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Abstract—Decentralized strategies are of interest for learning
from large-scale data over networks. This paper studies learning
over a network of geographically distributed nodes/agents subject
to quantization. Each node possesses a private local cost function,
collectively contributing to a global cost function, which the
considered methodology aims to minimize. In contrast to many
existing papers, the information exchange among nodes is log-
quantized to address limited network-bandwidth in practical
situations. We consider a first-order computationally efficient
distributed optimization algorithm (with no extra inner consensus
loop) that leverages node-level gradient correction based on local
data and network-level gradient aggregation only over nearby
nodes. This method only requires balanced networks with no need
for stochastic weight design. It can handle log-scale quantized
data exchange over possibly time-varying and switching network
setups. We study convergence over both structured networks
(for example, training over data-centers) and ad-hoc multi-agent
networks (for example, training over dynamic robotic networks).
Through experimental validation, we show that (i) structured
networks generally result in a smaller optimality gap, and (ii)
log-scale quantization leads to a smaller optimality gap compared
to uniform quantization.

Note to Practitioners—Motivated by recent developments in
cloud computing, parallel processing, and the availability of low-
cost CPUs and communication networks, this paper considers
distributed and decentralized algorithms for machine learning
and optimization. These algorithms are particularly relevant for
decentralized data mining, where data sets are distributed across
a network of computing nodes. A practical example of this is
the classification of images over a networked data centre. In
real-world scenarios, practical model nonlinearities such as data
quantization must be addressed for information exchange among
the computing nodes. This work emphasizes the importance of
handling log-scale quantization and compares its performance
over uniform quantization. By exploring these quantization
methods, we aim to determine which is more accurate in terms
of optimality gap and learning residual. Moreover, we study
the impact of the structure of the information-sharing network
on reducing the optimality gap and improving the convergence
rate of distributed algorithms. As contemporary distributed
and networked data mining systems demand highly accurate
algorithms with fast convergence for real-time applications, our
research emphasizes the benefit of structured networks under
logarithmic quantization information-exchange. Our findings can
be extended to different machine learning algorithms, offering
pathways to more accurate and faster data mining solutions.
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I. INTRODUCTION

LEARNING from geographically distributed data has
emerged as a critical challenge in various domains such as

sensor networks, edge computing, and decentralized systems
[1]–[3]. The scenario involves individual nodes possessing
private local cost functions, collectively contributing to a global
cost that needs to be minimized [4]–[7]. This paper focuses on
addressing this challenge through gradient-based optimization
over networks, targeting scenarios where the cost functions
are locally known at distributed nodes communicating over
quantized channels. Data quantization, the process of repre-
senting data with a reduced number of bits, is often employed
to reduce the communication load in such decentralized setups
and is proven as an effective way to reduce communication
costs, for example, in machine learning applications [8], [9].
One common quantisation type is logarithmic or log-scale
that efficiently assigns more bits to represent smaller values
and fewer bits to larger values [10], [11]. This is beneficial
when dealing with gradients or weights that often have a
wide dynamic range. Smaller values, which might be more
critical for convergence, are represented with higher precision.
This may increase the complexity of the distributed learning
algorithm as we move from linear dynamics to non-linear
dynamics due to quantization. Uniform quantization, on the
other hand, simplifies the representation of values, which
can lead to a faster communication process. However, the
lack of precision, especially for small values, might affect
performance in scenarios where accurate representation of
gradients or weights is crucial, and lead to residual error [12],
[13]. Therefore, studying and comparing uniform and log-
scale quantization for distributed optimization is of interest for
distributed data mining applications.

The existing literature on distributed optimization mostly
consider linear function of the state variables, where the focus
is mainly on reducing the optimality gap and improving the
convergence rate. The primary distributed optimization methods
are GP [14] and DGD algorithm [15], which are further
extended to DSGD [16] and SGP [17], [18] by adopting
stochastic gradient methods. Algorithm ADDOPT [19] and
its stochastic version S-ADDOPT [20] further accelerate the
convergence rate using gradient tracking. Similarly, momentum-
based approaches improve the convergence rate using heavy-
ball method [21], Nesterov gradient method [22], [23], or a
combination of both [24]. On the other hand, PushSVRG
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[25] and PushSAGA [26], [27] algorithms use variance
reduction to eliminate the uncertainty caused by the stochastic
gradients. Few other distributed optimization works use sign-
based nonlinearity in the node dynamics to address finite-
time and fixed-time convergence [28]–[30]. All these methods
assume unlimited bandwidth to communicate arbitrary real
numbers which in practice is not possible as all realistic
communication protocols rely on finite precision. The effect
of uniform quantization over channels with limited data-rate
and the associated optimality gap (or residual) is discussed
in [31]–[33]. The work [34] proposes a novel quantized
distributed gradient tracking algorithm to minimize the finite
sum of local costs over digraphs with linear convergence
rate. The paper [35] combines the gradient tracking Push-Pull
method with communication compression (quantized links).
Similarly, communication compression technique compatible
with a general class of operators unifying both unbiased
and biased compressors is discussed in [36]. Distributed
quantized gradient-tracking under a dynamic encoding and
decoding scheme is considered in [37]. What is missing
from the existing literature is the consideration of log-scale
quantization for distributed optimization to address resource-
constrained communication networks with limited-bandwidth.
This is primarily addressed for distributed resource allocation
and constraint-coupled optimization [38], but not for distributed
learning over networks.

The main contributions of this paper are as follows: (i) we
develop a log-scale quantized first-order distributed optimiza-
tion method that employs network-level gradient tracking. This
follows the real-world applications in which quantization is
prevalent in networking setups. The proposed solution can be
generalized to consider other sector-bound nonlinearities1 in the
data-transmission channels. (ii) We develop the convergence
analysis of the proposed log-scale quantized algorithm and
provide the bound on the gradient-tracking step-size. (iii)
Moreover, unlike existing methods, our approach eliminates
the need for weight-stochastic design on the network. This is
done by adopting a weight-balanced design instead, simplifying
implementation in the face of node/link failure and enhancing
adaptability to time-varying setups in the presence of link-level
nonlinearities. Through empirical validation, we analyze the
convergence of our method for both academic and real-world
data-learning setups with distributed and heterogeneous data
while considering quantization. This work further explores
optimization methodologies that can adapt to both structured
networks and ad-hoc multi-agent networks. Structured networks
embody a pre-defined organized framework, imposing order and
predefined communication patterns on the participating nodes.
In contrast, ad-hoc multi-agent networks dynamically adapt
and emerge based on the specific demands of the distributed
environment, for example, based on the nearest neighbour rule
[39]. This paper performs a comparative numerical analysis,
unravelling the trade-offs and advantages inherent in using
log-scale quantization in contrast to uniform quantization.

1A nonlinear function f(x) is called sector-bound if it lies in a sector
typically defined by two lines passing through the origin, creating an angular
region. In mathematical form, there exist positive factors K and K for which
we have Kx ≤ f(x) ≤ Kx.

The rest of the paper is organized as follows. Section II
states the problem and terminologies. The proposed distributed
algorithm and its convergence analysis are presented in
Section III. Experimental validations are given in Section IV.
Finally, we conclude the paper in Section V.

II. ASSUMPTIONS, TERMINOLOGY, AND PROBLEM
STATEMENT

The distributed learning problem is defined as optimizing
certain cost functions as a sum of some local cost functions
distributed over a network of nodes/agents. In machine learning
and data mining, the cost function (also known as the loss
function or objective function) measures the difference between
the predicted values of a model and the ground truth in the
training dataset. The cost function quantifies how well or poorly
a model performs by assigning a numerical value to the error or
deviation between predicted and actual values. The optimization
algorithm then adjusts the model’s parameters to minimize
this cost, effectively improving the model’s performance. For
example, different loss functions are used for data classification,
regression, and support-vector-machine. The global cost is
defined as the average of local losses at different nodes;
mathematically, this is defined as

min
x∈Rp

F (x) =
1

n

n∑
i=1

fi(x) (1)

where each local loss fi(x) is private to node/agent i. Particu-
larly, each local loss fi might be decomposable into a finite
sum of mi component cost functions, i.e.,

fi(x) =
1

mi

mi∑
j=1

fi,j(x). (2)

In distributed learning and optimization setup, the training
cost might be associated with error-back-propagation in Neural
Networks [20], classification gap in SVM [40], or regression
training cost [41].

We assume that the nodes share data (local gradient informa-
tion or auxiliary variables) over a communication network G.
Each node locally communicates with its neighbouring nodes
j ∈ Ni and shares relevant data over the links/channels. In
real-world practical applications, the information shared over
the channels/links in G might be subject to quantization (or
other nonlinear functions). The nonlinear mapping hl(·) is
sign-preserving, odd, and sector-bound, i.e., it satisfies

0 < K ≤ hl(z)

z
≤ K (3)

An example of such nonlinear mapping is logarithmic (or
log-scale) quantization defined as

ql(z) = sgn(z) exp

(
ρ

[
log(|z|)

ρ

])
, (4)

with [·] as rounding to the nearest integer, and sgn(·), exp(·),
and log(·) as the sign, exponential, and (natural) logarithm
functions, respectively. The parameter ρ is the logarithmic
quantization level for which we have

K = 1− ρ

2
≤ ql(z)

z
≤ 1 +

ρ

2
= K. (5)
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Fig. 1. Uniform quantization (as a non-sector-bound function) versus
logarithmic quantization (as a sector-bound function). The logarithmic case
leads to finer quantization around zero in contrast to the uniformly quantized
case.

Note that, as illustrated in Fig. 1, this nonlinearity is sector-
bound, i.e., it is upper/lower-bounded by the two lines (1± ρ

2
)z.

This is in contrast to uniform quantization which is not sector-
bound, as defined below

qu(z) = ρ

[
z

ρ

]
, (6)

where ρ is the uniform quantization level. The two quantization
functions are represented in Fig. 1 for comparison. It can be
observed that, in contrast to the log-scale quantization, the
upper/lower bounds of uniform quantization, defined as z ± ρ

2
,

are biased from the origin. In this work, we study the conver-
gence under log-scale quantization as compared to uniform
quantization. These two are the main types of the nonlinearities
governing the data-transmission setup; for example see the
following references on uniform quantization [34]–[37] and on
logarithmic quantization [38], [42]. These nonlinearities are
employed to reduce the communication bandwidth and network
traffic in resource-constrained networking setups.

The assumptions to ensure convergence to the unique
minimum x∗ of the global cost function F are as follows.

Assumption 1. The data-transmission network is connected (at
all times), weight-balanced (WB), and could be time-varying.

The WB condition implies that the sum of the weights
on incoming links and outgoing links are equal at all nodes.
This holds for every time-instant and for all the configurations
of the network topology. To give a motivation behind this
assumption, note that the WB condition is more relaxed than
weight-stochasticity assumption in related works which require
the link weights to sum to one for all nodes.

Assumption 2. Each local cost function fi has L-smooth and
is not necessarily convex, while the global cost F is strongly
convex.

The above assumption is motivated by the discussion in [43]
and is used in many references therein saying that it is common
to use strong convexity of F as many practical optimization
objectives tend to be strongly convex near the minimum. These
standard assumptions imply that the global cost function is
differentiable and its second derivative is bounded above by
some constant L and below by strong-convexity constant µ

where 0 < µ < L. Further, the global optimizer x∗ of the cost
F exists and is also unique. The following subsection further
motivates the study in this paper.

A. Effect of Network Structure and Quantization

This paper investigates the effect of network structure by
numerical experimentation. In distributed optimization and
learning over networks, the choice of network topology plays a
crucial role in determining the convergence rate and optimality
gap of the learning algorithms [44], [45]. Different network
topologies can have varying effects on the efficiency and speed
of convergence [46]–[48]. A general experimental comparison
between structured networks (such as exponential graphs2)
and ad-hoc networking setups (such as geometric graphs3)
is considered in this paper. Examples of structured networks
include networked data centres or hierarchical social networks,
and examples of ad-hoc random networks include collaborative
robotic networks or wireless sensor networks. Structured
networks (such as exponential graphs), characterized by well-
defined and organized connections, can often lead to faster
convergence rates [45]. In exponential graphs, where nodes
have a hierarchical structure, information can propagate more
efficiently through the network [49]. Furthermore, structured
networks may exhibit lower optimality gaps due to better
coordination among the nodes [44]. The organized nature of
the network facilitates synchronized updates, potentially leading
to quicker convergence to a near-optimal solution. On the other
hand, ad-hoc multi-agent networks (such as random geometric
graphs), which might lack a clear structure, can have a more
complex convergence behaviour. The convergence rate may be
slower with a higher optimality gap compared to structured
networks because information propagation might not follow an
organized pattern. Nodes may require more iterations to align
their models and achieve a consensus on the optimal solution
[50].

Another concern is to consider switching network topologies
addressing time-varying setups, for example, in mobile sensor
networks and collaborative swarm robotics. The change in
the network topology might be due to packet drops or link
failures. Recall that most existing linear algorithms [14]–[21],
[23]–[26] necessitate stochastic weight design which is prone
to change in the network topology. This is because any change
in the network structure violates the stochastic condition and
requires the redesign of stochastic weights, for example by
applying the algorithms in [51]–[53]. In contrast, this work
only requires WB design of matrices Aγ and Bγ that allows
handling possible changes in the network topology. This is
better illustrated in Fig. 2. To preserve the WB condition in the
presence of packet drops, we assume that if a packet is dropped
on i→ j link then j → i link is automatically deleted or, in
other words, the agent i does not apply the packet received
from j (for example, by setting the associated weight equal
to zero), and the entire link is removed. This assumption is

2In exponential graphs, as the number of nodes increases exponentially, the
degree at each node increases linearly.

3In geometric graphs, two nodes are connected if they are in physical
proximity.
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Fig. 2. This figure gives an example graph topology which is both stochastic
and WB. The red link represents an unreliable channel that might be subject to
failure or packet drop. By removing this link, the network preserves the WB
condition but loses stochasticity. Therefore, many weight-stochastic algorithms
in the literature need to redesign the weights for convergence.

justified in existing literature [52], [54] saying that assuming
common knowledge, both agents i, j are aware of the delivery
or loss of the packets over the mutual link.

We address more findings in terms of data quantization
over channels. First, it should be noted that logarithmic
quantization, as compared to uniform quantization, is more
efficient in scenarios where the optimization problem involves
a wide range of gradient magnitudes. This follows the sector-
bound nature of the log-scale quantization, as illustrated in
Fig. 1. Smaller values, which are key for convergence, can be
represented more accurately (with more bits) under logarithmic
quantization. This may lead to a smaller optimality gap and
more efficient convergence, for example in optimal resource
allocation [55]. The lack of precision in uniform quantization,
especially for small values, might slow down convergence
and increase the optimality gap in the range of values where
accurate representation of gradients or weights is crucial [56].
On the other hand, using finer bits for small values under
log-quantization increases the communication complexity as
compared to the uniform quantization [57]. This implies that
log-quantization, in general, adds more complexity to the
communication network as compared to uniform quantization.
In terms of network structure in the presence of quantization,
although exponential graphs are structured and can facilitate
efficient quantized communication, their optimality gap might
be considerably affected by quantization inaccuracy. In other
words, the efficacy of the network structure might be dominated
by the effect of quantization. These comments are investigated
by the numerical experiments in Section IV.

III. DISTRIBUTED OPTIMIZATION OVER NETWORKS:
ALGORITHM AND MAIN RESULTS

A. Algorithm

This section presents our main algorithm for learning over
networks. The methodology is based on two WB matrices
Aγ = [aγij ] ∈ Rn×n and Bγ = [bγij ] ∈ Rn×n that capture the
weights for data-sharing over the network, one for consensus
on the states and the other for gradient-tracking dynamics. The
index γ : k 7→ Γ denotes the associated network topology that
may change over time, whereas Γ denotes the set of all possible

topologies of the data-sharing network. The graph is all-time
connected, i.e., all the network topologies in Γ are connected.
The two matrices Aγ and Bγ can be designed independently,
matrix Aγ to characterize the weights on the local state value
xi and matrix Bγ to characterize the weights on the auxiliary
variable yi for gradient tracking. These weight matrices are
WB over G as discussed before, where the entries satisfy the
following:

Aγ(i, j) =

{
aγij > 0, If j ∈ Ni
0, Otherwise.

n∑
j=1

aγij =
n∑
i=1

aγij (7)

Bγ(i, j) =

{
bγij > 0, If j ∈ Ni
0, Otherwise.

n∑
j=1

bγij =
n∑
i=1

bγij (8)

Let Aγ and Bγ denote the Laplacian matrices associated with
Aγ and Bγ , respectivly. The definition follows as

Aγ(i, j) =

{
−
∑n
i=1 a

γ
ij , i = j

aγij , i 6= j.
(9)

Bγ(i, j) =

{
−
∑n
i=1 b

γ
ij , i = j

bγij , i 6= j.
(10)

It is known that for connected networks the eigenvalues of
these Laplacian matrices are all in the left-half-plane except
one zero eigenvalue [54]. The absolute value of the second
largest eigenvalue of the laplacian matrices, denoted by |λA2 |
and |λB2 |, play a key role in the convergence and learning rate.
These values are known as the algebraic connectivity. Given
the weight matrices and switching signal γ, the local learning
and optimization formulation is formally described below:

ẋi =

n∑
j=1

aγij(hl(xj)− hl(xi))− αyi, (11)

ẏi =
n∑
j=1

bγij(hl(yj)− hl(yi)) + ∂t∇fi(xi), (12)

The solution by (11)-(12) is composed of two dynamics: one
to derive the agents to reach agreement on the optimization
variable x and one to track the consensus on the local gradients.
For the latter, we introduce an auxiliary variable y that tracks
the average of gradients in a consensus-based setup and this
variable derive the first dynamics toward the global minimum,
while both dynamics address log-quantized communication.
The log-scale quantization keeps the algorithm efficient in
terms of communication with better performance as more
resources are allocated near the origin. In contrast to most
existing methods with weight-stochastic matrices (introduced
in Section I), the proposed dynamics work under WB design
and under switching network topologies. These make it easier
to handle link-failure as discussed in Fig. 2. Moreover, the link
(or channel) nonlinearity hl(·) is not considered in the existing
literature, which allows to address log-scale data quantization
by setting hl(z) = ql(z) given in Eq. (4). The discrete-time
version of our methodology is summarized in Algorithm 1.
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Algorithm 1: Local learning at each node i.

1 Data: fi,j(x), Gγ , Aγ , Bγ , α
2 Initialization: yi(0) = 0p, random xi(0)
3 for k = 0, 1, 2, . . . do
4 Each node i receives hl(xkj ) and hl(ykj ) from j ∈ Ni;
5 xk+1

i ← xki +
∑n
j=1 a

γ
ij(hl(x

k
j )− hl(xki ))− αyki ;

6 wki ← ∇fi(x
k+1
i )−∇fi(xki );

7 yk+1
i ← yki +

∑n
j=1 b

γ
ij(hl(y

k
j )− hl(yki )) + wki ;

8 Return: optimal x∗ and F ∗;

Note that the learning rate tightly depends on the network
topology and the algebraic connectivity. Summing the states
over all the nodes we have

n∑
i=1

yk+1
i =

n∑
i=1

yki +
n∑
i=1

∇fi(xk+1
i )−

n∑
i=1

∇fi(xki ), (13)

n∑
i=1

xk+1
i =

n∑
i=1

xki − α
n∑
i=1

yki . (14)

This follows the WB assumption which implies that
n∑
i=1

n∑
j=1

aγij(hl(x
k
j )− hl(xki )) = 0

n∑
i=1

n∑
j=1

bγij(hl(y
k
j )− hl(yki )) = 0

By setting the initial condition as yi(0) = 0p we obtain the
following,

n∑
i=1

xk+1
i = −α

n∑
i=1

yk+1
i = −α

n∑
i=1

∇fi(xk+1
i ), (15)

This represents the consensus-type gradient-tracking dynamics
that capture the essence of the proposed methodology. This
formulation further allows for addressing sector-bound odd
nonlinearities hl (for example log-scale quantization) without
violating the tracking property. This along with the time-
varying network topology advances the recent state-of-the-art
algorithms for data-mining and optimization [20], [25], [26],
[31]–[33].

Recall that most of the existing algorithms prove conver-
gence for ideal networking conditions and in the absence of
nonlinearities (e.g., quantization and clipping). However, in the
presence of nonlinearities and non-ideal networking conditions,
the solution may result in a certain optimality gap, which also
depends on the structure of the underlying network Gγ . The
role of the network structure and quantization is also discussed
in the simulation section.

B. Proof of Convergence

This section proves the convergence of the distributed
dynamics (11)-(12) using eigen-spectrum perturbation-based
analysis. We also state some relevant lemmas. The proofs
in this section hold for any sign-preserving, odd, sector-
bound nonlinear mapping hl(·), which also includes log-scale

quantization hl(z) = ql(z) defined by (4). In the rest of the
paper, for notation simplicity, we drop the dependence (t, γ)
unless where it is needed.

Lemma 1. [58] Consider the square matrix P (α) of size n
which depends on parameter α ∈ R≥0. Let P (0) has N < n
equal eigenvalues λ1 = . . . = λN , associated with right and
left unit eigenvectors v1, . . . ,vN and u1, . . . ,uN (which are
linearly independent). Let P ′ = ∂αP (α)|α=0 and λi(α) rep-
resent its i-th eigenvalue λi, i ∈ {1, . . . , N}. Then, ∂αλi|α=0

is the i-th eigenvalue of, u>1 P
′v1 . . . u>1 P

′vN
. . .

u>NP
′v1 . . . u>NP

′vN

 .

Lemma 2. [59] Given the balanced digraph G its Laplacian
matrix A (or B) has all its eigenvalue in the left-half-plane
except one isolated zero eigenvalue with associated non-
negative left eigenvector u>1 satisfying

∑n
i=1 u1,i > 0.

Theorem 1. Let Assumptions 1 and 2 hold. For sufficiently
small α, all eigenvalues of the dynamics (11)-(12) are in the
left-half-plane except m zero eigenvalue.

Proof. For the linear case (i.e., setting hl(z) = z) the proposed
dynamics (11)-(12) can be written in compact form as(

ẋ
ẏ

)
= M(α)

(
x
y

)
, (16)

M(α) =

(
A⊗ Im −αImn

H(A⊗ Im) B ⊗ Im − αH

)
. (17)

where H := diag[∇2fi(x)] and M(α) = M0 + αM1 with

M0 =

(
A⊗ Im 0mn×mn

H(A⊗ Im) B ⊗ Im

)
,

M1 =

(
0mn×mn −Imn
0mn×mn −H

)
,

Now, considering the nonlinearity hl(z) = ql(z)4, one can
linearize the nonlinear dynamics (11)-(12) at every time-instant
t as its operating point. It is known that the stability of the
linearization at every operating point implies the stability of the
nonlinear dynamics [60]. To study the stability of the linearized
dynamics, we have

Mq(t, α, γ) = M0
q + αM1 (18)

KM0 �M0
q � KM0 (19)

M0
q = Z(t)M0, KIn � Z(t) � KIn (20)

where M0
q is the linearized version of M0 for the nonlin-

ear dynamics, Z(t) := diag[ζ(t)], column vector ζ(t) =

[ζ1(t); ζ2(t); . . . ; ζn(t)] with ζi(t) = ql(xi)
xi

(or equivalently
ql(x(t)) = Z(t)x(t) at every time-instant t). Recall from
Eq. (3) that K ≤ ζi(t) ≤ K. Therefore, we have

AZ = AZ(t), BZ = BZ(t) (21)

4Note that the proof holds for general sign-preserving sector-bound
nonlinearities. We particularly state the solution for log-scale quantization as
an example.
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The above helps to relate the eigen-spectrum of the linear
dynamics (16) to that of the nonlinear case associated with
Mq. Note that Z(t) is a diagonal matrix from its definition,
and we have

det(AZ − λImn) = det(A− λZ(t)−1), (22)

det(BZ − λImn) = det(B − λZ(t)−1), (23)

with λ denoting the eigenvalue. Therefore, from (19)-(20), one
can relate the eigenspectrum of the linearized version with that
of the linear case as

Kσ(M0) ≤ σ(M0
q ) ≤ Kσ(M0) (24)

where the eigenspectrum of the linear case follows the block
triangular form of M0 as,

σ(M0) = σ(A⊗ Im) ∪ σ(B ⊗ Im) (25)

For the rest of the proof, we study the eigenspectrum per-
turbation of M0 and then extend the results to M0

q using
Eq. (24). From Lemma 2, both Laplacian matrices A and B
have one isolated zero eigenvalue and the rest in the left-half-
plane for all cases of the switching networks. Therefore, m
sets of (possibly changing) eigenvalues of M0, associated with
dimensions j = {1, . . . ,m} are in the form,

Re{λ2n,j} ≤ . . . ≤ Re{λ3,j} < λ2,j = λ1,j = 0,

Next, we consider αM1 as a perturbation to matrix M0. This
is done using Lemma 1. In particular, we check how the
perturbation term αM1 affects the two zero eigenvalues λ1,j
and λ2,j of M0. Denote the perturbed zero eigenvalues
by λ1,j(α) and λ2,j(α) associated to M . For all WB and
connected switching network topologies, the right and left unit
eigenvectors of λ1,j , λ2,j follow from Lemma 2 and [59] as5,

V = [V1 V2] =
1√
n

(
1n 0n
0n 1n

)
⊗ Im (26)

U> = [U1 U2]> =

(
u1 0n
0n u2

)>
⊗ Im (27)

Recalling M(α) = M0 +αM1 we have ∂αdM(α)|α=0 = M1.
Then, Lemma 1 implies that,

U>M1V =

(
0m×m ×
0m×m −(u2 ⊗ Im)>H( 1√

n
1n ⊗ Im)

)
.

(28)

The definition of H , Lemma 2, and Assumption 2 implies that

−(u2 ⊗ Im)>H(
1√
n
1n ⊗ Im) = −

n∑
i=1

u2,i√
n
∇2fi(xi) ≺ 0,

(29)

where u2,i is the ith element of u2. Then, using Lemma 1,
the perturbations ∂αdλ1,j |α=0 and ∂αdλ2,j |α=0 are defined
based on the eigenvalues of the matrix in (28). Since this
matrix is triangular and from Eq. (29), ∂αλ1,j |α=0 = 0
and ∂αλ2,j |α=0 < 0. Therefore, for all sets of switching

5The normalizing factors of the unit vectors might be ignored as in the
followings we only care about the sign of the terms in U>M1V , not the
exact values.

network Laplacians, the perturbation analysis imply that αM1

pushes m zero eigenvalues λ2,j(α) of M toward the left-half-
plane and the other m zero eigenvalues λ1,j(α) remain at zero.
This implies that sufficiently small α gives the eigen-spectrum
of M as

Re{λ2n,j(α)} ≤ . . . ≤ Re{λ3,j(α)} ≤ λ2,j(α) < λ1,j(α) = 0,
(30)

This completes the proof.

Theorem 2. Given that the Assumptions (1)-(2) and conditions
in Theorem 1 hold, for 0 < α <

min{|Re{λA
2 }|,|Re{λB

2 }|}
LK , the

proposed dynamics (11)-(12) converges to the optimizer [x∗ ⊗
1n;0nm].

Proof. First, we determine the admissible bound on α for proof
of convergence. Recall from [61, Appendix] that one can relate
the spectrum of M(α) in (17) to α. For ease of notation, from
this point onward we derive the bound for m = 1 (but it holds
for any m > 1). Performing row/column permutations in [61,
Eq. (18)] σ(M) can be determined from the following,

det(αIn)det(H(A) + (B − αH − λIn)(
1

α
)(A− λIn)) = 0.

which can be simplified as

det(In)det((A− λIn)(B − λIn) + αλH) = 0 (31)

Similar to the proof of Theorem 1, for stability we need to find
the admissible range of α values for which the eigenvalues
λ remain in the left-half-plane, except one zero eigenvalue.
The analysis here is based on the fact that the eigenvalues are
continuous functions of the matrix elements [62]. It is clear
that α = 0 satisfies Eq. (31) and gives det((W − λIn)(A −
λIn)) = 0. This leads to the eigen-spectrum following as
σ(M) = σ(A) ∪ σ(W ) with two zero eigenvalues for all
switching network topologies. We need to find the other root
α > 0, which gives the admissible range as 0 < α < α for
the stability of M(α). This follows the continuity of σ(M) as
a function of α [62]. With some abuse of notation, for any
Re{λ} < 0 one can reformulate (31) as

det((B − λIn ±
√
α|λ|H)(A− λIn ∓

√
α|λ|H)

±
√
α|λ|H(A−B)) = 0 (32)

This follows the diagonal form of H . First, we consider the
same consensus matrix for both variables x,y. Set A = B and
we have

det(A− λIn ∓
√
α|λ|H) = det(A− λ(In ∓

√
αH

|λ|
)) = 0

This implies that fo λ ∈ σ(A), its perturbed eigenvalue is
λ(1±

√
αH
|λ| ). Therefore, for λ 6= 0, the min value of α that

makes this term zero (at the edge of instability) satisfies the
following,

α = argmin
α
|1−

√
αH

|λ|
| ≥ min{|Re{λj}| 6= 0}

max{Hii}
=
|Re{λ2}|

L

(33)
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where we recalled H � LIn from Assumption 2. Recalling
perturbed formulation in Theorem 1, this gives the admissible
range for α for which M(α) has all its eigenvalues at the
left-half-plane except one zero as

0 < α < α :=
|Re{λ2}|

L
(34)

For general nonlinear dynamics (11)-(12) satisfying Eq. (19)-
(20), the admissible range changes to

0 < α < α :=
|Re{λ2}|
LK

(35)

For the more general case of A 6= B, this is generalized as,

0 < α <
min{|Re{λA2 }|, |Re{λB2 }|}

LK
=: α (36)

This admissible range of α depends only on σ(A), σ(B)
and holds for any value of m ≥ 1. Next, we prove con-
vergence under this admissible bound. It is clear that the
optimizer [x∗ ⊗ 1n;0nm] ∈ R2mnis the invariant set of
dynamics (11)-(12) and belongs to null-space of Mq. Recall
that for 0 < α <

min{|Re{λA
2 }|,|Re{λB

2 }|}
LK , the eigenvalues of

the linearized system dynamics associated with Mq are stable
except one isolated zero eigenvalue. This is irrespective of
the time-variation of G and Mq. Define the variable δ as the
distance between the system state and the optimizer,

δ =

(
x
y

)
−
(

x∗

0mn

)
∈ R2mn.

and the positive-semi-definite Lyapunov function
V(δ) = 1

2δ
>δ = 1

2‖δ‖
2
2. As δ → 02mn the state variables

converge to the optimizer. We have,

δ̇ = Mq

(
x
y

)
−Mq

(
x∗

0mn

)
= Mqδ. (37)

This implies that V̇ = δ>δ̇ = δ>Mqδ and from [59,
Sections VIII-IX], we have

V̇ = δ>Mqδ ≤ max
1≤j≤m

Re{λ2,j}δ>δ, (38)

where max1≤j≤m Re{λ2,j} is the real part of the largest nega-
tive eigenvalue of Mq at all times (following from Theorem 1).
Note that V̇ is negative-definite for all δ 6= 02mn and is zero for
δ = 02mn. From Lyapunov theorem, this network of integrators
is asymptotically globally stable and δ → 02mn implies that
the solution converges to the optimizer.

C. Discussions

We now provide some important remarks in the context of
Theorems 1 and 2 and the sector-bound property.

Remark 1. For convergence we only need (1n⊗Ip)>H(1n⊗
Ip) � 0, i.e., strong-convexity of the global objective function
F (x). Thus, the local cost functions fi(xi) might be non-convex,
i.e., ∇2fi(xi) is not necessarily positive while their summation
is positive to ensure that F (x) is strongly convex. An academic
example of such a case is given in the simulation. Therefore,
the convexity assumption in this paper is more relaxed as

compared to many existing literature. Note that the log-scale
quantization in this work is independent of Assumption 2.

Remark 2. From Theorem 1, the proposed dynamics (11)-(12)
has one zero eigenvalue related to the agreement (or consensus)
on the states, i.e., all the auxiliary states reach consensus on
yi = 0 and all the main states reach consensus on xi = x∗.
On the other hand, the rest of the eigenvalues remain in the
left-half-plane which results in the stability of the proposed
dynamics and convergence toward the optimal point.

Remark 3. Recall that one can approximate the convergence
rate (or decay rate) of the linearized system dynamics given
by Eq. (37) which is concluded from the dynamics (11)-
(12). Following the eigen-spectrum of the system matrix
Mq(α) and using Eq. (38), the convergence rate is (at least)
exp(max1≤j≤m Re{λ2,j}t). This shows linear convergence
in log-scale which is approved by the simulations in the
next section. Also, for the special case of no quantization
(i.e., hl(xi) = xi and hl(yi) = yi) and for strongly convex
cost functions with stochastic weight matrices Aγ , Bγ the
convergence rate can be calculated via similar analysis as
in [63, Lemmas 3.2-3.4].

Remark 4. Assume that the linear version of the proposed
algorithm 1 with hl(xkj ) = xkj and hl(ykj ) = ykj gives certain
optimality gap. Then, recalling Eq. (3), one can see that K(xkj−
xki ≤ hl(x

k
j ) − hl(x

k
i ) ≤ K(xkj − xki ) and K(ykj − yki ≤

hl(y
k
j ) − hl(y

k
i ) ≤ K(ykj − yki ). Therefore, the optimality

gap is of the same order as in the linear case multiplied by
a factor of K and K. Thus, for the logarithmic quantization
nonlinearity with K = 1+ ρ

2 and K = 1− ρ
2 , the optimality gap

gets arbitrarily close to the linear case by choosing sufficiently
small ρ. This is illustrated in the next section via numerical
simulations.

Remark 5. Uniform quantization in contrast to logarithmic
quantization is not sector-bound; as shown in Fig. 1, the bounds
x± ρ

2 do not pass through the origin. Therefore, the results on
convergence and optimality do not hold for uniformly quantized
data. In fact, some works in the literature show that uniform
quantization generally results in a larger optimality gap, see
an example for quantized resource allocation in [64]. In the
next section, we clearly show by numerical simulation that
log-scale quantization as compared to uniform quantization
results in a smaller optimality gap.

IV. NUMERICAL EXPERIMENTS

In this section, we perform simulations on both real and
academic setups to verify our results.

A. Academic Example

We consider a network of n = 16 agents to minimize the
following cost function in a distributed and collaborative way:

fi,j(xi) = 4x2i + 3 sin2(xi) + ai,j cos(xi) + bi,jxi, (39)

with random parameters ai,j and bi,j in the range [−10, 10]
such that

∑n
i=1

∑m
j=1 ai,j = 0 and

∑n
i=1

∑m
j=1 bi,j = 0 and

ai,j , bi,j 6= 0. Note that fi,j(xi) is not necessarily convex,
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Fig. 3. Logarithmically quantized distributed optimization over an exponential
network versus an ER random network of the same size.

i.e., ∇2fi(x) might be negative at some points, while the
global cost summing all fi,j(xi) is strongly convex. We apply
Algorithm 1 over random ad-hoc networks and structured ex-
ponential networks for both uniform and log-scale quantization.
First, we compare the convergence rate and optimality gap
over a time-varying (switching) exponential network (as a
structured network) versus a randomly changing Erdos-Renyi
(ER) network subject to log-scale quantization with ρ = 1

128 .
For the exponential network, we change the link weights every
100 iterations and for the ER random network both the link
weights and network structure change every 100 iterations. The
result is shown in Fig. 3. The simulation results clearly verify
that the solution converges over switching networks and also,
as stated in Section II-A, the structured network gives a smaller
optimality gap and faster convergence.

Next, we compare distributed optimization over exponential
graphs under time-varying weights subject to uniform quanti-
zation versus log-scale quantization in Fig. 4 for different
quantization levels ρ. Evidently from the figure, log-scale
quantization results in a smaller optimality gap as compared
to uniform quantization which verifies the statements in
Section II-A. This shows the advantage of using logarithmic
quantization over uniform quantization. Also, one can see that
the log-scale quantization level has negligible effect on the
convergence rate and optimality gap. Note that, from Remark 3,
the convergence rate is linear in the log-scale. Therefore, one
can approximate the convergence rate of the log-quantized
case by the linear (non-quantized) solution. Also, note that
considering the computational limitation of MATLAB the
existing optimality gap of the log-quantized dynamics in the
simulation is acceptable.

Next, we compare our proposed log-quantized algorithm
with some existing literature: TV-AB [65], finite-time [66],
and fixed-time [67] algorithms. It should be noted that none
of these algorithms are quantized and these algorithms are
designed to solve strongly-convex cost functions. Therefore,
we need to decrease the non-convexity parameter of the cost
model (39) and set ai,j ∈ [−1, 1] to make it strongly-convex
for this simulation. For our log-quantized solution we set
ρ = 1

4 . The comparison is given in Fig. 5. It is clear from
the figure that our solution, although quantized, has the same
performance as the non-quantized AB-type solution and shows
better performance than fixed-time and finite-time solutions.

Fig. 4. Optimality gap of uniformly quantized versus logarithmically quantized
distributed learning over exponential network.

Fig. 5. The comparison of the proposed log-quantized algorithm with the
existing non-quantized algorithms for a strongly-convex cost model.

B. Real Data-Set Example

In this section, we analyze some real data from [25]. We
randomly select some images from the MNIST data set
and classify them using logistic regression with a convex
regularizer. The set of N = 12000 labelled images are used
for classification, distributed among the n = 16 agents/nodes.
The overall cost function is defined as

min
b,c

F (b, c) =
1

n

n∑
i=1

fi (40)

where each node i has access to a batch of mi = 750 sample
data and locally minimizes the following training cost:

fi(x) =
1

mi

mi∑
j=1

ln(1 + exp(−(b>xi,j + c)yi,j)) +
λ

2
‖b‖22.

(41)
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Fig. 6. Comparison between the performance of the proposed algorithm (in
the absence of quantization) with some existing algorithms in the literature.

with b, c as the parameters of the separating hyperplane. We
run and compare the distributed training over both geometric
(as an ad-hoc network) and exponential graphs (as a structured
network). The optimality gap (also known as the optimization
residual) in the figures is defined as F (xk) − F (x∗) with
xk = 1

n

∑n
i=1 x

k
i .

First, we compare some existing algorithms in the literature
with the proposed Algorithm 1. The following algorithms are
used for comparison: GP [14], SGP [17], [18], S-ADDOPT
[20], ADDOPT [19], and PushSAGA [26]. Fig. 6 presents
the comparison results.

Next, we compare training over exponential networks subject
to uniform and log-scale quantization for different data quanti-
zation levels, see Fig. 7 and Fig. 8. As it can be observed, the
uniform quantization results in a larger optimality gap in the
training outcome. The same comparison is performed over the
geometric network and the result is shown in Fig. 9 and Fig. 10.
As expected, uniform quantization results in a larger optimality
gap. Also, from Fig. 8 and 10 one can see that the convergence
rates for different log-scale quantization rates do not change that
much. It is worth noting from the figures that, the optimality
gap is generally larger over geometric networks as a non-
structured topology. However, the log-scale quantization adds
more computational complexity to the algorithm as compared
to the uniform quantization. This is because log-quantization
is more precise around the origin and requires more bits for
transmitting those values.

Fig. 7. Optimality gap of distributed learning of MNIST dataset over
exponential graphs subject to uniform quantization with different quantization
levels.
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Fig. 8. Optimality gap of distributed learning of MNIST dataset over
exponential graphs subject to log-scale quantization with different quantization
levels.

V. CONCLUSIONS

A. Concluding Remarks

This work proposes a distributed optimization setup for
learning over networks. We particularly address nonlinear
channels to take into account, for example, possible data
quantization. We compare log-scale quantization (as a sector-
bound nonlinearity) with uniform quantization (as a non-sector-
bound nonlinearity) over both academic and real data. Our
results show that the log-scale quantization leads to a smaller
optimality gap for distributed training. We further compare

Fig. 9. Optimality gap of distributed learning of MNIST dataset over geometric
graphs subject to uniform quantization with different quantization levels.
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Fig. 10. Optimality gap of distributed learning of MNIST dataset over
geometric graphs subject to log-scale quantization with different quantization
levels.

the quantized setups over exponential and random (geometric
and ER) networks, and, as expected, the exponential graph
as a structured network results in a smaller optimality gap as
compared to geometric and ER graphs representing ad-hoc
multi-agent networks.

B. Future Directions

One direction of future research is to more relax Assump-
tion 1 to uniform-connectivity of the network, where the
union of the graphs over a finite interval is connected. More
detailed theoretical analysis and comparison between log-scale
versus uniform quantization for general distributed optimization
methods and quantifying the optimality gap of the discretized
version for large sampling periods are set as future research.
Other future research efforts will focus on considering the effect
of quantization on different machine learning techniques, for
example, distributed minimization of error-back-propagation
in Neural-Networks and distributed reinforcement learning.
Application to distributed optimal control is another direction
of research interest.
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