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This study evaluates the performance of multiple machine learning (ML) algorithms and electrical resistivity (ER)
arrays for inversion with comparison to a conventional Gauss-Newton numerical inversion method. Four
different ML models and four arrays were used for the estimation of only six variables for locating and char-
acterizing hypothetical subsurface targets. The combination of dipole-dipole with Multilayer Perceptron Neural
Network (MLP-NN) had the highest accuracy. Evaluation showed that both MLP-NN and Gauss-Newton methods
performed well for estimating the matrix resistivity while target resistivity accuracy was lower, and MLP-NN

produced sharper contrast at target boundaries for the field and hypothetical data. Both methods exhibited
comparable target characterization performance, whereas MLP-NN had increased accuracy compared to Gauss-
Newton in prediction of target width and height, which was attributed to numerical smoothing present in the
Gauss-Newton approach. MLP-NN was also applied to a field dataset acquired at U.S. DOE Hanford site.

1. Introduction

Among the various geophysical methods available, electrical re-
sistivity (ER) is one of the most common for geologic and hydrologic
applications (Loke et al., 2013). This method operates on the principle of
utilizing differences in electric potential for identifying subsurface ma-
terials by injecting an electric current into the subsurface through
galvanic contact between positive and negative electrodes (Rucker et al.,
2021a). Resultant difference in electric potential, specifically the
voltage, is then measured between two or more additional electrodes
(Rucker et al., 2021a; Singha et al., 2022). The broad spectrum of ap-
plications for the ER method encompasses environmental and engi-
neering disciplines such as hydrological surveying (Pearson et al., 2022)
and mining (LaBrecque et al., 1996). They have been extensively used
for determining the thickness of layered media and mapping geological
environments of aquifers (Riwayat et al., 2018; Rucker et al., 2021a).
Application of ER also includes locating and delineating geometric
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attributes of target zones, or anomalous bodies, of differing resistivity
with respect to the surrounding domain or subsurface matrix. ER can be
used to detect both conductive targets such as underground storage
tanks or tunnels (Pang et al., 2022) and resistive targets including
characterizing spills of non-aqueous phase liquid organic contaminants
(Kang et al., 2018).

Inversion of ER data is a crucial step in processing and interpreting
measurements for accurate reconstruction of subsurface material prop-
erties, as geologic interpretations derived from observed geophysical
data can often be misleading and inadequate in capturing the intricate
characteristics of subsurface heterogeneity. Inverse modeling refers to
the determination of the characteristics of a system (i.e., calibration or
parameter estimation), based on comparison between observations and
modeling results (Sidrane et al., 2022; Yeh et al., 2015). This is
commonly completed via the inverse approach, by iteratively mini-
mizing the difference between the observations and model estimated
values (an objective function), usually in a least-squares approach.
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Nonidentifiability exists when more than one set of parameter values
lead the model to reproduce the observed data within an allowable
difference (Tsai et al., 2022), which is due to the ill-posed nature of the
inverse modeling (Arridge et al., 2019). Geophysical inverse problems
are often ill-posed, nonunique, and nonlinear problems (Hayley et al.,
2011) implying that even minor inaccuracies in data can result in sub-
stantial discrepancies in the model parameters, which illustrates some of
the accuracy limitations for the industry standard numerical inversion
method. For instance, if a geophysical inverse problem involves esti-
mating the subsurface properties of a rock formation, the ill-posed na-
ture of the problem implies that slight errors or noise in the collected
data can lead to significant variations in the predicted rock properties.
Similarly, in the context of groundwater modeling, the nonuniqueness of
hydrogeological inverse problems suggests that small uncertainties in
the measured data can produce large differences in the estimated aquifer
characteristics, such as permeability or water storage capacity. For the
ER method, observed or measured apparent ER is transformed into an
estimate of the true resistivity value through a geophysical numerical
inversion (Loke et al., 2020). A contrast between materials of differing
resistivity helps to characterize different meta-attributes of targets
including size, width, height, shape, and location.

Geophysical inversion methods and machine learning (ML) tech-
niques both provide solutions to the inverse problem. Geophysical
inversion is typically founded upon models representing physical pro-
cesses that govern the recorded data, but ML represents a data-centric
statistical methodology aimed at resolving ill-posed inverse problems
through the exploitation of vast amounts of data through pattern
matching (Kim and Nakata, 2018). Several recent studies have used ML
techniques for ER inversion (Liu et al., 2020a) by proposing to build a
correspondence between measurements of apparent resistivity data and
the true resistivity spatial distributions mostly by utilizing convolutional
neural networks (CNN) (Aleardi et al., 2021; Liu et al., 2020b; Liu et al.,
2022; Vu and Jardani, 2021; Wilson et al., 2022). Another study by Liu
et al. (2020b) demonstrated that the use of adaptive convolutional
networks represents a promising approach for resolving the ER inverse
problem, as it utilizes convolutional kernels specifically optimized for
ER inversion. Another approach with fuzzy deep wavelet neural network
inversion was introduced by Dong et al. (2022), which uses an optimized
accelerated hybrid learning algorithm to invert resistivity data.
Furthermore, Jiang et al. (2020) proposed a multi-output, support vec-
tor regression as a nonlinear inversion method with limited ER learning
samples to solve the 2D ER inversion problem, but generally ER inver-
sion research has mostly focused on using the CNN class of ML methods
(Aleardi et al., 2021; Liu et al., 2020a; Liu et al., 2020b; Liu et al., 2022;
Vu and Jardani, 2021; Wilson et al., 2022). Despite the significant ad-
vancements and interest in using ML for ER inversion, there is a
noticeable gap in previous research regarding a comprehensive com-
parison and evaluation of contemporary ML algorithms and the quan-
tification of their performance with different kinds of ER geophysical
arrays. This constitutes a major overlooked aspect since different ER
array configurations have variabilities in resolution, acquisition effi-
ciency, depth of signal penetration, or signal-to-noise ratio (Rucker and
Glaser, 2015).

Since prior investigations have not compared a wide range of ML
methods for a set of ER arrays as applied to ER data inversion, the
objective of this study was to assess the ability of ML methods to
reconstruct the geometry and determine the location of an anomalous
target body, defined as a medium of contrasting resistivity relative to the
surrounding domain, in a 2D profile. To decrease development time and
training requirements, we focused on only predicting six key parame-
ters, which are target characteristics for locating and characterizing
buried targets. These six target-characterization predictors included
target location centroid in x and z directions (i.e., lateral and vertical
center positions), width of the target body, height of the target body,
target resistivity, and the matrix resistivity (i.e., resistivity of the sur-
rounding environment). This approach is similar to previous numerical
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ER inversion studies that examined domains with homogeneous regions
separated by a sharp boundary (Hiskiawan et al., 2023; Olayinka and
Yaramanci, 2000; Shamara et al., 2023). Several ER arrays were
compared using multiple ML methods to identify the combination with
the best target prediction capability, and then the best-performing ML
method and ER array was compared with an industry standard inverse
modeling approach using the Gauss-Newton method. ML algorithms
were also applied to a field dataset that was acquired over a known
plume of liquid waste disposed in sand and silt matrix at the Hanford
Site in central Washington State, USA. The area is well studied, and the
waste plume has been previously characterized (Rucker and Glaser,
2015; Rucker et al., 2013).

2. Materials and methods

A systematic approach to developing and evaluating ML for ER
inversion was used, starting from forward modeling to generate syn-
thetic data, and concluding with the application of the best-performing
algorithm to real-world data and reporting the results (Fig. 1). ML model
development and implementation stages included preparation of syn-
thetic datasets, hyperparameter selection, data pre-processing, ML
training/testing, evaluating the prediction results for comparison to the
test dataset, application to a field dataset, and the uncertainty quanti-
fication of the model.

2.1. Software and packages used

Software packages and Python codes used in this study are listed in
Table 1. Scikit-learn, a Python library, was used in this study for its
ability to integrate a diverse range of state-of-the-art ML algorithms. The
library is suitable for addressing both medium-scale supervised and
unsupervised problems (Pedregosa et al., 2011). Application of other
software packages listed in Table 1 are addressed in the following
sections.

2.2. Preparation of synthetic dataset

ER modeling code, ResIPy (Blanchy et al., 2020) was used to
generate 2D ER training and testing data by forward modeling hypo-
thetical scenarios with known resistivity distributions (Fig. 2). ResIPy
uses the finite element method (Kosloff and Baysal, 1982) with no flux
(Neumann) boundary conditions. ResIPy was chosen for its user-friendly
interface, specificity to ER modeling, reliance on established method-
ology, and active development community. The output of the forward
modeling process was the calculation of apparent resistivity (Fig. 2b),
which would be analogous to a field acquisition survey except the true
resistivity distribution was known for the hypothetical scenarios.

The hypothetical scenario series had a model domain of 120 x 40 m
(m) in size with a single embedded target body within a surrounding
matrix of differing material property (i.e., resistivity). This is a simple
two-domain version of heterogeneity that does not capture the typical
extent of subsurface spatial variability but is a common conceptualiza-
tion for locating individual buried targets such as underground storage
tanks or tunnels, waste spills, geologic lens, ore deposits, underground
mines, or karst-cave features. An example of the model mesh and
domain is illustrated in Fig. 2a, and the figure also shows arrows indi-
cating the inverse modeling process used to determine the resistivity
material property distributions from the apparent resistivity measure-
ment distribution with the other arrow showing the forward model
approach for comparison. Here, we only include one target to illustrate
the approach, but additional targets, or different shapes of targets, could
be added depending on site-specific conditions and survey goals. The
location, size, and dimensions of the target body varied over a wide
range for each of the six target characteristics for locating and charac-
terizing buried targets. Model setup included a surface array of 25
electrodes spaced 5 m apart for each of the four geophysical array
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Fig. 1. Workflow of model development, implementation, and comparisons with numerical inversion methods.
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Table 1
Software and/or source codes used in this study.
No.  Module Programming Purpose URL
Language/
Developer
1 Scikit-learn Python ML https://scikit-1
v1.0.2 implementation earn.org/
2 ResIPy v 3.4.1 Python API For forward https://gitlab.
modeling of ERT com/hk
data ex/resipy
3 RES2DINVx64 Aarhus For inverse https://www.
v4.05 Geosoftware modeling aarhusgeosoft
/validation and ware.dk/res
comparison 2dinv
4 Surfer v14.0 Golden Contouring, https://www.
Software plotting and golde
visualizing ERT nsoftware.

com/products/

surfer
5 Pi3nn Liu et al. (2021) Uncertainty https://github.
quantification of com/lius
model iyan/UQnet
/tree/maste
r/pi3nn
6 NumPy v Oliphant Numerical https://www.
1.21.5 (2007) computing/ NumPy.org
random number
generation

configurations. Forward modeling training/testing data set generation
for ML inversion evaluation included the performance comparison of
Alt3 Wenner (Cubbage et al., 2017), Wenner-Schlumberger, Dipole-
Dipole, and gradient arrays (Rucker et al., 2021b), which are four
different and commonly used ER arrays.

The hypothetical scenarios included ranges of the randomly gener-
ated values for each target variable used to modify the model material
property distributions for the forward modeling scenarios (Table 2). The
values for each variable were generated by using the random number
generator in the NumPy Python library (Oliphant, 2007), and the ranges
were designed to span typical values found in ER surveys. This library

Forward Model

provides robust capabilities for performing computations on extensive
multidimensional arrays and offers an expansive collection of mathe-
matical functions (Van Der Walt et al., 2011). Equal sample sizes of
20,000 scenarios (Data 1) were generated for each of the four arrays,
resulting in a total of 80,000 forward model data instances. Both
conductive and resistive target scenarios were considered in equal
proportion (10,000 data instances each) to avoid bias toward a partic-
ular target type. The minimum ratio between target and matrix re-
sistivity difference was set to 2:1 to ensure contrast between two
heterogenous mediums. Another batch of 20,000 scenarios (Data 2) of
the best performing array configuration was generated with extended
ranges of matrix and target resistivity to assess the feasibility of model
application on real world data that included larger resistivity values.

Data normalization is another important technique in data pre-
processing that rescales variables to a common scale, allowing for fair
comparisons and reducing impact of variables with different units or
scales on the analysis results (Gomez-Escalonilla et al., 2022). Several
methods exist for data normalization, for example min-max normaliza-
tion, z-score normalization, and normalization by decimal scaling (Al
Shalabi et al., 2006). Z-score normalization was used in this study
resulting in data with mean of zero and unit variance. Normalized input
features were then used for training all four above mentioned ML al-
gorithms on all four different geophysical array configurations.

The set of forward models were split into a 70:30 training-to-testing
ratio, with 14,000 records used for training and 6000 data instances
used for testing the algorithms. The decision to use a 70:30 training-to-
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Table 2
Ranges for the forward model datasets for six target parameters.
Parameter Data 1 Data 2
Min Max Min Max
Centroid x (meter) 1.5 118.5 1.5 118.5
Centroid z (meter) —29.5 -2.5 -21.5 -2.5
Width (meter) 1 118 1 118
Height (meter) 1 28 1 20
Matrix resistivity (ohm.meter) 1 1000 1 5000
Target resistivity (ohm.meter) 1 1000 1 5000
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Fig. 2. Conceptual diagram showing inverse and forward resistivity model, a) model mesh and the target body that shows region of contrasting resistivity with
respect to the matrix, and b) shows electrode spacing on upper land surface boundary and spatially variable apparent resistivity distribution from forward model

solution of electrical injection.
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testing ratio was based on standard practices, dataset size and
complexity, and reference from prior related studies (Chojnicki et al.,
2022). Independent data (input parameters) were the 2D spatial distri-
bution of apparent resistivity values obtained from the forward
modeling, upwards of 250 values per array. The dependent data for ML
prediction was based on the six target characteristics. Limiting predic-
tion to a small set of variables that describe a target’s attributes achieves
the goal of locating and defining the target spatial extent with a signif-
icant reduction in prediction variables compared to full 2D prediction of
spatial distribution of resistivity properties. Based on the parameter
estimation accuracy, comparison of results for the best-performing ML
method and geophysical array with the Gauss-Newton method (using
the industry standard RES2DINV model) was performed to evaluate the
comparative proficiency of ML versus conventional numerical inversion
techniques. To accomplish this task, results of Gauss-Newton inversed
2D spatial distribution of true resistivity were evaluated to determine
the six target parameters for comparison with the statistically best
performing ML algorithm. A thresholding technique was implemented
using Surfer 14.0 software to identify the target zone boundary and
delineate the six target characterization variables for comparison with
ML model results. Thresholding involved estimation of the two re-
sistivity zone means and calculating the boundary as the midpoint of the
difference between the two mean resistivities.

2.3. ML implementation for parameter estimation

An objective of this study was to evaluate ER inversion using a wide
range of ML methods. To identify the optimal ML method, performance
of four ML algorithms was compared, including Multilayer Perceptron
Neural Network (MLP-NN), Extreme Gradient Boosting Regressor
(XGBR), Random Forests (RF), and Light Gradient Boosting Machine
(LGBM). The choice of ML algorithms allowed for comparison of three
very different strategies for the ER inverse problem, and each ML
method is unique in architecture and approach. For example, MLP-NN
belongs to the family of Deep Neural Networks (which also includes
the CNN approach). RF belongs to a family of bagging type of ensemble
approaches (Wen and Hughes, 2020). XGBR and LGBM belong to the
boosting type of ensemble algorithms (Tran et al., 2021). These four
specific ML algorithms were considered for analysis based on a combi-
nation of factors such as their widespread usage, proven effectiveness in
handling regression tasks, ability to handle complex data patterns, and
compatibility with the dataset and research objectives. These algorithms
were chosen to ensure a comprehensive comparison across different
types of ML methods, providing a well-rounded evaluation of their
performance for the ERT inversion problem.

MLP-NN architecture design is contingent upon the selections made
regarding objective function, number of hidden layers, and number of
hidden nodes in each layer (Ramchoun et al., 2016). First, we chose an
MLP-NN regression model with three layers: one input layer, one hidden
layer, and one output layer. Hyperparameter selection is important in
implementing MLP-NN, because it significantly affects model perfor-
mance, including its ability to learn, generalize, and make accurate
predictions (Sahu et al, 2020). A trial-and-error approach was
employed to select the hyperparameters for the MLP-NN model
(Table 3). Selected hyperparameters included number of hidden layers,
number of nodes in each hidden layer, solver, number of epochs, and
activation function. This method involved iteratively training the model
with different combinations of hyperparameters and evaluating their
performance using the coefficient of correlation (represented by R?) as
evaluation metric. The combination that achieved the best results was
then chosen as the final set of hyperparameters for the MLP-NN model.
This approach has been widely used, and has been effective in deter-
mining optimal hyperparameters for neural network models (Kalliola
et al., 2021). We considered ‘tanh’ and ‘ReLU’ activation functions
during model development (Kunc and Kléma, 2024; Qi et al., 2017).
While ReLU helps address the vanishing gradient problem, it is not
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Table 3

Comparison and summary of MLP-NN model performance (R?) with different
hyperparameter configuration where R? represents combined coefficient of
correlation for six parameters for the test data.

Nodes (single hidden layer) Activation Solver R? for test data Epochs
10 tanh Adam 0.46 1000
100 tanh Adam 0.55 1000
1000 tanh Adam 0.58 2000
10 tanh Ibfgs 0.57 2000
10 tanh Ibfgs 0.60 3000
100 tanh Ibfgs 0.69 2000
100 tanh Ibfgs 0.70 3000
1000 tanh Ibfgs 0.76 3000
1500 tanh Ibfgs 0.79 3000
1500 ReLU Ibfgs 0.76 3000
2000 tanh Ibfgs 0.81 3000
Nodes (2 hidden layers) Activation Solver R? for test data Epochs
2000-2000 tanh Ibfgs 0.80 3000

always the superior choice for all scenarios. Activation functions like
‘tanh’ have their own advantages, such as being able to capture both
positive and negative values, which is beneficial for certain types of
data, e.g., for datasets pre-processed with the z-score normalization
(Karlik and Olgac, 2011). We decided to use the ‘tanh’ activation
function based on its superior performance over ReLU for this
application.

Table 3 shows that the coefficient of correlation for the predicted
parameters using ‘tanh’ was 0.81, which was higher than the 0.76 ob-
tained using ‘ReLU’. Similarly, the optimization solver ‘Ibfgs’ was
selected due to its superior performance (>R?) as compared to other
contemporary solvers such as ‘Adam’ as shown in Table 3. The hidden
layer was comprised of 2000 nodes, and although parameter estimation
was attempted using two hidden layers, this approach resulted in an
increase in computational time without improvement in model perfor-
mance as compared to the single hidden layer (Table 3). Therefore, MLP-
NN with a single hidden layer was used for the remainder of this
investigation. The size of the MLP-NN output layer was six and the
outputs (centroid-x, centroid-z, width, height, matrix resistivity, and
target resistivity) are the six feature parameters. The input layer size was
~250 and the inputs were the ~250 apparent resistivity values (corre-
sponding to the number of measurements for the geophysical array).

The second ML algorithm applied for estimating target character-
ization parameters was RF, a representative of the bagging ensemble
approach. RF is a meta-estimator that trains several decision trees on
different training dataset samples, using averaging to enhance predic-
tive accuracy and prevent over-fitting (Reading et al., 2015). Two
crucial hyperparameters for this algorithm are the number of base es-
timators and the maximum depth. Based on a trial-and-error approach
1000 estimators and a maximum depth of 100 for the decision tree were
selected as hyperparameters. Similar to the MLP-NN, the input data for
the RF model was the normalized feature data for the inputs (~250
apparent resistivity values), and the output was also a prediction for
each of the six target variables.

Lastly, two regression models from the boosting ensemble approach
were implemented, which included the XGBR and the LGBM regressors.
XGBR, proposed by Chen and Guestrin (2016), is a boosting technique
that creates strong learners through an additive training process and
minimizes over-fitting by incorporating model complexity as a regula-
rization term into the cost function (Pham et al., 2020). LGBM-based
models are considered faster and more memory-efficient than other
methods. LGBM uses ‘Gradient One-Side Sampling’ method to build
trees, retaining only instances with larger gradients and discarding those
with smaller gradients, leading to faster training and more accurate gain
estimation (Bisht et al., 2022). As with the other ML models, the input
data for the XGBR and LGBM models were the ~250 apparent resistivity
values and outputs were the six target parameters. Some strengths and
limitations of the ML methods used herein are shown in Table 4.
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2.4. Uncertainty quantification

Uncertainty quantification (UQ) of models is crucial, as it provides a
more complete understanding of the limitations and confidence levels of
predictions and decisions, enabling more informed and evidence-based
choices. The PI3NN method was developed by Liu et al. (2021) for
quantifying ML model prediction uncertainties. The method is compu-
tationally efficient, robust, and produces uncertainties consistent with
the confidence level (Liu et al., 2023). ML models are data driven, and
here we use them to learn the relationship between the ER observation
variables and the six unknown parameters based on the forward model
simulation scenarios. UQ can help diagnose whether the ML model has
learned the right relationship and if it has correctly solved the inverse
problem. PI3NN quantifies uncertainty using prediction intervals, which
are calculated using three neural networks. We used two prediction
interval metrics to evaluate the UQ performance: mean prediction in-
terval width (MPIW); and prediction interval coverage probabilities
(PICP). We refer the reader to (Liu et al., 2023) for the details of this UQ
approach.

This investigation is important especially when ground truth is un-
available, in that case it is not possible to calculate the prediction error
to evaluate performance. For the PI3NN method to quantify the uncer-
tainty, MPIW can be used to evaluate the model estimation accuracy. If
the MPIW of the estimated parameters in the test set has similar values
(usually in the same magnitude) to the training set, then the ML model
has learned the unbiased observation-parameter relationship and the
estimation results on the test set can be trusted. Additionally, the ML
model estimation can be full of uncertainty associated with the limited
training sample size, the uncertain model structure, and model hyper-
parameter values. It is critical to quantify the influence of these uncer-
tain factors on the parameter estimates. In an accurate UQ at a 95%
confidence level, the calculated prediction interval should cover
approximately 95% of the data points. PICP was used to measure the
accuracy of UQ, where the PICP of test data is calculated as the test data
ratio inside the prediction interval to the total number of test data.

2.5. Gauss-Newton Resistivity Inversion

To assess the robustness of ML-predicted inversion, a small subset of
forward models were used to generate synthetic ground truth and the
parameters (resistivity field) were also estimated by calibration using a
standard inversion code RES2DINVx64. Dey and Morrison (1979)

Table 4
Summary of strengths and limitations of four ML algorithms.

Algorithm  Strengths Limitations
Ability to learn complex non- i .
. . L Sensitive to hyperparameter tuning
linear relationships in data
MLP-NN Versatility in handling various Prone to overfitting if the network
types of data and feature architecture is too complex or if the
engineering dataset is small
Robust inst fitti d
opust agains O.V eruting an Lack of interpretability compared to
able to handle high- .
. . simpler models
RF dimensional data

Effective in capturing non-

linear relationships and

interactions between features

High predictive accuracy and

strong performance in various
XGBR regression tasks

Ability to handle missing data

and outliers effectively

Fast and efficient training and

prediction, especially for large

Computationally expensive during
training and prediction, especially
for large datasets

Sensitive to hyperparameter tuning

Requires careful regularization to
avoid overfitting

Less interpretability compared to
simpler models

LGEM datasets
Good handling of high- Requires careful hyperparameter
dimensional data with many tuning and regularization to
features prevent overfitting
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presented the 2D electrical resistivity partial differential equations,
boundary conditions, discretization, and numerical solution. Borrowing
from the descriptions of resistivity inversion by others (Dahlin et al.,
2002; Hilbich et al., 2009; Loke and Barker, 1996; Loke and Dahlin,
2002), the equation for the constrained optimization, nonlinear least-
squares (i.e., Gauss-Newton method):

[T RaJi + (MW'RaW) ]Ar; = JReg; — (MW Ry W)y (€h)

describes the relationship between model parameters and measured
data. The model parameters in vector r are the ER values at each dis-
cretized cell within the model domain. The optimization procedure
marches along a piece-wise linear path on the error surface using a
model updating procedure to calculate a Ar; at iteration i using infor-
mation about rj.; and the sensitivity matrix, J, containing the partial
derivative of data measurements relative to the model parameters. To
dampen the effects of noise being amplified through the modeling pro-
cedure, a matrix roughness filter (W) and data and model weighting
matrices (Rq and Ry, respectively) are used in the algorithm. The
remaining parameters include the data misfit vector, g;, and the spatial
dampening factor ();). The optimization procedure objective is to reduce
the misfit between measured and modeled apparent resistivity values in
a least-squares sense.

3. Results and discussion

3.1. Comparison of performance of ML methods for four ER arrays for
target delineation

Table 5 presents the median values of dimensionless relative error of
the four ML models and for each of the four ER arrays. Medians were
considered to reduce the effect of data skewness toward higher values
(data distribution for each parameter is shown in Fig. S1 of Supporting
Information (SI)). The unitless relative error is a measure of the model
prediction accuracy compared to the true values. The relative error was
calculated for each of the six predicted target identification parameters
by comparison of testing dataset predictions to hypothetical true values.
It is calculated as the ratio of the difference between the predicted and
true values relative to the true values expressed as:

Relative error = (|True value — Predicted value|)/True value 2)

and standard error of the mean (SEM) was calculated as:

SEM = Standard deviation of Median Relative Error/+/ (Number of samples)
3

Among the four ER arrays tested, the dipole-dipole array performed
as well as or better than the other arrays for all ML models based on the
average median relative error of the six target parameters (Table 5). The
dipole-dipole array combined with the MLP-NN model produced the
lowest average relative error (0.16 + 0.06) and the XGBR-Wenner-
Schlumberger combination had the highest relative error (0.25 +
0.07). Among the estimated target parameters, height and target re-
sistivity had the highest relative error for all ML model-ER array com-
binations. Relative errors for these two parameters were several times,
or more, greater than the relative errors associated with the remaining
four parameters. ML models were additionally evaluated by taking the
arithmetic mean of average median relative errors for each of the four
ML groups (Table 5). The MLP-NN model produced the lowest arith-
metic mean of relative error (~0.17). This result is also consistent with
the strengths of MLP-NN to solve complex non-linear problems
(Table 4). In comparison, the highest arithmetic mean of relative error
(~0.24) was produced by XGBR method, which was 41% higher than
MLP-NN. RF and LGBM models produced errors of ~0.21 and ~ 0.22,
respectively. Nevertheless, due to the high within-ML model variance
there was no statistically significant difference among ML model mean
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Table 5
Performance, as relative error, comparison for ML models and ER arrays for target parameter estimation. The last two columns show the average relative error
(standard error of the mean) for each array and each ML method.

ML ER Array Target Target Target Target Matrix Target ER Array Mean ML Model Mean
Model Centroid-x Centroid-z Width Height Resistivity Resistivity (SEM)” (SEM)”

Alt3 wenner 0.08 0.10 0.17 0.33 0.004 0.41 0.18 (0.16)

MLP- Dipole-dipole 0.06 0.09 0.15 0.28 0.006 0.38 0.16 (0.14)

NN Gradient 0.07 0.10 0.15 0.29 0.004 0.38 0.17 (0.14) 0.17 (0.14)
Wenner- 0.06 0.10 0.17 0.31 0.004 0.41 0.18 (0.16)
Schlumberger
Alt3 wenner 0.05 0.16 0.30 0.40 0.003 0.36 0.21 (0.17)

- Dipole-dipole 0.05 0.14 0.26 0.38 0.003 0.37 0.20 (0.16)
Gradient 0.05 0.15 0.26 0.39 0.003 0.37 0.20 (0.16) 0.21 (0.15)
Wenner- 0.05 0.15 0.30 0.39 0.004 0.37 0.21 (0.17)
Schlumberger
Alt3 wenner 0.11 0.18 0.31 0.42 0.01 0.42 0.24 (0.17)

«Gpr  Dipole-dipole 0.10 0.16 0.28 0.41 0.01 0.41 0.23 (0.17)
Gradient 0.10 0.18 0.30 0.42 0.01 0.42 0.24 (0.17) 0.24 (0.16)
Wenner- 0.12 0.17 0.33 0.42 0.01 0.43 0.25 (0.17)
Schlumberger
Alt3 wenner 0.08 0.16 0.27 0.40 0.01 0.40 0.22 (0.16)

Lopy  Dipole-dipole 0.07 0.13 0.23 0.37 0.01 0.39 0.20 (0.16)
Gradient 0.08 0.15 0.24 0.39 0.01 0.40 0.21 (0.16) 0.22 (0.15)
Wenner- 0.09 0.15 0.31 0.40 0.01 0.42 0.23 (0.17)
Schlumberger

@ Arithmetic mean of relative errors across the six target parameters within the given array. SEM = standard error of the mean.
b Arithemetic mean of all relative errors within the listed ML model.
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A. Jamil et al.

relative errors.

3.2. Comparison of Gauss-Newton numerical inversion and ML-based
parameter estimation

Thirty randomly selected scenarios from the MLP-NN ML synthetic
dataset (applied with Dipole-Dipole configuration) were used to conduct
prediction performance comparison between MLP-NN and Gauss-
Newton numerical inverse modeling methods for target-
characterization parameter estimation. Five of the thirty scenarios are
presented to illustrate the comparison of these methods (Fig. 3). From
visual inspection of these scenarios, it appears that both inversion
methods generally were capable of target geometry reconstruction
based on apparent resistivity values, but the MLP-NN results had (by
construction) sharp boundaries for the target and the Gauss-Newton
results had a longer transition in resistivity at the boundary between
the target and the matrix, which was attributed to the smoothing nature
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of the numerical solution approach. In some cases, the size of the target
determined from the Gauss-Newton method was larger than the true
target, and MLP-NN provided a more accurate match to the true target
size (Fig. 3a and c). The rectangular shape of the target in these scenarios
provides a straight-forward evaluation of the variables, whereas, since
the model can capture the centroids of regular shapes, similar results are
expected for irregular shapes, as well. These illustrative examples sug-
gest that MLP-NN obtains a more accurate prediction of boundary lo-
cations and target spatial distribution, or improved reconstruction of
target location geometry, as compared to Gauss-Newton inverse
modeling. This improved performance of MLP-NN on the subset of
scenarios as compared to Gauss-Newton method is likely due to its
ability to solve non-linear, complex regression problems (Fallah et al.,
2009), and numerical inverse models have accuracy limitations for
locating sharp boundaries due to smoothing inherent to the numerical
method. However, the least-squares method can be modified to produce
a model with sharp boundaries together with a smooth resistivity
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variation, which has been used for field surveys were existence of sharp
boundaries is known from engineering, geological, seismic refraction or
ground-penetrating radar data (Elwaseif and Slater, 2012). In theory, it
might be possible to decrease smoothing effects by employing a finer
mesh in the finite-element grid, which would increase computational
cost may not improve the inversion accuracy. The Gauss-Newton is also
considered more effective and reliable for linear systems, but for non-
linear systems, convergence slows down or may not even occur, lead-
ing to potentially unreliable parameter estimates (Huang et al., 2010).

The predictions of the six target variables, obtained with the Gauss-
Newton and MLP-NN methods, are plotted versus the true values in
Fig. 4. MLP-NN predictions are obtained for all 6000 samples in the
testing dataset while, due to a high computational cost, Gauss-Newton
predictions are only obtained for 30 samples from the dataset. In gen-
eral, the data and regression results were comparable between both
inversion methods for most of the six target characterization variables
(see SI for regression statistics). The Gauss-Newton and MLP-NN
regression lines overlap in some cases and the regression equation
slope values are similar to each other, especially for ‘centroid-x’,
‘centroid-z’, and ‘matrix resistivity’ (Fig. 4a, b, e), which all had slope
values that were approximately unity (>0.8) as a one-to-one match
between prediction and the correct result. Regression slope values close
to unity confirm the accuracy and lack of bias for these two inversion
methods. Both Gauss-Newton and MLP-NN methods have shown
promise for predictive capability of target lateral center location as
‘centroid-x’, vertical center as ‘centroid-z’, and ‘matrix resistivity’,
which supports the application of ML for ER inversion and for mapping
the location of heterogeneous structures such as, for example, subsur-
face karst features or perched aquifers.

The apparent increase in data scattering in both models for ‘centroid-
z’ and ‘height’ (Fig. 4b and d) compared to ‘centroid-x’ and ‘width’
(Fig. 4a and c) is generally due to the differences in plot length scales (i.
e, 120 m in Fig. 4a and 4c and 30 m in Fig. 4b and d). However,
‘centroid-z’ and ‘height’ (Fig. 4b and d) did have lower R? values, which
is consistent with prior studies as target vertical position directly im-
pacts prediction capability of ML used for ER inversion (Liu et al.,
2020a). For target ‘width’ and ‘height’, the MLP-NN regression equation
slope values were closer to unity compared to the Gauss-Newton method
regression equation slope values (Fig. 4c and d). Plots showing a slope
value <1 indicate that the Gauss-Newton had lower accuracy and
increased bias (underprediction) compared to the MLP-NN method.
Since the ‘width’ and ‘height’ are dependent on the target boundaries,
we attribute this lower accuracy to the smoothing nature of the nu-
merical solution approach (noted above). Fig. 4c and d results are
consistent with those in Fig. 3 and confirm that MLP-NN provides a more
accurate prediction of boundary locations and target spatial distribution
as compared to Gauss-Newton inverse modeling. These results suggest
that MLP-NN has relatively less error and prediction bias and could be
preferred over the Gauss-Newton method where determination of target
structure boundaries is required in practical field applications. Both
inversion approaches produced highly accurate and precise predictions
for ‘matrix resistivity’ (R? > 0.98; Fig. 4e), slope approximately one, and
low data variance. Both Gauss-Newton and MLP-NN also show a linear
trend in prediction of the ‘target resistivity’ (Fig. 4f). However, there is a
high variance in predicted values, and both regression equation slopes
are less than one with underprediction bias. These results indicate both
methods have reduced accuracy for ‘target resistivity’ as compared to
‘matrix resistivity’, which was attributed to the smaller size of the target
as compared to the entire 2D matrix. The mean target size was 396 m?,
which is a small fraction of the total 4800 m? for domain. Despite these
limitations in prediction sensitivity, it can be inferred that MLP-NN
model can be advantageous over Gauss-Newton method for approxi-
mation of ‘target resistivity’ in field scenarios but with lower prediction
accuracy as compared to ‘matrix resistivity’.
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3.3. Uncertainty Quantification of Neural Network

The mean and standard deviation of each of the six target parameters
were computed, and the uncertainty in the parameter estimates were
represented in terms of the 95% confidence intervals. A PICP score of
0.95 was achieved for all parameters (Table 6) indicating there is 95%
probability that the true responses are included within the predicted
intervals and showing a confidence-consistent uncertainty quantifica-
tion. Additionally, the MPIW values are similar between the training set
and test set, suggesting that the ML model has reasonably learned the
underlying observation-parameter relationship, and the parameter es-
timates for the test set can be trusted.

3.4. Application of ML models on field dataset

The field data set included ER data for multiple arrays, including the
pole-pole array, that were acquired over a series of infiltration trenches
(Rucker and Glaser, 2015). The trenches were designed to dispose liquid
radiological waste associated with plutonium production at the U.S.
DOE Hanford site in the mid-1950s. A series of eight trenches received
15 x 10° L of sodium nitrate liquid waste between 1954 and 1955
(Lindenmeier et al., 2002). Several steel cased wells were installed for
geophysical well logging to detect neutron and spectral gamma emitting
contaminants. In general, spectral gamma logging revealed high Cs-137
concentrations in the top 10 m of soil, and in some cases Co-60 to depths
of 14 m (Rucker et al., 2013). A soil characterization borehole also
revealed significant nitrate concentrations from depths 17 to 61 m below
ground surface. The sodium nitrate liquid waste was the low-resistivity
target for ER investigation.

The pole-pole data were converted to both Dipole-Dipole and Alt3
Wenner arrays using the procedure outlined in Rucker and Glaser
(2015). The direct conversion ensured that the setup for both arrays met
the input requirements for the ML input. The field data were acquired
using 9 m electrode spacing, as opposed to the hypothetical model ER
training data that were generated using 5 m electrode spacing. Addi-
tionally, the apparent resistivity values for field data extended beyond
the hypothetical model training dataset matrix and target resistivity
ranges (Data 1 of Table 2). Some of the apparent resistivity values (42 of
250) from the converted Alt3 Wenner data expanded beyond 1000 Q.
meter, which were preprocessed to 1000 Q.meter values to be consistent
with the ML model (training set range for Data 1 was 1000 Q.meter).
Therefore, MLP-NN performance was compared for ‘matrix resistivity’
and ‘target resistivity’ prediction of the testing set from Data 2 with
model performance from training/testing using Data 1 (Table 2), and
both training-testing sets used the constant 70:30 ratio. The primary
difference was that Data 2 contained expanded matrix and target re-
sistivity ranges including the field dataset range to evaluate MLP-NN
prediction performance over the expanded ranges that included the re-
sistivity values from the field data set (up to 5000 Q.meter). Fig. 5
presents MLP-NN predictions of matrix resistivity and target resistivity
for Data 2. These results indicated that for both parameters, predictions
for the increased resistivity range were consistent with predictions ob-
tained with the smaller resistivity ranges (Data 1) (Fig. 4e and f). Fig. 4e
and 5a for the matrix were highly comparable, and Fig. 4f and 5b were

Table 6
Comparison and summary of UQ results for MLP-NN algorithm and Dipole-
Dipole array combination based on Pi3nn method.

Parameter PICP Score (Test Data) MPIW Training Set MPIW Test Set

Centroid x 0.95 1176.14 1194.29

Centroid z 0.95 5.52 5.56

Width 0.94 8.01 7.94

Height 0.95 3.69 3.68

Matrix 0.95 1.25 1.23
Resistivity

Target Resistivity ~ 0.95 5.53 5.52
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Fig. 5. MLP-NN results for prediction of a) matrix resistivity, b) target resistivity on Data 2 with expanded resistivity ranges.

also comparable for the target resistivity. Both R? and slope for the two
parameters were closely aligned to indicate model consistency with
respect to limited and expanded ranges with no significant loss in
accuracy.

The field dataset was inverted using the standard Gauss-Newton
inversion method (RES2DINVx64) and the MLP-NN. Fig. 6 presents
Gauss-Newton results in the upper row, along with the MLP-NN results
in the lower row. Results for the Dipole-Dipole and Alt3 Wenner arrays
are shown in the left and right columns, correspondingly. Note that the
MLP-NN Alt3 Wenner scale does not extend to 1 Q.meter. For both ER
arrays, the results shown in Fig. 6 indicate that both Gauss-Newton and
MLP-NN predict similar locations and sizes for the target. It should be
noted that the proposed MLP-NN method uses only six variables to
describe the target and, therefore, represents any target as a rectangle
with sharp boundaries. The Gauss-Newton method attempts to recon-
struct the actual shape of the target, and we saw for the synthetic sce-
narios that the Gauss-Newton reconstruction can distort the target shape
and smear its boundaries. Both lateral and vertical coordinates of the
target location were more clearly identified by MLP-NN due to the sharp
boundaries between target and matrix, and these findings are consistent
with those discussed previously for the hypothetical scenarios (Figs. 3
and 4).

The MLP-NN and Gauss-Newton predictions of ‘target resistivity” are
more similar to each other for the Dipole-Dipole dataset than for Alt3
Wenner dataset, which is illustrated by the different log resistivity scale
that did not extend to 1 Q.meter for the Alt3 Wenner in the MLP-NN
prediction. This result is also consistent with the trends from Table 5
for the hypothetical results. MLP-NN prediction with the Alt3 Wenner
dataset was in close agreement with the Gauss-Newton predictions only
for the ‘matrix resistivity’ out of all six target variables. Since the ‘true’
solution for the field dataset is unknown, it is challenging to estimate the
accuracy of the two methods for this field application (measured and
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inverted pseudosections and % differences are in SI). The data misfit for
the dipole-dipole array data set (Fig. 6) with the Gauss-Newton method
is ~14.3% (Fig. S2), while the data misfit with the MLP-NN method is
larger (~170%). The resistivity of the MLP-NN model rectangular model
is 22.37 Q.m while the background resistivity is 1317 Q.m. However, the
use of only six inverted variables for location characterization of a
subsurface target has been shown effective for both hypothetical syn-
thetic and field data inversions. The comparison with the Gauss-Newton
method shows that the proposed MLP-NN method with six target vari-
ables can be generalized for field data to characterize the location and
extent of liquid waste released at the U.S. DOE Hanford site. Specifically,
MLP-NN along with Dipole-Dipole produced a reasonable match with
standard numerical Gauss-Newton inversion method (Fig. S10 and S11),
and the six variable target characterization approach for ML successfully
locates and defines the target spatial extent with a significant reduction
in amount of prediction variables compared to the prediction of the full
2D spatial distribution of resistivity properties.

These results are comparable to previously published ER inversion
approaches. Some previous studies have examined numerical methods
that can be used to improve identification of sharp boundaries, and as
noted above there have been a few studies that used numerical inverse
modeling for ER that focused on target location variables instead of full
2D domain inversion. This type of approach has been previously carried
out using local (Olayinka and Yaramanci, 2000) and global (Shamara
et al.,, 2023) nonlinear optimization methods, and these models were
able to provide sharp boundaries without numerical smoothing. How-
ever, numerical inverse modeling approaches typically are dependent on
neighboring values within the spatial domain, which can cause
smoothing and increases computational demand. Traditional numerical
inverse modeling employ optimization methods to estimate parameters
through an iterative process, where computational costs escalate with
the number of parameters and the nonlinearity of the model. In highly
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Fig. 6. MLP-NN and Gauss-Newton predictions on field dataset for dipole-dipole and Alt3 wenner array.



A. Jamil et al.

nonlinear problems with many parameters, a significant number of
model evaluations are required to identify the optimum. Often, multiple
optimization runs using different initial parameter values are necessary
to avoid local optima. Computational demands for standard numerical
inverse methods scale by N"3, where N is the number of unknown pa-
rameters, and the scaling limitations are mainly due to Jacobian cal-
culations in optimization algorithms.

ML-based inverse modeling involves training a NN to learn the in-
verse relationship between measurable variables and unknown param-
eters. After the training phase, this model can quickly evaluate any given
observations to produce corresponding parameter estimates. The
training data for this model can be generated by running the physical
model in parallel. Another way to reduce the time needed to train the ML
could be through use of a semi-analytical method such as the boundary
element method (Shamara et al., 2023; Xu et al., 1998). ML methods
have a nearly linear scaling with N, which is achieved through efficient
back-propagation algorithms. For an example that examined the inverse
Darcy flow equation, the authors demonstrated this computational
advantage of ML methods and their computational cost estimate
included the training time (Yeung et al., 2022). Computation efficiency
is further increased for ML using the six-variable target characterization
approach instead of evaluating the entire 2D spatial domain. Depending
on the array type and size, at least 250 ER measurements would be
required for ER inversion for the entire 2D domain, and ML prediction
using only the six target characterization variables is only ~2% of the
variables needed for ML prediction of the 2D domain. In summary, ML-
based inversion offers at least two primary advantages over traditional
numerical inverse modeling:

1. Computational Efficiency: ML methods generate training data in
parallel. After training, evaluations typically take just seconds.
Traditional numerical inverse modeling, however, solves optimiza-
tion iteratively and often requires multiple runs to mitigate local
optima, with each run involving numerous iterations to achieve
convergence.

2. Adaptability to New Measurements: Once an ML model has learned
the inverse relationship, it can quickly produce parameter estimates
for any new set of measurements without the need for re-training.
Conversely, traditional numerical inverse modeling must be re-
performed for each new set of measurements, adding time and
complexity.

An important limitation for data-driven approaches, such as ML
methods, is the potential for results to become physically infeasible.
However, data-driven ML can also be used in conjunction with process-
based or physics-based models, and physics informed neural networks is
just one example in a growing body of research developments (Yeung
et al., 2022). The ML models developed herein were trained using so-
lutions to physics-based hypothetical models as an example approach for
using process-based modeling to support ML development.

4. Conclusions

Study results confirm the feasibility of ML techniques for ER inver-
sion for predicting the location and geometry characterization of a
subsurface target zone, or anomalous body, of differing resistivity. Our
unique approach constrains the ML prediction to only six target location
and size characterization parameters. This approach was used to locate
and define the target spatial extent while providing a significant
reduction of the number of unknowns in the ER inversion (the number of
discrete values of the 2D resistivity field). For the first time to the au-
thors’ knowledge, this investigation compared several ML methods over
a range of ER arrays. Comparative analysis of four ML algorithms and
four geophysical arrays revealed that the MLP-NN algorithm and Dipole-
Dipole array combination produced the least error or highest accuracy.
We found that the MLP-NN results are comparable to the traditional
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Gauss-Newton numerical inversion method (as the commonly used
RES2DINVx64 model). Assessment of model performance indicated that
both MLP-NN and Gauss-Newton numerical inversion techniques are
more accurate in predicting the ‘matrix resistivity’ than the ‘target re-
sistivity” for the hypothetical scenarios. Both methods exhibit compa-
rable model performance for the estimation of other target location
parameters, whereas MLP-NN is more accurate than the Gauss-Newton
method for estimating the target’s ‘width’ and ‘height’, which was
attributed to numerical smoothing in the Gauss-Newton approach. In
both methods, ‘centroid-z’ and ‘height’ predictions had more error and
uncertainty compared to ‘centroid-x’ and ‘width’. This study provides
quantitative confirmation of the ML and numerical method compara-
bility, which was applied to a field data set from the U.S. DOE Hanford
Site. MLP-NN predicts a sharp boundary, which is beneficial for
detecting boundaries of geological layers, karst features, or foreign ob-
jects that have high resistivity contrasts. Further studies with a known
ground truth are needed to estimate the comparative advantages of the
MLP-NN and Gauss-Newton methods for identifying targets with natu-
rally diffuse boundaries.
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