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1 | INTRODUCTION
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Abstract

The discipline of phylogeography has evolved rapidly in terms of the analytical toolkit
used to analyse large genomic data sets. Despite substantial advances, analytical tools
that could potentially address the challenges posed by increased model complexity
have not been fully explored. For example, deep learning techniques are underutilized
for phylogeographic model selection. In non-model organisms, the lack of information
about their ecology and evolution can lead to uncertainty about which demographic
models are appropriate. Here, we assess the utility of convolutional neural networks
(CNNs) for assessing demographic models in South American lizards in the genus
Norops. Three demographic scenarios (constant, expansion, and bottleneck) were
considered for each of four inferred population-level lineages, and we found that the
overall model accuracy was higher than 98% for all lineages. We then evaluated a set
of 26 models that accounted for evolutionary relationships, gene flow, and changes in
effective population size among the four lineages, identifying a single model with an
estimated overall accuracy of 87% when using CNNs. The inferred demography of the
lizard system suggests that gene flow between non-sister populations and changes in
effective population sizes through time, probably in response to Pleistocene climatic
oscillations, have shaped genetic diversity in this system. Approximate Bayesian com-
putation (ABC) was applied to provide a comparison to the performance of CNNs.
ABC was unable to identify a single model among the larger set of 26 models in the
subsequent analysis. Our results demonstrate that CNNs can be easily and usefully

incorporated into the phylogeographer's toolkit.

KEYWORDS
convolutional neural networks, deep learning, machine learning, Norops spp., phylogeography

(Knowles & Maddison, 2002), where a detailed explanation of the

One key goal of phylogeography has been to investigate how his-
torical processes have shaped genetic variation across geographic
space. Early phylogeographic investigations were highly qualita-
tive, with inferences based largely on gene genealogies and the
geographic distribution of the haplotypes. Due to their descriptive
nature, these investigations were susceptible to overinterpretation

causes of intraspecific diversification usually went beyond the ev-
idence supported by the data, and confirmation bias (Nickerson,
1998), in which researchers often interpreted new results in a
manner that supported previous findings (Carstens et al., 2009).
As the discipline matured, researchers recognized the importance
of statistical approaches that explicitly incorporate uncertainty to
draw meaningful conclusions about a species’ evolutionary history.
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Therefore, the identification of statistical models relevant for data
analysis is a crucial step of any model-based phylogeographical
investigation.

Researchers have employed three general approaches to identify
the models used to describe the data and make inference: (i) Intuitive
model identification, (ii) phylogeographic hypothesis testing, and (iii)
objective model selection (Carstens et al., 2017). Biological intuition
often drives the choice of the analytical framework(s) used to analyse
the data. For example, researchers may choose to analyse their data
with an isolation with migration model or an n-island migration model
due to beliefs regarding the processes that have influenced their sys-
tem. In practice, if the chosen model has a poor fit to the evolutionary
history of the organism, the resulting parameter estimates (Koopman
& Carstens, 2010) and other inferences can be misleading (Beerli &
Palczewski, 2010; Hey et al., 2015). Notably, the estimation of many
evolutionary processes eventually becomes intractable in a likelihood
framework (Beaumont et al., 2002) such that no single analytical
method can incorporate all possible evolutionary processes and use
maximum likelihood or Bayesian methods to identify parameter values
that maximize the probability of the model given the data (Beaumont,
2010). Similarly, hypothesis testing (e.g., Knowles et al., 2007) is con-
ducted under an assumed model and thus subject to the same poten-
tial flaws as intuitive approaches. For these reasons, many researchers
now utilize model selection approaches in phylogeographic research.

Simulation-based and likelihood-free approaches, which can ac-
commodate complex demographic scenarios (Pritchard et al., 1999),
are often utilized to conduct phylogeographic model selection.
Software such as ms (Hudson, 2002), msprime (Kelleher et al., 2016),
SliM (Haller & Messer, 2019), and fastsimcoal2 (Excoffier et al., 2013)
can be used to conduct simulations under customized demographic
models that can approximate the details of almost any empirical sys-
tem. After the simulation procedure, empirical and simulated data sets
can be statistically evaluated using a variety of methods, including ap-
proximate Bayesian Computation (ABC; e.g., Fagundes et al., 2007),
information theory (e.g., Carstens et al., 2009; Morales et al., 2017),
and machine learning approaches such as random forest (Smith et al.,
2017). While these have in common the flexibility to assess multiple
demographic models given the observed data, factors such as the type
of data collected and details about the empirical system make it likely
that there is not a single “best” approach for all questions.

Information theoretic approaches can be conducted either on
SNP data, summarized as site frequency spectra (SFS; e.g., Thomé &
Carstens, 2016), or gene trees (e.g., Jackson et al., 2017). They appear
effective at considering large numbers of models, but potentially at the
expense of parameter estimation. In contrast, approximate Bayesian
computation (ABC) remains a widely used approach in demographic
model selection but can potentially suffer from the “curse of dimen-
sionality” when comparing more than a handful of demographic models
(Pelletier & Carstens, 2014; Schrider & Kern, 2018). The computational
effort required by these approaches varies by application, but ABC be-
comes computationally expensive when the data are summarized on
a locus-by-locus basis. For this reason, methods that summarize SNP
data as SFS and use machine learning to identify the best model are

increasingly being applied (e.g., Pudlo et al., 2016; Smith et al., 2017).
As genomic data become easier to collect and more common in non-
model systems, increased exploration of the usefulness of these (and
other) approaches to phylogeographic model selection is warranted.
Supervised machine learning (SML) is a branch of artificial intel-
ligence that gives computers the ability to learn from data without
being explicitly programmed and where labels (i.e., preclassified data)
are available for a subset of the samples. SML involves (i) training a
predictive model using a subset of a labelled data set, (ii) evaluating
the model using the remaining portion of the labelled data set, and
(iii) using the now-trained model to predict new, unlabelled examples.
One example of a SML approach to phylogeographic inferences is im-
plemented in the R package delimitR (Smith & Carstens, 2020), which
uses a random forest classifier to create hundreds of individual deci-
sion trees (a forest) from SNP data, summarized using SFS, to train the
model. Next, the set of decision trees are combined via a consensus
tree, and this tree is used to classify a new data set. Results from a
simulation study indicate that delimitR is able to compare hundreds of
alternative models with high accuracy, even when comparing complex
evolutionary scenarios (Smith & Carstens, 2020; Smith et al., 2017).
However, results in other fields that apply SML approaches indicate
that random forest may not be as efficient as other approaches, such
as convolutional neural networks (CNN; Box 1; Razzak et al., 2018).
Since CNNs take as input a set of labelled images and train a model
to predict the content of new images, one potential advantage of this
approach is that predictions can be made directly from the alignment
containing the genetic variation from sampled individuals (Blischak
et al., 2020; Cheng et al., 2013; Flagel et al., 2019; Sanchez et al., 2020;
Torada et al., 2019) rather than from data that are summarized using
either summary statistics or a SFS. CNNs have been used to address a
range of biological questions, from detecting natural selection (Flagel
et al., 2019; Torada et al., 2019), reconstructing phylogenetic history
(Suvorov et al., 2020), and predicting cancer outcomes (Mobadersany
et al., 2018). In spite of all its benefits, the potential applicability of
CNNs to phylogeographic model selection remains largely unexplored.
Here, we explore the usefulness of CNNs for phylogeographic
model selection. We use a simulation-based approach to create
labelled examples (i.e., DNA alignments), converted to a black and
white image by labelling the major allele and the minor allele as 0 and
1, respectively. After training the model using 80% of the labelled
data and evaluating its performance using the remaining 20% of the
data, we compare the performance of CNNs and ABC to enquire
about the evolutionary history of two species of lizards from con-

trasting environments in South America.

2 | MATERIALS AND METHODS
2.1 | South American lizards as a case study
We used SNP data collected from the lizard sister species Norops

brasiliensis and N. planiceps as a case study to assess the usefulness
of CNNs for phylogeographic model selection. Little is known about
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BOX 1 Overview of Convolutional Neural
Networks (CNNs)

Artificial neural networks (ANNs) were proposed as an
attempt to mimic the network of neurons that constitute
the animal brain. In human brains, for example, an external
stimulus is passed through a chain of neurons that culmi-
nate in a response. Likewise, ANNs are fed with data (i.e.,
stimulus) which are passed through an artificial network of
neurons to make a prediction (i.e., response). CNNs (also
known as ConvNets) are a class of artificial neural net-
works that use a set of labelled images (input data) to build
a model to differentiate among the various labels. First, a
convolution operation is performed by multiplying each
value in the input (Figure 1a) by a learnable weight within
a kernel (Figure 1b). After the convolution operation, the
images are converted into a feature map (Figure 1c) where
each value is passed through a nonlinear function (e.g.,
ReLU, tanh, sigmoid). Next, a pooling method (maximum,
average pooling, etc.) is applied to the feature maps within
a kernel to reduce the dimensions of the feature maps and
maintain conceivably important features from the convo-
lutional kernel (Figure 1d). These steps can be replicated
“n” times inside the CNN architecture. For example, in
Figure 1, the convolutional and pooling steps were repli-
cated twice. Lastly, the resulting array of all these opera-
tions is flattened into a one-dimensional array and fully
connected to an ANN. Together, these steps comprise
the forward propagation, in which the goal is to pass the
data through the CNN (or ANN) and compute a loss func-
tion with respect to the weights. Once the loss function is
computed, the CNN works backward (back-propagation) to
optimize the weights and minimize the total loss function
of the model using partial derivatives. In summary, a set
of images is forward propagated into a CNN to calculate a
loss function, which in turn is back-propagated to optimize
the model weight and minimize the loss function. Thus,
the training of a CNN consists of an iterative process of
forward and backward propagation. Definitions of com-
monly used terms in this study are presented in Table 1 and
a more detailed description of CNNs is available in Lecun
et al. (2015) and Flagel et al. (2019).

their ecology, natural history, and evolution, which poses great un-
certainty about which set of models are appropriate. Norops brasil-
iensis is a terrestrial and diurnal species that occurs predominantly
in open areas and riparian forests (gallery forests) in the Cerrado
savanna and enclaves of Cerrado within the Amazonian rainfor-
est (Figure 2; Avila-Pires, 1995; Ribeiro, 2015) (Figure 2). Norops
planiceps is also terrestrial and diurnal, but endemic to northern
Amazonia, where it inhabits “terra firme” forests, which are not

RESOURCES

periodically flooded (Figure 2; Avila-Pires, 1995; Ribeiro, 2015).
Because Norops inhabits Amazonia and the Cerrado, the largest
Brazilian biomes, understanding its evolutionary history provides
data regarding the evolution of these important regions. Amazonia
is a region predominantly covered by tropical rainforests, whereas
the Cerrado, a world hotspot priority for conservation (Myers et al.,
2000), is characterized by sclerophyllous, fire-adapted flora, abun-
dant grasses and short, thick-barked, and twisted trees (savanna-like
vegetation). The Cerrado is part of the South American diagonal of
“open formations” (also known as “dry diagonal” or “savanna corri-

dor”) and shares its north-western boundary with Amazonia.

2.2 | Sampling and data collection

We obtained 61 tissue samples; 52 from N. brasiliensis (nine locali-
ties) and nine from N. planiceps (five localities; Figure 2) from the
Herpetological Collection of Brasilia University (CHUNB) and the
Collections of Amphibians and Reptiles and Genetic Resources from
the National Institute of Amazonian Research (INPA-H and INPA-HT).
DNA was extracted from liver or muscle tissues using E.Z.N.A. Tissue
DNA Kit. Prepared libraries from each species for sequencing using
a modified version of the genotyping-by-sequencing (GBS) protocol
described in Elshire et al. (2011). For DNA digestion, we used 100 ng
of freshly extracted DNA and the restriction enzyme Sbfl. After
digestion-ligation reactions, we pooled all samples and purified using
Agencourt AMPure beads. We amplified samples with polymerase
chain reaction (PCR) as follows: (i) initial denaturation at 72°C for
5 min, (i) 16 cycles consisting of: 98°C for 10 s for denaturation, 65°C
for 30 s for annealing, and 72°C for 30 s for extension and (iii) final
extension at 72°C for 5 min. We then quantified PCR products using
the BR DNA Qubit Quantification Kit. We used the Blue Poppin Prep
to select DNA fragments of 200-500 bp. Sequencing was carried out
at the Ohio State University Comprehensive Cancer Center on an
Illumina HiSeq 4000 and paired-end reads of 150 bp were generated.

2.3 | Dataprocessing

We processed (i.e., sorted, demultiplexed, clustered, and format-
ted) raw data from Illumina outputs using ipyrad v 0.9.52 (Eaton &
Overcast, 2020) and resources provided by the Ohio Supercomputer
Center. We processed five different data sets: (i) all samples, (ii) N.
brasiliensis (population 1), (iii) N. brasiliensis (population 2), (iv) N. bra-
siliensis (population 3), and (v) N. planiceps. Data sets ii-v represent
distinct populations recovered in the population assignment analy-
ses (see population assignments section). First, we demultiplexed
raw data using individual barcode adapters. Next, we filtered for
adapters using the stricter option. All reads were trimmed to 75 bp
before analysis. We set the maximum low-quality base calls in the
read to 5, only allowing reads longer than 35 bp. We clustered reads
within each sample if their similarity was greater than 85%, set the
maximum cluster depth within samples to 10,000 reads, and used
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FIGURE 1 A general schematic representation of a two-dimensional convolutional neural network (CNN) architecture. (a) Input image,
(b) convolutional kernel (yellow), (c) feature map, and (d) pooling kernel (orange). ANN, artificial neural network

TABLE 1 A glossary of terms used in this study

Term Definition

A computational network of connected layers that attempt to mimic the way that the brain analyses
and processes information (biological neural network)

Artificial neural network - ANN

Convolutional neural network -CNN A type of artificial neural network used for image classification and recognition

CNN architecture The general structure of the model that includes the number of convolution and pooling layers, size and

numbers kernels, and the number of neurons in each hidden layer
Kernel Vector of weights used for feature detection

Neuron A mathematical function that takes a group of input and weights, applies an activation function
(e.g., ReLU, tanh, sigmoid) and output a value

Loss function A variety of methods designed to calculate the distance between actual and predicted outcomes

Epoch The number of times that all images are fed into the model

Optimizer A mathematical function used to update the weights of the model to minimize the loss function

a minimum depth for statistical base calling of six reads. Because
CNNss do not allow missing data (see CNN section), we removed loci
with missing data. While errors in estimates of admixture and sum-
mary statistics may accompany low-coverage data (e.g., Korneliussen
et al., 2013; Skotte et al., 2013), it is unclear if these factors lead to
biases in model selection. We expect that the potential for bias is
reduced for CNN in comparison to approaches that summarize the
data using summary statistics.

2.4 | Population assignments

STRUCTURE v2.3.4 (Pritchard et al., 2000) was used to partition
samples into discrete populations before building demographic

models. We ran three independent replicates using 100,000 steps
of burnin, followed by 500,000 generations. We performed all runs
under an admixture model for population ancestry and allele fre-
quencies correlated among populations. We evaluated K-values
ranging from 2 to 6, with 10 replications. Using the ad hoc statis-
tic AK, we evaluated the optimal value of K, calculating the rate of
change in the log probability of data between successive K values
(Evanno et al., 2005), as in STRUCTURE HARVESTER (Earl & von-
Holdt, 2012). We combined all replicate analyses under the best
value of K using the software CLUMPP (Jakobsson & Rosenberg,
2007), and assigned individuals to populations based on their ad-
mixture proportion. For example, if an individual was assigned
jointly to two populations, we placed that individual in the popula-
tion with the higher admixture proportion.
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FIGURE 2 Map showing the geographic distribution of sampled localities. Information about samples and localities are available in Table
S1. Purple circle, Norops brasiliensis (population 1); blue circles, N. brasiliensis (population 2); red circles, N. brasiliensis (population 3); green
circles, Norops planiceps. Bar represents the admixture plot of Norops ssp. across the area of study according to STRUCTURE analysis.
Numbers below the admixture plot represent the individuals sampled in each locality. Population 1, purple; population 2, blue; population 3,

red; Norops planiceps, green

2.5 | Testing diversification history using
convolutional neural networks

In phylogeographic model selection, there are countless ways of pa-
rameterizing a given model but, as the number of lineages and pos-
sible parameters increase, the number of possible models grows at
a greater than exponential rate. For example, for the four popula-
tions we inferred based on the STRUCTURE results, there are more
than 2000 possible models that could be designed if one incorpo-
rates topology (four populations), gene flow (isolation vs. secondary

contact), and changes in population size (constant, bottleneck, and
expansion). To facilitate comparison of all potential models, we con-
ducted a hierarchical analysis by dividing our model selection into
two components. First, we independently tested each population
for demographic change in population size through time (12 models).
Second, we applied the model of population size change that was
individually identified in each population to a broader analysis that
considered all possible topologies for four lineages with assorted mi-
gration scenarios (26 total models). With this approach, we reduced
the model space from more than 2,000 to 38 competing models,
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which greatly facilitated the comparison between the CNN and ABC

approaches to model selection (below).

2.51 | Testing population trajectory through time

In the first part of model selection, we used a CNN to identify the
population trajectory that best describes the demographic history of
each population. Pleistocene climate oscillations are one of the main
drivers of genetic variation across the globe (Haffer, 1969; Hewitt,
2000, 2004) and also hypothesized to have impacted the evolu-
tionary and demographic history of N. brasiliensis and N. planiceps
(Vanzolini & Williams, 1970). Because of that, priors were selected
to mirror this hypothesis and are presented in Table S1. We defined
three possible scenarios (Figure 3a): (i) Constant population size
through time, (ii) population expansion since the last glacial maxi-
mum (LGM), and (iii) population bottleneck since the LGM. We used
the software fastsimcoal2 (Excoffier et al., 2013) to simulate 10,000

data examples for each demographic scenario and population. We

(a) (b)

simulated short DNA sequences (1 to 5 bp) for 1,000,000 independ-
ent loci to ensure that the simulator only generated one SNP per
locus and kept the same number of SNPs as observed in the empiri-
cal data sets. Also, individuals were randomly organized with respect
to each otherin the alignment, and SNPs were sorted based on major
allele frequency (higher to a lower frequency). We parameterized
the ancestral effective population size, current effective population
size, and time of population size changing (Table S1). Next, we wrote
custom R scripts to convert the alignment of each simulation into
a biallelic matrix, with n rows and k columns, corresponding to the
number of samples and SNPs, respectively. We labelled the major
allele as (0) and the minor allele as (1), such that the matrix could be
converted to a black and white image with each entry corresponding
to a pixel in the image. Finally, we sorted SNPs based on their allele
frequency (higher to a lower frequency).

We implemented a two-dimensional CNN architecture as fol-
lows: a two-dimensional convolution layer (kernel = 3 x 1), a two-
dimensional maximum pooling layer (kernel = 3 x 1), a two-dimensional

convolution layer (kernel = 3 x 1), and a two-dimensional maximum
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FIGURE 3 Representation of the
models tested using convolutional neural
networks. (a) Set of three models used to
test population trajectory through time
(constant, expansion, and bottleneck).

(b) Set of 26 models used to test the
evolutionary relationships and secondary
contact of Norops ssp. Numbers and
colours represent populations recovered
in STRUCTURE analysis. Purple circle,
Norops brasiliensis (population 1); blue
circles, N. brasiliensis (population 2); red
circles, N. brasiliensis (population 3); and
green circles, N. planiceps. The best-
supported model for CNN in the second
part of comparison is marked by a red box.
Time elapses from bottom to top in all
models. Gene flow between populations
2 and 3 is represented by arrows (Models
16 to 26).
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pooling layer (kernel = 3 x 1). We then flattened the output layer
from the last pooling. Next, we created a fully connected layer with
100 neurons, followed by one with 25 neurons, and a final layer with
three neurons, which correspond to our three demographic models
(i.e., constant, expansion, and bottleneck; Figure 3). For all layers,
we used rectified linear unit activation functions (ReLU), except for
the last one where we used a softmax function. This function is a
generalization of the logistic function and used for multiclass predic-
tion. We compiled the CNN using the Adam optimization procedure
(Kingma & Ba, 2015), a categorical cross-entropy loss function, and
a mini-batch size of 100. We ran the CNN for 10 epochs, although
without any improvement after three epochs. We did not include a
dropout layer because of the lack of evidence of overfitting. Lastly,
we trained the CNN using 80% of the simulated data sets and used
the remaining 20% to evaluate model accuracy. We used the trained
model to predict the model that probably generated the empirical
data set. We built all CNNs with the Keras python library (https://
keras.io).

We also evaluated the impact of sampling and the number of
SNPs on CNN performance. Specifically, we conducted simulations
under different sampling schemes (5, 10, and 25 individuals) and
number of SNPs (100, 1000, and 5000) using the same CNN archi-
tecture and data summarization as described above.

2.5.2 | Testing evolutionary relationships and
gene flow

In the second step of the analysis, we implemented a CNN archi-
tecture to assess the relationships among populations and gene
flow between populations that showed evidence of admixture in
STRUCTURE. We specified 26 demographic models consisting of a
combination of 15 possible topologies along with scenarios of isola-
tion or secondary contact after divergence that reflect our identi-
fication of individuals that are potentially admixed (Figure 3b). For
example, because we recovered substantial admixture between
populations 2 and 3, we included models with potential second-
ary contact between these populations (see Figure 2). We did not
include models with secondary contact when populations 2 and 3
were sisters in the phylogenetic tree, because it was impractical to
distinguish between isolation and secondary contact models in our
preliminary runs. In addition, we did not include the possibility of
gene flow between N. planiceps and population 2 of N. brasiliensis
because given their disjunct geographic distributions (they are more
than 1000 km apart) and knowing that lizards have low dispersal
rates, gene flow between these lineages appears to be very unlikely.
We used fastsimcoal2 to generate 10,000 data examples per model.
As in the first part, we generated short DNA sequences of 1 bp for
500,000 independent loci in a way to simulate one SNP per locus.
However, we only output the number of SNPs observed in the em-
pirical data set. Individuals were randomly organized within each
population, and SNPs were sorted based on allele frequency (higher
to a lower frequency). Parameters in these models include ancestral

RESOURCES

and current population size, the time of population size changing,
divergence time, migration rate, time of migration, and topology.
Priors are available in Table S2. We converted alighments into im-
ages as described previously. In addition, because the relationship
among populations is a key parameter in the models, images always
presented populations in the same order: N. brasiliensis (population
1), N. brasiliensis (population 2), N. brasiliensis (population 3), and N.
planiceps.

We used a simpler CNN architecture for the second part because
it achieved a higher accuracy when compared to the CNN architec-
ture used in the first part. We built the CNN using a two-dimensional
convolution layer (kernel = 3 x 1; corresponding to three SNPs over
one sample), and a two-dimensional maximum pooling layer (kernel
=3 x 1). After that, we flattened the output layer from the pooling
and generated a fully connected layer with 500 neurons using the
hyperbolic tangent function (tanh) for all layers, followed by our final
layer with 26 neurons, corresponding to different models, where we
used the softmax function. We compiled our model similar to the first
part: Adam optimization and categorical cross-entropy loss function,
but we used a mini-batch size of 50. We trained the CNN for five ep-
ochs; but the model did not improve after the second epoch (i.e., ac-
curacy did not decrease over epochs). Finally, CNN was trained using
80% of the simulated data set as training and the remaining 20% was
used to evaluate the model. We used the trained model to predict
the empirical data set. We used the python library Keras throughout
to build the CNN. CNN architectures, for both parts, were selected
after preliminary runs with varying combinations of activation func-
tions (ReLU, tanh, sigmoid functions), numbers of convolutions lay-
ers and neurons, and kernel dimensions. For all CNNs, we evaluated
the calibration of the softmax function by computing the absolute
output probability of each simulation on each model on the test data
set and assigned this value into five classes (0%-20%, 20%-40%,
40%-60%, 60%-80%, 80%-100%).

2.6 | Model selection in an approximate Bayesian
computation framework

We also evaluated ABC performance for the second part of com-
parisons (from models 1 to 26). First, we used the R-package
“PipeMaster” to perform 100,000 simulations for each model to
generate summary statistics (Gehara et al., in preparation.; www.
github.com/gehara/PipeMaster). PipeMaster is a user-friendly R-
package that builds demographic models and then simulates data
under the coalescent process using msABC (Pavlidis et al., 2010).
Demographic models mirrored empirical data sets with respect to
the number of populations, the number of individuals within each
population, and the number of loci. Priors used to build the models
were the same used to construct CNN models and are presented
in Table S1. After simulations, we used the ABC approach to es-
timate model support using the “postpr” function implemented
in the “abc” R package (Csilléry et al., 2012). We set the toler-
ance value to 1% and used the rejection and mnlogistic method
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to compare models. We evaluate whether simulations produced

summary statistics similar to the empirical data set using PCAs.

3 | RESULTS
3.1 | Genomic data processing

After genomic data processing, we obtained 4174 unlinked SNPs
when all samples were combined, or 6860, 10,931, 9,396, and
12,048 unlinked SNPs for the three N. brasiliensis populations and
N. planiceps, respectively. Because our CNN approach does not ac-
commodate missing data, loci were required to be present in 100%

of the samples.

3.2 | Population assignment

The STRUCTURE analysis recovered four geographically structured
populations that correspond to N. planiceps and three populations
within N. brasiliensis (hereafter population 1, population 2, and
population 3; Figure 2). While N. planiceps is distributed in north-
ern Amazonia, population 1 is found in an enclave of Seasonally Dry
Tropical Forests within Cerrado. Population 2 is more widespread
in Cerrado and population 3 is found in lowlands within Cerrado. In
addition, population assignment analysis revealed a region of high
admixture between population 2 and 3 (locality no. 9). Population
assignments of K = 3 and K = 5 are shown in the supporting informa-
tion (Figure S1).

3.3 | Demographic model selection

We inferred population expansion as the best demographic scenario
for N. planiceps, population 2, and population 3 with a probability of
0.99,0.59, and 1.0, respectively (Table 2). For population 2, the lower
probability value is probably related to the unaccounted gene flow
with population 3, which introduced a genetic variation that was
not captured by the model. Conversely, for population 1, we found
evidence of constant population size over time (probability = 0.985;
Table 2). For all models within each population, the CNN model had a
high accuracy when predicting the test set labels, reaching an overall
accuracy higher than 98% for all models (Figure 4). Precision and
recalls values were also higher than 98% and are shown in Table S3.

We found that CNN performance is influenced primarily by the
number of sampled individuals and to a less extent by the number of
SNPs (Table S4; Figure S2). The CNN model reached an accuracy of
about 80% with five individuals (10 sequences for a diploid species)
and 100 SNPs. However, CNN performance improved slightly when
the number of SNPs increased to 1000 and 5000 (82% and 83%,
respectively; Table S4). Conversely, with the increase of the num-
ber of individuals (to 10 and 25 individuals), all models reached an
overall accuracy of over 92%, with a small improvement with a larger

number of SNPs (Table S4). Our results showed that sample size is
positively associated with CNN performance.

For the second part of model comparison, CNN recovered a sin-
gle model (no. 22) as the best evolutionary scenario with a probability
of 0.79 (Table 2; Figure 3). As expected, N. planiceps was recovered
as the sister species of N. brasiliensis and population 1 is more closely
related to population 2 than to population 3. In addition, we found
evidence of secondary contact between populations 2 and 3. The
second-best model (model 26; probability = 0.20; Table 2) is similar
to the best model but, in this scenario, population 1 is more closely
related to population 3. All other scenarios had a probability of less
than 1% (Table 2). Even comparing complex evolutionary histories,
our CNN showed a high average accuracy: 87%; range: 62%-99%;
Figure 5). The posterior probabilities of ABC models were lower on
both rejection and mnlogistic methods. The rejection method se-
lected scenario 19 as the best models with a posterior probability
of 18% (Table 2). The mnlogistic method performed better than the
rejection method, selecting model 8 as the best evolutionary history
(pp = 0.55), followed by model 16 (pp = 0.16). In model 8, N. brasilien-
sis was found paraphyletic with N. planiceps. Population 3 was recov-
ered as the sister lineage of N. planiceps and these lineages formed
another clade with population 1 with population 2 in a more external
position. PCAs showed that most models produced summary statis-
tics coincident with empirical data sets, indicating that the choice
of priors was plausible (Figure S3). Overall, CNN produced results
more robust than ABC in terms of accuracy (Figure 5 and Figure S4)
and recall and precision (Table S5). Because of that, we discussed the
results in the light of CNN findings. Overall, for both demographic
parts, our calibration analysis showed that the CNNs are satisfacto-
rily calibrated (Figures S5-S6).

4 | DISCUSSION

Our simulation testing suggests that a deep learning approach for
phylogeographic model selection can be accurate for certain types
of demographic processes. For example, the best CNN model had an
accuracy of over 99% when testing for changes in effective popula-
tion size through time in population 1 (i.e., constant, expansion, and
bottleneck). We also found similar results for populations 2 and 3
(accuracy >99%). Model accuracy was slightly lower for N. planiceps,
probably caused by the small number of samples for this species.
Even though we generated fewer SNPs for population 1, this model
achieved higher accuracy than the one for N. placenips probably be-
cause we had twice the number of samples for population 1. For
models 1 to 26, the average accuracy was 87%. These models are
more complex than those that deal only with changes in population
size since we evaluated the evolutionary relationship of all popu-
lations and also included gene flow between populations 2 and 3,
and the temporal divergence among populations. Nevertheless, the
accuracy of the CNN model selection retained an accuracy similar
to that seem in other approaches (below) while ABC was unable to
identify a single best model (see Table 2).
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TABLE 2 The probability of each model tested using convolutional neural networks (CNNs) and approximate Bayesian computation
(ABC). Comparisons were first performed within part 1 only using CNNs, and subsequently, models in part 2 were constructed based on
demographic scenario inferred in part 1. The best-fit model selected in each part is highlighted in bold

Part 1 Part 2
Model CNN Probability Model
Population 1 - Constant 0.98 Model 1
Population 1 - Expansion 0.02 Model 2
Population 1 - Bottleneck 0 Model 3
Model 4
Model 5
Population 2 - Constant 0.41 Model 6
Population 2 - Expansion 0.59 Model 7
Population 2 - Bottleneck 0 Model 8
Model 9
Model 10
Population 3 - Constant 0 Model 11
Population 3 - Expansion 1.0 Model 12
Population 3 - Bottleneck 0 Model 13
Model 14
Model 15
N. planiceps - Constant 0.01 Model 16
N. planiceps - Expansion 0.99 Model 17
N. planiceps - Bottleneck 0 Model 18
Model 19
Model 20
Model 21
Model 22
Model 23
Model 24
Model 25
Model 26

Our CNN implementation and ABC share many similarities, in-
cluding the use of a simulations to generate new examples, given a
demographic scenario and a set of priors. However, these approaches
summarize the simulated data sets in different ways, leaning to differ-
ent methods for comparison between empirical and simulated data.
For ABC, a large number of summary statistics are usually calculated
from the simulated data sets, e.g., Tajima's D, nucleotide diversity, F¢,
and Fu and Li's D. These summary statistics have traditionally been
used in phylogeographic investigations, for example, Tajima's D has
been used to detect deviations from constant population sizes caused
by population expansions or bottlenecks and F., have measured the
degree of differentiation among populations. This choice of sum-
mary statistics is subjective, with most studies choosing not to iden-
tify a subset of summary statistics that maximize model probability.
Moreover, as model complexity increases, more summary statistics

are required to describe the evolutionary history, for example, it is

ABC posterior probability

CNN probability Rejection Mnlogistic
0 0.01 0

0 0.01 0

0 0.01 0

0 0.09 0

0 0.10 0

0 0 0

0 0.09 0

0 0 0.56
0 0 0
0.01 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0.16 0.21
0 0.15 0

0 0.16 0.01
0 0.18 0.01
0 0 0

0 0 0
0.79 0.02 0.08
0 0 0

0 0 0

0 0 0
0.20 0 0.11

necessary to calculate at least seven pairwise population divergence
metrics (e.g., Fs7) to describe the divergence sequence between the
populations found in this study. Furthermore, the aforementioned
statistics are pairwise metrics, and as such nonindependent, leading
to consequences such as the "curse of dimensionality" (Beaumont,
2010; Beaumont et al., 2002) which leads to poor performance as
the number of models grows. Our results mirror those from previ-
ous studies suggesting that ABC does not perform as well with large
numbers of summary statistics and models (Pelletier & Carstens,
2014; Schrider & Kern, 2018; Smith et al., 2017).

Although it is beyond the scope of this study to compare dif-
ferent methods of phylogeographic model selection, the accuracy
of the CNN approach used here can be placed into a broader con-
text. It appears to be at least as accurate as other model selection
approaches. For example, it appears to perform at least as well as
PHRAPL, which summarizes the data using gene trees (Jackson et al.,
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2017) and, because there is more gene-tree to species-tree discor-
dance at shallow levels of population divergence, becomes more ac-
curate as population divergence increases. Similarly, for CNNs, the
model accuracy decreases as the divergence between populations
decrease, a phenomenon which has been attributed to incomplete
lineage sorting (ILS; Blischak et al., 2020). The accuracy estimated
here is also similar to that of other machine learning approaches to
phylogeographic model selection. For example, Smith et al. (2017)
proposed a random forest approach to test 15 evolutionary sce-
narios for a land snail endemic to the Pacific Northwest of North
America and also compared the random forest classifier with ABC.
Their overall error rates using random forest were 7.67% (range:
0%-42%) and ~30% for ABC. While our overall error for CNNs in
step 2 was 13%, we noticed that most misclassification was between
models that only differed on the presence or absence of secondary
contact. Since Smith et al. (2017) did not include gene flow in their
tested models, we subset our models and trained a CNN only with
isolation models (models 1 to 15) in order to estimate a comparable
error rate of 1.5% (0.75%-3%; Figure S7), which is lower than that
described by Smith et al. (2017). In a more recent study, Smith and
Carstens (2020) applied random forest to the reticulate taildropper
slug (Prophysaon andersoni) and found an average error of 5.2% when
comparing 208 demographic models. These results show that CNN
has an accuracy comparable to the best results reported for other
methods (i.e., ABC with random forest). Unfortunately, the com-
parison between CNN and AlC-based methods (such as PHRAPL)
is not as straightforward because they use different frameworks to
measure model performance. In particular, AIC-based approaches to

Predicted label

FIGURE 4 Confusion matrix measuring
the accuracy of the trained CNN model
on the test dataset to detect demographic
changes through time. Numbers represent
percentages, which were calculated

based on 2,000 images for each model.

(a) Norops brasiliensis (population 1), (b) N.
brasiliensis (population 2), (c) N. brasiliensis
(population 3), and (d) N. planiceps

Constant Expansion

Constant Expansio‘n

model selection lack the built-in approach for assessing model accu-
racy (i.e., identifiability) that deep learning approaches such as CNN
and ABC with random forest include.

One advantage of CNNs is that researchers are absolved of the
requirement to summarize their data using summary statistics. Since
a set of statistics exists that is probably best used with a particu-
lar demographic history, this is particularly challenging for inves-
tigations into non-model systems. In our system (N. planiceps and
N. brasiliensis) and others, there is a scarcity of a priori ecological
and evolutionary information that limits the ability of researchers
to specify a small set of candidate models and choose appropriate
summary statistics. In such a scenario, approaches such as CNNs,
PHRAPL, and delimitR offer the potential to compare among a large
number of competing alternatives models without the need to make
choices that are likely to influence the outcome. That is not to say
that CNN approaches are flexible, as the image-based nature of the
analysis enables the data to be summarized in different ways. For
example, Blischak et al. (2020) used CNNs to detect hybridization in
simulated and an empirical system from Heliconius butterflies. They
simulated chromosome-scale data for four species and generated
images based on the pairwise Nei's genetic distance among popu-
lations and found that this approach was more accurate than those
based on introgression-specific summary statistics.

On disadvantage of the approach used here is that it was com-
putationally more demanding than the one proposed by Blischak
et al. (2020). It requires an average of 2 s to run the simulation in
fastsimcoal2 and 8 s to process the image (~10 s from simulation to
generate an image). Since we simulated 10,000 examples per model,
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FIGURE 5 Confusion matrices measuring the accuracy of the trained CNN model on the test data set of 26 phylogeographic models.
Numbers represent percentages which were calculated based on 2,000 images for each model

approximately 27 h are required to simulate the images that corre-
spond to one scenario. It then requires an additional 10 h to run one
epoch in the comparison among 26 models (208,000 training images
and 52,000 test images), but this time can be optimized by using
Graphical Processing Unit (GPU) instead of Central Processing Unit
(CPU). Although the simulation and CNN were performed using the
resources provided by the Ohio Supercomputer Center, we used a
Mac mini (1.6 GHz Intel Core i5, 8 GB RAM, 2 cores) to generate
these reference values to provide context for potential users of this
approach who do not have access to supercomputing centers. By far
the biggest computational hurdle was the number of stored images
in the supercomputer, as our analysis used a total of 380,000 images
totalling 7.5 GB.

4.1 | Evolutionary history of South
American lizards

Pleistocene climate change has been proposed as one of the main
drivers of speciation at higher latitudes (Burbrink et al., 2016;

Hewitt, 2000, 2004). The Pleistocene refugia hypothesis (PRH)
posits that species had to inhabit favorable refugia to persist
and thrive under the new environmental conditions (Vanzolini &
Williams, 1970). In South America, Haffer (1969) and Vanzolini and
Williams (1970) almost simultaneously proposed the PRH to ex-
plain patterns of species diversity and distribution in the Amazon
rainforest, where climate oscillations putatively led to a series of
contraction events of rainforests and expansions of dry vegetations
during glacial periods, which would enable allopatric speciation of
the associated biota. While this has been a popular hypothesis,
many investigations have dismissed the Pleistocene refugia model
based on multiple biological and paleoenvironmental sources of
evidence (Bush & Oliveira, 2006; Lessa et al., 1997; Thomé et al,,
2010; Wang et al., 2017). Cheng et al. (2013), based on speleothem
oxygen isotope records, proposed an alternative speciation model
for the Late Pleistocene in South America, in which a quasi-dipolar
precipitation pattern during the Pleistocene would impact biodi-
versity differently in western and eastern Amazonia. In eastern
Amazon, which is more connected to the historical and current cli-
mate in the Cerrado, this model posits that the interleaved periods
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of wet and dry climates during the last 250 thousand years (kyr)
were desynchronized with those in western Amazonia, resulting
in habitat fragmentation that isolated species previously broadly
distributed and led to decreased gene flow and increased genetic
differentiation. Community-level analyses have suggested that the
model is broadly applicable (e.g Gehara et al., 2017; Silva et al,,
2019). In contrast to the more stable climate in western Amazon,
which is hypothesized to have generated the observed higher lev-
els of biodiversity across multiple taxonomic groups and probably
population stability through time. Our phylogeographic model se-
lection results support the quasi-dipolar scenario of Cheng et al.
(2013). For example, the population expansion inferred in N. plan-
iceps and populations 2 and 3 of N. brasiliensis are consistent in
timing and magnitude with the predictions of Cheng et al. (2013).
Population 1 of N. brasiliensis, which was inferred to be constant
in size, is located in an enclave of Caatinga within Cerrado (Parana
valley). The Caatinga is the largest nucleus of Seasonally Dry
Tropical Forests (SDTF) and characterized by xeric vegetation, high
seasonality, and unpredictable droughts. It is hypothesized that the
climatic oscillations during the Pleistocene led the expansion and
connection of now disjunct SDTFs (the Pleistocenic Arc Hypothesis
- PAH; Prado & Gibbs, 1993; Pennington et al., 2000). This hypoth-
esis is supported by the disjunct distribution of plants and animals
as well as molecular data (Lanna et al., 2018; Pennington et al.,
2000; Werneck & Colli, 2006). However, the exact time of the PAH
is uncertain and the SDTFs could have expanded earlier, during
the transition between Pliocene and Pleistocene, and have frag-
mented before the Last Glacial Maximum (Werneck et al., 2011),
which could explain the stable population sizes we recovered in
the longer term. In addition to climatic oscillations, the pattern of
diversification found by our study mirrors the current taxonomic
status of both species, though we found a hidden genetic diver-
sity within N. brasiliensis. The pattern of divergence among line-
ages within N. brasiliensis follows a southeast-northwest pattern of
differentiation, which is shared with other squamates in Cerrado
(Guarnizo et al., 2016; Prado et al., 2012; Santos et al., 2014).
Although the causes of this southeast-northwest pattern are un-
known, it is hypothesized that this pattern was probably driven by
landscape features (e.g., topography, rivers) and climatic conditions

that have been acting over time.

4.2 | Conclusion

Deep learning techniques have been successfully used in fields
such as medical sciences (Mobadersany et al., 2018) and agricul-
ture (Kamilaris & Prenafeta-Boldu, 2018), but their usage in evo-
lutionary biology has just begun (see Blischak et al., 2020; Flagel
et al., 2019; Sanchez et al., 2020; Schrider & Kern, 2018; Torada
et al., 2019). Our results showed that CNNs can be an effective
and promising approach for phylogeographic model selection.
We showed that a DNA alignment can be used as the source of

comparison of a large number of models, without the need of ge-
netic summary statistics. Also, our approach revealed a complex
evolutionary scenario among lizards distributed in contrasting
environments in South America, which involves hidden genetic
diversity, gene flow between nonsister populations, and changes
in effective population size through time. Finally, we encourage
future investigations to compare the relative performance of dif-
ferent approaches for phylogeographic model selection and assess
how key demographic parameters (e.g., divergence times, migra-
tion rates, changes in population size through time, etc.) affect the
accuracy of different approaches.
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