
Additive Spanner Lower Bounds with Optimal
Inner Graph Structure
Greg Bodwin #Ñ

University of Michigan, Ann Arbor, MI, USA

Gary Hoppenworth #Ñ

University of Michigan, Ann Arbor, Mi, USA

Virginia Vassilevska Williams #Ñ

Massachusetts Institute of Technology, Cambridge, MA, USA

Nicole Wein #Ñ

University of Michigan, Ann Arbor, MI, USA

Zixuan Xu # Ñ

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
We construct n-node graphs on which any O(n)-size spanner has additive error at least +Ω(n3/17),
improving on the previous best lower bound of Ω(n1/7) [Bodwin-Hoppenworth FOCS ’22]. Our
construction completes the first two steps of a particular three-step research program, introduced
in prior work and overviewed here, aimed at producing tight bounds for the problem by aligning
aspects of the upper and lower bound constructions. More specifically, we develop techniques that
enable the use of inner graphs in the lower bound framework whose technical properties are provably
tight with the corresponding assumptions made in the upper bounds. As an additional application
of our techniques, we improve the corresponding lower bound for O(n)-size additive emulators to
+Ω(n1/14).

2012 ACM Subject Classification Theory of computation → Sparsification and spanners

Keywords and phrases Additive Spanners, Graph Theory

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.28

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2404.18337

Funding Greg Bodwin and Gary Hoppenworth: Supported by NSF:AF 2153680.
Virginia Vassilevska Williams: Supported by NSF Grant CCF-2330048, BSF Grant 2020356 and a
Simons Investigator Award.
Zixuan Xu: Partially supported by NSF Grant CCF-2330048.

1 Introduction

Suppose that we want to compute shortest paths or distances in an enormous graph G.
When G is too big to store in memory, a popular strategy is to instead use a spanner of G,
which is a much sparser subgraph H with approximately the same shortest path metric as
G. This can substantially improve storage or runtime costs, in exchange for a small error
in the distance information. Perhaps the most well-applied case is when the spanner is
asymptotically as sparse as possible; that is, |E(H)| = O(n) for an n-node input graph G

(note that Ω(n) edges are needed just to preserve connectivity).
There are several ways to measure the quality of approximation of a spanner. The two

most popular are as follows:

EA
T
C
S

© Greg Bodwin, Gary Hoppenworth, Virginia Vassilevska Williams, Nicole Wein, and
Zixuan Xu;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 28; pp. 28:1–28:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bodwin@umich.edu
https://bodwin.engin.umich.edu/
https://orcid.org/0000-0001-9896-8906
mailto:garytho@umich.edu
https://web.eecs.umich.edu/~garytho/
https://orcid.org/0000-0002-6534-8935
mailto:virgi@mit.edu
https://people.csail.mit.edu/virgi/
https://orcid.org/0000-0003-4844-2863
mailto:nswein@umich.edu
https://web.eecs.umich.edu/~nswein/
https://orcid.org/0000-0003-2792-2374
mailto:zixuanxu@mit.edu
https://xzx217.github.io/
https://orcid.org/0009-0002-0345-3884
https://doi.org/10.4230/LIPIcs.ICALP.2024.28
https://arxiv.org/abs/2404.18337
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Additive Spanner Lower Bounds with Optimal Inner Graph Structure

Table 1 The progression of upper and lower bounds on the additive error associated to n-node
spanners on O(n) edges; current state of the art bounds are highlighted in red. See also [10, 11, 6, 3, 2]
for work on additive spanners of superlinear size.

Upper Bound Lower Bound

O(n)-size Spanners

Ω(log n) [23]
Õ(n9/16) [20] Ω(n1/22) [1]
Õ(n1/2) [9] Ω(n1/11) [16, 18]
O(n3/7+ε) [8] Ω(n2/21) [19]
O(n

15−
√

54
19 <0.403) [21] Ω(n1/7) [7]

Ω(n3/17) this paper

▶ Definition 1 (Multiplicative and Additive Spanners). Given a graph G, a subgraph1 H ⊆ G

is a multiplicative ·k spanner if for all nodes s, t we have distH(s, t) ≤ distG(s, t) · k. It is an
additive +k spanner if we have distH(s, t) ≤ distG(s, t) + k.

The parameter k is called the (additive or multiplicative) stretch of the spanner. A famous
paper of Althöfer, Das, Dobkin, Joseph, and Soares [4] settled the optimal multiplicative
stretch for O(n)-size spanners:2

▶ Theorem 2 ([4]). Every n-node graph has a spanner H of size |E(H)| = O(n) and
multiplicative stretch O(log n). This stretch cannot generally be improved to o(log n).

The goal of this paper is to make progress on the corresponding question for additive
error. This question has been intensively studied; see Table 1 for the progression of results.
Our contributions are on the lower bounds side:

▶ Theorem 3 (Main Result). There exists an infinite family of n-vertex undirected graphs
for which any additive spanner on O(n) edges has additive stretch Ω(n3/17).

Our techniques also lead to progress on related questions for O(n)-size emulators, which
we discuss further in Section 1.2. Before we explain this, we contextualize Theorem 3 by
explaining in more depth the sense in which it moves the upper and lower bounds closer
together.

1.1 Our Contribution and Next Steps for the Area
There are well-established frameworks in place for proving upper and lower bounds for
O(n)-size spanners, and the current sentiment among experts is that these two frameworks
could eventually produce near-matching (likely within nε factors) upper and lower bounds.
Both frameworks can be broken down into three corresponding steps, and over the last few
years, a research program has emerged in which the long-term goal is to find optimal bounds
for the problem by making each of these three steps align.3 That is, we can investigate what
“should” happen in each step if a hypothetical optimal version of the upper bound framework
were run on the graph from a hypothetical optimal version of the lower bound framework.
This thought experiment leads to a list of three concrete features that should be realized in
an ideal lower bound, which we overview at a high level in Table 2.

1 Throughout the paper, for brevity, we write “subgraph” to specifically mean a subgraph over the same
vertex set as the original graph.

2 Although we generally treat input graphs G as undirected and unweighted in this paper, this particular
theorem also extends to the setting where G is weighted.

3 This program was made somewhat explicit in [7] (c.f. Section 2.4), but was implicit in work before that.

G. Bodwin, G. Hoppenworth, V. Vassilevska Williams, N. Wein, and Z. Xu 28:3

However, it is easier to write down this wishlist for the lower bound than it is to actually
achieve the listed features in a construction; we discuss the various technical barriers in
Section 2. The contribution of the current paper is to achieve the first two steps of alignment
(i.e., the first two items in Table 2) simultaneously, which both have to do with optimizing
properties of the so-called inner graph in the lower bound construction. That said, the ideal
structure of an inner graph has been known since [8], and well before that Coppersmith
and Elkin [12] found graph constructions achieving this ideal structure (“subset distance
preserver lower bound graphs”). Our main technical contributions are not in designing new
inner graphs, but rather, in improving the outer graph in a way that allows these previously
known optimal inner graphs to be used within the framework for the first time.

This paper makes no real progress on the third and final point of alignment, which
contends with optimizing certain quantitative properties of the shortest paths in the outer
graph. Here there is still significant misalignment between the upper and lower bounds,
which is responsible for essentially all of the remaining numeric gap between the current
upper and lower bounds for O(n)-size spanners. Improving this third point, either on the
upper bounds side or the lower bounds side, is the clear next step for the area and it may
first require advances in our understanding of distance preservers [12]; see [7] for discussion.

1.2 Additional Results
The technical improvements to the construction that enable our improved spanner lower
bounds also imply improvements for two nearby objects, which we overview next. First, an
emulator is similar to a spanner, but not required to be a subgraph:

▶ Definition 4 (Additive Emulators). Given a graph G, a graph H on the same vertex set as
G is an additive +k emulator if for all nodes s, t we have

distG(s, t) ≤ distH(s, t) ≤ distG(s, t) + k.

An emulator H is allowed to be weighted, even when the input graph G is unweighted.
Emulators generalize spanners, and hence the upper and lower bounds known for O(n)-size
emulators are a bit lower than the corresponding bounds for spanners. See Table 3 for the
progression of results on the additive error that can be obtained for O(n)-size emulators.

A similar lower bound framework is used to achieve lower bounds for emulators, and
hence our new technical machinery improves the current lower bounds for emulators as well:

▶ Theorem 5. There exists an infinite family of n-vertex undirected graphs for which any
additive emulator on O(n) edges has additive stretch Ω(n1/14).

Our numeric improvement in the lower bound for emulators is more modest than our
improvement for spanners; at a high level, this is because our main improvement is to enable
stronger inner graphs in the lower bound framework, but the role of the inner graph is
generally less important in emulator lower bounds.

We next provide a more fine-grained overview of our lower bound framework, and we
describe our technical improvements that lead to our new results in more detail.

2 Technical Overview

In this section we will give an overview of the different technical components in our lower
bound graph construction. We start by reviewing the obstacle product framework in
Section 2.1 and recalling some ideas from prior work in Section 2.2. Finally we will discuss
the new components in our construction in Section 2.3.

ICALP 2024

28:4 Additive Spanner Lower Bounds with Optimal Inner Graph Structure

Table 2 A point-by-point comparison of the frameworks used to prove upper and lower bounds.
Our main technical contributions are to satisfy the first point of alignment by enabling the use of
inner graphs with Θ(r4/3) nodes (where +Ω(r) is the desired lower bound on spanner error), and to
satisfy the second point of alignment by enabling the use of subset distance preserver lower bounds
for our inner graphs. Neither of these properties were fully achieved in prior work.

Step in Upper Bounds Step in Lower Bounds What should ideally happen
when we run the upper bound
framework on a lower bound
graph?

Cover the input graph by
clusters C of radius r each.
These clusters are classified as
either small or large, depend-
ing on whether their number of
nodes is smaller or larger than
r4/3.

Start with an outer graph, and
systematically replace each
node with a disjoint copy of
an inner graph.

The upper bound should select
the inner graphs as its clusters.
All inner graphs should have
Θ(r4/3) nodes, since the worst
case for the upper bound is
when all clusters are near the
large/small threshold.

Small clusters C have a node
separator of size ≤ |C|1/4.
Construct a subset distance
preserver on each small cluster,
preserving all shortest paths
between separator nodes, at
cost O(|C|) [12].

The inner graphs should be se-
lected as the union of many
long unique shortest paths
among nodes that form a sep-
arator for the graph, and also
any two of these shortest paths
may intersect on at most one
node.

The inner graph should be a
lower bound graph against sub-
set distance preservers with
Θ(|C|1/4) source nodes (with
a large implicit constant), so
that the approach of construct-
ing a subset distance preserver
is too expensive to be used
in an attack against the lower
bound.

Large clusters C are handled
by adding some additional
shortest paths in the spanner
to connect far-away clusters to
each other. Using the path-
buying framework [6], we can
limit the total number and
length of the shortest paths we
need to add.

The outer graph is selected
to be the union of as many
long unique shortest paths
as possible, and any two of
these shortest paths may in-
tersect on at most one edge.
That is, the outer graph is a
slightly modified distance pre-
server lower bound graph.

The shortest paths added for
large clusters should coincide
with the shortest paths in the
original outer graph (before in-
ner graph replacement). The
path-buying bounds on the
number and length of these
shortest paths should coincide
with the number and length
of these shortest paths in the
outer graph.

Table 3 The progression of upper and lower bounds on the additive error associated to n-node
emulators on O(n) edges; current state of the art bounds are highlighted in red. See also [13].

Upper Bound Lower Bound

O(n)-size Emulators

O(n1/3+ε) [9] Ω(log n) [23]
O(n3/11+ε) [8] Ω(n1/22) [1]
Õ(n1/4) [20] Ω(n1/18) [16]
Õ(n2/9−1/1600<0.222) [17] Ω(n2/29) [19]
O(n

1
3+

√
5

+ε<0.191) [15] Ω(n1/14) this paper

G. Bodwin, G. Hoppenworth, V. Vassilevska Williams, N. Wein, and Z. Xu 28:5

2.1 The obstacle product framework
Similar to all previous works including [1, 16, 19, 7] on proving stretch lower bounds for linear-
sized additive spanners, our construction falls under the obstacle product framework introduced
in [1]. Any construction under this framework consists of an outer graph GO = (VO, EO) and
an inner graph GI = (VI , EI) where every vertex in the outer graph is replaced by a copy of
the inner graph. The desired outer graph should contain a set pairs PO ⊆ VO × VO often
called the critical pairs such that the following holds:
1. For each pair (s, t) ∈ PO, the shortest path from s to t is unique. These unique shortest

paths connecting between pairs in PO are often called the critical paths.
2. The critical paths have roughly the same length Θ(k).
3. The critical paths are pairwise edge disjoint.
When we replace each vertex in the outer graph with a copy of the inner graph GI , we make
sure that the critical paths remain the unique shortest paths between their endpoints and
pairwise edge-disjoint by attaching each incoming edge and outgoing edge to distinct vertices
of the inner graph. Finally, we subdivide the edges originally in GO into paths of length
Θ(k). Now in the resulting graph denoted as Gobs = (Vobs, Eobs) with critical pairs Pobs, each
critical path between the endpoints in Pobs uniquely corresponds to a critical path in GO

and it takes the form of traveling alternatingly between subdivided edges in GO and paths in
GI . In particular, each critical path travels through Θ(k) subdivided paths of length Θ(k),
and Θ(k) inner graph copies.

Now let us see how to show that any sparse spanner on Gobs must suffer additive distortion
+Ω(k). The goal is to argue that if lots of edges are missing in the spanner H ⊆ Gobs compared
to Gobs, then there exists some pair (s, t) ∈ Pobs whose shortest path π in H falls into one of
the following two cases:
1. If π traverses the same sequence of inner graph copies as the critical path in Gobs, then it

must use at least one extra edge in each inner graph copy compared to the critical path
in the original graph due to missing edges. Since the critical path passes through Θ(k)
inner graph copies, the path π must suffer a +Ω(k) distortion in total.

2. If π traverses a different sequence of inner graph copies, then it must traverse a different
set of subdivided paths corresponding to the edges in GO. Since the critical paths in GO

are the unique shortest paths between its endpoints, π must traverse at least one more
subdivided path of length Θ(k) and thus suffer a +Ω(k) distortion.

Furthermore, note that the reason behind doing inner graph replacement is that without
the inner graphs, subdividing each edge of the outer graph would significantly sparsify the
graph so that even a trivial spanner including all the edges would have linear size. Adding the
inner graphs helps balance the overall density of the graph so that any linear-sized spanner
needs to be nontrivial. Thus, ideally we would want the inner graphs to be dense.

2.2 The outer graph: distance preservers and the alternation product
In this subsection, we review the two key components for the outer graph construction: the
distance preserver lower bound graph given in [12] and the alternation product first used
in [14].

2.2.1 Distance preserver lower bound graph
Given a graph G = (V,E) and a set of pairs P ⊆ V × V , a distance preserver H is a
sparse subgraph of G that preserves the distances for every pair in P exactly. Previously,
Coppersmith and Elkin [12] obtained a lower bound instance for distance preservers by

ICALP 2024

28:6 Additive Spanner Lower Bounds with Optimal Inner Graph Structure

constructing a large set of vertex pairs with pairwise edge-disjoint unique shortest paths
that are as long as possible; the union of the edges of these paths is the lower bound
instance. Following the intuition outlined in Section 2.1, it is natural to consider using the
distance preserver lower bound construction of [12] as the outer graph. From now on, we
will abbreviate the term “distance preserver lower bound graph” to “DP LB graph” and the
term “Coppersmith-Elkin construction” to “CE construction” for convenience.

Indeed, all prior work uses some version of the CE construction of DP LB graph as the
outer graph, and so do we. The CE construction is a geometric construction where the vertex
set corresponds to a d-dimensional integer grid [n]d and edges are added corresponding to a
d-dimensional convex set Bd(r) defined to be the vertices of the convex hull of integer points
contained in a ball of radius r > 0. More specifically, the vertices corresponding to the points
x⃗, y⃗ are connected by an edge if y⃗ − x⃗ ∈ Bd(r). Then the critical paths are defined to be the
paths corresponding to the straight lines starting from a “start zone” passing through the
grid, i.e. the paths that repeatedly take the edge corresponding to the same vector in Bd(r).
By convexity of the set Bd(r), one can show that these critical paths are edge-disjoint and
they are the unique shortest paths between their endpoints.

Prior to the work of [7], works including [16, 19] all considered a layered version of the
DP LB graph as the outer graph. Namely the graph contains ℓ+ 1 layers where each layer
corresponds to a d-dimensional integer grid [n]d and edges are added between adjacent layers
corresponding to the convex set Bd(r) similarly as defined in [12]. Then the critical paths are
defined to be the paths that start in the first layer and end in the last layer that repeatedly
take the edge corresponding to the same vector in Bd(r). This layering simplifies the stretch
analysis for additive spanner lower bounds because it is easy to argue that all the critical
paths have length exactly ℓ and the shortest path should not take any backward edges as it
will then need to traverse more layers. However, the layered version resulted in worse bounds
compared to the original unlayered version but it was unclear at the time how to analyze
an unlayered outer graph. Most recently, Bodwin and Hoppenworth [7] developed a new
analysis framework and successfully analyzed an obstacle product graph with a modified
version of the unlayered DP LB graph as the outer graph. As a result, they improved the
lower bound to Ω(n1/7) from Ω(n1/10.5) where the former remains the current best known
lower bound before this work. We use the unlayered outer graph construction in [7] as an
ingredient in our construction.

2.2.2 The alternation product
Another important idea that goes in to the outer graph construction is the alternation product
first used in [14]. Subsequent works including [1, 16, 19] all use the alternation product in
the outer graph construction. Consider two copies G1, G2 of the same 2-dimensional layered
DP LB graph with ℓ + 1 layers and convex set B2(r). Namely, each layer corresponds to
the [n]2 grid and the edges correspond to the 2-dimensional convex set B2(r) of radius r.
The original implementation of the alternation product graph Galt used in [14, 1, 16] of
G1 and G2 is a graph on 2ℓ+ 1 layers with each layer corresponding to the 4-dimensional
grid [n]4. Each vertex in Galt corresponds the pair (v1, v2) where v1 ∈ G1, v2 ∈ G2 and the
edges are added alternatingly between adjacent layers according to G1 and G2, respectively.
Specifically, between layer i and i+ 1 for i odd, we connect the vertex (x⃗, y⃗) for x⃗, y⃗ ∈ [n]2 to
(x⃗+ w⃗, y⃗) for w⃗ ∈ B2(r); for i even, we connect the vertex (x⃗, y⃗) to (x⃗, y⃗ + w⃗) for w⃗ ∈ B2(r).
In other words, Galt keeps track of G1 using the first two coordinates and G2 using the last
two coordinates. Then a critical path π in Galt corresponds to a pair of critical paths π1 in
G1 and π2 in G2 by taking alternating steps from π1 and π2. So the main advantage of the
alternation product for us is that it gives an extra product structure over the set of critical
paths that we want in our construction.

G. Bodwin, G. Hoppenworth, V. Vassilevska Williams, N. Wein, and Z. Xu 28:7

Unlike in our construction, prior works including [14, 1, 16, 19] apply the alternation
product in order to obtain a different relative count between the number of vertices and the
number of critical pairs rather than to obtain the extra product structure. However, these
changes in parameters are in fact unfavorable to the construction for linear-sized spanner
lower bounds. To see this, notice that one can equivalently think of Galt as 4-dimensional
CE construction graph using the smaller convex set {(w⃗1, w⃗2) | w⃗1, w⃗2 ∈ B2(r)} instead of
B4(r), which means that Galt has fewer critical pairs (see Section 2.3 for a more detailed
discussion). In fact, in [16], Huang and Pettie gave an Ω(n1/11) lower bound construction
without the alternation product that improved on their own construction that uses the
alternation product which gave a bound of Ω(n1/13) in the same paper. Later in [19], Lu,
Vassilevska Wiliams, Wein and Xu improved on the alternation product that reduces the
loss in the number of critical pairs compared to the CE construction, thereby obtaining
an Ω(n1/10.5) lower bound that improved on the previous best bound of Ω(n1/11). Most
recently, Vassilevska Wiliams, Xu and Xu implicitly constructed an alternation product
graph in their O(m)-shortcut lower bound construction in [22] that asymptotically matches
the number critical pairs in the CE construction. Unfortunately, their construction is under a
different setting so we cannot directly apply their technique to our construction as a blackbox.
However, by isolating a main observation implied in their work, we were able to integrate
such an alternation product into our construction (see Section 2.3).

2.3 Our construction: optimal unlayered alternation product and
optimal inner graph structure

Our main technical contribution is a linear-sized additive spanner lower bound construction
that carefully combines the following ideas:
1. An unlayered DP LB graph as the outer graph, as in [7].
2. An optimal alternation product implicit in [22].
3. An optimal subset DP LB graph as the inner graphs, as motivated in Table 2.
We start with comparing our construction with the previously known lower bound construc-
tions in Table 4.

Table 4 All known lower bound constructions.

Citation Lower bound Outer graph Inner graph

Woodruff [23] Ω(log n) Butterfly Biclique

Abboud, Bodwin [1] Ω(n1/22) Layered DP LB + Alt Product Biclique

Huang, Pettie [16] Ω(n1/13) Layered DP LB + Alt Product Biclique

Huang, Pettie [16] Ω(n1/11) Layered DP LB Layered DP LB

Lu, Vassilevska W.,
Wein, Xu [19]

Ω(n1/10.5) Layered DP LB + Improved Alt
Product

Biclique

Bodwin, Hoppen-
worth [7]

Ω(n1/7) Unlayered DP LB DP LB

This work Ω(n3/17) Unlayered DP LB + Optimal Alt
Product

Subset DP LB

In the following, we will discuss the main components of our construction.

ICALP 2024

28:8 Additive Spanner Lower Bounds with Optimal Inner Graph Structure

2.3.1 Outer Graph: Unlayered DP LB graph with optimal alternation
product

As mentioned in Section 2.2, we would like to be able to apply the implicit alternation
product in [22] to unlayered DP LB graphs. By isolating the main idea that one can use the
set {(x, y, x2 + y2) | x, y ∈ [r]} as the convex set in the alternation product graph, we are
able to apply the implicit alternation product in [22] on unlayered DP LB graphs successfully
after certain modifications (See Section 4.1 for more details). In the following, we give a
more detailed discussion of the informal intuition behind why the alternation product we use
is more desirable than the alternation product used in prior works including [1, 16, 19].

Recall that in Section 2.2, one may view an alternation product graph as a CE construction
with a different convex set that determines the set of edges of the graph. In addition, a
vector from the convex set and a vertex in the “start zone” determines a critical path, so
we get more critical pairs if we use a larger convex set. More precisely, we want to use a
convex set that is “large” with respect to the total number of integer points contained in
the convex hull of the set. We recall from [5] that |Bd(r)| = Θ(rd· d−1

d+1). Let us compare
the convex sets used in the various alternation product graphs against Bd(r) in the same
number of dimension that is scaled to contain the same number of points in its convex hull
asymptotically in Table 5. Then we can see from Table 5 that all prior constructions use
a convex set that contains less points than the respective Bd(r) while the convex set we
use in this work matches the quality of B3(r), which is optimal in 3-dimensions (see [5] for
more details). That is, the construction that we use is as good as the CE construction in
3-dimensions.

Table 5 Comparison between known constructions of the alternation product and the CE
construction. The top row in each pair is the corresponding CE construction in the same number of
dimensions and scaled to contain the same number of points in its convex hull. The bottom row in
each pair indicates the alternation product construction used in the work cited.

Citation Convex Set Used Convex Set Size Convex Hull Size
4-dim [12] B4(r) Θ(r12/5) Θ(r4)
[1, 16] {(x⃗, y⃗) | x⃗, y⃗ ∈ B2(r)} Θ(r4/3) Θ(r4)

3-dim [12] B3(r) Θ(r3/2) Θ(r3)
[19] {(x1, x2 + y1, y2) | x⃗, y⃗ ∈ B2(r)} Θ(r4/3) Θ(r3)

3-dim [12] B3(r4/3) Θ(r2) Θ(r4)
This work
(based on [22])

{(x, y, x2 + y2) | x, y ∈ [r]} Θ(r2) Θ(r4)

One may wonder why we do not simply use the CE construction as our outer graph. The
reason is that the alternation product has extra structure that is crucial for allowing us to
use our desired inner graph. The CE construction lacks these properties. We elaborate on
this below.

2.3.2 Inner graph: Optimal subset DP LB graph
For our inner graphs, we use the CE construction of subset DP LB graphs in the regime
where the pairs S × S has size |S| = Θ(n1/4) where n denotes the number of vertices in the
graph. In fact, this construction is tight in the sense that it has Ω(n) edges while on the
other hand it is known that there exists subset distance preservers of size O(n) for every
set of sources S of size O(n1/4). So not only are we using an inner graph structure that
aligns with the upper bound algorithm as illustrated in Table 2, we are in fact using a tight
construction of the desired structure.

G. Bodwin, G. Hoppenworth, V. Vassilevska Williams, N. Wein, and Z. Xu 28:9

The main reason why we are able to use subset DP LB graphs as inner graphs in our
construction is that we have an alternation product graph as our outer graph. We discuss
below why an alternation product is necessary for using subset DP LB graphs as inner
graphs. In the inner graph replacement step under the obstacle product framework, we need
to attach the incoming edges and outgoing edges adjacent to a vertex v to vertices in the
corresponding inner graph copy so that each critical path passing through v in the outer
graph will pass through a unique critical path in the inner graph copy as well. Since the
subset DP LB graph has critical pairs of the form S × S for some subset S of the vertex set,
it is required that the critical paths passing through v in the outer graph also be equipped
with a product structure. In DP LB graphs, we have no such product structure over the
critical paths. However, notice that applying an alternation product would exactly give us a
product structure over the critical paths as desired.

3 Preliminaries

We use the following notations:
We use Conv(·) to denote the convex hull of a set.
We use ⟨·, ·⟩ to denote the standard Euclidean inner product, ∥ · ∥ the Euclidean norm,
and projw⃗(·) the Euclidean scalar projection onto w⃗.
We use [x], where x is a positive integer, to denote the set {1, . . . , x}.

4 Outer Graph GO

The goal of this section will be to construct the outer graph GO of our additive spanner and
emulator lower bound constructions. The key properties of GO are summarized in Theorem 6.

▶ Theorem 6 (Properties of Outer Graph). For any a, r > 0 ∈ Z, there exists a graph
GO(a, r) = (VO, EO) with a set ΠO of critical paths in GO that has the following properties:
1. The number of nodes, edges, and critical paths in GO is:

|VO| = Θ(a3r),
|EO| = Θ(a3r2),
|ΠO| = Θ(a2r4).

2. Every critical path π ∈ ΠO is a unique shortest path in GO of length at least |π| ≥ a
4r .

3. Every pair of distinct critical paths π1, π2 ∈ ΠO intersect on at most two nodes.
4. Every edge e ∈ EO lies on some critical path in ΠO.

The rest of the section is devoted to constructing the graph GO(a, r) and paths ΠO that
satisfy Theorem 6.

4.1 Convex Set of Vectors
Before specifying the construction of the graph GO, we begin by specifying our construction
of a set of vectors W ⊆ R3 that is crucial to the construction of GO. Set W will be
parameterized by a positive integer r, i.e., W = W (r). The vectors in W will satisfy a certain
strict convexity property that we will use to ensure the unique shortest paths property of
paths ΠO in GO.

▶ Definition 7 (W (r)). Given a positive integer r, let

W1(r) := {(x, 0, x2) | x ∈ {r/2, . . . , r}} and W2(r) := {(0, y, y2) | y ∈ {r/2, . . . , r}}.

ICALP 2024

28:10 Additive Spanner Lower Bounds with Optimal Inner Graph Structure

We define W (r) to be the sumset

W (r) := W1(r) +W2(r) = {(x, y, x2 + y2) | x, y ∈ {r/2, . . . , r}}.

We now verify that sets of vectors W1(r),W2(r),W (r) have the necessary convexity
property to ensure that graph GO has unique shortest paths (Property 2 of Theorem 6).
The convexity property of W stated in Lemma 8 is roughly similar to the notion of “strong
convexity” in [7], but is in fact stronger.

▶ Lemma 8 (Convexity property). Let W1,W2,W be the sets defined in Definition 7 for some
positive integer r. Let W ′ be the set

W ′ = W ∪ (−W) ∪ (W1 −W2) ∪ (W2 −W1).

Then each vector w⃗ ∈ W is an extreme point of the convex hull Conv(W ′) of W ′.

We omit the proof as it simply follows from checking that every vector in W ′ is an extreme
point of Conv(W ′).

4.2 Construction of GO

Let a, r > 0 ∈ Z be the input parameters for our construction of outer graph GO = (VO, EO).
Let W1 = W1(r), W2 = W2(r), and W = W (r) be the sets of vectors constructed in
Definition 7 and parameterized by our choice of r.

Vertex Set VO

Our vertex set VO will correspond to two copies of integer points arranged in a grid in R3.
These two copies will be denoted as V L

O and V R
O . For a point p ∈ R3, we will use pL to

denote the copy of point p in V L
O , and pR to denote the copy of point p in V R

O . Likewise,
for a set of points P ⊆ R3, we will use PL to denote the copy of set P in V L

O , and PR to
denote the copy of set P in V R

O . Then we define V L
O and V R

O as:

V L
O = ([a] × [a] × [ar])L, and V R

O = ([a] × [a] × [ar])R.

When denoting a node vL or vR in VO, we will drop the subscript and simply denote this
node as v when its membership in V L

O and V R
O is clear from the context or otherwise

irrelevant.

Edge Set EO

The edges EO in GO will pass between V L
O and V R

O , so that EO ⊆ V L
O × V R

O .
Just as the nodes in VO are integer points in R3, we will identify the edges in EO with
integer vectors in R3. Specifically, for each edge (xL, yR) in EO, we identify xL → yR

with the vector y − x ∈ R3. Note that y − x corresponds to the orientation xL → yR of
edge (xL, yR); we would use vector x− y ∈ R3 to denote yR → xL.
For each node vL ∈ V L

O and each vector w⃗ ∈ W1, if (v + w⃗)R ∈ V R
O , then add edge

(vL, (v + w⃗)R) to EO. Likewise, for each node vR ∈ V R
O and each vector w⃗ ∈ W2, if

(v + w⃗)L ∈ V L
O , then add edge (vR, (v + w⃗)L) to EO.

G. Bodwin, G. Hoppenworth, V. Vassilevska Williams, N. Wein, and Z. Xu 28:11

Critical Paths ΠO

Let S ⊆ R3 denote the set of points S = [a] × [a] × [r2/8].
Let s be a point in S. Additionally, let w⃗1 be a vector in W1, and let w⃗2 be a vector in
W2, where w⃗1 + w⃗2 ∈ W .4 If s + w⃗1 ̸∈ S, then we define a corresponding path in GO

starting from sL ∈ SL as

sL → (s+ w⃗1)R → (s+ w⃗1 + w⃗2)L → (s+ 2w⃗1 + w⃗2)R → (s+ 2w⃗1 + 2w⃗2)L →
· · · → (s+ i · w⃗1 + i · w⃗2)L,

where i is the largest integer i such that node (s + i · w⃗1 + i · w⃗2)L ∈ V L
O . Let t =

(s+ i · w⃗1 + i · w⃗2)L be the endpoint of this path, and add this s⇝ t path to our set of
critical paths ΠO.
Note that every critical path π ∈ ΠO constructed this way is uniquely specified by a start
node sL ∈ SL and vectors w⃗1 ∈ W1 and w⃗2 ∈ W2.
For every critical path π ∈ ΠO where |π| < a

4r , remove π from ΠO.
As a final step in our construction of GO, we remove all edges in GO that do not lie on some
critical path π ∈ ΠO.

4.3 Properties of GO

We will now verify that GO and ΠO satisfy the properties specified in Theorem 6 via the
following claims. We omit the proofs as most of them follow from definition and Lemma 8.

▷ Claim 9. Every critical path π ∈ ΠO is the unique shortest path between its endpoints in
GO. Moreover, |π| ≥ a

4r .

▷ Claim 10. Every pair of distinct critical paths π1, π2 ∈ ΠO can intersect on either a single
vertex or a single edge.

▷ Claim 11. Every edge in GO is used by at most r/2 critical paths π ∈ ΠO.

▷ Claim 12. The number of nodes, edges, and critical paths in GO(a, r) is:

|VO| = Θ(a3r),
|EO| = Θ(a3r2),
|ΠO| = Θ(a2r4).

Proof of Theorem 6. Note that graph GO and critical paths ΠO satisfy Properties 1, 2, and
3 of Theorem 6 by Claim 9, Claim 10, and Claim 12. Moreover, Property 4 of Theorem 6
follows immediately from the final step in our construction of GO. This completes the proof
of Theorem 6. ◀

5 Spanner Lower Bound Construction

In this section we present our lower bound construction for additive spanners. This con-
struction will have a similar structure to the obstacle product graph G constructed for our
emulator lower bound, but with several complications. We now describe these modifications
to the obstacle product argument:

4 Note that w⃗1 + w⃗2 ∈ W for all w⃗1 ∈ W1 and w⃗2 ∈ W2, since W = W1 + W2. However, in Section 5.1,
we will modify W so that W is a strict subset of W1 + W2, which will make this requirement relevant.

ICALP 2024

28:12 Additive Spanner Lower Bounds with Optimal Inner Graph Structure

Convex Sets W1,W2, and W . In Section 5.1, we modify the convex sets of vectors
W1,W2, and W3 that we defined in Section 4. The purpose of this modification is
technical, but it has to do with the projection argument we employ in our analysis. Our
new convex sets of vectors W1(r, c),W2(r, c),W (r, c) will now be parameterized by an
additional integer c > 0. These new sets of vectors will roughly resemble the outer graph
vectors in Lemma 8 of [7] and will play a similar role in our analysis of G.
Inner Graph GI . We choose our inner graphs to be the sourcewise distance preserver
lower bound graphs constructed in [12]. Lemma 19 specifies the exact properties of these
new inner graphs GI that we require in our analysis. See Subsections 1.1 and 2.2 for an
overview of why we make this design choice.

5.1 Modifying Convex Sets W1, W2, and W in GO

In this section, we modify the definitions of the convex sets of vectors W1,W2, and W used
to construct outer graph GO. Let r, c > 0 ∈ Z be the input parameters to our convex sets of
vectors W1,W2, and W .

We define Ii be the interval

Ii :=
[
r

2 + (2i− 2) · r
4c ,

r

2 + (2i− 2) · r
4c + r

16c3

]
,

for i ∈ [1, c]. The following claim is immediate from the definition of intervals Ii.

▷ Claim 13. Intervals {Ii}i∈[1,c] satisfy the following properties:
Ii ⊆ [r/2, r],
|Ii| = r

16c3

if x, y ∈ Ii, then |x− y| ≤ r
16c3 , and

if x ∈ Ii and y ∈ Ij , where i ̸= j, then |x− y| ≥ r/(2c).

We will use intervals {Ii}i∈[1,c] to construct our sets of vectors W1(r, c) and W2(r, c).

▶ Definition 14 (W1(r, c) and W2(r, c)). Let r, c be positive integers. We define W1(r, c) and
W2(r, c) as

W1(r, c) :=
{

(x, 0, x2) | x ∈ Ii, i ∈ [1, c]
}

and W2(r, c) :=
{

(0, y, y2) | y ∈ Ii, i ∈ [1, c]
}
.

Now we partition the vectors in W1(r, c) into c sets S1
1 , . . . ,S1

c we call stripes. We define
the ith stripe S1

i of W1(r, c) as {(x, 0, x2) | x ∈ Ii}. Likewise, we define the ith stripe S2
i of

W2(r, c) as {(0, y, y2) | y ∈ Ii}. The key properties of our stripes are summarized in Claim 15,
which follows immediately from Claim 13.

▷ Claim 15. Stripes {S1
i }i∈[1,c] satisfy the following properties:

S1
i ⊆ [r/2, r],

|S1
i | = r

16c3 ,
if (x, 0, x2), (y, 0, y2) ∈ S1

i , then |x− y| ≤ r
16c3 , and

if (x, 0, x2) ∈ S1
i and (y, 0, y2) ∈ S1

j , where i ̸= j, then |x− y| ≥ r
2c .

Moreover, stripes {S2
i }i∈[1,c] satisfy analogous properties.

Roughly, Claim 15 states that vectors in the same stripe in W1(r, c) or W2(r, c) are “close”
to each other in some sense, and vectors in different stripes in W1(r, c) and W2(r, c) are
“far” from each other in some sense. This notion of partitioning a set of vectors into stripes
satisfying these properties was introduced in the spanner lower bound construction of [7].
We are now ready to define our set of vectors W (r, c).

G. Bodwin, G. Hoppenworth, V. Vassilevska Williams, N. Wein, and Z. Xu 28:13

▶ Definition 16 (W (r, c)). Let r, c be positive integers. Unlike in Definition 7, we will define
W (r, c) to be a subset of the sumset W1(r, c) +W2(r, c). In particular, for w⃗1 ∈ W1(r, c) and
w⃗2 ∈ W2(r, c), we only add w⃗1 + w⃗2 to W (r, c) if w⃗1 and w⃗2 share the same stripe index
i ∈ [1, c]. Formally,

W (r, c) :=
{

(x, y, x2 + y2) | x, y ∈ Ii, i ∈ [1, c]
}

⊂ W1(r, c) +W2(r, c).

The following claim is immediate from the definitions of W1(r, c), W2(r, c) and W (r, c).

▷ Claim 17. Sets W1(r, c), W2(r, c) and W (r, c) satisfy the following properties:
|W1(r, c)| = |W2(r, c)| = Θ

(
r
c2

)
,

|W (r, c)| = Θ
(

r2

c5

)
,

W1(r, c) ⊂ W1(r), W2(r, c) ⊂ W2(r), and W (r, c) ⊂ W (r), so W (r, c) satisfies the
convexity property stated in Lemma 8.

We modify the construction of outer graph GO in Section 4 by replacing sets W1(r),W2(r),
and W (r) defined in Section 4.1 with the new sets W1(r, c),W2(r, c), and W (r, c). Note that
our new choice of sets W1(r, c) and W2(r, c) changes the the set of vectors EO in GO, while
our new choice of set W (r, c) changes the set of critical paths ΠO (see Footnote 4).

By inserting convex sets W1(r, c),W2(r, c), and W (r, c) into GO in place of the sets
W1(r),W2(r), and W (r), we obtain the following theorem about our modified outer graph
GO = GO(a, r, c).

▶ Theorem 18 (Properties of Modified Outer Graph). For any a, r, c > 0 ∈ Z, there exists a
graph GO(a, r, c) = (VO, EO) with a set of critical paths ΠO that has the following properties:
1. The number of nodes, edges, and critical paths in GO is:

|VO| = Θ(a3r), |EO| = Θ
(
a3r2

c2

)
, |ΠO| = Θ

(
a2r4

c5

)
.

2. Every critical path π ∈ ΠO is a unique shortest path in GO of length at least |π| ≥ a
4r .

3. Every pair of distinct critical paths π1 and π2 intersect on at most two nodes.
4. Every edge e ∈ EO lies on some critical path in ΠO.

Just like in the original construction of GO in Section 4, every critical path π ∈ ΠO

corresponds to a unique vector w⃗ ∈ W (r, c). Specifically, by the definition of W1(r, c),W2(r, c),
and W (r, c), path π is constructed using vectors w⃗1 ∈ W1(r, c) and w⃗2 ∈ W2(r, c), where

w⃗ = w⃗1 + w⃗2, and
w⃗1 ∈ S1

i and w⃗2 ∈ S2
i , for some i ∈ [1, c].

Critically, w⃗1 and w⃗2 both lie in the ith stripe S1
i and S2

i , respectively.

5.2 Inner Graph GI

In this subsection, we formally state the properties of the family of graphs we choose for
our inner graphs GI when constructing the obstacle product graph G. We will choose our
inner graphs to be the sourcewise distance preserver lower bound graphs constructed in [12].
Lemma 19 formally captures the exact properties of this family of graphs that we need for
spanner lower bound argument. We will defer our proof of Lemma 19 to the appendix, as it
largely follows from the proof of Theorem 5.10 in [12].

▶ Lemma 19 (cf. Theorem 5.10 of [12]). For any a, c > 0 ∈ Z, there exists a graph
GI(a, c) = (VI , EI) with a set SI ⊆ VI of sources, a set TI ⊆ VI of sinks, and a set
PI ⊆ SI × TI of critical pairs that has the following properties:

ICALP 2024

28:14 Additive Spanner Lower Bounds with Optimal Inner Graph Structure

1. The number of nodes, edges, sources, sinks, and critical pairs in GI is:

|VI | = Θ(a2),
|EI | = Θ(a2c),

|SI | = Θ(a1/2c11/4),

|TI | = Θ(a1/2c11/4),

|PI | = Θ(ac5/2).

2. Every path πs,t, where (s, t) ∈ PI , contains Θ(a/c3/2) edges that do not lie on any other
path πs′,t′ , where (s′, t′) ∈ PI .

3. For every source s ∈ SI and sink t ∈ TI , the distance between s and t in GI satisfies the
following:

distGI
(s, t) = Θ(ac1/2).

4. The set of sources SI can be partitioned into b = Θ(c3) sets S1
I , . . . , S

b
I , where |Si

I | =
Θ(a1/2c−1/4) for all i ∈ [b]. Let T i

I = {t ∈ TI | (Si
I × {t}) ∩ PI ̸= ∅} be the set of all

sinks that belong to a critical pair with a source in Si
I . Then for all i ∈ [b] the following

properties hold:
|T i

I | = Θ(a1/2c−1/4) for all i ∈ [b],
Si

I × T i
I ⊆ PI , and

for all (s, t) ∈ PI such that s ∈ Si
I and t ∈ T i

I ,

distGI
(s, t) ≤ distGI

(Si
I , T

i
I),

where distGI
(Si

I , T
i
I) denotes the minimum distance between Si

I and T i
I in GI .

5.3 Construction of Obstacle Product Graph G

Let a, r, c > 0 ∈ Z be the input parameters of an instance of outer graph GO = GO(a, r, c).
Let W1 = W1(r, c), W2 = W2(r, c), and W = W (r, c) be the sets of vectors constructed in
Section 5.1. Additionally, let a′, c′ > 0 ∈ Z be the input parameters of an instance of inner
graph GI = GI(a′, c′). We will specify the precise values of a, r, c, a′, and c′ later, as needed.
Roughly, our choices of parameters a, r, and a′ will grow with the size of our final graph G,
while parameters c and c′ will be (sufficiently large) integer constants.

We will construct our final graph G by performing the obstacle product. The obstacle
product is performed in two steps: the edge subdivision step and the inner graph replacement.
In the inner graph replacement step, we will need to carefully define two functions, ϕ1 :
W1 7→ SI × TI and ϕ2 : W2 7→ SI × TI between vectors in W1 and W2 and pairs of nodes in
SI × TI in inner graph GI .

Edge Subdivision

We subdivide each edge in GO into a path of length ψ. Denote the resulting graph as G′
O.

For any edge e = (u, v) ∈ EO, let Pe denote the resulting u⇝ v path of length ψ. We will
take ψ = Θ

(
r3

c29/3

)
.

G. Bodwin, G. Hoppenworth, V. Vassilevska Williams, N. Wein, and Z. Xu 28:15

Inner Graph Replacement

We now perform the inner graph replacement step of the obstacle product.
For each node v in V (G′

O) originally in GO, replace v with a copy of GI . We refer to this
copy of GI as Gv

I . Likewise, refer to the sources and sinks SI and TI in Gv
I as Sv

I and T v
I .

After applying the previous operation, the endpoints of the subdivided paths Pe in G′
O

no longer exist in the graph. If e = (u, v) ∈ EO, then Pe will have endpoints u and v. We
will replace the endpoints u and v of Pe with nodes in Gu

I and Gv
I , respectively.

In order to precisely define this replacement operation, it will be helpful to define two
functions, ϕ1 : W1 7→ SI × TI and ϕ2 : W2 7→ SI × TI . For ease of understanding, we will
first assume the existence functions ϕ1 and ϕ2. We will specify our choices of ϕ1 and ϕ2
later.
Let e = (u, v) ∈ EO. If v−u ∈ W1, then let ϕ1(v−u) = (x, y) ∈ SI ×TI . We will replace
the endpoints u and v of Pe with nodes y ∈ Tu

I in Gu
I and x ∈ Sv

I in Gv
I , respectively.

Otherwise, if v−u ∈ W2, then let ϕ2(v−u) = (x, y) ∈ SI ×TI , and replace the endpoints
u and v of Pe with nodes y ∈ Tu

I in Gu
I and x ∈ Sv

I in Gv
I , respectively. We repeat this

operation for each e ∈ EO to obtain the obstacle product graph G.
Note that after performing the previous operation, every subdivided path Pe, where
e = (u, v), will have a start node in Tu

I and an end node in Sv
I . We will use te to denote

the start node of Pe in Tu
I and se to the end node of Pe in Sv

I .
This completes the construction of the obstacle product graph G (up to defining functions
ϕ1 and ϕ2).

Defining functions ϕ1 and ϕ2

Let S1
1 , . . . ,S1

c be the stripes of W1, and let S2
1 , . . . ,S2

c be the stripes of W2. Let S1
I , . . . , S

b
I

and T 1
I , . . . , T

b
I be the partition of sources SI and sinks TI as described in Lemma 19, where

b = Θ(c′4). In order to construct our desired functions, we will require the following relations
to hold:

b ≥ c,
|Si

I | ≥ |Sj
i |, for all i ∈ [1, c] and j ∈ {1, 2}, and

|T i
I | ≥ |Sj

i |, for all i ∈ [1, c] and j ∈ {1, 2}.
This can be achieved by setting

c′ = Θ(c1/3) and a′ = Θ
(

r2

c35/6

)
,

using the fact that |Sj
i | = Θ(r/c3), |Si

I | = Θ(a′1/2c′−1/4), and |T i
I | = Θ(a′1/2c′−1/4) by

Claim 15 and Lemma 19.
We are now ready to define our functions ϕ1 and ϕ2. Let w⃗k

i,j denote the jth vector of
Sk

i , where i ∈ [1, c], j ∈ [1, |Sk
i |], and k ∈ {1, 2}. Let si

j denote the jth node of Si
I , where

i ∈ [1, c] and j ∈ [1, |Si
I |]. Likewise, let tij denote the jth node of T i

I , where i ∈ [1, c] and
j ∈ [1, |T i

I |]. We define ϕ1 and ϕ2 as follows:

ϕ1(w⃗1
i,j) = (si

j , t
i
j) and ϕ2(w⃗2

i,j) = (si
j , t

i
j) for i ∈ [1, c], j ∈ [1, |S1

j |].

The key properties of functions ϕ1 and ϕ2 are summarized in Claim 20.
▷ Claim 20. Functions ϕ1 and ϕ2 satisfy the following properties:
1. Our choice of ϕ1 and ϕ2 imply that for each node u ∈ SI ∪ TI in an inner graph copy Gv

I ,
there is at most one subdivided path Pe incident to u in G.

2. ϕk(S1
i) ⊆ Si

I × T i
I for k ∈ {1, 2} and i ∈ [1, c], where ϕk(S1

i) denotes the image of S1
i

under ϕk.

ICALP 2024

28:16 Additive Spanner Lower Bounds with Optimal Inner Graph Structure

Critical Paths Π

Fix a critical path πO ∈ ΠO with associated vectors w⃗1 ∈ W1 and w⃗2 ∈ W2.
By our construction of GO, there exists w⃗ ∈ W such that w⃗ = w⃗1 + w⃗2 (see Footnote 4).
Then by the construction of W there exists some index i ∈ [1, c] such that every edge
(u, v) ∈ πO satisfies v − u ∈ {w⃗1, w⃗2} ⊆ S1

i ∪ S2
i . Let χ ∈ [1, c] denote this index.

Let ei denote the ith edge of πO for i ∈ [1, k]. Note that by Property 2 of Claim 20,
it follows that sei

∈ Sχ
I and tei

∈ Tχ
I for i ∈ [1, k]. Then by Property 5 of Lemma 19,

(sei , tei+1) ∈ PI . By Property 2 of Lemma 19, path πsei
,tei+1

is a unique shortest
sei
⇝ tei+1 path in GI .

We now define a corresponding path π in G:

π = Pe1 ◦ πse1 ,te2
◦ Pe2 ◦ · · · ◦ Pek−1 ◦ πsek−1 ,tek

◦ Pek
,

Note that if ei = (x, y) and ei+1 = (y, z), then πsei
,tei+1

corresponds to the unique
shortest path between sei ∈ Sχ

I and tei ∈ Tχ
I in inner graph copy Gy

I . We add path π to
our set of critical paths Π.
We repeat this process for all critical paths in ΠO to obtain our set of critical paths Π in
G. Each critical path π ∈ Π is uniquely constructed from a critical path πO ∈ ΠO, so
|Π| = |ΠO|. We will use ϕ : Π 7→ ΠO to denote the bijection between Π and ΠO implicit
in the construction.

As the final step in our construction of obstacle product graph G, we remove all edges in
G that do not lie on some critical path π ∈ Π. Note that this will only remove edges in G that
are inside copies of the inner graph GI . Theorem 21 summarizes some of the key properties of
obstacle product graph G. The proof of Theorem 21 follows from straightforward calculations
and arguments similar to those in Section 5.2 in the full paper.

▶ Theorem 21 (Properties of Obstacle Product Graph). For any a, r, c > 0 ∈ Z, there exists a
graph G(a, r, c) = (V,E) with a set of critical paths Π that has the following properties:
1. The number of nodes, edges, and critical paths in G is:

|V | = Θ(a3r5c−23/2),

|E| = Θ
(
c1/4 · |V |

)
,

|Π| = Θ
(
a2r4

c5

)
.

2. Every path π ∈ Π that passes through inner graph copy Gv
I contains Θ(a′/c′3/2) edges

that do not lie on any other path π′ ∈ Π, for all v ∈ VO.

For the full analysis of our spanner construction, please refer to the full version of the
paper on ArXiv.

References
1 Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight. Journal of the

ACM (JACM), 64(4):1–20, 2017.
2 Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear

additive spanners. SIAM Journal on Computing, 47(6):2203–2236, 2018.
3 Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of

diameter and shortest paths (without matrix multiplication). SIAM Journal on Computing,
28(4):1167–1181, 1999.

G. Bodwin, G. Hoppenworth, V. Vassilevska Williams, N. Wein, and Z. Xu 28:17

4 Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse
spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81–100, 1993.

5 Imre Bárány and David G. Larman. The convex hull of the integer points in a large ball.
Math. Ann., 312(1):167–181, 1998. doi:10.1007/s002080050217.

6 Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive spanners
and (α, β)-spanners. ACM Transactions on Algorithms (TALG), 7(1):1–26, 2010.

7 Greg Bodwin and Gary Hoppenworth. New additive spanner lower bounds by an unlayered
obstacle product. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 – November 3, 2022, pages 778–788. IEEE, 2022.
doi:10.1109/FOCS54457.2022.00079.

8 Greg Bodwin and Virginia Vassilevska Williams. Better distance preservers and additive
spanners. ACM Transactions on Algorithms (TALG), 17(4):1–24, 2021.

9 Gregory Bodwin and Virginia Vassilevska Williams. Very sparse additive spanners and
emulators. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, pages 377–382, 2015.

10 Béla Bollobás, Don Coppersmith, and Michael Elkin. Sparse distance preservers and additive
spanners. SIAM Journal on Discrete Mathematics, 19(4):1029–1055, 2005.

11 Shiri Chechik. New additive spanners. In Proceedings of the twenty-fourth annual ACM-SIAM
symposium on Discrete algorithms, pages 498–512. SIAM, 2013.

12 Don Coppersmith and Michael Elkin. Sparse sourcewise and pairwise distance preservers.
SIAM J. Discret. Math., 20(2):463–501, February 2006. doi:10.1137/050630696.

13 Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM Journal on
Computing, 29(5):1740–1759, 2000.

14 William Hesse. Directed graphs requiring large numbers of shortcuts. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’03, pages 665–669,
USA, 2003. Society for Industrial and Applied Mathematics.

15 Gary Hoppenworth. Simple linear-size additive emulators. In 2024 Symposium on Simplicity
in Algorithms (SOSA), pages 1–8. SIAM, 2024.

16 Shang-En Huang and Seth Pettie. Lower Bounds on Sparse Spanners, Emulators, and
Diameter-reducing shortcuts. In David Eppstein, editor, 16th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT 2018), volume 101 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 26:1–26:12, Dagstuhl, Germany, 2018. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SWAT.2018.26.

17 Shimon Kogan and Merav Parter. New additive emulators. In 50th International Colloquium on
Automata, Languages, and Programming (ICALP 2023). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023.

18 Kevin Lu. New methods for approximating shortest paths. PhD thesis, Massachusetts Institute
of Technology, 2019.

19 Kevin Lu, Virginia Vassilevska Williams, Nicole Wein, and Zixuan Xu. Better lower bounds
for shortcut sets and additive spanners via an improved alternation product. In Proceedings
of the 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3311–3331, 2022.

20 Seth Pettie. Low distortion spanners. ACM Transactions on Algorithms (TALG), 6(1):1–22,
2009.

21 Zihan Tan and Tianyi Zhang. Almost-optimal sublinear additive spanners. arXiv preprint,
2023. arXiv:2303.12768.

22 Virginia Vassilevska Williams, Yinzhan Xu, and Zixuan Xu. Simpler and higher lower
bounds for shortcut sets. In David P. Woodruff, editor, Proceedings of the 2024 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024,
pages 2643–2656. SIAM, 2024. doi:10.1137/1.9781611977912.94.

23 David P Woodruff. Lower bounds for additive spanners, emulators, and more. In 2006 47th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages 389–398.
IEEE, 2006.

ICALP 2024

https://doi.org/10.1007/s002080050217
https://doi.org/10.1109/FOCS54457.2022.00079
https://doi.org/10.1137/050630696
https://doi.org/10.4230/LIPIcs.SWAT.2018.26
https://arxiv.org/abs/2303.12768
https://doi.org/10.1137/1.9781611977912.94

	1 Introduction
	1.1 Our Contribution and Next Steps for the Area
	1.2 Additional Results

	2 Technical Overview
	2.1 The obstacle product framework
	2.2 The outer graph: distance preservers and the alternation product
	2.2.1 Distance preserver lower bound graph
	2.2.2 The alternation product

	2.3 Our construction: optimal unlayered alternation product and optimal inner graph structure
	2.3.1 Outer Graph: Unlayered DP LB graph with optimal alternation product
	2.3.2 Inner graph: Optimal subset DP LB graph

	3 Preliminaries
	4 Outer Graph G_O
	4.1 Convex Set of Vectors
	4.2 Construction of G_O
	4.3 Properties of G_O

	5 Spanner Lower Bound Construction
	5.1 Modifying Convex Sets W_1, W_2, and W in G_O
	5.2 Inner Graph G_I
	5.3 Construction of Obstacle Product Graph G

