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—— Abstract

In the k-Disjoint Shortest Paths (k-DSP) problem, we are given a graph G (with positive edge weights)
on n nodes and m edges with specified source vertices si, ..., sk, and target vertices t¢1,...,tx, and
are tasked with determining if G contains vertex-disjoint (s;, ¢;)-shortest paths. For any constant k,
it is known that k-DSP can be solved in polynomial time over undirected graphs and directed acyclic
graphs (DAGs). However, the ezact time complexity of k-DSP remains mysterious, with large gaps
between the fastest known algorithms and best conditional lower bounds. In this paper, we obtain
faster algorithms for important cases of k-DSP, and present better conditional lower bounds for
k-DSP and its variants.

Previous work solved 2-DSP over weighted undirected graphs in O(n") time, and weighted DAGs
in O(mn) time. For the main result of this paper, we present optimal linear time algorithms for
solving 2-DSP on weighted undirected graphs and DAGs. Our linear time algorithms are algebraic
however, and so only solve the detection rather than search version of 2-DSP (we show how to
solve the search version in O(mn) time, which is faster than the previous best runtime in weighted
undirected graphs, but only matches the previous best runtime for DAGs).

We also obtain a faster algorithm for k-Edge Disjoint Shortest Paths (k-EDSP) in DAGs, the
variant of k-DSP where one seeks edge-disjoint instead of vertex-disjoint paths between sources and
their corresponding targets. Algorithms for k-EDSP on DAGs from previous work take Q(m”) time.
We show that k-EDSP can be solved over DAGs in O(mn”~!) time, matching the fastest known
runtime for solving k-DSP over DAGs.

Previous work established conditional lower bounds for solving k-DSP and its variants via
reductions from detecting cliques in graphs. Prior work implied that k-Clique can be reduced to
2k-DSP in DAGs and undirected graphs with O((kn)?) nodes. We improve this reduction, by
showing how to reduce from k-Clique to k-DSP in DAGs and undirected graphs with O((kn)?) nodes
(halving the number of paths needed in the reduced instance). A variant of k-DSP is the k-Disjoint
Paths (k-DP) problem, where the solution paths no longer need to be shortest paths. Previous work
reduced from k-Clique to p-DP in DAGs with O(kn) nodes, for p = k + k(k — 1)/2. We improve this
by showing a reduction from k-Clique to p-DP, for p = k + |k?/4].

Under the k-Clique Hypothesis from fine-grained complexity, our results establish better conditional
lower bounds for k-DSP for all k£ > 4, and better conditional lower bounds for p-DP for all p < 4031.
Notably, our work gives the first nontrivial conditional lower bounds 4-DP in DAGs and 4-DSP
in undirected graphs and DAGs. Before our work, nontrivial conditional lower bounds were only
known for k-DP and k-DSP on such graphs when k > 6.
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1 Introduction

Routing disjoint paths in graphs is a classical problem in computer science. For positive
integer k, in the k-Disjoint Paths (k-DP) problem, we are given a graph G with n vertices and
m edges, with specified source nodes s1, ..., s; and target nodes t1,...,tx, and are tasked
with determining if G contains (s;,t;)-paths which are internally vertex-disjoint. Beyond
being a natural graph theoretic problem to study, k-DP is important because of its deep
connections with various computational tasks from the Graph Minors project [22].

Following a long line of research, the polynomial-time complexity of k-DP has essentially
been settled: in directed graphs the 2-DP problem is NP-hard [18, Lemma 3], and so is
unlikely to admit a polynomial time algorithm, while in undirected graphs k-DP can be
solved in O(m + n) time for k = 2 [24], and in O(n?) time or m'+°() time for any constant
k > 3 [19, 20].

In this work we study an optimization variant of k-DP, the k-Disjoint Shortest Paths
(k-DSP) problem. In k-DSP we are given the same input as in k-DP, but are now tasked
with determining if the input contains (s;,t;)-shortest paths which are internally vertex-
disjoint. This problem is interesting both because it is a natural graph algorithms question
to investigate from the perspective of combinatorial optimization, and because understanding
the complexity of k-DSP could lead to a deeper understanding of the interaction between
shortest paths structures in graphs (analogous to how studying k-DP helped develop the rich
theory surrounding forbidden minors in graphs).

Compared to k-DP, not much is known about the exact time complexity of k-DSP.
In directed graphs, 2-DSP can be solved in polynomial time [6], but no polynomial-time
algorithm (or NP-hardness proof) is known for k-DSP for any constant k£ > 3. In undirected
graphs, it was recently shown that for any constant k, k-DSP can be solved in polynomial
time [21]. However, the current best algorithms for k-DSP in undirected graphs run in
nP® k) time, so in general this polynomial runtime is quite large for k > 3. For example,
the current fastest algorithm for 3-DSP in undirected graphs takes O(n?%?) time [4].

Significantly faster algorithms are known for detecting k = 2 disjoint shortest paths.
The paper which first introduced the k-DSP problem in 1998 also presented an O(n®) time
algorithm for solving 2-DSP in weighted! undirected graphs [15]. The first improvement for
this problem came over twenty years later in [1], which presented an algorithm solving 2-DSP
in weighted undirected graphs in O(n”) time, and in unweighted undirected graphs in O(n®)

! Throughout, we assume that weighted graphs have positive edge weights.
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time. Soon after, [4, Theorem 1] presented an even faster O(mn) time algorithm for solving
2-DSP in the special case of unweighted undirected graphs.? The main result of our work is
an optimal algorithm for 2-DSP in weighted undirected graphs.

» Theorem 1. 2-DSP can be solved in weighted undirected graphs in O(m + n) time.

This result pins down the true time complexity of 2-DSP in undirected graphs, and (up
to certain limitations of our algorithm, which we discuss later) closes the line of research for
this specific problem, initiated twenty-five years ago in [15].

As discussed previously, over directed graphs the 2-DP problem is NP-hard, and the
complexity of k-DSP is open even for k = 3. This lack of algorithmic progress in general
directed graphs has motivated researchers to characterize the complexity of disjoint path
problems in restricted classes of directed graphs. In this context, studying algorithms for

routing disjoint paths in directed acyclic graphs (DAGs) has proved to be particularly fruitful.

For example, the only known polynomial time algorithm for 2-DSP on general directed graphs
works by reducing to several instances of 2-DP on DAGs [6]. Similarly, the fastest known
algorithm for k-DSP on undirected graphs works by reducing to several instances of disjoint
paths on DAGs [4].

It is known that 2-DP in DAGs can be solved in linear time [25]. More generally, since
1980 it has been known that k-DP in DAGs can be solved in O(mn*~1) time, and this
remains the fastest known algorithm for these problems for all k£ > 3 [18, Theorem 3].

As observed in [6, Proposition 10], the algorithm of [18] for k-DP on DAGs can be
modified to solve k-DSP in weighted DAGs in the same O(mn*~!) runtime. This is the
fastest known runtime for k-DSP in DAGs. In particular, the fastest algorithm for 2-DSP
from previous work runs in O(mn) time.

The second result of our work is an optimal algorithm for 2-DSP in weighted DAGs.

» Theorem 2. 2-DSP can be solved in weighted DAGs in O(m + n) time.

This settles the time complexity of 2-DSP in DAGs, and marks the first improvement over
the O(mn) time algorithm implied by [18] from over thirty years ago. The 2-DSP problem
in weighted DAGs generalizes the 2-DP problem in DAGs, and so Theorem 2 also offers
an alternate linear time algorithm for 2-DP in DAGs, which is arguably simpler than the
previous approaches leading up to [25], many of which involved tricky case analyses and
carefully constructed data structures.

Our algorithms for solving 2-DSP in undirected graphs and DAGs are algebraic, and work
by testing whether certain polynomials, whose terms encode pairs of disjoint shortest paths
in the input graph, are nonzero. As a consequence, the algorithms establishing Theorems 1
and 2 are randomized, and solve 2-DSP with high probability. Moreover, these algorithms

determine whether the input graph has a solution, but do not explicitly return solution paths.

So while our algorithms solve the decision problem 2-DSP, they do not solve the search
problem of returning two disjoint shortest paths if they exist. This is a common limitation
for algebraic graph algorithms.

The 2-DSP problem does admit a search to decision reduction — with O(m) calls to
an algorithm which detects whether a graph contains two disjoint shortest paths, we can
actually find two disjoint shortest paths if they exist. Thanks to the algebraic nature of our
algorithms, we can get a slightly better reduction, and find two disjoint shortest paths when
they exist with only O(n) calls to the algorithms from Theorems 1 and 2.

2 Tt seems plausible that the method of [4] could be adapted to handle weighted undirected graphs as
well, but such a generalization does not appear to currently be known.
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» Theorem 3. We can solve 2-DSP over weighted DAGs and undirected graphs, and find a
solution if it exists, in O(mn) time.

So we can find two disjoint shortest paths in weighted undirected graphs in O(mn)
time (which still beats the previous fastest O(n”) time algorithm for weighted undirected
graphs, and matches the previous fastest algorithm for unweighted undirected graphs), and in
weighted DAGs in O(mn) time (which only matches, rather than beats, the previous fastest
runtime for 2-DSP in DAGs).

Finally, one can also consider edge-disjoint versions of all the problems discussed thus far.
The k-Edge Disjoint Paths (k-EDP) and k-Edge Disjoint Shortest Paths (k-EDSP) problems
are the same as the respective k-DP and k-DSP problems, except the solutions paths merely
need to be edge-disjoint instead of internally vertex-disjoint.

For any constant k, there is a simple reduction from k-EDSP on n nodes and m edges
to k-DSP on O(m + n) nodes and O(m) edges. Combining this reduction with Theorems 1
and 2, we get that we can solve 2-EDSP over weighted DAGs and undirected graphs in linear
time as well.

» Corollary 4. There is an algorithm solving 2-EDSP over weighted DAGs and undirected
graphs in O(m +n) time.

More generally, for all £ > 3 the fastest known algorithms for k-EDSP on DAGs in the
literature work by reducing this problem to k-DSP using the reduction mentioned in the
previous paragraph. Consequently, the current fastest algorithm for k-EDSP in DAGs runs
in O(m*) time, which in dense graphs is much slower than the O(mn*~1) time algorithm
known for k-DSP. For the same reason, the fastest known algorithm for k-EDP in DAGs for
k > 3 runs in O(m*) time.

Our final algorithmic result is that we can solve k-EDSP in weighted DAGs as quickly as
the fastest known algorithms for k-DSP.

» Theorem 5. The k-EDSP problem can be solved in weighted DAGs in O(mn*~1) time.

Since k-EDSP in weighted DAGs generalizes the k-EDP problem in DAGs, Theorem 5
also implies faster algorithms for this latter problem. Our algorithm is simple and employs
the same general approach used by previous routines [18, 6] for this problem.

Lower Bounds

For k > 3, the known O(mn*~1!) algorithms for k-DP and k-DSP in DAGs have resisted
any improvements over the past three decades. Thus, it is natural to wonder whether there
is complexity theoretic evidence that solving these problems significantly faster would be
difficult. Researchers have presented some evidence in this vein, in the form of reductions
from the conjectured hard problem of detecting cliques in graphs.

Let k = ©(1) be a positive integer. A k-clique is a collection of k mutually adjacent
vertices in a graph. In the k-Clique problem,? we are given a k-partite graph G with vertex
set Vi U --- U Vg, where each part V; has n vertices, and are tasked with determining if G
contains a k-clique.

3 This problem is sometimes referred to in the literature as k-Multicolored Clique. A folklore argument
reduces from detecting a k-clique in an arbitrary n-node graph to the k-Clique problem as defined here,
by making k copies of the input graph, and only including edges between different copies, e.g. as in [11,
Proof of Theorem 13.7].
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We can of course solve k-Clique in O(n*) time, just by trying out all possible k-tuples of
vertices. Better algorithms for k-Clique are known, which employ fast matrix multiplication.
Let w denote the exponent of matrix multiplication (i.e., w is the smallest real such that
two m X n matrices can be multiplied in n«to(®) time). Given positive reals a, b, ¢, we more
generally write w(a, b, c) to denote the smallest real such that we can compute the product

b

of an n% x n® matrix and an n® x n¢ matrix in n*(®09)+°(1) time Then it is known that

k-Clique can be solved in

C(n, k) = ©(n= (/31 [(5=1)/31.Tk/31))

time [16]. The current fastest matrix multiplication algorithms yield w < 2.37156 [28]. A
popular fine-grained hardness hypothesis posits (e.g., in [27, 13]) that current algorithms for
k-Clique are optimal.

» Hypothesis 1 (k-Clique Hypothesis). For any integer constant k > 3, solving k-Clique requires
at least C(n, k)'=°(M) time.

In this context, previous work provided reductions from k-Clique to disjoint path problems.
For example, [4] presents a reduction from k-Clique to 2k-DSP on undirected graphs with
O((kn)?) vertices (and this reduction easily extends to DAGs). Our first conditional lower
bound improves this result for DAGs, by halving the number of paths needed in the reduction.

» Theorem 6. There is a reduction from k-Clique to k-DSP on unweighted DAGs with
O((kn)?) wvertices, that runs in O((kn)?) time.

» Corollary 7. Assuming the k-Clique Hypothesis, k-DSP requires C(n'/? k)'=°(0) time to
solve on unweighted DAGS.

The previous reduction of [4] yields a weaker bound of C(n'/2,|k/2])'=°™) for the time
needed to solve k-DSP, assuming the k-Clique Hypothesis. If w > 2, this earlier result only
gives nontrivial (that is, superquadratic) lower bounds for & > 10, and if w = 2 is only
nontrivial for £k > 14. In comparison, if w > 2, Corollary 7 is nontrivial for k£ > 5, and if
w = 2, Corollary 7 is still nontrivial for k£ > 7. See Table 1 for the concrete lower bounds we
achieve for small k.

As mentioned before, the k-DSP problem in weighted DAGs generalizes k-DP in DAGs.
However, the current fastest algorithms for k-DP have the same time complexity as the
current best algorithms for the more general k-DSP problem. To explain this behavior, it is
desirable to show conditional lower bounds for k-DP in DAGs, which are similar in quality
to the known lower bounds for k-DSP in DAGs.

Such lower bounds have been shown by [10]. In particular, [10] together with standard
reductions in parameterized complexity [11, Proofs of Theorems 14.28 and 14.30] implies
that there is a reduction from k-Clique to 8k-EDSP on graphs with O((kn)*) nodes. One
can easily modify this reduction, using the idea in the construction from [5, Section 6], to
instead reduce from k-Clique to 8k-DSP on graphs with O((kn)*) nodes.

This reduction implies that k-DSP requires C'(n'/4, |k/8])*=°() time to solve on DAGs,
assuming the k-Clique Hypothesis. For large k, this is the current best conditional lower
bound for k-DP in DAGs. However, the blow-up in the graph size and parameter value in
this reduction makes this lower bound irrelevant for small k (in fact, the reduction only
yields nontrivial lower bounds under the k-Clique Hypothesis for k > 96).

For small values of k, better conditional lower bounds are known for k-DP. In particular,
[23] presents reductions from k-Clique to p-DP and p-DSP on DAGs with O(kn) vertices,
for parameter value p = k + (¥). For our final conditional lower bound, we improve this
reduction, by reducing the number of paths needed to k + [k?/4].
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» Theorem 8. Let k > 3 be a constant integer, and set p =k + |k*/4|. There are O((kn)?)
time reductions from k-Clique to p-DP and p-DSP on unweighted DAGs with O(kn) vertices.

Table 1 A list of lower bounds implied by Corollary 7 for k-DSP when 5 < k < 9. Each row
corresponds to a value of k. An entry of « in the left column of the row for a given k value indicates
that solving k-DSP in O(n®~°) time for any constant § > 0 would require refuting the k-Clique
Hypothesis or designing faster matrix multiplication algorithms. An entry of § in the right column in
the row for a given k value indicates that assuming the k-Clique Hypothesis, k-DSP requires n® (%)
time to solve. The previous reduction of [4] gave no nontrivial lower bound for k-DSP for
any value of k in this table, and the reduction of [23] matches our lower bound for k£ = 6, but is
worse everywhere else. Table entry values are based off rectangular matrix multiplication exponents
from [28, Table 1].

i k-DSP Exponent Lower Bound
(for current w) (iffw=2)

5 2.042 Trivial

6 2.371 Trivial

7 2.794 2.5

8 3.198 3

9 3.557 3

For each integer p > 5, we can find the largest integer k > 3 such that k + [k2/4]| < p,
and then apply Theorem 8 to obtain conditional lower bounds for p-DP and p-DSP on DAGs.

» Corollary 9. Assuming the k-Clique Hypothesis, the p-DSP and p-DP problems require
max (C(n, keven(p)), C (1, koaa(p))' =

time to solve on unweighted DAGSs for all integers p > 5, where

keven(p) = 2|_\/ p + 1J —2

and

koda(p) = 2 {

vp+5—1J_1
2

are the largest even and odd integers k such that k + |k*/4] < p respectively.

Assuming the k-Clique Hypothesis, Corollary 9 shows that 5-DSP requires at least n<=°(1)

time and 8-DSP requires at least C(n,4)' () time to solve. For the current value of w,
these yield lower bounds of n?371=°() for 5-DSP and n?193—°(1) for 8-DSP, which are better
than the lower bounds implied by Corollary 7 (see Table 1). If w = 2 however, Corollary 9
does not yield better lower bounds than Corollary 7 for k-DSP.

Previous reductions give nontrivial lower bounds for p-DP only when p > 6 if w > 2, and
p > 10 if w = 2. In comparison, Corollary 9 yields nontrivial lower bounds for p-DP under
the k-Clique Hypothesis for p > 5 if w > 2, and p > 8 if w = 2.

Previously, the reduction of [23] yielded the best lower bounds for p-DP for p < 2016, and
otherwise the reduction of [10] yielded better lower bounds. In comparison, Corollary 9 yields
lower bounds matching the reduction from [23] for p € {6,7,10}, and otherwise, for w > 2,
yields strictly better lower bounds for p-DP for all p > 5. Moreover, for w = 2, Corollary 9
yields the best lower bounds for p-DP for all p < 4031 (with [10] yielding better lower bounds
only for larger p). To see quantitatively how Corollary 9 improves the best conditional lower
bounds for p-DP from previous work at various concrete values of p, see Table 2.
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Table 2 A list of lower bounds implied by Corollary 9 (and previous work) for p-DP at various
values of p. Rows correspond to values of p. For a given such row, the entries «, 3,7 in the three
columns collected under the heading of “p-DP Exponent Lower Bound,” read from left to right,
indicate that Corollary 9, the reduction of [23], and the reduction of [10] imply that p-DP requires

n® oM pf=oM and n?~°M time to solve respectively, assuming the k-Clique Conecture.

p-DP Exponent Lower Bound (if w = 2)
P From Corollary 9 | Reduction of [23] | Reduction of [10]
9 3 Trivial Trivial
24 6 4 Trivial
89 12 8 Trivial
239 20 14 5
929 40 28 19.5
2016 58 42 42
2969 72 51 62
4031 84 60 84

1.1 Comparison with Previous Algorithms

Previous algorithms for 2-DSP and 2-DP in DAGs are combinatorial in nature: they observe
certain structural properties of candidate solutions, and then leverage these observations
to build up pairs of disjoint paths. In the special case of unweighted undirected graphs, [8]
presented an algebraic algorithm for solving a generalization of 2-DSP, but all other prior
algorithms for 2-DSP and 2-DP in undirected graphs are combinatorial. Our work is the first
to employ algebraic methods to tackle the general weighted 2-DSP problem: our algorithms
for 2-DSP on undirected graphs and DAGs work by checking that a certain polynomial, whose
monomials correspond uniquely to pairs of disjoint shortest paths in the input graph, is
nonzero. To obtain the fast runtimes in Theorems 1 and 2, we evaluate this polynomial over
a field of characteristic two, and crucially exploit certain symmetries which make efficient
evaluation possible when working modulo two.

Such “mod 2 vanishing” methods have appeared previously in the literature for algebraic
graph algorithms, but the symmetries we exploit in our algorithms for 2-DSP differ in
interesting ways from those of previous approaches. For example, previous methods tend to
work exclusively in undirected graphs (relying on the ability to traverse cycles in both the
forwards and backwards directions to produce terms in polynomials which cancel modulo
2), while our approach is able to handle 2-DSP in both undirected graphs and DAGs. It
is also interesting that our algorithms solve 2-DSP in weighted graphs without any issue,
since the previous algebraic graph algorithms we are aware of are efficient in unweighted
graphs, but in weighted graphs have a runtime which depends polynomially on the value of
the maximum edge weight.

Below, we compare our techniques to previous algebraic algorithms in the literature.

Two Disjoint Paths with Minimum Total Length

The most relevant examples of algebraic graph algorithms in the literature to our work are
previous algorithms for the MinSum 2-DP problem: in this problem, we are given a graph
G on n vertices, with specified sources s1, so and targets t1,t2, and are tasked with finding
internally vertex-disjoint paths P; from s; to ¢;, such that the sum of the lengths of P, and
P5 is minimized, or reporting that no such paths exists.

9:7
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In unweighted undirected graphs, [7] showed that MinSum 2-DP can be solved in polynomial
time, with [8, Section 6] providing a faster implementation of this approach running in O(n4+“’)
time. Similar to our work, these algorithms check if a certain polynomial enumerating disjoint
pairs of paths in G is nonzero or not. These methods rely on G being undirected, and are
based off computing determinants of n X n matrices.

Our approach for 2-DSP differs from these arguments because we seek linear time
algorithms, and so avoid computing determinants (which would yield Q(n“) runtimes).
We instead directly enumerate pairs of intersecting paths and subtract them out. This
alternate approach also allows us to obtain algorithms which apply to both undirected graphs
and DAGs, whereas the cycle-reversing arguments of [8] do not appear to extend to DAGs.

Paths and Linkages with Satisfying Length Conditions

Given sets S and T of p source and target vertices respectively, an (S, T)-linkage is a set of
p vertex-disjoint paths, beginning at different nodes in S and ending at different nodes in 7'
The length of such a linkage is the sum of the lengths of the paths it contains. Recent work
has presented algorithms for the problem of finding (S, T')-linkages in undirected graphs of
length at least k, fixed-parameter tractable in k. In particular, [17, Section 4] presents an
algorithm solving this problem in 2¥*P poly(n) time. Their algorithm enumerates collections
of p walks beginning at different nodes in S and ending at different nodes in 7. They then
argue that all terms in this enumeration with intersecting walks cancel modulo 2, leaving
only the (S, T)-linkages. One idea used in the above cancellation argument is that if two
paths P and @ in a collection intersect at a vertex v, then we can pair this collection with a
new collection obtained by swapping the suffixes of P and @ after vertex v.

In the 2-DSP problem, solution paths must connect sources s; to corresponding targets t;
instead of to arbitrary targets, and so we cannot use the above suffix-swapping argument
to get cancellation. So to enumerate disjoint shortest paths in our algorithms, we employ
somewhat trickier cancellation arguments than what was previously used.

More recently, [14, Section 6] presented an algorithm solving the linkage problem discussed
above in 2% poly(n) time (with runtime independent of p). Their approach uses determinants
to enumerate (S, T')-linkages. As mentioned previously, we explicitly avoid using determinants
so that we can obtain linear time algorithms.

Additional Related Work

There are many additional examples of algebraic graph algorithms in the literature. For
example, [9] presents an efficient algorithm for finding shortest cycles through specified
subsets of vertices, [12] presents algorithms for finding shortest cycles and perfect matchings
in essentially matrix multiplication time, and [8] presents a polynomial time algorithm for
finding a shortest cycle of even length in a directed graph. Even more examples of algebraic
methods in parameterized algorithms are listed in [14, Table 1].

Bibliographic Remark

While the current paper was under submission, the work [3] of Bentert, Fomin, and Golovach
was posted online. The reduction they use to establish [3, Theorem 1] is essentially the same
as the reduction we use to prove Theorem 6, so this result was independently shown by [3].
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Organization

In Section 2 we introduce notation and recall useful facts about graphs and polynomials
used in our results. In Section 3 we provide some informal overviews for the proofs of our
results. Full proofs of the results claimed in this paper can be found in the full version of
this work [2]. We conclude in Section 4 by highlighting some open problems motivated by
this work.

2 Preliminaries

General Notation

Given a positive integer a, we let [a] = {1,...,a} denote the set of the first a positive integers.

Given positive integers a and b, we let [a,b] = {a,...,b} denote the set of consecutive integers
from a to b inclusive (if a > b, then [a, b] is the empty set).
Throughout, we let k denote a constant positive integer parameter.

Graph Notation and Assumptions

Throughout, we let G denote the input graph on n vertices and m edges. We let sq,...,sg
denote the source vertices of G, and t1,...,t; denote the target vertices of G. A terminal is
a source or target node. We assume without loss of generality that G is weakly connected
(we can do this because we only care about solving disjoint path problems on G, and if
terminals of G are in separate weakly connected components, we can solve smaller disjoint
path problems on each component separately).

Given an edge e = (u,v), we let (u,v) denote the weight of e in G. We assume all edge
weights are positive. We let dist(u,v) denote the distance of a shortest path (i.e., the sum
of the weights of the edges used in a shortest path) from u to v. When we write “path P
traverses edge (u,v)” we mean that P first enters u, then immediately goes to v.

We represent paths P = (vg, ..., v,) as sequences of vertices. If the path P passes through
vertices v and v in thz}i order, we let P[u,v] denote the subpath of P which begins at u
and ends at v. We let P denote the reverse path of P, which traverses the vertices of P in
reverse order. Given two paths P and @) such that the final vertex of P is the same as the
first vertex of @, we let P ¢ () denote the concatenation of P and Q.

Shortest Path DAGs

Given a graph G and specified vertex s, the s-shortest paths DAG of G is the graph with the
same vertex set as GG, which includes edge (u,v) if and only if (u,v) is an edge traversed by
an (s, v)-shortest path in G. From this definition, it is easy to see that a sequence of vertices
is an (s,v)-shortest path of G if and only if it is an (s, v)-path in the s-shortest paths DAG
of G. Indeed, every edge of an (s, v)-shortest path in G is contained in the s-shortest paths
DAG by definition, and so forms a path in this graph. Conversely, if the sequence of vertices
P = (vg,...,v,) is an (s,v)-path in the s-shortest paths DAG of G, then we can inductively
show that P[s,v;] is a shortest path in G for each index i.
We observe that shortest paths DAGs can be constructed in linear time.

» Proposition 10 (Shortest Path DAGs). Let G be a weighted DAG or undirected graph with
distinguished vertex s. Then we can construct the s-shortest paths DAG of G in linear time.
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Proof. By definition, an edge (u,v) is in the s-shortest paths DAG of G if and only if (u,v)
is the last edge of some (s, v)-shortest path in G. This is equivalent to the condition that
(u,v) is an edge in G, and

dist(s,v) = dist(s,u) + £(u,v). (1)

So, we can construct the s-shortest paths DAG of G by computing the values of dist(s,v) for
all vertices v, and then going through each edge (u,v) in G (if G is undirected, we try out
both ordered pairs (u,v) and (v,u) of an edge {u,v}) and checking if Equation (1) holds.
So to prove the claim, it suffices to compute dist(s,v) for all vertices v in linear time.
When G is a weighted DAG, we can compute a topological order of G in linear time, and
then perform dynamic programming over the vertices in this order to compute dist(s, v) for
all vertices v in linear time (this procedure is just a modified breadth-first search routine).
When G is an undirected graph, we instead use Thorup’s linear-time algorithm for
single-source shortest paths in weighted undirected graphs [26] to compute dist(s,v) for all
vertices v. <

Finite Fields

Our algorithms for 2-DSP in undirected graphs and DAGs involve working over a finite field
Faq of characteristic two, where ¢ = O(logn). We work in the Word-RAM model with words
of size O(logn), so that addition and multiplication over this field take constant time.

We make use of the following classical result, which shows that we can test if a polynomial
is nonzero by evaluating it at a random point of a sufficiently large finite field.

» Proposition 11 (Schwartz-Zippel Lemma). Let f be a nonzero polynomial of degree at
most d. Then a uniform random evaluation of f over F is nonzero with probability at least
1—d/|F|.

3 Technical Overview

3.1 2-DSP Algorithms

We first outline a linear time algorithm solving 2-DP in DAGs. We then discuss the changes
needed to solve the 2-DSP problem in weighted DAGs, and then the additional ideas used to
solve 2-DSP in weighted undirected graphs.

Let G be the input DAG. For each edge (u,v) in G, we introduce an indeterminate ;.
We assign each pair of paths in G a certain monomial over the z,, variables, which records
the pairs of consecutive vertices traversed by the paths. These monomials are constructed so
that any pair of disjoint paths has a unique monomial.

Let F be the sum of monomials corresponding to all pairs of paths (P;, P») such that
P; is an (s;,t;)-path in G. Let Fgys; and F, be the sums of monomials corresponding to
all such pairs of paths which are disjoint and intersecting respectively. Since each disjoint
pair of paths produces a distinct monomial, we can solve 2-DP by testing whether Fy;g; is a
nonzero polynomial. We can perform this test by evaluating Fis; at a random point, by the
Schwartz-Zippel lemma (Proposition 11).

Since every pair of paths is either disjoint or intersecting, we have

F = Fyis; + Fry
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Figure 1 To enumerate the family of disjoint pairs of paths on the left (the dashed borders
around the paths indicate that the paths do not intersect), it suffices to enumerate all pairs of paths
and subtract out those pairs in the family which intersect at some point.

which implies that
Faisj = F — Fn.

This relationship is pictured in Figure 1.

Thus, in order to evaluate Fyis, it suffices to evaluate F' and F. Since F' enumerates
pairs of paths from the sources to their corresponding targets with no constraints, it turns
out that I is easy to evaluate. So solving 2-DP amounts to evaluating Fi efficiently.

To evaluate F, we need a way of enumerating over all pairs of intersecting paths. Each
pair of intersecting paths overlaps at a unique earliest vertex v (with respect to the topological
order of G). Consequently, if we let F,, be the sum of monomials of pairs of intersecting
paths with first intersection at v, we have

Fr=) F, (2)

veV

as depicted in Figure 3.

We evaluate each F, by relating it to a seemingly simpler polynomial. Let F, be the
polynomial enumerating pairs of paths (P;, P») where P; is an (s;,t;)-path in G such that
1. P, and P; intersect at vertex v, and
2. the vertices appearing immediately before v on P; and P, are distinct.

We can think of property 2 as a relaxation of the condition that P, and P, have v as
their earliest intersection point: instead of requiring that Pj[sq,v] and Ps[ss, v] never overlap
before v, we merely require that these subpaths do not overlap at the position immediately
before v. It turns out evaluating F, is easy, because we can enforce property 2 above by
enumerating over all pairs of paths which intersect at v, and then subtracting out all such
pairs which overlap at some edge ending at v. Simultaneously evaluating all F, can then be
done in O(m) time, roughly because we perform one subtraction for each possible edge the
paths could overlap at.

So far, we have explained how to compute all F, values in linear time. Now comes the
key idea behind our algorithm: over fields of characteristic two, the polynomials F, and F,,
are actually identical! Indeed, consider a pair of paths (P;, P,) enumerated by F,, which
intersects before v. Let the first intersection point of these paths be some vertex u. Then by
condition 2 above, the subpaths P;[u,v] and Pslu,v] are distinct, because their penultimate
vertices are distinct. So if we define new paths

Ql :Pl[Sl,U]<>P2[’U,,’U]<>P1[U,t1] and Q2 :PQ[SQ,’UJ]<>P1[U,U]<>P2[’U,t2}

obtained by swapping the u to v subpaths in P; and P», we get a new pair of paths (Q1, Q2)
satisfying conditions 1 and 2 from before, such that each Q; is an (s;, t;)-path in G, which
produces the same monomial as (P;, P»). This subpath swapping operation is depicted in
Figure 2, for u = a and v = b. Then modulo two, the contributions of the pairs (P, P»)

9:11
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Figure 2 Given paths P; and P> which intersect at nodes a = a(Pi, P2) and b = B(P1, P»), such
that a appears before b on both paths, if we swap the a to b subpaths of of P1 and P> to produce
new paths Q1 and Q2 respectively, then these pairs f(P1, P2) = f(Q1,Q2) have the same monomials.
Moreover, swapping the a to b subpaths of Q1 and Q2 recovers P; and Ps.

and (Q1,Q2) to F, will cancel out. It follows that all pairs of paths which intersect before v
have net zero contribution to Fv, and so ]:"U = F), as claimed. This congruence is depicted in
Figure 4.

Given this observation, we can use our evaluations of F, in Equation (2) to evaluate Fj,
and thus, by the previous discussion, solve the 2-DP problem.

From Disjoint Paths to Disjoint Shortest Paths

To solve 2-DSP in weighted DAGS, we can modify the 2-DP algorithm sketched above as
follows. First, for ¢ € [2], we compute G;, the s;-shortest paths DAG of G. We then construct
polynomials as above, but with the additional constraint that they only enumerate pairs of
paths (P;, P») with the property that every edge in path P; lies in G;. This ensures that we
only enumerate pairs of paths which are shortest paths between their terminals.

With this change, the above algorithm for 2-DP generalizes to solving 2-DSP.

» Remark 12 (Enumeration Makes Generalization Easy). Previous near-linear time algorithms
for 2-DP in DAGs and undirected graphs do not easily generalize to solving 2-DSP. In
contrast, as outlined above, in our approach moving from 2-DP to 2-DSP is simple. Why is
this?

Intuitively, this happens because our algorithms take an enumerative perspective on
2-DSP, rather than the detection-based strategy of previous algorithms. Older algorithms
iteratively build up solutions to 2-DP or 2-DSP. Depending on the problem, this involves
enforcing different sorts of constraints, since partial solutions to these problems may look quite
different. In our approach, we just need to enumerate paths to solve 2-DP and enumerate
shortest paths to solve 2-DSP. Enumerating paths and shortest paths are both easy in DAGs
by dynamic programming. Hence algorithms for these two problems end up being essentially
the same in our framework.

From DAGs to Undirected Graphs

When solving 2-DSP in DAGs, we used the fact that DAGs have a topological order, so
that any pair of paths intersects at a unique earliest vertex v in this order. This simple
decomposition does not apply to solving 2-DSP in undirected graphs, since we cannot rely
on a fixed topological order.

Instead, we perform casework on the first vertex v in P; lying in P; N P,. We observe
that in undirected graphs, there are two possibilities: v is either the first vertex in P, lying
in Py N Py, or it is the final vertex in P, lying in P; N P». Intuitively, the paths either “agree”
and go in the same direction, or “disagree” and go in opposite directions.
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Figure 3 To enumerate the family of intersecting pairs of paths on the left, we can perform
casework on the earliest intersection point v for the paths (the dashed border on the subpaths on
the right indicates that the paths do not intersect before v).

We then argue that over a field of characteristic two, we can efficiently enumerate over
pairs of paths in each of these cases. As with DAGs, we make this enumeration efficient by
arguing that modulo 2 we can relax the (a priori difficult to check) condition of v being the
first intersection point on P; to some simpler “local” condition. When the paths agree, this
argument is similar to the reasoning used for solving 2-DSP in DAGs.

For the case where the paths disagree, this enumeration is more complicated, because
there is no consistent linear ordering of the vertices neighboring v on the two shortest
paths, but can still be implemented in linear time using a more sophisticated local condition.
Specifically, if we let a; and b; denote the nodes appearing immediately before and after v on
path P;, then to enumerate the “disagreeing paths” modulo two, we prove that it suffices
to enumerate paths P; and P, which intersect at v and have the properties that a; # as,
b1 # by, and ay # bs. Intuitively, using the subpath swapping idea depicted in Figure 4, the
conditions that a; # as and ay # by ensure that v is the first vertex of P; lying in P; N Py,
and the condition that b; # by ensures that the paths disagree. To implement this idea, we
need a slightly more complicated subpath swapping argument, which can also handle the
case where two paths P; and P, intersect at vertices u and v, with u appearing before v on
Py but u appearing after v on P, (this situation does not occur in DAGs, but can occur in
undirected graphs). We do this by combining the previous subpath swapping idea with the
observation that in undirected graphs we can also traverse subpaths in the reverse direction
(so it is possible to swap the subpaths P [u,v] and Ps[v,u] in Py and Ps, even though u and
v appear in different orders on P; and Ps).

By combining the enumerations for both cases, we can evaluate Fjyij, and thus solve
2-DSP over undirected graphs.

3.2 k-EDSP Algorithm

The previous algorithm of [6, Proposition 10] for k&-EDSP works by constructing a graph G’
encoding information about k-tuples of edge-disjoint shortest paths in the original graph
G. This new graph G’ has special nodes § and ¢, such that there is a path from § to ¢ in
G’ if and only if G contains k edge-disjoint shortest paths connecting its terminals. The

nodes of the new graph G’ are k-tuples of edges (e, ..., er) where each ¢; is an edge in G.

So constructing G’ already takes Q(m*) time.

Our algorithm for k-EDSP uses the same general idea. We construct an alternate graph
G’ which still has the property that finding a single path between two specified vertices
of G’ solves the k-EDSP problem in G. However, we design G’ to have nodes of the form
(v1,...,vx), where each v; is a vertez in G. Our construction produces a graph with n* nodes
and O(mn*~1) edges, which yields the speed-up. We avoid the Q(m*) bottleneck of the
previous algorithm by showing how to encode edge-disjointness information simply through
the k-tuples of vertices, rather than edges, that the k& potential solution paths in G traverse.
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(mod 2)

Figure 4 If we work modulo two, then we can enumerate pairs of paths which have common first
intersection at node v by enumerating pairs of paths which intersect at v and have the property
that the vertices appearing immediately before v on each path are distinct.

3.3 Lower Bounds
Disjoint Shortest Paths

Our proof of Theorem 6 is based on the reduction of [5, Proposition 1] from k-Clique to
2k-DSP on undirected graphs, which also easily extends to DAGs. Our contribution is a
transformation that reduces the number of paths in their reduction from 2k to k by exploiting
the symmetry of the construction.

The reduction of [5] maps each vertex v in the k-Clique instance to a horizontal path P,
and a vertical path @,, each of length n. These paths are arranged so that for each pair of
vertices (v, w) in the input graph, the paths P, and @Q,, intersect if and only if (v, w) is not
an edge in the input graph. To achieve this, the paths are placed along a grid, and at the
intersection point in the grid between paths P, and @, these two paths are modified to
bypass each other to avoid intersection if (v, w) is an edge in the input graph.

The main idea of our transformation is the following. Since the known reduction is
symmetric along the diagonal of the grid, it contains some redundancy. We remove this
redundancy by only keeping the portion of the grid below the diagonal. To do this, we
only have one path P, for each vertex v in the input graph, and each such path has both a
horizontal component and a vertical component. Each path turns from horizontal to vertical
when it hits the diagonal. As a result, each pair of paths (P,, P,,) has exactly one intersection
point in the grid (which we bypass if (v, w) is an edge in the input graph). Since we produce
only a single path P, for each vertex v, we obtain a reduction to k-DSP instead of 2k-DSP.

Disjoint Paths

The starting point for Theorem 8 is the work of [23], which reduces from k-Clique to p-EDP
in a DAG with O(kn) nodes, for p =k + (g) The parameter blows up from k to p in this
way because the reduction uses k solution paths to pick k vertices in the original graph, and
then for each of the (’2“) pairs of vertices chosen, uses an additional solution path to verify
that the vertices in that pair are adjacent in the original graph.

We improve upon this by modifying the reduction graph to allow some solution paths to
check multiple edges simultaneously. This lets us avoid using (g) solution paths to separately
check for edges between each pair of nodes in a candidate k-clique. Instead, we employ just
| k2 /4] solution paths in the reduction, roughly halving the number of paths needed.

To do this, we need to precisely identify which paths can check for multiple edges without
compromising the correctness of the reduction. To this end, we examine the structure of the
reduction and define a notion of a covering family which characterizes which paths can safely
check for multiple edges at once. Formally, a k-covering family is a collection £ of increasing
lists of positive integers, with the property that for all integers 4, j with 1 < ¢ < j < k, some
list in £ contains 7 and j as consecutive members.
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We show that for any k, the smallest number of lists in a k-covering family is (k) = | k?/4]
(note that merely obtaining asymptotically tight bounds would not suffice for designing
interesting conditional lower bounds). We then insert this construction of a minimum size
covering family into the framework of the reduction and prove that the reduction remains
correct. Intuitively, given lists in a covering family, we can map each list L to a path which
checks edges between vertex parts V; and V; for each (i, j) pair appearing as consecutive
members of L.

The original reduction of [23] corresponds to implementing this strategy with the trivial
k-covering family using (g) lists, achieved by taking a single increasing list of two elements for
each unordered pair of integers from [k]. Our improved reduction comes from implementing
this framework with the optimal bound of |k%/4] lists.

This yields reductions from k-Clique to p-DP and p-DSP for p = k + A(k) = k + [k?/4].

4 Conclusion

In this work, we obtained linear time algorithms for 2-DSP in undirected graphs and DAGs.

These algorithms are based off algebraic methods, and as a consequence are randomized and
only solve the decision, rather than search, version of 2-DSP. This motivates the following
questions:

» Open 1. Is there a deterministic linear time algorithm solving 2-DSP?

» Open 2. Given a DAG or undirected graph G with sources s1, s3 and targets t1, to, is there
a linear time algorithm finding disjoint (s;, t;)-shortest paths in G for i € {1,2}?

It is also an interesting research direction to see if algebraic methods can help design
faster algorithms for k-DSP in undirected graphs and DAGs when k > 3, or help tackle this
problem in the case of general directed graphs.

In this work, we also established tighter reductions from finding cliques to disjoint path
and shortest path problems. There still remain large gaps however, between the current best
conditional lower bounds and current fastest algorithms for these problems.

» Open 3. Is there a fixed integer k > 3 and constant ¢ > 0 such that k-DSP in DAGs can
be solved in O(nk+1_5) time? Or does some popular hypothesis rule out such an algorithm?

Since k-Clique admits nontrivial algorithms by reduction to matrix multiplication, it is
possible that k-DSP can be solved faster using fast matrix multiplication algorithms. On the
other hand, if we want to rule out this possibility and obtain better conditional lower bounds
for k-DSP, we should design reductions from problems which are harder than k-Clique. In
this context, a natural strategy would be to reduce from Negative k-Clique and 3-Uniform

k—o(k) time to solve

k-Hyperclique instead, since these problems are conjectured to require n
(and it is not known how to leverage matrix multiplication to solve these problems faster
than exhaustive search).

For all k£ > 3, the current fastest algorithm for A-DSP in undirected graphs takes n© ("

time, much slower than the O(mn*~!) time algorithm known for the problem in DAGs.

Despite this, every conditional lower bound that has been established for k-DSP in undirected
graphs so far also extends to showing the same lower bound for the problem in DAGs. This
is bizarre behavior, and suggests we should try establishing a lower bound which separates
the complexities of k-DSP in undirected graphs and DAGs. If designing such a lower bound
proves difficult, that would offer circumstantial evidence that far faster algorithms for k-DSP
in undirected graphs exist.
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» Open 4. Can we show a conditional lower bound for k-DSP in undirected graphs, which is
stronger than any conditional lower bound known for k-DSP in DAGs?

Finally, for large k, the best conditional time lower bounds we have for k-DP in DAGs are
far weaker than the analogous lower bounds we have for k-DSP in DAGs. This is despite the
fact that the fastest algorithms we have for both problems run in the same time. It would
nice to resolve this discrepancy, either by designing faster algorithms for the latter problem,
or showing better lower bounds for the former problem.

» Open 5. Is there a fixed integer k > 3 such that we can solve k-DP in DAGs faster than
we can solve k-DSP in weighted DAGs?

» Open 6. Can we show a conditional lower bound for k-DP in DAGs matching the best
known conditional lower bound for k-DSP in DAGs?
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