuse of notation)

as x = —Lg(VF). Substituting this for x and from Assumption 4 and
Corollary 1,

~K,VFTLVF < F(x) < —eVFTLVF, (38)

where we used the following inequalities from Assumption 4,

el@f;()| < 180 f;(k)| < K¢ |(0f;(k), (39)
€|D;;(k)| < 1g(D;; (k)| < K¢ |D;; (k). (40)

For now, assume B = 0 and later we extend it to B > 0. Using (10) with
A, described in Lemma 5 and recalling the notation VF in Lemma 8,
we have

— T = - T
~K 4, VF VF <F < -e,VF VF, (41)
and from (37)

—4uK 3, F(x) < F < ~4vedy F(x), (42)

which is consistent with the linear case (e = K, = 1) in [6]. Recall that
for F = 0 we also have F = 0. Next, for the DT case, following Eq. (35),

F(k +1) < F(k) + VF(k)" AX + udx" Ax,
with 4x :=x(k + 1) — x(k). To satisfy F(k + 1) < F(k), we need,
VF (k)" Ax + udx" Ax < 0.

From Assumption 4 and following a similar line of reasoning to get
Eq. (42), the above is satisfied if,

TR vF 21T F I TIOE
—eTA,VF VF+quT VF L'LVF <0,

where we substituted Ax = LVF = LVF and us$d Lemma 5 and ijrol—
lary 1. From the same Lemma 5 we have VF LTLVF < A2VF VF.
Therefore, the sufficient condition for convergence is,

—_—T
WK;T 4, —€i)VF VF <0, (43)

which gives the sufficient bound on T as,
£y
- uKéAﬁ

=:T,. (44

Then, the upper bound on the convergence rate of the residual follows
from Lemma 8 and (37) as,

Fk+1)

= <1+ 40wk, T4 = T hye). (45)
F(k)

The above gives an estimate on the (linear) convergence rate of F
for sufficiently small T satisfying (44) and also proves the convergence
in Theorem 3. For the quadratic cost functions (as in the economic
dispatch problem), we have u = v, and the above equations can be
more simplified. Further, in case of B-connectivity instead of all-time
connectivity (B = 1), one can derive Eq. (45) for Ec+B)
graph G and modify (44) as TB < T, with ,, A, as the eigenvalues of
Cp-

over union
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State-update steps
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Fig. 1. This figure illustrates Case I to handle delays over the network. The original
communication time-scale k (red) versus the state-update time-scale k (blue) are shown.
The information is shared over the longer time scale k to update the state x,(k) via the
dynamics (46) and (47). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Remark 6. Recall that, from Lemma 5 for WB directed graphs, values
Ay, 4, in (43) (and in the subsequent equations) denote the eigenvalues
of the symmetric matrix L, instead of L.

6. Networks with time-delays

Next, we extend the solutions to the time-delayed case. We con-
sider two approaches to overcome network latency according to the
following remark.

Remark 7. Following Assumption 3, the knowledge of every z;; is
key to satisfy the feasibility condition in the delayed case, see (31) and
(32). Note that D(k — r) and D8(k — r) (with r as the delay) needs to
be anti-symmetric. This follows from Assumption 3 and Remark 2. In
other words, every agent i knows the delay r to match the received
gof;k =) with its own previous information g(df;(k — r)) to find
ij(k —r), and the same holds for agent j to find Dfi(k —r).

6.1. Case I : information-update over a longer time-scale

A straightforward solution in the delayed case is to have the agents
wait for 7 steps (with 7 as the maximum possible delay) until they
collect (at least) one delayed packet from the neighbouring agents
(before processing for the next iteration) and then update their state.®
This alternative approach requires knowledge of 7 (or an upper bound).
Obviously, due to the agents’ slower update rate, this approach’s con-
vergence rate is low. In this case, we define a new time-scale k =
[%J + 1 (see Fig. 1) and update the state of each agent i as follows,

xik+1)=x0) =T Y W,eD; k), (46)
JEN;

x(k+1)=x,(k)—T Z W, D (). (47)
JEN;

Over this 7+ 1 time-steps (i.e., two consecutive update steps E, and Ez)
on every link (i, j), every agent sends 1 message at step k and receives
the messages from j € N, by step k + 1,° see Algorithm 1. This is used
in the proof of convergence.

Theorem 4 (Feasibility/Uniqueness/Convergence). Under Assumptions 1—
4 and initializing from a feasible point x, € S,, protocols (46) and (47)
converge to the feasible unique equilibrium point x* in the form VF(x*) =
¢* ® 1, for sufficiently small T satisfying T < T, (with T, given as (44)).

8 Similar solution to handle delays in consensus protocols is discussed
in [59, Remark 3].

9 In an equivalent setup, agents may send their messages per scale k where,
at the update scale k, receive at least 1 and at most 7 messages. Then, the step
size T needs to be down-scaled accordingly to satisfy the convergence criteria.
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Algorithm 1 Delay-Tolerant solution: longer time-scale
1: Input: W;;s, N}, (), T,

: Initialization: Set k = k = 1, randomly allocate feasible x(1) (e.g.,
via [6, Algorithm 2])

: Node i shares df;(1) with neighbours j € N

: While termination criteria NOT true do

Set k —« k+1

If Al =%

T+l

: Node i calculates ij (k) (or D;; (k)) based on received data g(0f j(E))
(or 6fj(E)) from j € W,

: Updates x,(k + 1) via Eq. (47) (or (46))

9: Shares df,(k + 1) with neighbours j € N,

10: End If

11: Set k « [;—;:J +1

12: End While

13: Output: x¥, Fx*) = ¥, fi(x)

N
a1

N o U A w

o)

Proof. The proof of feasibility and uniqueness follows a similar pro-
cedure as in the proof of Theorem 3 considering the longer time-scale
k. Since at every update step k only 1 message is received from every
agent in WV}, following similar expressions to derive Eq. (44), the same
criteria T, ensures convergence. []

6.2. Case II : using all delayed data at the same time-scale

In the most general time-delayed version of the DT protocols (25)
and (26), agent i updates its state based on all available (received)
information as,

x;(k+ 1) = x;(k)

=T ), Y WigDylk = ML), (48)

JEN; =0
x;(k+1) = x;(k).

=T Y Y WD (k= DL, (), (49)
JE _,\/, r=0
Note that in (48), D;;(k —r) can be easily calculated as agent i records
all its gradients 0f;(k) at the last 7 steps and knows the time delay r
of the received time-stamped message df;(k — r). In fact, the second >
sums all the gradient differences based on all received data from WV at
step k, i.e., for all pairs of D;;(s) and s satisfying,'®

{k—?sssk,s+r,-j(s)=k,j€j\/,~}. (50)
or equivalently,
{Teysy = 5.J €N (51)

Similar arguments hold for Df.(k — r). Further, for Lipschitz g(-) with
constant K, < oo (and smooth f;(-)), from Definition 1, we have
Df (k= r) < K,Dy;(k = ).

Remark 8. Following Remark 3, for switching network ¢(k), the
switching period needs to be longer than (7 + 1)T (or 7 + 1 time-steps).
This assumption implies that agent i receives at least one (possibly)
delayed packet from every neighbour in N; before losing its link due
to network variation (ensuring Assumption 3(v)). Therefore, following
the B-connectivity in Assumption 2, we need (7 + 1)T < B.

10 Recall that the processed information at the time-step k are received in
the time-period (kT — T, T]. Therefore, (51) can be rewritten as {k —7 < s <
k,kT =T < sT + 7,;()T < kT, j € N;} in the asynchronous case, for example,

the delays could be positive real values (instead of integers).
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Algorithm 2 Delay-Tolerant solution: the same time-scale
1: Input: W;s, Ny, fi(), T, T
2: Initialization: Set k = 1, randomly allocate feasible x(1) (e.g., via
[6, Algorithm 2])

: While termination criteria NOT true do

: Node i receives time-stamped g(df;(k—7;;)) (resp. df;(k—7;;))) from
jEWN;

HowW

5: Records ij(k —7;;) (resp. D;;(k —7,;;)) based on known delay 7;;
6: Updates x;(k + 1) via Eq. (49) (resp. (48))

7: Shares df;(k + 1) with neighbours j € N;

8: Setsk — k+1

9: End While

10: Output: x¥, Fx*) = ¥, fi(x)

Note that for the update at every step k, Assumption 3(v) says that
at least one package over the network is delivered. Otherwise, x;(k) =
x;(k — 1) for all i and no update occurs. The solution is summarized
in Algorithm 2. The feasibility/uniqueness under (48) and (49) follows
similar to the delay-free case.

Lemma 9 (Feasibility/Uniqueness). Let Assumptions 1-4 hold. Initializing
from feasible states x, € S,, under DT protocols (48) and (49), x(k) € S},
Further, the unique equilibrium point x* satisfies VF(x*) = ¢*1,.

Proof. Following (48) and (49), we get

n n

Y xik+1)= Y x;(k)

i=1 i=1

n

= DT Y Y Wie Dk = DLy (7). (52)
=l jEN; r=0
Ykt =Y 5k
i=1 i=1
= DT Y Y WDt (k=L (). (53)

=l jeN; r=0

For any link (i, j) and (j, i) in G(k), from Assumption 2, 3, and 4 we have
Wi, =W, Dj?j(k -r) = —Dfl.(k — 1), gD;;(k = r)) = —g(D;;(k — 1)), and
Ly—pij() = I;_, ;;(r) for 0 < r < 7. This implies that,

7

T DY WiaD, k= () =0,

=l jeN;r=0
n T
DT Y Y WD (k=T ;(r) =0,
=l jeN;r=0

and therefore, Y\ x;(k + 1) = Y_ x;(k) for all k& > 1. Therefore,
initializing from x, € S, we have x(k) € S, under both (48) and
(49). This proves the feasibility. The proof of uniqueness follows similar
reasoning as in the proof of Theorem 3 and 4 over the uniformly
connected network Gz(¢) (or G5, (¢) in Remark 3). []

Remark 9. Case I is more practical than Case II in applications with
low capacity/buffer at the computing nodes. This is because at time
k = k node i sends (and receives) one message to (and from) the nodes
N;. Note that, for large delays (and the same T), this solution converges
(although with a low rate) while Case II may not necessarily converge.
Further, for unknown (or large) 7, Case II requires a high-capacity
memory/buffer at the nodes to record the previous information (on the
gradients). In case of limited (m-slot) memory/buffer, the nodes may
record and use a portion (last m) of the previous states instead, and
discard the rest before k —m (since they are time-stamped). This simply

10
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implies losing some links over TE’H and follows from Remark 1 and 3
and Assumption 2.

Theorem 5 (Sufficiency). Under Assumptions 1-4, and initializing from
feasible state x, € S, the proposed protocols (48)—-(49) converge to the
optimal solution of (3) for T(z + 1) < T).

Proof. First, consider homogeneous delays 7;; = 7, where agents’ states
at any time-step k get updated next at k + 7 + 1 and every 7 + 1 steps
afterwards (see Fig. 1). For this case, following Theorem 3, T < T en-
sures the convergence. For general heterogeneous time-varying delays,
Ax needs to be scaled by 7+1, and accordingly, T, is down-scaled by 7+1
to guarantee convergence. Consider two cases: (i) for time-invariant
delays Y I,_,;;(r) = 1 in (48), implying that only one delayed packet
is received from every j € N;. This implies the same bound as T < T;.
For time-varying delays, from (13), 0 < Y7 Z;_,;;(r) < (7 + 1). This
implies that 4x is scaled by 7 + 1 and accordingly, from (29), T needs
to be down-scaled by 7 + 1, i.e., T(7 + 1) < T,. The proof for dynamics
(49) similarly follows. []

For time-varying but equi-probable delays r = 0,1, ...,7 in (13), one
can claim that (in average) over 7+1 trials node i receives one message
from j € N, (at every k) and the bound is T < T;,.

Communication time-delay over the network is not addressed by
the existing solutions [4,6,14,33,46,47,50,65-68]. However, latency
is a common issue in many multi-agent systems including the dis-
tributed resource allocation setup. Therefore, most existing works in
the literature may not work properly in the presence of time-delays
in the data-transmission network. The mentioned literature may lose
resource-demand feasibility and/or result in some optimality gap in
the presence of time-delays. In this aspect, our proposed delay-tolerant
model advances the state-of-the-art and provides solutions that can be
implemented in practice.

7. Simulation in distributed scheduling setup

In this section, we consider resource allocation over the power
generation networks and the smart grid, known as the economic dispatch
problem (EDP) [6,26,75]. The objective is to allocate optimal power
outputs to the electricity generators to supply the load demand D (in
MW) and to minimize the operating costs. In [4,26,41,47,76] this cost
function is given as,

n n
F(x) = Z y,-x,.z + pix; + o, in =D,m; <x; <M,
i=1

i=1

(54)

where x; € R is the output power at generator i. To include the box
constraints, penalty terms are considered [49]. The parameters in the
cost function (54) are defined based on the type of the power generators
(coal-fired, oil-fired, nuclear, etc.), for example, see Table 2. The other
parameter values are: «; = 0 and m; = 20. The min and max RRL
values given in [77] are equal to 1 and 3 MW/min (for oil/coal-type
generators).

In a more complicated setup, such a quadratic cost model is defined
to adjust the power-demand mismatch over the grid (e.g., due to
generator outage), known as the Automatic Generation Control (AGC)
problem [49]. Given a known power mismatch, the idea is to allocate
enough power to the generators to compensate for it while minimizing
the power deviation cost. In this setup, the generators are subject
to an extra physical constraint, known as ramp-rate-limit (RRL). This
implies that the rate of increase or decrease of the produced power
is constrained within certain limits and the generators cannot freely
speed up/down their power generation. Such nonlinear constraints are

11 Convergence over lossy networks, following from Assumption 2 and
Remark 1 is another promising direction of our future research.
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Table 2
Parameters of the generator cost (in $) and its maximum power (in
MW) for different types [4,41,76].

Type M; B; Yi

A 80 2.0 0.04

B 90 3.0 0.03

C 70 4.0 0.035

D 70 4.0 0.03

E 80 2.5 0.04
Table 3

The elapsed time (in ms) to run one iteration (in average) for each scenario in Fig. 2.

This table gives a measure to compare the computational complexity of the algorithms.

lin accel single finite sat

0.38

sgn

1.18

0.37 0.31 0.75 0.38

a determining factor on the stability of the grid [42]. The solutions of
the existing linear methods [6,46,65] may assign any rate of change
%; to the power generators. Thus, they cannot address RRLs, which, in
reality, the solutions cannot be followed by the generators. This may
fail the feasibility and lead to sub-optimality. In contrast, considering
the nonlinearity g(-) as saturation function (18), the proposed nonlinear
solutions in this work can address RRL constraints where the limits can
be tuned by the parameter x. A comparing example is given next.

7.1. Allocation with no delay

Assume n = 50 generators with the supply—demand constraint D =
3200 MW. Initially, it is considered that x; = % = 64 MW at every
generator i. The parameters in (54) are randomly set from Table 2
using MATLAB randi function. For power allocation, as an academic
example, we consider protocol (25) with saturated nonlinearity g, (-)
with level x = é on the node dynamics and protocol (26) with g/(-)
as the sign-based function (19) (with v; = 0.4, v, = 1.6) on the links.
The network is considered as a random Erdos-Renyi graph (with link
probability p = 0.2) with random symmetric link weights 0.005 <
W;; < 0.025. We provide a comparative simulation analysis to support
our results. Both solutions are compared with some state-of-the-art
solutions in the literature in Fig. 2 for T = 1; namely: linear [46],
accelerated linear [66], finite-time [26], and single-bit [25] solutions.
For the single-bit protocol [25] we decreased the link weights by 80%
to reduce the chattering effect in Fig. 3. Note that the RRL constraint is
only met by our saturated solution as shown in Fig. 3. In other words,
in a real scenario the generators cannot follow the iterative solution
by [25,26,46,66] since their power generation rates at some intervals
violate the RRLs. This may either cause feasibility gap or optimality
gap in real world. But our saturated-based solution admits the RRLs.
The min RRL value equal to 1 MW/min (or 61—0 MW/sec) is considered
that meets the requirement by all the generators.'?

Box constraints m; < x; < M; on the generators are considered by
adding smooth penalty terms with ¢ = 2. We modify the objective as
17 = fix) + e([x; = M;IT)? + c(Im; — x;]")? with ¢ = 1. The evolution of
power states under the sign-based dynamics is shown in Fig. 4, where
both feasibility and power limit constraints are met. Note that our given
assumptions ensure that at every time step the deviated power at nodes
on two sides of every link is balanced such that the feasibility constraint
is satisfied (i.e., the generated power equals the demand) at all times.

To compare the computational complexity of the algorithms, the
elapsed times (for one iteration) are given in Table 3. The simulation
is done with MATLAB R2021b Intel Core i5 @ 2.4 GHz processor RAM
8 GB.

12 Even though we used the same min RRL in this simulation, this parameter
can be further tuned for different generators in dynamics (14)-(15) via the link
weights and the node degrees.
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EDP
—single accel lin ——nonlin (sgn)
<—Ilinear —finite  --—-nonlin (sat)
100+
I3
10°
0 200 400 600 800 1000

Fig. 2. The performance of our node-based protocol (25) subject to saturation and link-
based protocol (26) with sign-based nonlinearity compared with linear [46], accelerated
linear [66], finite-time [26], and single-bit [25] protocols.

AGC
0.1 —single —finite - - RRL+
—linear ——nonlin (sgn) = = RRL-
0.05 accel lin ====nonlin (sat)

l'i‘TiT'";ﬂ

& 0
-0.05
-0.1
0 200 400 600 800 1000
k
Fig. 3. The rate of generated power x; (in MW/sec) at a sample generator i = are

compared under different solutions. Only our proposed saturated nonlinear model
admits the RRL constraints on the generator dynamics (shown by dashed lines).

power states

----average

80 ‘

50 : ‘ :
0 100 200 300 400
k
normalized power states
100 : , ‘
w E——
|§|E 50| |
0 | I L
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k

Fig. 4. The allocated power states x; (in MW) under sign-based dynamics and box
constraints on the output powers as m; < x; < M;. The feasibility is checked by the
average of output powers which is constant (black dashed line). The normalized
allocated power states x; are also shown to verify the box constraints.
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Fig. 5. The number of iterations to reach residual F = 1072 versus
nonlinearity.
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ER network connectivity tuned by the link probability p for sat (level x = 1) and sgn (v, = 04, v, = 1.6)

sat: fixed T
sat sgn 3000
4 - : . 10 ?
2500
8
b 2000
& N 6
¢ o 3 =2 1500
= == 1000
10
2 500
0 0 0
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
n n n
sgn: fixed T
400 - - -
300
=2 200
100
. i i A i)
20 40 60 80 100
n

Fig. 6. The convergence time/iterations to reach residual F = 0.01 versus ER network size n for sat (level x = 2) and sgn (v, = 0.5, v, = 1.5) nonlinearity. (Top) diminishing

step-sizes as size increases, (Bottom) fixed step-sizes.

Table 4

The number of iterations k to reach F = 1.
lin accel single finite sat sgn
480 239 791 345 962 168

In Table 4, we compared the number of iterations to reach (a
predefined) cost residual F = 1. For example, within this range around
the optimal value the solution is considered good enough. Note that our
proposed sign-based solution, as compared to other solutions, although
having more computational complexity converges very fast and within
fewer number of iterations.

Next, we study the network density on the number of iterations to
reach a certain residual (as the termination criteria of the algorithm). In
Fig. 5, this termination point is F = 0.01 and the ER link probability is
changed from 15% to 45%. The link weights W;; are chosen randomly
in the range [0.02 0.12]. The simulation is averaged over 5 Monte-Carlo
(MCQ) trials with T' = 0.05.

The convergence time/iterations to reach F = 10~2 versus network
size n is shown in Fig. 6. The parameters are as follows: p = 30% as
the ER link probability, W;; € [0.05 0.2], and 5 MC trials. Two different
scenarios are considered for T: diminishing by size as T = 0.05(1 — "1_0%)0)
and fixed step size T = 0.025.

12

In Fig. 7, for the same termination criteria F = 10-2, the number of
iterations for different step sizes 7" and link densities p are given. As we
see in the figure, the convergence iteration multiplied by the step size
is almost constant irrespective of the network connectivity (and eigen-
spectrum) and the step size T. Note that the T values are chosen small
enough for convergence, and for large values of T violating Eq. (44)
the solution may not necessarily converge.

7.2. Allocation with delayed information-exchange

Next, we consider a cyclic network of n = 5 generators under RRL
limits x = & MW/sec in the presence of time delays. The data in
Table 2 is used which resembles IEEE 14-Bus test system [41]. The
time-evolution of the generated powers and the Lyapunov function F
(the residual) are simulated for random parameters. For the quadratic
cost (54), u = max{y;} = 0.04. We have £ = 0.0166, K, = 1, 1, = 1.38,
T =1 and 4, = 3.61. Using Eq. (44), for any T < 0.045 the solution
converges in the absence of delays. This is a sufficient bound and to
some extent not very tight.

Case I: In this case, using (47), we update the generator states
at every 7 steps as in Section 6.1. Following Remark 9, we consider
information exchange over the longer time-scale k. The time-evolution
of the Lyapunov function F (representing the residual) for some values
of 7 is given in Fig. 8. Clearly, the convergence rate decreases with the
increase in the time delays.
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Fig. 7. The convergence iterationxT to reach residual F = 10-2 versus step size T for sat (level x = 3) and sgn (v, = 0.5, v, = 1.5) nonlinearity. The connectivity of the ER network

is changed via the link density p.
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Fig. 8. The residual F under protocol (47) (Case I) subject to saturation and time-
delays. This method can handle large max delays 7, even though the convergence rate
is low.

Case II: In this case, we update the generator states at every
step based on all the received (delayed and non-delayed) information
using (49) in Section 6.2. From Theorem 5, sufficient condition for
convergence is T(7 + 1) < 0.045. For this simulation, however, we see
that solution converges 7 < 3. We perform the simulation for both

heterogeneous time-varying and time-invariant (fixed) delays as shown
in Fig. .

8. Simulation of non-smooth quantized optimization over uni-
formly connected networks

In this section, we run the simulations over a random dynamic
network of n = 100 agents. The network is not connected at any time,
while it is B-connected over every B = 100 iterations (Assumption 2),
ie., U/;+100 G(k) is connected. We consider strongly-convex logarithmic
functions f;(-) defined as [46],

fi(xi) = %ai(x,- - 7’;)2 + {log(1 + eXP(ﬂ;(X,- - ’71)))’ (55)

with the coefficients randomly chosen as 0 < ¢; < 0.2, =0.2 < §; < 0.2,
-03<y;,<03,0<n <0.6, ¢ =02, and random constraint parameters
in problem (2) chosen as =2 < a; < 2 and b = 10. To optimize this
objective we apply (26) (with 7" = 0.1) under logarithmic quantization

g/(-) in Eq. (17). This locally Lipschitz function satisfies (l - g)z <

# < (1 + g);z and, thus, Assumption 4 holds. We considered a

composition of dynamics (25)-(26) via g, (g,(af,-)—g, (()fj)> with « = 1.
The time-evolution of the residual F for different quantization levels &
is given in Fig. 10. We further compare the performance under different
time-delay models by assigning random heterogeneous delays to the
links. For Case II, two scenarios are given (i) time-varying, and (ii)
time-invariant (fixed) delays. For Case I, from Remark 9, we consider
updating over time-scale k using composition of dynamics (46)-(47).
Simulations are shown in Fig. 11 with parameters: § = 0.125, T =

13

Latency: Case II

0 1000
k
Latency: Case II (fixed)
ol —7=0—7=3 —7 =10
L —7=1—7=6—7=15
[Fy
10°]
0 1000
k

Fig. 9. The residual F under DT protocol (49) under Case II with (top) time-varying
and (bottom) time-invariant delays. For small 7 the convergence is faster than Case I,
but for large 7 this approach may not converge (e.g., 7 = 15).

0.05, 7 = 2,6. As shown in Fig. 11, the solution by Case II does
not necessarily converge while the solution by Case I converges. This
simulation shows that for small 7 (satisfying Theorem 5) Case II leads
to faster convergence. On the other hand, for larger 7 Case I is a better
delay-tolerant mechanism.

Note that the notion of information quantization and time-delays
although prevalent in real-world networked systems cannot be ad-
dressed by the existing primal-based [4,6,14,33,46,47,50,65-68] and
dual-based solutions [34-40]. In other words, these existing literature
assume ideal network condition and there is no guarantee that their so-
lution converge under quantized information and/or data transmission
delays.

9. Conclusion and future directions

This paper proposes anytime-feasible (Laplacian-gradient) solutions
subject to model nonlinearities to solve distributed sum-preserving re-
source allocation and coupling-constraint optimization over uniformly-
connected networks (not necessarily connected at all times). The con-
vergence to the optimal value is proved for general strongly sign-
preserving nonlinearities. In addition, two scenarios are proposed to
overcome heterogeneous delays over the network. For large delays and
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Fig. 10. This figure shows the residual F for quantized communications and sat-
urated actuation (composition of nonlinear protocols (25)—-(26)) over a dynamic
uniformly-connected network. § denotes the quantization level.

Case I

0 200 400

0 200 400

Fig. 11. This figure shows the time-evolution of the residual F subject to delays 7 = 2,6
and logarithmic quantization. For Case II both time-varying and time-invariant (fixed
at every link) delays are considered. For the case of a smaller delay value, the solution
by Case II converges faster, while, for the larger delay value 7 = 6, the solution by
Case I gives better performance.

low buffers, we proposed to update the agents’ states over a longer time
scale after receiving (at least) 1 delayed packet over every link. On
the other hand, faster convergence can be achieved, for smaller time
delays, by updating at the same time scale of the communication and

Systems & Control Letters 182 (2023) 105657

using all the received (possibly) delayed packets at each iteration. The
results are given for undirected and balanced graphs with bounded and
link-symmetric delays.

Allocation strategies over lossy networks with link failure or packet
drop are another direction of our current research. As future research
directions, application to asynchronous scheduling under quantized dy-
namics [78], robust (and noise-resilient) sign-based [11,28], or single-
bit [25] dynamics are of interest. Recall that for non ‘“‘strongly” sign-
preserving solutions, the e-accuracy needs to be addressed to give an
estimate of the optimality gap. Another future research direction is to
extend the results to non-convex problems, which is a bottleneck and
more interesting for the industry.
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