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Abstract 

Experiments comparing diploids with polyploids and in single grassland sites show that 

nitrogen and/or phosphorus availability influences plant growth and community composition 

dependent on genome size; specifically, plants with larger genomes grow faster under nutri- 

ent enrichments relative to those with smaller genomes. However, it is unknown if these 

effects are specific to particular site localities with speciifc plant assemblages, climates, and 

historical contingencies. To determine the generality of genome size-dependent growth 

responses to nitrogen and phosphorus fertilization, we combined genome size and species 

abundance data from 27 coordinated grassland nutrient addition experiments in the Nutrient 

Network that occur in the Northern Hemisphere across a range of climates and grassland 
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communities. We found that after nitrogen treatment, species with larger genomes generally 

increased more in cover compared to those with smaller genomes, potentially due to a 

release from nutrient limitation. Responses were strongest for C3 grasses and in less sea- 

sonal, low precipitation environments, indicating that genome size effects on water-use-effi- 

ciency modulates genome size–nutrient interactions. Cumulatively, the data suggest that 

genome size is informative and improves predictions of species’ success in grassland 

communities. 

 
 
 

 

Introduction 

Genome size (GS) varies >2,400-fold across angiosperms [1], the largest range found in any 

comparable eukaryotic group. It has been proposed that GS variation impacts many aspects of 

a plant’s biology, including its life cycle, nutrient demands, water-use efficiency, and minimum 

cell size [2]. Considering nutrient demands, species with comparatively larger GS are hypothe- 

sized to be more growth-limited by low nitrogen (N) and/or phosphorus (P) availability, and 

to show greater positive growth responses following N and P additions than plants with com- 

paratively smaller GS, owing to the hypothesized increased N and P costs of building and 

maintaining larger genomes [3,4]. In support of these hypotheses, greenhouse experiments 

comparing diploid and polyploid cytotypes have shown that plants with comparatively larger 

genomes exhibit faster growth relative to those with smaller genomes when grown under plen- 

tiful N- and P, but such advantages are lost when either of these nutrients are limiting [5–7]. In 

addition, experiments at single grassland sites have shown that plant species with larger GS are 

more productive on N and/or P-fertilized plots compared with low N and/or P plots [3,4,8,9]. 

What is not known to our knowledge is how widespread interactions between GS and nutri- 

ents on plant growth are across areas in separate geographical regions, characterized by differ- 

ent climatic conditions and species assemblages. Grassland ecosystems cover approximately 

40% of global land area, providing diverse ecosystem services [10–12], and improved under- 

standing of GS-nutrient interactions may lend increased predictive power in terms of how 

these ecosystems may change following anthropogenic eutrophication under climate change. 

In grasslands worldwide, N and P fertilization has been shown to increase community pro- 

ductivity but lower species diversity [10,11]. This is because fertilization shifts communities 

towards those that compete more for light than for nutrients, with the most successful plants 

being those that are taller, which receive more light per unit size and are able to shade out com- 

petitors [12–14]. Furthermore, research has shown that when species compete for limiting 

resources (such as nutrients or water), those requiring lower levels of that resource are better 

able to outcompete other species [10,15]. Applied to grasslands, where N and/or P availability 

often limit productivity [16–18], we predict that species with smaller genomes exhibit faster 

growth rates under ambient site conditions relative to those with larger genomes, because they 

have lower cellular N and P requirements. Upon fertilization, however, we predict species with 

comparatively larger genomes are released from GS-nutrient constraints, enabling faster 

growth. In part, this faster growth may arise from increased rates of cell expansion, due to 

their increased minimum cell size [19,20] and/or from hybrid vigor in polyploids [21]; both 

allowing larger GS plants to outcompete smaller GS plants via shading [8]. 

Climatic factors, such as temperature and water availability, could also alter the effects of 

nutrient limitation on productivity [16,22] and differentially influence N and P treatment 

responses dependent upon species’ GS. For example, higher ambient temperatures favor 

https://doi.org/10.1371/journal.pbio.3002927
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growth by cell division rather than by cell expansion [19] resulting in faster biochemical reac- 

tion rates [23], which could potentially increase N and P demands and cellular N and P alloca- 

tion trade-offs. Warmer climates would therefore be predicted to favor smaller GS species 

[24,25], which have lower N and P demands and faster cell division rates [26]. Low water avail- 

ability may also influence plant growth rates dependent upon GS, although opposing hypothe- 

ses exist as to whether increased water availability will favor or disadvantage species with 

comparatively larger GS [27,28]. For example, increased stomatal size [29] of species with 

larger genomes could result in increased water loss [30] and lower water-use efficiency, if the 

increased size leads to increased overall stomatal pore area (area × density). Under such a sce- 

nario, low water availability should favor smaller GS species independent of nutrient availabil- 

ity [2,28]. Alternatively, the increased cell size of larger GS species may increase their water 

tissue storage capacity [27], and increase water-use efficiency if the total pore area per unit of 

leaf area does not increase [31], enabing them to store and conserve more water and hence 

maintain faster growth rates under drier conditions than smaller GS species. Furthermore, 

intra-annual fluctuations in temperature and precipitation could also affect GS-dependent 

growth nutrient interactions. Areas with more restricted growing seasons or with extreme wet 

and dry cycles might favor faster-growing species, which may benefit species with smaller 

genomes that have faster cell division rates and generation times [26,28]. In contrast, areas 

with longer, cooler growing seasons might favor growth by cell expansion [19] and thus species 

with larger GS, which have greater minimum cell sizes and can potentially grow while under- 

going fewer costly cell cycles than those with smaller genomes. 

Plant groups often differ in their resource requirements and allocation strategies [32,33] 

and such differences could also influence GS-dependent growth responses to nutrients. For 

example, C4 plants are likely to respond less to N fertilization than C3 plants, as they have a 

higher N-use efficiency [34,35]. Therefore, C3 plants with larger genomes may be more sensi- 

tive to changes in nutrient availability than C4 plants. Furthermore, it might be particularily 

advantageous for annual species growing in more seasonal climates with extreme fluctuations 

in climatic conditions to possess a small genome, as it would enable them to undergo faster 

cell cycles and grow quicker during the short periods when conditions are favorable for growth 

[36,37]. Lastly, rhizobium symbiosis in legumes and the ability of geophytes to store nutrients 

in underground storage organs [38,39] may increase the tolerance of species with larger 

genomes to N and/or P limitation [40], rendering them less responsive to N and P fertilization. 

To decipher how these different factors might impact the GS-dependent growth responses 

to N and P, we address how GS and N and P fertilization affect plant growth on 27 grassland 

sites distributed across 2 continents in the Northern Hemisphere (S1 Fig and S1 Table). Sites 

varied in both climatic conditions (e.g., temperature, water availability, and seasonality) and in 

species assemblages (including species differing in their photosynthetic pathway (i.e., C3/C4) 

and functional groups). All communities were on sites within the Nutrient Network, a global 

research collaboration that established the same experimental design which controls for nutri- 

ent treatment and which generates data on grassland productivity, diversity, and community 

composition (https://nutnet.org/ [41]). By combining species GS, percent cover, functional 

group, and site climatic data, we tested the following 3 hypotheses using a range of approaches, 

including phylogenetically corrected models: 

Hypothesis 1: N and/or P fertilization reduces cover of smaller GS species and increases cover 

of larger GS species across a diverse range of grassland communities. 

Hypothesis 2: The magnitude and direction of GS-dependent responses to N and/or P fertili- 

zation depends upon temperature, water availability, and seasonality. 

https://doi.org/10.1371/journal.pbio.3002927
https://nutnet.org/
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Hypothesis 3: The magnitude and direction of GS-dependent responses to N and/or P fertili- 

zation varies with plant functional group and photosynthetic pathway, being more promi- 

nent in grasses than in legumes. 

 

 

Results 

GS diversity and percent cover varies between functional groups 

In total, 597 individual GS values (expressed as pg per 1C, the DNA amount of an unreplicated 

gametic nucleus [42]) were obtained from either the Plant DNA C-values database [43] or 

from new flow cytometry estimates using fresh leaf material (see Methods and S1 Data). This 

provided GS data for 469 of the 705 species found on the 27 sites (including different site-spe- 

cific values for species found across multiple sites), accounting on average for 80% of angio- 

sperm species encountered at a site (S1 Table and S2 Data). GS ranged 230-fold from 0.21 pg/ 

1C in Verbascum thapsus (Scrophulariaceae) to 48.71 pg/1C for Sisyrinchium campestre (Irida- 

ceae) and displayed a positively skewed distribution, with the mode being smaller than the 

mean (Figs 1A and 2), mean GS = 2.73 pg/1C, median GS = 1.49 pg/1C, mode = 0.90 pg/1C). 

Significant GS differences were observed between plant functional groups (F6, 418 = 4.50, 

p < 0.001), with geophytes and C3 grasses having higher mean GS than other groups (Fig 1A). 

C4 grasses had a significantly lower mean GS and a more positively skewed GS distribution 

than C3 grasses (S3 Fig). Across all sites, functional groups also significantly differed in plant 

coverage on pretreatment plots (F6, 4451 = 427.4, p < 0.001), with grasses and perennial forbs 

being the most abundant (Fig 1B). 

 

N fertilization increases community cover-weighted GS across all sites, but 

has a stronger effect on less seasonal or drier sites 

To examine the effect of N and P fertilization on the average GS of plants growing on the 

experimental plots and account for differences in dominance of each species, GS and percent 

cover data were used to calculate a mean cover-weighted GS (cwGS) for each plot at each site. 

Log response ratios (LRRs) were calculated to assess: (i) the difference in cwGS between con- 

trol and nutrient-treated plots (ΔcwGS control vs treatment); and (ii) the change of each plot from 

pretreatment conditions (ΔcwGS pretreatment vs. treatment) (see Methods). 

Compared to control plots, cwGS was significantly larger on plots treated with N, both 

alone and in combination with P (Fig 3 and S2A and S2B Table; ΔcwGS control vs. treatment: F1, 

592 = 18.96, p < 0.001, R2 = 0.069), but not on plots treated with P alone (Fig 3 and S2A and 

S2B Table; F1, 592 = 1.20, p = 0.274). These increases in cwGS were partly influenced by the 

recruitment of new species to the sites, but mostly they were driven by the increased growth of 

established, large GS species, such as Arrhenatherum elatius (GS = 8.1 pg / 1C at Herons- 

brook), Elymus repens (GS = 11.8 and 11.5 pg / 1C at Jena and Cedar Creek), and Bromus iner- 

mis (GS = 11.4 pg / 1C at Kellogg). While combined N+P-treated plots appeared to have a 

higher cwGS than plots treated with N alone (Fig 3), the interaction effect was not significant 

(S2A and S2B Table; F1, 591 = 1.21, p = 0.271). Similar results were observed when examining 

the change in cwGS over time from pretreatment conditions (S4 Fig and S2C and S2D Table). 

As growth and fitness responses to nutrients are likely to be influenced by temperature and 

water availability, the models were amended to include 4 climatic variables (annual mean tem- 

perature (MAT), mean annual precipitation (MAP), temperature seasonality, and precipita- 

tion seasonality). The inclusion of these 4 climatic variables increased the proportion of 

variation in ΔcwGScontrol vs. treatment explained by the model (marginal R2 increased from 0.069 

https://doi.org/10.1371/journal.pbio.3002927
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Fig 1. Functional groups differ in GS distributions and cover on grassland plots. (A) GS distribution of plant functional groups found on plots across 

the 27 Nutrient Network sites studied, with grasses split by photosynthetic pathway. GS are reported as 1C-values (pg) and were either obtained from the 

Plant DNA C-values database [43] or estimated from field-collected samples by flow cytometry (see Methods). The number of GS values (including 

multiple values for some species) is given below each box-plot. Functional groups with significantly different (Tukey’s HSD test, p < 0.05) mean GS values 

are indicated by different letters. The data underlying this figure can be found in S2 Data and at https://doi.org/10.6073/pasta/ 
  

https://doi.org/10.1371/journal.pbio.3002927
https://doi.org/10.6073/pasta/0d6b08fbcf08605881edfb7acf0a1741
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0d6b08fbcf08605881edfb7acf0a1741. (B) The differences in percent cover of plant functional groups found on plots across the 27 Nutrient Network sites 
studied, with grasses split by photosynthetic pathway. The proportion of total plant cover on pretreatment plots (N = 730) of all 469 species in each of 6 

functional groups. Functional groups with significantly different (Tukey’s HSD test, p < 0.05) mean cover values are indicated by different letters. The data 

underlying this figure can be found at https://doi.org/10.6073/pasta/0d6b08fbcf08605881edfb7acf0a1741. GS, genome size. 
 

https://doi.org/10.1371/journal.pbio.3002927.g001 
 

 
to 0.140) but did not alter the significance of the effect of N fertilization on ΔcwGS (Fig 4 and 

Tables 1 and S2E). However, the difference in cwGS between control and N-fertilized plots 

was less on sites with higher precipitation (F1, 583 = 8.87, p = 0.003) and higher temperature 

seasonality (F1, 577 = 4.25, p = 0.04). ΔcwGS was not influenced by temperature or precipitation 

seasonality (Fig 4 and Tables 1 and S2E). 

 

When accounting for phylogenetic history, C3 grasses with larger GS 

responded most to N fertilization 

While plot-level measures of GS can provide an overall summary of the effect of nutrients on 

the dominance of species with larger versus smaller genomes on each plot, such changes may 

be driven by shifts in community composition, independent of GS. Moreover, plot-level mea- 

surements do not account for differences in GS between clades, which arise as a consequence 

of shared evolutionary histories and patterns of ancient or recent whole genome multiplica- 

tions. Indeed, a significant phylogenetic signal was observed in GS across all species (Pagel’s 

lambda = 0.878, p < 0.001; Blomberg’s K = 9.86 × 10−6, p = 0.001; n = 439), suggesting phylo- 

genetic dependence of species GS. 

To account for GS and phylogenetic dependence on plant growth responses to N and P fer- 

tilization, we fitted the change in individual species percent cover from pretreatment condi- 

tions (Δcover) against GS and N and P treatment in a Bayesian phylogenetic mixed-effects 

model. Across all sites, species with larger genomes showed a greater increase in cover from 

pretreatment conditions under N fertilization compared to smaller GS species (Table 2, log 

 

Fig 2. GS distribution of species in the Nutrient Network sites studied mirrors that of larger databases, but varies between the 6 functional groups. 

Histograms showing the GS distribution across all 469 species in the 27 Nutrient Network sites analyzed in this study, as well as across species in each of the 6 

functional groups. Species count and mean GS value are given and the mean GS is indicated by a dashed line. The data underlying this figure can be found S2 

Data and at https://doi.org/10.6073/pasta/0d6b08fbcf08605881edfb7acf0a1741. GS, genome size. 
 

https://doi.org/10.1371/journal.pbio.3002927.g002 
 

https://doi.org/10.1371/journal.pbio.3002927
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Fig 3. Species with larger genomes become dominant on plots after nitrogen fertilization. Average difference in cwGS between control and nutrient- 
fertilized conditions (indicated by dotted line) for plots with N, P, and N+P treatments. Error bars indicate 95% confidence intervals, significant differences 

between treatment means are indicated by letters (Tukey’s HSD test p < 0.05) and the R2 value for the fitted linear mixed-effects model is displayed (n = 597). 

The data underlying this figure can be found at: https://doi.org/10.6073/pasta/0d6b08fbcf08605881edfb7acf0a1741. cwGS, cover-weighted genome size. 
 

https://doi.org/10.1371/journal.pbio.3002927.g003 
 

 

(GS): N interaction in Δcover = 1.27%, 95% credible intervals (CIs) = 0.60%, 1.95%, R2 = 

0.168). No three-way interaction between GS, N, and P was observed (log(GS): N: P interac- 

tion in Δcover = 0.30%, CI = −0.62%, 1.21%). 

https://doi.org/10.1371/journal.pbio.3002927
https://doi.org/10.6073/pasta/0d6b08fbcf08605881edfb7acf0a1741
https://doi.org/10.1371/journal.pbio.3002927.g003
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Fig 4. The influence of GS on a plant’s response to nutrient addition strengthened at lower precipitation levels and less temperature seasonality. Average 

difference in cover-weighted GS (ΔcwGScontrol vs. treatment) from control conditions (indicated by dotted black line) for plots with N, P, and N+P treatments 

under varying temperature (A), precipitation (B), temperature seasonality (C), and precipitation seasonality (D). Solid lines indicate significant GS-nutrient- 

climate interactions, dashed lines indicate relationships that are not significant, and the gray region surrounding each line indicates 95% confidence intervals 

(n = 597). The data underlying this figure can be found at https://doi.org/10.6073/pasta/0d6b08fbcf08605881edfb7acf0a1741. cwGS, cover-weighted genome 

size; GS, genome size. 

https://doi.org/10.1371/journal.pbio.3002927.g004 
 

Next, we examined whether different plant functional groups responded differently to N 

and P fertilization, by including functional group (geophyte, grass, legume, woody, annual 

forb, or perennial forb) as an interaction term in the phylogenetic mixed-effects model. An 

overall increased response of larger GS species to N across all species was still observed (S3A 

Table). However, larger GS grasses showed the most prominent increase in cover with N fertil- 

ization (S3A Table; log(GS): N: grass interaction in Δcover = 1.37%, CI = 0.13%, 2.60%). 

When grasses were split by photosynthetic pathway, only C3 grasses (not C4 grasses) with 

larger genomes showed a greater increase in cover on N-fertilized plots (S3B Table; Δcover of 

C3 grasses = 1.49%, CI = 0.34%, 2.63%; Δcover of C4 grasses = −2.61%, CI = −0.93%, −4.26%). 

These results indicate that the most prominent changes in percent cover of species after nutri- 

ent fertilization are occurring in large GS C3 grasses. 

https://doi.org/10.1371/journal.pbio.3002927
https://doi.org/10.6073/pasta/0d6b08fbcf08605881edfb7acf0a1741
https://doi.org/10.1371/journal.pbio.3002927.g004
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Table 1.  The influence of GS on a plant’s response to nutrient addition is climate dependent.  Linear mixed-effects model fitting the effects of nutrients, temperature, 

and precipitation on the LRR of difference in cover-weighted GS (ΔcwGS control vs. treatment). Significant differences are shown in bold and starred (* = p � 0.05, ** = 

p � 0.01, *** = p � 0.001). R2 = 0.14. 

Log response ratio of cover-weighted genome size ~ Sum Sq Mean Sq df F-value p-value  

N added 1.74 1.74 1, 579 19.78 <0.001 *** 

P added 0.11 0.11 1, 579 1.26 0.263  

N added: P added 0.11 0.11 1, 579 1.23 0.268  

Mean Temperature 0.00 0.00 1, 55 0.01 0.939  

Mean Precipitation 0.00 0.00 1, 69 0.03 0.854  

Temperature Seasonality 0.02 0.02 1, 58 0.21 0.651  

Precipitation Seasonality 0.00 0.00 1, 59 0.05 0.825  

N: Temperature 0.01 0.01 1, 578 0.07 0.790  

P: Temperature 0.00 0.00 1, 578 0.04 0.851  

N and P: Temperature 0.02 0.02 1, 580 0.28 0.599  

N: Precipitation 0.78 0.78 1, 583 8.87 0.003 ** 

P: Precipitation 0.03 0.03 1, 583 0.33 0.564  

N and P: Precipitation 0.00 0.00 1, 580 0.01 0.941  

N: Temp. Seasonality 0.37 0.37 1, 577 4.25 0.040 * 

P: Temp. Seasonality 0.31 0.31 1, 577 3.52 0.061  

N and P: Temp. Seasonality 0.30 0.30 1, 577 3.45 0.064  

N: Precip. Seasonality 0.00 0.00 1, 583 0.02 0.883  

P: Precip. Seasonality 0.00 0.00 1, 583 0.02 0.893  

N and P: Precip. Seasonality 0.02 0.02 1, 581 0.18 0.670  

cwGS, cover-weighted genome size; GS, genome size; LRR, log response ratio. 
 

https://doi.org/10.1371/journal.pbio.3002927.t001 
 

Discussion 

N fertilization favors species with larger genomes across diverse grasslands 

Both diploid-polyploid comparisons and single-location experiments have observed that nutri- 

ent fertilizations result in relatively greater growth of larger GS species [3,4,8,9]. Yet, to our 

knowledge, no study has tested the generality of these trends across broad environmental gra- 

dients and species assemblages. Our analysis of 27 sites, testing hypothesis 1 that “N and/or P 

fertilization reduces cover of smaller GS species and increases cover of larger GS species across 

 

Table 2. Outputs of Bayesian species-level phylogenetic mixed-effects model for all species. Phylogenetic mixed-effects models were fitted in brms [44] to examine the 

effect of GS on the change in a species’ percent cover with N and/or P fertilization from pretreatment conditions and the interaction between the two. Intercept (no nutri- 

ents added) and slope values are given in the table, with standard error and effective sample size. Interactions showing a slope with nonzero 95% CIs are highlighted in 

bold (n = 439, R2 = 0.168). 

Change in % cover ~ Estimate Standard error CIs (95%) Effective sample size 

No nutrients added −0.04 4.68 −9.28, 9.65 12,500 

N added −0.64 0.39 −1.40, 0.13 25,024 

P added 0.03 0.39 −0.75, 0.80 24,826 

N added: P added −0.68 0.52 −1.68, 0.33 25,533 

log(GS) 0.26 0.46 −0.65, 1.17 25,952 

log(GS): N 1.27 0.35 0.60, 1.95 23,989 

log(GS): P 0.62 0.35 −0.06, 1.30 24,069 

log(GS): N: P 0.30 0.47 −0.62, 1.21 26,145 

CI, credible interval; GS, genome size. 
 

https://doi.org/10.1371/journal.pbio.3002927.t002 
 

https://doi.org/10.1371/journal.pbio.3002927
https://doi.org/10.1371/journal.pbio.3002927.t001
https://doi.org/10.1371/journal.pbio.3002927.t002
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a diverse range of grassland communities,” showed that N fertilization did result in increases 

in the percent cover of species with large genomes. This occurred at both the plot and individ- 

ual species levels of analysis (Fig 3 and Table 2), though plant GS-dependent growth responses 

also varied according to climatic conditions and species functional attributes. These results 

build on single-location experiments conducted previously and suggest that increased N costs 

are associated with larger GS, even in complex natural systems with different biotic (e.g., 

mycorrhizal assemblages) and abiotic (e.g., water availability and temperature) factors. 

While the effect of GS on community responses to fertilization presented here is small, it is 

remarkable that this signal is apparent across such a broad range of species assemblages and 

climatic conditions and despite the use of some conservative estimates of GS taken from the 

Plant DNA C-values database. When the data were analyzed using only the data for which we 

had directly measured GS and only on sites where we had collected samples, the effect of N fer- 

tilization on both cwGS and the change in cover of larger genomes became more prominent 

(S2F–S2I and S3C Tables). This suggests that some noise in the data is due to our choice to be 

conservative in GS estimates (choosing the smallest value), which may have biaised the data 

towards smaller GS values in species with polyploid cytotypes [45]. These results are also of 

similar magnitude to the effect sizes observed for genome size-nutrient interactions in single- 

site studies [3,4,46]. Furthermore, a post hoc analysis also revealed that the effect of N on 

cwGS strengthened the longer a plot had been treated with nutrients (S4A and S4B Table). 

This may be due to newer sites experiencing greater fluctuations in community composition 

in the first years after treatment commences (which would add noise to the data), as has been 

observed elsewhere [8]. 

The results suggest that N fertilization removes growth restrictions on larger GS species, 

enabling those species, which exhibited slower rates of growth under lower N conditions, to 

increase biomass and outcompete smaller GS species. This corroborates a recent grassland 

field experiment in Inner Mongolia, which after just 3 years of fertilizer treatment, found that 

N and P addition resulted in more rapid biomass production of larger GS species compared 

with smaller GS species, causing the smaller GS species to be shaded out and lost from the 

community [8]. The increased competitiveness of larger GS species compared to smaller GS 

species in the presence of plentiful nutrients may be a consequence of their larger minimum 

cell size, which enables more rapid growth of tissue by cell expansion [19]. Indeed, a significant 

negative relationship was observed between leaf cell density with genome size (S5 Fig and S5 

Table), a consequence of species with larger genomes having bigger cells, corroborating exist- 

ing literature [29,47]. Faster growth rates may also be driven by polyploidy, which is often 

associated with hybrid vigor [21]. While ploidy levels were not examined here, previous pot- 

experiments have found that polyploid cytotypes put on more biomass than diploid cytotypes 

in the presence of plentiful N and P [6,7]. 

Potentially, species with larger genomes respond most to N and P treatment because chro- 

matin is rich in both N and P. However, despite the importance of both N and P for building 

and expressing genomes, this study finds that changes in percent cover and community cwGS 

were most prominently observed on plots fertilized with N or N and P, but not those fertilized 

with P alone. This suggests that across the 27 NutNet sites studied here, variation in GS is 

mostly impacting a plant’s responsiveness to N availability. Synergistic effects of both N and P 

on productivity and diversity have been observed across terrestrial and aquatic systems 

[17,18], including across the Nutrient Network [19]. While this study revealed no significant 

additional effect of combined N and P fertilization compared to N alone, we note that a signifi- 

cant N:P interaction was observed when only species with direct GS measurements were used 

(S2F–S2I Table), and moreover, that the effect of N fertilization on cwGS was significantly 

strengthened on plots with naturally higher soil P content prior to treatment (S4C and S4D 

https://doi.org/10.1371/journal.pbio.3002927
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Table), suggesting co-limitation of N and P on the growth of larger GS species. Similar results 

were observed in the Inner Mongolia fertilization experiment, which found that the effects of 

N:P interactions on biomass production were small compared to the effects of N alone [8]. 

The weak evidence for N:P interactions observed here may be due to insufficient power and 

increased noise, arising from (1) the larger range of study systems included, encompassing dif- 

ferent grassland communities; (2) the wider range of climatic conditions; and/or (3) the use of 

percentage cover to weight GS measures,which may bias data towards species that are emer- 

gent from the canopy and those with larger leaves and lateral spread, and underestimate the 

contribution of species that are not emergent or which have thinner leaves. 

 

The strength of GS-dependent responses to N fertilization depends upon 

precipitation and temperature seasonality 

Our analysis of the impact of climate on plant GS-dependent cover responses supported part 

of our second hypothesis that the magnitude and direction of GS-dependent responses to N 

and/or P fertilization depends upon temperature, water availability, and seasonality. We 

showed that the effects of N fertilization on the percent cover of large GS species are weakened 

on sites with higher temperature seasonality (Fig 4). This may reflect the shorter growing sea- 

sons of such locations, which are thought to favour species with smaller genomes due to their 

shorter cell cycle lengths and thus growth potential [19,26]. 

More pronounced responses of larger GS species to N fertilization were also observed on 

drier sites characterized by lower mean annual precipitation (Table 1). Because minimum cell 

size has been shown to scale with GS [20,28], reducing cell density (S5 Fig and S5 Table), this 

may benefit species with larger genomes under low water availability, as having larger cells 

may enable them to conserve or store more water in larger vacuoles [27] and maintain faster 

growth rates through cell expansion when nutrients are added. Furthermore, lower stomatal 

density of larger GS species may be sufficient to offset any increased transpiration rates of 

larger stomata, providing further advantage to species with larger genomes under dry condi- 

tions [2,47]. Such advantages may be diminished under wetter conditions, because increased 

transpiration rates in species with smaller GS might facilitate greater mass flow and thus pull 

nutrients more effectively from the soil to increase growth rate [48,49]. Such a scenario could 

reduce the impact of N on the percent cover of larger GS species relative to smaller GS species. 

Whatever the cause, the GS of a species does appear to affect complex trade-offs between 

water-use efficiency and nutrient demands that impact the production of biomass and com- 

petitiveness. Such trade-offs may also be influenced by ambient temperatures and soil texture 

[50], although in our analyses we were unable to test the effect of temperature and soil texture 

on water-nutrient trade-offs. 

 

The strength of GS-dependent responses to N fertilization varies with 

functional group 

As discussed in hypothesis 3 of the introduction, differences in physiological adaptations 

between plant functional groups, that may or may not be associated with GS, may alter growth 

responses to nutrient fertilization [32,33]. While species with larger genomes generally dis- 

played a greater response to N fertilization than those with smaller genomes (Table 2), this 

response was most prominent in grasses (S3A Table), especially C3 grasses (S3B Table). 

Grasses are thought to have increased water-use efficiency, due to their unique “dumbbell” sto- 

matal structure [30,51], and have been found to respond more strongly to nutrient enrich- 

ments than other plant functional groups, especially in grasslands with lower precipitation 

[52,53]. Thus, changes in productivity of grass species with larger genomes may be driven, in 

https://doi.org/10.1371/journal.pbio.3002927
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part, by nutrient enrichment enabling faster growth and reduced water loss due to their 

“dumbbell” stomata. Furthermore, C4 grasses may be less vulnerable to nutrient limitations, 

resulting in reduced responsiveness to fertilization compared to C3 grasses. For example, car- 

bon-concentrating mechanisms in C4 plants enable a higher photosynthetic nitrogen-use effi- 

ciency than in C3 plants [34,35] and C4 plants typically invest more in roots than C3 plants, 

enabling more efficient water and nutrient acquisition from the soil [54]. 

Differences in other attributes such as resource allocation and/or storage strategies between 

plant functional groups could also contribute to their different responses to nutrient fertiliza- 

tion [32,33]. For example, underground storage organs reduce the sensitivity of geophyte spe- 

cies to low environmental nutrient availability, potentialy enabling larger GS geophytes to 

remain competitive with smaller GS species [40]. Furthermore, the presence of nodules in 

legumes that support symbioses with N-fixing Rhizobium bacteria and enhance nutrient avail- 

ability may explain why legumes, were less responsive to N fertilization, a trend previously 

observed in other studies utilizing the data from sites within the Nutrient Network [55]. 

Lastly, the more pronounced response of grasses, especially C3 grasses, compared to other 

functional groups could also reflect a statistical power issue. For example, out of all functional 

groups, grasses were the most dominant functional group at the plot level, thus providing suffi- 

cient GS variation between the species and across the sites studied to observe differences in 

response to fertilization (Fig 1). Compared to C3 grasses, there were fewer C4 grass species, 

occupying only 14 of the 27 sites and these species exhibited a relatively small range in GS as 

well as a smaller maximum mean GS (Figs 1A and S3). This may have reduced the likelihood 

of effects becoming apparent in C4 grasses. Similarly, the low occurrence and diversity of 

some functional groups (such as geophytes and woody plants) may also explain the nonsignifi- 

cant response observed there too, and further study with a broader range of species within 

these functional groups would be needed to establish if the lack of nutrient-GS interaction 

effects observed in these groups is due to biological reasons. 

Conclusions 

Across 27 grassland communities composed of different plant species assemblages and occur- 

ing in widely variable climatic conditions, we find that nitrogen availability alters plant com- 

munity structure based on GS. Our results show that under nitrogen-enriched conditions, 

species with larger GS belonging to multiple functional groups (but most notably C3 grasses) 

were more dominant than species with smaller genomes. Furthermore, the magnitude of these 

effects are climate dependent, with the effects of nutrient enrichment on percent cover of large 

GS species being more pronounced in drier climatic conditions. These data suggest that GS 

might be an informative character in ecological models that aim to predict the effects of eutro- 

phication or climate change on species vulnerabilty, success or community composition. 

Methods 

Sites and experimental design 

The study was conducted across 27 Nutrient Network sites (https://nutnet.org/) in Europe and 

North America, spanning gradients of MAP from 487 to 1,546 mm and MAT from 5.0 to 

19.4˚C (S1 Fig and S1 Table). At each site, fertilization treatments were randomly assigned to 

25 m2 plots in fully factorial combinations (control, nitrogen-added, phosphorus-added, and 

nitrogen- and phosphorus-added), replicated across 2 to 6 blocks. N and P were applied annu- 

ally before the growing season at a rate of 10 g m-2 (except one site, CEREEP, which applied 

2.5 g.m2; see Borer and colleagues [41] for full experimental design) and sites varied in length 

of time since nutrient treatments were initiated (2 to 14 years, S1 Table). 

https://doi.org/10.1371/journal.pbio.3002927
https://nutnet.org/
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Site selection and GS data 

To select sites, 1C-values were taken from the Kew Plant DNA C-values database [43] to deter- 

mine what percentage of angiosperm species at each Nutrient Network site had GS data. The 

27 sites chosen had at least 55% of the species at a site and at least 1 species per plot (S1 Table). 

Multiple GS values were available for 33 of the 352 species with GS data, and all indicated the 

presence of different ploidy levels within a species (cytotypes). In these instances, we chose the 

diploid value, a choice that represents the most conservative estimate of GS for those species, 

as it reduces the overall effect size that GS might have when the data are analyzed at the species, 

commununity and/or functional group levels. 

To improve the representation of GS data, we also directly measured 1C-values for 183 spe- 

cies at 12 sites from samples collected between 2020 and 2022, using a one-step flow cytometry 

procedure [56,57]. Briefly, the sample and an internal standard were co-chopped in buffer, 

stained with propidium iodide and the nuclear DNA content was measured using either a Sys- 

mex CyFlow Space flow cytometer (Partec GmbH, Germany) for samples from Europe or an 

Accuri flow cytometer (Accuri Inc Ann Arbor, Michigan, United States of America) for samples 

from North America. Low-quality samples (CVs of flow histogram peaks >5%) were removed 

prior to analysis. For species that were recorded on and collected from different sites, we 

accounted for potential ploidy variation by collecting unique site species-specific 1C-values (for 

details on values, methods, buffers, and standards see S1 Data) and recorded these separately. 

We used these site-specific values over those available in the Plant DNA C-values database. 

 

Percent cover and functional group data 

Species coverage and richness data were calculated using data collected on plots during pre- 

treatment and the last 3 treatment years [41]. Permanently marked 1 m2 subplots were sam- 

pled annually at peak growing season, estimating the areal percent cover of each species. For 

each plot (including control plots), the mean percent cover for the most recent 3 years was cal- 

culated and used to calculate change in percent cover for each species (Δcover = mean percent 

cover–percent cover of pretreatment year, see S1 Table for dates of pretreament and most 

recent 3 years). Species functional group (geophyte, grass, legume, woody, annual forb, or 

perennial forb) was recorded for each species based on the classifications used by the Nutrient 

Network [41]; 14 sites had both C3 and C4 grasses, and at these sites, grasses were classified 

into C3 or C4 based on the classification of Osborne and colleagues [58]. Data processing and 

statistical analyses were carried out in R v.4.2.2 [59]. 

 

Selection of climatic variables 

Nineteen BioClim variables from WorldClim v.2 [60] were extracted for each site at the 30 arc 

second scale. Principal component analysis of 8 precipitation and 11 temperature variables 

(S2 Table) were fitted across all sites. From contributions of each climatic variable to the prin- 

cipal components and a priori hypotheses, MAT (BIO1), MAP (BIO12), the variability in tem- 

perature (BIO4), and the coefficient of variation of precipitation (BIO15) were chosen as 

measures for temperature, precipitation, temperature seasonality, and precipitation seasonal- 

ity, respectively. Climate variables were then scaled by z-score standardization for use in statis- 

tical analyses, as they differed substantially in scale and magnitude of variation. 

 

Phylogeny and phylogenetic signal 

To obtain a phylogeny of species at the 27 sites, the phytools R package [61] was used to prune 

an existing NutNet phylogeny, derived from the PhytoPhylo megaphylogeny [62]. This 

https://doi.org/10.1371/journal.pbio.3002927
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phylogeny was further pruned to get a smaller phylogeny of the grass species found across the 

sites studied. The phylogenetic signal in GS (not log transformed) was measured across all spe- 

cies using the phytools phylosig function [63,64]. 

 

Statistical analysis 

Analysis of plot-level metrics described below (total cover and cover-weighted GS) was carried 

out in R using linear mixed-effects models, fitted using the “lme4” R-package [65], with block 

nested within site treated as a random effect. Models were tested using analysis of variance 

(ANOVA), with p-values being calculated using the “lmerTest” R-package [66]. For all models, 

diagnostic plots were used to check for non-normal distribution of residuals and heteroscedas- 

ticity, and data were transformed where necessary to ensure the assumptions of the models 

were met. 

 

Variation in GS and percent cover between functional groups 

Differences in mean GS (expressed as the log-transformed 1C-value) between functional 

groups (geophyte, grass, legume, woody, annual forb, or perennial forb) were tested across all 

sites using a phylogenetic generalized least squares model, built using the pruned Nutrient 

Network phylogeny and the caper R package [67]. Differences in the proportion of total plant 

cover taken up by each functional group were also tested across pretreatment plots using linear 

mixed-effects models. When significant effects of functional group on GS and percent cover 

were observed, post hoc Tukey tests were performed to identify significant differences between 

individual functional groups. 

 

The effect of nutrient fertilization, temperature, and precipitation on GS, 

weighted by percent cover 

The cover-weighted mean GS (cwGS) of each plot on each site (including control plots) was 

calculated using weighted least squares models from the “nlme” R package [68]. The propor- 

tion of total plant cover taken up by each species on a plot was used to weight its contribution 

to the “community mean GS value,” such that more dominant species had a greater influence 

on the mean GS than less dominant species. GS was log-transformed before calculation of 

cwGS to account for the high positive skew in GS data. To examine the change in average plot 

GS with fertilizer treatment, LRRs were used to calculate the change in cwGS value (ΔcwGS) in 

2 ways: 

1. Change in cwGS between control and nutrient-treated (N, P, or N+P) plots, reflecting the 

effect of treatment on cwGS: 

DcwGS control vs:treatment ln 
cwGS of nutrient treated plot

 
average cwGS of control plots 

 

 
2. Change in cwGS of each plot from the cwGS of the plot before treatment commenced, 

reflecting changes that occurred over the course of the experiment: 

DcwGSðpretreatment vs:treatmentÞ ¼ ln

�

 
cwGS of plot 

�
 

cwGS of pretreatment plot 

https://doi.org/10.1371/journal.pbio.3002927
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To examine changes in cwGS with N and/or P fertilization, linear mixed-effects ANOVAs 

were used to fit ΔcwGS (both control versus treatment and pretreatment versus treatment) 

against N addition, P addition and the interaction between the 2 nutrient treatments (N:P). 

Post hoc Tukey tests were used to identify significant differences between individual nutrient 

treatments. ΔcwGS(control vs. treatment) was also fitted against nutrient treatment and the 4 

selected climate variables, including three-way interactions between the 2 nutrient treatments 

(N and P) and each climate variable. 

In post hoc analysis, ΔcwGS(control vs. treatment) was fitted against nutrient treatment and pre- 

treatment soil N (%) and pretreatment soil P (ppm) to examine the effect of pretreatment con- 

ditions on cwGS response, and fitted against plot age to establish if time since first treatment 

affected the strength of cwGS response. 

 

The effect of nutrient fertilization on percent cover of species with varying 

GS, analyzed by functional group 

Change in percent cover (Δcover–see above) was fitted against GS (expressed as log-trans- 

formed 1C-value) and N and P treatment in a phylogenetic mixed-effects model, using the 

brms R package [44] and the pruned Nutrient Network phylogeny. This model was then 

repeated including the interactions between the GS, N, P, and plant functional group, to test 

for differences in response among different functional groups. Lastly, a model was run for 

grass species only, with photosynthetic pathway included as an additional explanatory variable, 

allowing separation of responses of C3 and C4 grasses. For all models, weak priors were used 

where the slope of the regression b = normal (0,1), but models were also run with a wider 

range of priors, to test if prior choice impacted the convergence and output of the model. Mod- 

els were run with 3 chains for 15,000 iterations, with a burn in of 5,000, and the model plots 

were used to examine posterior distributions and multiple chain convergence. 

 

Cell density 

To test correlations between cell density and GS, samples were collected from 63 species across 

6 sites (Cedar Creek, Chichaqua Bottoms, Kellogg, Konza, Spindletop, and Temple). Cell den- 

sity per cm2 fresh material was measured by digestion in 100 μl of 10% chromic acid, followed 

by counting the number of cells in three 10 μl aliquots on a hemocytometer and averaged. The 

relationship between GS and cell density was tested using linear mixed-effects models as 

above, with site treated as a random effect. 

 

Supporting information 

S1 Table. List of Nutrient Network sites used in this study. Name, location, and study period 

of each site is given, as well as habitat type, elevation, climate, number of replication blocks, 

and the proportion of species with available genome size data (GS coverage). The climate vari- 

ables used are taken from WorldClim v.2 30s data: Annual mean temperature (MAT, BIO1), 

mean annual precipitation (MAP, BIO12), Temperature Seasonality (BIO4), and Precipitation 

Seasonality (BIO15). 

(DOCX) 

S2 Table. ANOVA outputs of weighted genome size (GS) models. Results of linear mixed- 

effects models fitting the effect of N and P fertilization on the change in cover-weighted GS, 

compared to control plots (ΔcwGS(control vs. treatment, a, b) and compared to pretreatment levels 

(ΔcwGS(pretreatment vs. treatment), c, d) (n = 681). In addition, the summary table is presented for 

a model fitting the effects of nutrients, temperature, and precipitation on the log response ratio 

https://doi.org/10.1371/journal.pbio.3002927
http://journals.plos.org/plosbiology/article/asset?unique&id=info%3Adoi/10.1371/journal.pbio.3002927.s001
http://journals.plos.org/plosbiology/article/asset?unique&id=info%3Adoi/10.1371/journal.pbio.3002927.s002
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(LRR) of cover-weighted GS (ΔcwGS(control vs. treatment)). (e) Models in a–d were also repeated 

including only the species for which directly measured GS values exist, only on sites where 

they were sampled. (f–i) Significant differences are shown in bold and starred (* = p � 0.05, ** 

= p � 0.01, *** = p � 0.001). 
(DOCX) 

S3 Table. Outputs of species-level phylogenetic mixed-effect models. Phylogenetic mixed- 

effects models were fitted in brms [44] to examine the effect of genome size (GS) on the change 

in a species’ percent cover with N, P fertilization. In addition to the model outlined in Table 2, 

a model was fitted to include the interaction between the above factors and plant functional 

group (a, n = 439). Another model was also run for grass species only, with photosynthetic 

pathway include as an additional explanatory variable (b, n = 72). Lastly, a model was run as in 

Table 2 but only including species for which direct GS measurements were available (c, 

n = 172). Estimated intercepts and slope values showing a slope with nonzero 95% credible 

intervals are highlighted in bold. 

(DOCX) 

S4 Table. ANOVA outputs of post hoc weighted genome size (GS) models. (a, b) The 

ANOVA output (a) and summary table (b) for a linear mixed-effects model fitting the effect of 

N and P fertilization and plot age on the change in cover-weighted GS, compared to control 

plots on 27 sites in the Nutrient Network (ΔcwGS(control vs. treated), n = 589). Significant differ- 

ences are shown in bold and starred (* = p � 0.05, ** = p � 0.01, *** = p � 0.001). (c, d) The 

ANOVA output (c) and summary table (d) for a linear mixed-effects model fitting the effect 
of 

N and P fertilization, pretreatment soil N (%), and pretreatment soil P (ppm) on the change in 

cover-weighted GS, compared to control plots on 20 sites in the Nutrient Network (ΔcwGS(con- 

trol vs. treated), n = 557). Significant differences are shown in bold and starred (* = p � 0.05, ** = 

p � 0.01, *** = p � 0.001). 
(DOCX) 

S5 Table. ANOVA output of cell density—genome size model. Results of a linear model 

showing the relationship between log-transformed genome size (GS) and cell density across 6 

sites in the Nutrient Network (n = 81, sites: Cedar Creek, Chichaqua Bottoms, Kellogg, Konza, 

Spindletop, and Temple). Significant differences are shown in bold and starred (* = p � 0.05, 

** = p � 0.01, *** = p � 0.001). 
(DOCX) 

S1 Fig. Distribution of the 27 sites used in this study. Sites form part of the Nutrient Net- 

work, a global collaborative network of experimental fertilized grassland field trials, and are 

indicated by green circles. The map was produced from a Natural Earth data shapefile (www. 

naturalearthdata.com) and compiled and plotted using the rnaturalearth and ggplot2 R-pack- 

ages. 

(TIFF) 

S2 Fig. Principal component analysis (PCA) for climate variable selection. The 20 BioClim 

variables (displayed above) from WorldClim v.2 were extracted for each site at the 30 arc sec- 

ond scale. Principal component analysis was used to identify variables that explained the larg- 

est proportion of variation in precipitation and temperature across the 27 sites studied. PCA 

plots split into precipitation (left) and temperature variables (right). Coordinates of sites are 

labeled and are colored by country. The contribution of each variable to the principal compo- 

nents (PC) 1 and 2 are indicated by the direction and length of the arrows. Loadings are 

shown in the tables, with the size and depth of color of the circles indicating the contribution 

https://doi.org/10.1371/journal.pbio.3002927
http://journals.plos.org/plosbiology/article/asset?unique&id=info%3Adoi/10.1371/journal.pbio.3002927.s003
http://journals.plos.org/plosbiology/article/asset?unique&id=info%3Adoi/10.1371/journal.pbio.3002927.s004
http://journals.plos.org/plosbiology/article/asset?unique&id=info%3Adoi/10.1371/journal.pbio.3002927.s005
http://journals.plos.org/plosbiology/article/asset?unique&id=info%3Adoi/10.1371/journal.pbio.3002927.s006
http://www.naturalearthdata.com/
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http://journals.plos.org/plosbiology/article/asset?unique&id=info%3Adoi/10.1371/journal.pbio.3002927.s007
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of each climatic variable to the 2 PCs. Variables that contributed most substantially (boxed var- 

iables) in PC1 (Dim.1) and PC2 (Dim.2) were chosen as proxies for the 4 climatic factors— 

temperature, precipitation, temperature seasonality, and precipitation seasonality. The data 

underlying this figure can be found at https://doi.org/10.6073/pasta/ 

0d6b08fbcf08605881edfb7acf0a1741. 

(TIFF) 

S3 Fig. C3 grasses have a higher average genome size than C4 grasses. The histogram shows 

the distribution of genome size (GS) across C3 and C4 grasses, colored by photosynthetic path- 

way. The inlaid boxplot shows the average and range of GS of grasses for each photosynthetic- 

type category, with the significant difference indicated by significance stars (p < 0.001). n = 86 

(C3), 35 (C4). The data underlying this figure can be found at https://doi.org/10.6073/pasta/ 

0d6b08fbcf08605881edfb7acf0a1741. 

(TIFF) 

S4 Fig. Species with larger genomes become more dominant on plots after fertilization 

with nitrogen and phosphorus. Average cover-weighted genome size (cwGS) was calculated 

for plots under factorial N and P treatment, using a 3-year mean for species percentage cover. 

Log response ratios (LRR) of cwGS relative to pretreatment were calculated to measure tempo- 

ral changes in genome size (GS) in response to fertilization. Error bars indicate 95% confi- 

dence intervals. Significant differences between treatments are indicated by letters (Tukey’s 

HSD test p < 0.05) and the R2 value for the fitted linear mixed-effects model fitted for this data 

is displayed (n = 597). The data underlying this figure can be found at https://doi.org/10.6073/ 

pasta/0d6b08fbcf08605881edfb7acf0a1741. 

(TIFF) 

S5 Fig. Species with larger genomes have lower cell densities than those with smaller 

genomes. Cell density (per cm2 fresh tissue) was compared between 63 species of varying 

genome size across 6 sites in the Nutrient Network (Cedar Creek, Chichaqua Bottoms, Kel- 

logg, Konza, Spindletop, and Temple). The solid blue line indicates the significant negative 

relationship, with the gray region representing 95% confidence intervals. The data underlying 

this figure can be found at https://doi.org/10.6073/pasta/0d6b08fbcf08605881edfb7acf0a1741. 

(TIFF) 

S1 Data. GS methods, standards, and buffers. A more detailed description of the methods, 

standards, and buffers used in measuring plant GS. 

(DOCX) 

S2 Data. GS Data. Data on where GS measurements for each species on each site were 

obtained from (database vs. directly measured) and the 1C-value (in pg) and CV data from 

samples for which GS was directly measured by flow cytometry. 

(XLSX) 
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