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Abstract

Premise: One of the slowest steps in digitizing natural history collections is con-
verting labels associated with specimens into a digital data record usable for collec-
tions management and research. Here, we address how herbarium specimen labels
can be converted into digital data records via extraction into standardized Darwin
Core fields.
Methods: We first showcase the development of a rule‐based approach and compare
outcomes with a large language model–based approach, in particular ChatGPT4. We
next quantified omission and commission error rates across target fields for a set of
labels transcribed using optical character recognition (OCR) for both approaches. For
example, we find that ChatGPT4 often creates field names that are not Darwin Core
compliant while rule‐based approaches often have high commission error rates.
Results: Our results suggest that these approaches each have different strengths and
limitations. We therefore developed an ensemble approach that leverages the
strengths of each individual method and documented that ensembling strongly
reduced overall information extraction errors.
Discussion: This work shows that an ensemble approach has particular value for
creating high‐quality digital data records, even for complicated label content. While
human validation is still needed to ensure the best possible quality, automated ap-
proaches can speed digitization of herbarium specimen labels and are likely to be
broadly usable for all natural history collection types.
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The natural history collections community has made en-
ormous progress in large‐scale digitization of specimens
over the past two decades, catalyzed by a series of technical
and social advancements (Hedrick et al., 2020). However,
label digitization, a process that converts analog informa-
tion on labels into digital text, which can then be atomized
into proper fields in digital databases, remains one of the
slowest steps in overall workflows (Guralnick et al., 2024).
This step has remained slow because it has required sig-
nificant human input to deliver high‐quality results, even
when collections employ some automated steps, such as
label optical character recognition (OCR).

Automated approaches hold promise to help speed label
digitization (Takano et al., 2024). The goal of such ap-
proaches is to take an image of a label and return a high‐
quality output conforming to a standardized specimen
record, e.g., conforming to the Darwin Core standard
(Wieczorek et al., 2012; Figure 1). Unfortunately, all steps of
this process often still produce relatively high error rates,
such that efforts needed to correct mistakes are time‐costly
(Guralnick et al., 2024). For there to be broad‐scale uptake
of new automation approaches, they must be significantly
better and faster than what can be achieved via human
effort. Very recently, new machine learning approaches,
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especially large language models (LLMs), hold promise to
dramatically improve some steps of this process, especially
atomizing text into standardized fields (Weaver et al., 2023;
Figure 1).

Despite their enormous potential, the degree to which
new tools such as LLMs (e.g., ChatGPT4; OpenAI
et al., 2023) can enhance the quality and speed of herbarium
label digitization is just beginning to be explored (Weaver
et al., 2023). Furthermore, there are other approaches that
utilize natural language processing (NLP) (see Owen
et al., 2020) that have yet to be fully tested and compared to
LLM approaches. For example, rule‐based NLP (RB‐NLP)
has been used in many different applications in text mining
biological and other types of data (Xu and Cai, 2021) and
may prove to be a more reliable alternative. The key ques-
tions yet to be fully addressed involve the error rates asso-
ciated with different approaches, and if and how those ap-
proaches can be combined to further improve results.

Here we provide a detailed assessment of how well
different approaches work for atomizing OCR text from
herbarium labels into Darwin Core fields, a standard widely
used by the natural history collections community. We do
so by first providing details on the development and per-
formance of a RB‐NLP information extraction approach,
comparing it directly to results from queries that were en-
gineered to best enable extracting and atomizing label data
using ChatGPT4. We calculate omission and commission
error rates for both tools, focusing on core target fields that
are essential to capture from labels. Finally, we showcase an
ensemble approach that combines rule‐based and ChatGPT
outputs, which performed far better than either approach

separately. Our overall work provides an assessment of what
is possible, keeping in mind that we are just at the start of
what is likely to be a major transition from human tran-
scription to more efficient automated approaches in label
digitization efforts.

METHODS

OCR test data

We used a set of label data digitized via OCR from
Guralnick et al. (2024) as a test set. All of the labels came
from the Global Biodiversity Information Facility (GBIF;
https://www.gbif.org/). We searched the GBIF database in
September 2023 for all specimens meeting the following
criteria: members of Tracheophyta, collected in the United
States, record containing a specimen image, preserved
specimen type, English language, and not cultivated. This
search resulted in 4,091,778 records, of which we randomly
selected 2128 typewritten labels, most of which were from
the main label on the specimen sheet. Here we define a main
label (versus a determination label or other kind of label) as
the label that contains the data and metadata that usually
compose the key specimen record information such as
taxon, collector, locality, and date.

OCR was performed on these labels using a custom
pipeline that was described in detail in Guralnick et al.
(2024). This pipeline (https://github.com/rafelafrance/ocr_
ensemble) has a set of pre‐ and post‐processing steps that
improve quality over off‐the‐shelf open‐source solutions

F IGURE 1 Example showing the goal of automated label digitization via the conversion of (A) label text to (B) digitized text by means of optical
character recognition (OCR), which is then converted from verbatim text to (C) JSON‐formatted parsed data in Darwin Core format.
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such as Tesseract (Kay, 2007; https://github.com/tesseract-
ocr/tesseract). The OCR content was not corrected prior to
being used in downstream workflows, because the goal was
to determine the success of parsing when there are an
unknown number of OCR errors in the input. However, as
we discuss below, when validating our outputs, we ignored
cases that were not main labels (typically these were longer
determination labels that were not caught in our pipeline)
or those where OCR was so poor that it was impossible to
evaluate parsing quality.

RB‐NLP development

Our label RB‐NLP extraction (LRBE) approach uses a
multistep approach to extract text and link to named Dar-
win Core terms. The rules themselves are written using
spaCy (Honnibal and Johnson, 2015), which is a key NLP
library in the Python programming language, with en-
hancements we developed to streamline the rule‐building
process. These rules focus on existing models in spaCy that
have been developed for breaking text into tokens, building
phrases and more complex content, and extracting the
results. The general outline of the rule‐building process
follows:

1. We assembled Darwin Core terms that need to be
associated with parts of OCR content. We then used
existing term labels already formatted in Darwin Core
format from iDigBio (https://www.idigbio.org/) and
other sources with a set of content terms associated with
those labels.

2. We also assembled some key corpi (e.g., names of known
plant taxa from Kew Plants of the World Online [https://
powo.science.kew.org/], the World Flora Online plant
list [Borsch et al., 2020], and the Integrated Taxonomic
Information System [ITIS] database [https://www.itis.
gov/]) to help with matching to key fields (e.g., dwc:
scientificName).

3. We used this expert content to develop spaCy's phrase
matchers. These are rarely sufficient for capturing the
content needed, especially for more complex content
such as locality or habitat, so we used phrase matches as
anchors for extracting more complex content.

4. We then built more complex content from the simpler
matched phrases using spaCy's rule‐based matchers
repeatedly (Figure 2). We linked related content together
via defined entity relationships using spaCy rules.

In developing the LRBE approach, we iteratively tested
the performance of the tool on the same set of OCR labels.
This involved two of the authors (R.P.G. and M.W.D.) ex-
amining hundreds of already formatted labels, identifying
common problems with extraction quality, and then de-
termining whether there was a rule that could be added to
improve the results. After multiple iterations, we were able
to remove many potential issues and improve parsing, but

the challenge remained that the LRBE often produced ex-
tracted content with both commission and omission errors.
A commission error is a case where there is extra content in
a field that is clearly not correct and belongs in another
field. Omission errors are cases where the extraction ap-
proaches missed content that was clearly supposed to be in
the field in question. We quantified those errors and com-
pared them with rates from ChatGPT4 and an ensemble
approach, as described below.

Using ChatGPT for label parsing

In contrast to LRBE, LLMs like ChatGPT require very little
knowledge of how they work and most of the upfront
effort involves <prompt engineering.= Prompt engineering
is shaping your queries to the LLM so that they yield the
best results possible, which is an art form in itself. Our
approach to prompt engineering was to keep the prompts
small and focused on extracting information in Darwin
Core format. The prompt that we used for this paper was:
<You are an expert botanist. Extract all information from
the herbarium label text and put the output into JSON, a
compact text format, using Darwin Core fields including
dynamicProperties.= This was followed by the same OCR
label text used for testing the LRBE approach. This is a
small prompt that worked reasonably well. We used the
application programming interface (API) for gpt‐4‐0613
with standard settings for temperature, <top_p=, frequency
penalty, presence penalty, and maximum tokens to retrieve
results.

Developing an ensemble approach

ChatGPT4 and the LRBE approach each had their own
strengths and weaknesses. Because of this, we opted to

FIGURE 2 Example of a rule‐based parsing approach to discover
locality descriptions within a label. The LRBE starts by using a gazetteer to
find key works that seed the locality. A set of rules are used to extract all the
content that belongs in the field <dwc:locality=. For example, in this case,
<Forest= is not a habitat term in either usage above, because in the first case
it is tied to the preceding word <National=, which is a place name, and in
the second case it is followed by <Service=, which implies a type of road.
Different locality pieces are joined based on an applied rule to create a final
output string labeled as <locality=.
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ensemble the two approaches with the goal of utilizing the
best of both approaches to reduce error rates. Doing so
involved a process of reconciling outputs across the same or
similar fields to a consensus output. We refer to the overall
process as <ensembling,= but within a field or set of fields,
we call this process <reconciliation.= With some exceptions,
there is one reconciler per Darwin Core term. Most rec-
oncilers are very simple, prioritizing either ChatGPT or
LRBE outputs and making sure that those align with known
Darwin Core terms. Others are a bit more complex, as we
discuss below. Each reconciler takes as input the JSON data
from LRBE and from ChatGPT that was subsequently
cleaned, and the original label text that was fed to both.

One of the most challenging problems with ChatGPT4
outputs is that it attempts to extract data into Darwin Core
terms but will often create field names for content it cannot
fit in Darwin Core, some of which could be mapped to
known Darwin Core terms. This led to a surprising profu-
sion of terms that are not in the Darwin Core–controlled
vocabulary, discussed more below in the Results section. To
handle these issues, we created aliases for all the reconcilers
including non–Darwin Core terms that map them to the
correct term. For example, ChatGPT created the terms
<dwc:locationState=, <dwc:state=, and <dwc:province=, which
we aliased to the proper term <dwc:stateProvince=.

An example of a challenging Darwin Core field to rec-
oncile is <dwc:verbatimLocality=. Before developing the
reconciler for this field, we noted a few observations: (1)
ChatGPT tends to correctly find the locality more often
than LRBE, but when LRBE finds the correct locality it often
finds a longer correct version. This longer version is often
broken up into a list of locality phrases rather than one
contiguous locality value. (2) ChatGPT sometimes puts a
separate locality notation under the <dwc:locationRemarks=
term. (3) ChatGPT's version of locality is sometimes pre-
sented as a nested object. That is, it is itself a dictionary
of locality‐related terms that need to be assessed and
reconciled.

Given the above, the process we use to reconcile
<dwc:verbatimLocality= is as follows. First, we look for the
locality in the ChatGPT output listed under any of its
aliases and in dwc:locationRemarks. If ChatGPT's version
of locality is a nested object, then we try to pull an
accurate locality from one of its sub‐terms. If that is not
possible, we then use the LRBE's version. When examin-
ing the LRBE's version, we focus on Darwin Core locality
fields because LRBE does not have the same issues as
ChatGPT with inventing Darwin Core fields. If the LRBE
content is a contiguous list of partial localities, we com-
posite that list into a seamless single string. In cases where
ChatGPT locality (or aliases) are present, we still check in
the LRBE version, and if the ChatGPT locality is com-
pletely contained within a larger LRBE locality string, we
then use the LRBE version. Finally, we check to see if
content in the ChatGPT location remarks can be used to
either extend the currently used locality or use it as
another item in a locality list.

Testing error rates for LRBE, ChatGPT4, and
ensemble approaches

We randomly selected 200 total outputs from LRBE and
ChatGPT, skipping labels that were not the main labels or
where OCR was so poor that the labels were effectively
illegible. The authors (M.W.D. and R.P.G.) then scored
error rates for a total of 100 of the 200 as follows. We
defined a set of core fields that are often of particular
importance to properly capture and are present on a
majority of labels. These fields are: recordedBy, re-
cordNumber, eventDate, locality, country, stateProvince,
county, and scientificName. We explicitly captured infor-
mation on the number of commission and omission errors
in target fields in order to determine the performance of the
text extraction tools.

We utilized a rubric for scoring errors across LRBE,
ChatGPT, and our ensemble approach as follows. First, we
explicitly skipped determination labels as well as labels
where OCR results were so poor as to significantly impact
the ability of either LRBE or ChatGPT4 to work effectively.
We did not, however, clean OCR outputs except to remove
the worst OCR outputs that were effectively illegible,
because the goal here is to see how well these approaches
perform in automated pipelines where there is likely to be a
low percentage of OCR issues remaining during the parsing
step. Second, if data for a target field were missing from
OCR of the label, we scored the target as <NA=. Third, we
were not concerned with semantic interpretations, such as
expanding a country name from <USA= to <United States of
America=, or date reformatting. We also did not flag com-
mission errors for cases where the locality contained county
or state information, as long as it was also captured in the
correct fields, nor did we note an error when ChatGPT
added an instance of higher geography (e.g., country) when
it was not on the label, unless it was clearly a mistake. We
then tabulated error rates for each target field individually
and also calculated overall error rates for each information
extraction approach. Finally, we addressed whether the
length of the label explains the potential for errors in the
ensemble approach, which we would expect because more
content should mean more chances for either approach and
ultimately the ensemble to mis‐assign content, thus leading
to errors in reconciled outputs. We simply fit a single pre-
dictor model with the length of the label, measured as total
number of characters, as a predictor of whether the record
had an error (or errors), using the glm() function to fit a
logistic regression in base R (R Core Team, 2021).

Testing ChatGPT4 Darwin Core field names

ChatGPT does not always return canonical Darwin Core
field names published as part of the standard (https://dwc.
tdwg.org/terms/). In order to quantify the magnitude of this
problem, we counted how many times ChatGPT used a
non‐canonical field name from our full record set. We
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counted, in particular, how many unique field names that
ChatGPT <invented= or <hallucinated= that were non‐
canonical and the number of records and fields that were
impacted across all the labels. Finally, for the core fields
defined above, we determined how many synonyms existed
that linked to the proper core field name.

RESULTS

Summary of performance within core fields

The commission and omission error rates for the LRBE,
ChatGPT4, and ensemble approaches for the core fields
(defined above in the Methods) are summarized in Table 1.
The key finding is that ChatGPT performs much better than
rule‐based parsing in terms of omission and commission

errors, with nearly two‐fold fewer errors than a rule‐based
approach. ChatGPT4 is particularly good in not making
commission errors, with a nearly 10‐fold improvement in
commission compared to LRBE. In the LRBE approach,
multiple dates and especially numbers (such as road num-
bers in locality descriptions) often ended up wrongly linked
to eventDate or recordNumber, leading to a much higher
rate of commission. Totals by target fields for each approach
are shown in Tables S1 and S2 (see Supporting
Information).

Ensemble methods performed the best of all, signifi-
cantly reducing omission errors compared to ChatGPT4.
The decrease in omission rates and improvement in
reducing non–Darwin Core terms is due to complemen-
tarity and leveraging what each tool does best. LRBE is less
likely to hallucinate terms while ChatGPT is better at ex-
traction, but one or the other will often do better on dif-
ferent labels. The ensemble approach often captures the best
outcomes, although it has a slightly higher rate of com-
mission than ChatGPT. The ensemble approach also per-
formed markedly better on another key metric—the number
of records (out of 100) with no errors; the ensemble
approach had 50% of records with no errors, ChatGPT had
37% with no errors, and LRBE had 15% without errors. An
example output from both ChatGPT4, LRBE, and the en-
semble approach (Figure 3) nicely illustrates issues with
ChatGPT4, including omission errors and mistakes in
Darwin Core field names, and commission issues with
LRBE; all of these problems are resolved in the ensemble

TABLE 1 Error counts for ChatGPT4, label rule‐based NLP
extraction (LRBE), and ensembled results based on scoring of 100
randomly selected herbarium records. These are errors for essential
Darwin Core fields when present (recordedBy, recordNumber, eventDate,
locality, scientificName, country, stateProvince, county).

Method ChatGPT4 LRBE Ensemble‐based

Commission errors 7 93 22

Omission errors 92 100 46

Total 99 193 68

F IGURE 3 Examples of the workflow and processing outputs from an exemplar label, starting with the original OCR text (top left), the ChatGPT4
output (bottom left), the LRBE output (bottom right), and the ensemble output (top right). We have excised any dwc:dynamicProperties content returned by
either extraction method. Errors in extraction are shown in red, with omissions shown below the label contents. In the ChatGPT4 output,
dwc:associatedOrganizations is an example of a hallucination as this is not a Darwin Core term.
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output. Further discussion of the performance of the
ChatGPT4, LRBE, and ensemble approaches is below.

To determine if the length of a label affects error rates
for our ensemble method, we ran a logistic regression,
which showed that label length is a (marginally) significant
predictor of at least one error (P < 0.035) and longer labels
do have higher odds of at least one error (label length
coefficient estimate: 0.002055) but with moderate uncer-
tainty (standard error: 0.000972). On average, the odds of an
error increase from about 40% for a short label (~250
characters) to about 68% for longer ones (>750 characters)
(see Figure S1).

Finally, we also examined ensemble error rates across
core fields (Table 2). We expected that locality would have
the highest error rates by a large margin, given how difficult
this content can be to extract as it is more free‐form and
complex than other content on labels. We found that, while
locality does have more errors than other fields, the differ-
ential is much smaller than expected, and the ensemble‐
based method is surprisingly good at assembling coherent
locality information from these records. Some fields, such as
locality and recordedBy, mostly had omission issues, likely
due to relying significantly on ChatGPT (which is high in
omission and low in commission), while others, such as
dwc:stateProvince, primarily had commission errors. In
fields where there are high commission rates in the en-
semble outputs, missing content in ChatGPT was often
filled in with LRBE content, which often led to increased
commission (see Tables S1 and S2).

ChatGPT4 and Darwin Core field names

Out of 2128 herbarium labels fed to ChatGPT, it extracted
420 terms, of which 155 were valid Darwin Core terms and
265 were hallucinated. It should be noted that this was after
a term cleanup pass was performed on the data and any
changes to the case of the letters were ignored. Although
ChatGPT hallucinated a large number of terms, the actual
number of instances of fields across labels that used the
hallucinated terms was not as large. There were 23,094 in-
stances extracted, but only 1062 (4.6%) included halluci-
nated term labels. Hallucinations were unpredictable. Some
were simple to correct, for example, one type of hallucina-
tion assumed that another namespace existed (e.g., <gbif:
identificationRemarks=, although dwc:identificationRemarks

is a valid term); in this case, the term name was converted to
the correct one and used. Other hallucinations, however,
were more esoteric, such as <QF=, for which it was necessary
to examine the content associated with that term.

In addition to the issue of hallucinated terms, a key
concern with ChatGPT4 is the formatting of the return. The
returned JSON output was often improperly formatted with
extra commas, improper quoting, the replacement or
addition of extra characters, and the addition of extra text
surrounding the JSON output. Of the 2128 labels that were
processed, 503 (23.64%) had data formatting issues. The end
result was that 503 (23.64%) had incorrectly formatted
JSON output that could be salvaged, 542 (25.47%) labels had
one or more hallucinated terms, and 112 (5.26%) labels
contained both issues.

DISCUSSION

This work showcases the power of using multiple ap-
proaches to produce digital data records that together help
reduce errors that occur using any single method. In par-
ticular, we developed a RB‐NLP approach (LRBE) and tes-
ted how well it performed against a well‐used LLM,
ChatGPT4. The LRBE approach has reasonably good pre-
cision and sometimes has excellent accuracy; critically, it
will neither hallucinate names of fields or instance value
data in those fields, and it always produces the exact same
result on repeated uses. This approach is also easily adjusted
when improvements are needed. However, the LRBE
approach requires significant effort by an expert that
understands both herbarium label construction and NLP
tasks well enough to correct issues.

The need for significant effort to develop rule‐based
information extraction is due to having to write one or often
several rules for every field type and form. For instance,
when extracting information about taxa, there are patterns
for every commonly used taxon level and separate functions
for when there is a binomial or trinomial term versus a
monomial term. The taxon authority extraction builds on
the bi‐, tri‐, or monomial term. This is then fed into a
function that recognizes a binomial taxon followed by an
authority that is then followed by a lower‐level term with its
own authority (e.g., <Neptunia gracilis Muhl. ex Willd. var.
varia (Nutt.) Brewer=). There are even other forms for taxon
names, such as <Neptunia gracilis & Mimosa sensitiva=, or

TABLE 2 Types of core field errors contained in reconciled output. We note 68 errors in total. Not all core fields are present in each record. We use
Darwin Core names for field names.

Darwin Core field

Error type recordedBy recordNumber eventDate locality scientificName country stateProvince county

Commission errors 0 5 2 1 0 0 9 5

Omission errors 9 6 9 13 1 1 2 5

Total 9 11 11 14 1 1 11 10
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instances where one species is mentioned in relation to
another (e.g., <It resembles M. sensitiva in amplitude=).
Because of these factors, the development of a working
LRBE is both time intensive and challenging. Furthermore,
even with significant effort, error rates are still high. By
contrast, ChatGPT4 requires a relatively simple set of
prompt engineering approaches and can produce digital
data records in Darwin Core format that contain fewer er-
rors. However, ChatGPT4 is prone to other types of errors,
e.g., non‐deterministic results and the potential for a pro-
fusion of terms that do not conform to existing standards.

Ensemble approaches using outputs from RB‐NLP and
ChatGPT4 can help resolve both issues, as shown in our
results. The ensemble approach leverages the strengths of
LRBE in terms of mostly assembling the correct content
into a predefined set of known Darwin Core fields. This
provides a useful scaffold and framework to blend in the
often‐superior extraction results from ChatGPT4. While it
is possible that more careful prompt engineering could also
improve ChatGPT4 results, it is challenging to understand
a priori what prompts are required. Given that ChatGPT4
has multiple issues and that ensembling fixes a proportion
of them simultaneously with little extra overhead, we
advocate the value of this combined approach as a prag-
matic step forward. Continuing advances in the quality of
OCR of specimen labels, automated information extraction
tools, and ensemble approaches will likely further reduce
error rates, potentially to a point that rivals the quality
achieved through human effort. However, based on the
results here, more effort is needed to improve the quality of
automated approaches; even in the best case of ensembling,
half of the records scored still contained omission or
commission errors. Even with continued improvements, we
argue there will always be the need for expert validation. We
have made the case elsewhere (Guralnick et al., 2024) of the
importance of humans in the loop to improve both quality
and model performance, and we advocate strongly for that
approach here.

We note that our work here focuses mostly on core
fields that are typically required for capture to enable best
use of collections downstream for both research and col-
lections management purposes. Herbarium labels often also
report key traits of the specimen, such as flower color or leaf
size. Here as well it can be challenging to capture traits
successfully, even though LRBE has its origins in trait par-
sing. A next step will be testing how to best tune ensembling
approaches for more performant assembly of the rich trait
and interaction data on labels.

Assembling rich trait data cannot be fully decoupled
from core field extraction. One of the overall challenges
with label information extraction is that the more data a
label contains, the easier it becomes to confuse an LRBE
approach. The longer the label, the easier it is for extraction
tools to pull the wrong content and associate it with the
wrong term, although this is only one of many factors that
likely impacts how well information extraction works. For
instance, LRBE will sometimes mistake route numbers (e.g.,

<Rt. 12=) for a count. This can be counteracted by adding
more rules that bar a count when it is preceded by a route
abbreviation. However, trying to build rules for all possible
vagaries of how labels are written is an impossible task, and
the key goal is to find common errors of commission and
reduce their rate as much as possible using such rules.

We close here with three key observations about the
current state of automated label digitization and likely next
steps. First, ChatGPT4 is a commercial solution and costs
money to use. A longer‐term solution will be developing and
deploying open‐source LLMs such as LLaMA (Touvron
et al., 2023) that could replace ChatGPT4 or its successors.
Such models can likely be tuned to perform better than a
generalized LLM such as ChatGPT4. Second, our work has
focused on typewritten labels that can be digitized using
OCR. Future efforts could leverage rapidly advancing meth-
ods for handwritten text recognition (HTR) to improve di-
gitization and information extraction for older, handwritten
labels generated prior to the use of typewriters and com-
puters. Finally, we believe the work here can be extended and
utilized broadly for natural history collections digitization.
One aspect of this extension is recognizing that automated
approaches can be combined to deliver both digital data
records and other insights, such as leaf traits, from specimens
simultaneously (Ott and Lautenschlager, 2022; Weaver
et al., 2023). More broadly, herbarium labels are some of the
most verbose, commonly containing heterogeneous content,
when compared across different types of natural history
collections. By contrast, insect labels are typically far less
wordy or heterogeneous, and therefore likely less error prone,
for automated extraction approaches. Further efforts to test
approaches across different types of labels and to build more
production‐strength tools are critical next steps.

AUTHOR CONTRIBUTIONS

All authors were involved in the conception of this research.
R.L. developed the code and designed prompts for
ChatGPT4, and R.P.G. and M.W.D. designed the validation
approaches and developed statistical analyses. R.P.G. and
J.M.A. acquired the funding. All authors were involved in
writing initial drafts and editing the final version of the
manuscript. All authors approved the final version of the
manuscript.

ACKNOWLEDGMENTS

This work was supported by a grant to R.P.G. and J.M.A.
from National Science Foundation grants #2027234 and
#2027241 entitled <Leaping the Specimen Digitization Gap:
Connecting Novel Tools, Machine Learning and Public
Participation to Label Digitization Efforts.= As part of this
larger funded effort, we have worked with many conscien-
tious and dedicated Notes from Nature volunteers who have
provided extensive data entry and other contributions to
training datasets and validation; we are extremely grateful
for that help. We appreciate the help of the steering com-
mittee who advised on this grant: Jason Best, Libby Ellwood,
Sharon Grant, Deborah Paul, Melissa Tulig, and Jenn Yost.

AUTOMATED APPROACHES FOR HERBARIUM DIGITIZATION | 7 of 8

 2
1

6
8

0
4

5
0

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://b
sap

u
b

s.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/ap

s3
.1

1
6

2
3

 b
y

 V
irg

in
ia P

o
ly

tech
n

ic In
stitu

te, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

3
/0

1
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



We also acknowledge key collaborators on this work: Sa-
mantha Blickhan, Nico Franz, Edward Gilbert, Nelson Rios,
and John Wieczorek.

DATA AVAILABILITY STATEMENT

All code is open source and available at https://github.com/
rafelafrance/digi-leap. Data and scoring sheets used in cre-
ating and assessing models are available at https://zenodo.
org/records/10642072.

ORCID

Robert P. Guralnick http://orcid.org/0000-0001-
6682-1504

REFERENCES

Borsch, T., W. Berendsohn, E. Dalcin, M. Delmas, S. Demissew, A. Elliott.
P. Fritsch, et al. 2020. World Flora Online: Placing taxonomists at the
heart of a definitive and comprehensive global resource on the world's
plants. Taxon 69(6): 1311–1341.

Guralnick, R., R. LaFrance, M. Denslow, S. Blickhan, M. Bouslog, S. Miller,
J. Yost, et al. 2024. Humans in the loop: Community science and
machine learning synergies for overcoming herbarium digitization
bottlenecks. Applications in Plant Sciences 12(1): e11560. https://doi.
org/10.1002/aps3.11560.

Hedrick, B. P., J. M. Heberling, E. K. Meineke, K. G. Turner, C. J. Grassa,
D. S. Park, J. Kennedy, et al. 2020. Digitization and the future of
natural history collections. Bioscience 70(3): 243–251.

Honnibal, M., and M. Johnson. 2015. An improved non‐monotonic tran-
sition system for dependency parsing. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing,
1373–1378. Association for Computational Linguistics, Lisbon,
Portugal.

Kay, A. 2007. Tesseract: An open‐source optical character recognition
engine. Linux Journal 2007(159): 2.

OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya,
F. L. Aleman, et al. 2023. GPT‐4 Technical Report. arXiv 2303.08774
[Preprint]. Available at: http://arxiv.org/abs/2303.08774 [posted 15
March 2023; accessed 24 September 2024].

Ott, T., and U. Lautenschlager. 2022. GinJinn2: Object detection and
segmentation for ecology and evolution. Methods in Ecology and

Evolution 13(3): 603–610.
Owen, D., L. Livermore, Q. Groom, A. Hardisty, T. Leegwater,

M. van Walsum, N. Wijkamp, and I. Spasić. 2020. Towards a sci-
entific workflow featuring Natural Language Processing for the di-
gitisation of natural history collections. Research Ideas and Outcomes

6: e55789.

R Core Team. 2021. R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria.
Website https://www.R-project.org/ [accessed 24 September 2024].

Takano, A., T. C. H. Cole, and H. Konagai. 2024. A novel automated label
data extraction and data base generation system from herbarium
specimen images using OCR and NER. Scientific Reports 14(1): e112.

Touvron, H., T. Lavril, G. Izacard, X. Martinet, M.‐A. Lachaux, T. Lacroix,
B. Rozière, et al. 2023. LLaMA: Open and efficient foundation lan-
guage models. arXiv 2302.13971 [Preprint]. Available at: http://arxiv.
org/abs/2302.13971 [posted 27 February 2023; accessed 24 Septem-
ber 2024].

Weaver, W. N., B. R. Ruhfel, K. J. Lough, and S. A. Smith. 2023. Herbarium
specimen label transcription reimagined with large language models:
Capabilities, productivity, and risks. American Journal of Botany

110(12): e16256.
Wieczorek, J., D. Bloom, R. Guralnick, S. Blum, M. Döring, R. Giovanni,

T. Robertson, and D. Vieglais. 2012. Darwin Core: An evolving
community‐developed biodiversity data standard. PLoS ONE 7(1):
e29715.

Xu, X., and H. Cai. 2021. Ontology and rule‐based natural language pro-
cessing approach for interpreting textual regulations on underground
utility infrastructure. Advanced Engineering Informatics 48: 101288.

SUPPORTING INFORMATION

Additional supporting information can be found online in
the Supporting Information section at the end of this article.

Figure S1. Plot of the predicted error rate based on label
length for the LRBE results, based on the logistic regression
model presented in the main text.

Table S1. Types of core field errors contained in the LRBE
output.

Table S2. Types of core field errors contained in the
ChatGPT output.

How to cite this article: Guralnick, R. P., R.
LaFrance, J. M. Allen, and M. W. Denslow. 2024.
Ensemble automated approaches for producing high‐
quality herbarium digital records. Applications in
Plant Sciences e11623.
https://doi.org/10.1002/aps3.11623

8 of 8 | AUTOMATED APPROACHES FOR HERBARIUM DIGITIZATION

 2
1

6
8

0
4

5
0

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://b
sap

u
b

s.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/ap

s3
.1

1
6

2
3

 b
y

 V
irg

in
ia P

o
ly

tech
n

ic In
stitu

te, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

3
/0

1
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se


	Ensemble automated approaches for producing high-quality herbarium digital records
	METHODS
	OCR test data
	RB-NLP development
	Using ChatGPT for label parsing
	Developing an ensemble approach
	Testing error rates for LRBE, ChatGPT4, and ensemble approaches
	Testing ChatGPT4 Darwin Core field names

	RESULTS
	Summary of performance within core fields
	ChatGPT4 and Darwin Core field names

	DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


