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We present a computational method capable of modeling 3D flow-induced deformation of thin, 
highly compliant, hyperelastic vessels conveying viscous, inertial fluid. The method can uniformly 
consider vessel extension and collapse. Very large inflation, transient deformation, complex 
flow features as well as highly complex buckling shapes are well resolved by this method. 
The methodology combines finite volume and spectral methods for fluid motion, finite element 
method for structural mechanics of the vessel wall, and the immersed boundary method for two-
way coupling between the wall and fluid. A hybrid of the continuous forcing and the ghost node 
methodologies capitalizing on the strengths of each is developed. The method avoids the surface 
instability encountered with the continuous forcing methods, as well as the need for domain 
remeshing as required in the iterative and partitioned approaches. The vessel wall can follow 
linear or nonlinear (strain softening and hardening) material models, and the fluid inertia can 
vary over a wide range. We demonstrate the versatility of the method by considering vessel 
inflation and collapse with large, complex, and transient deformation. Remarkable differences in 
vessel inflation at low versus moderate inertia are observed; this includes steady versus oscillatory 
motion, emergence of flow recirculation and pressure wave reflection which are well resolved. 
For the collapsing vessels, well-defined shapes with different buckling modes as well as highly 
complex buckling with fine surface folds are predicted. Additionally, a second-order correction 
to the well-known law of Laplace is developed and used to validate our computational results for 
vessel inflation.

 Introduction

Flow through deformable vessels appears in many biological and engineering applications. Most blood vessels are deformable. 
rge arteries expand during systole and relax during diastole, which mitigates the intermittent flow delivered by the heart [1]. 
ins, which contain about 80% of the blood volume in the vascular system, are highly compliant and may collapse at low pressure, 
ading to the vascular waterfall phenomenon [1]. Smaller arteries and capillary vessels are also compliant; they can dilate and 
ntract either passively, in response to cardiac rhythms, or actively, by the action of smooth muscle cells and nerve cells [1]. Lung 
rways, lymphatic vessels, and the urinary tract are also deformable. Engineering applications include flexible microfluidics, e.g., 
icrochannels with compliant thin-walled membranes, micropumps, and pressure sensors [2].
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Compliant vessels are a fluid/structure interaction (FSI) problem in which the vessel wall and flow are, in the generic case, 
o-way coupled, and both may exhibit complex, transient behaviors. Theoretical works in this field, which are briefly noted below, 
ve considered simplified analytical models under restrictive conditions in lieu of a complete FSI solution. Several one-dimensional 
odels have been developed to predict steady, axisymmetric flow through an inflating elastic tube with thin walls [1,3,4]. These 
odels assume the flow adheres locally to Poiseuille law, the vessel exhibits small deformation, and the fluid pressure is balanced 
 the stress in the vessel wall. The pressure-radius relationship was prescribed either via experimental determination [3] or by a 
odel derived from linear elasticity theory, e.g., the Law of Laplace [1], Kirchhoff shell theory, or membrane theory [4]. Notably, 
ese models predict a nonlinear flow rate-pressure drop relationship, unlike that of a rigid vessel. The applicability of these models 
 moderate deformation has also been considered [4], with further models permitting large deformations of hyperelastic tubes 
]. Other works incorporate fluid inertia, either as an extension of the methods discussed above [6], or through 1D wave models 
scribing the vessel wall motion [7]. Flows in rectangular channels with compliant walls have been similarly modeled [2]. Collapsing 
bes have also been extensively studied analytically [8]. An early model by Timoshenko that considered only structural mechanics 
e., without any fluid motion) predicted different shapes (or modes) of buckling that would occur under a critical load [9]. When 
id motion is considered, flow limitation occurs in response to a rapid decrease in the cross-sectional area over a small change in 
essure as the tube buckles. This has been discussed by Pedley & Luo [10] and several other studies [1,8,11]. Several 1D models 
edicting this complex relationship between transmural pressure and cross-sectional area have been developed [10–13].
Computational methods that treat deformable vessels as a complete fluid-structure interaction problem are nontrivial, requiring 

solution of the full Navier-Stokes equations coupled with the structural equations of the vessel wall, which may follow a complex, 
nlinear, and viscoelastic response. A common solution method is to use a partitioned solver, where the fluid and structure are 
lved separately and implicitly coupled through an iterative feedback loop. A series of works from Heil, Pedley, and Hazel follow 
is approach using a finite element method (FEM) to simulate the steady collapse of a Kirchhoff-Love type elastic tube [14–17]. 
ese works cover solutions for various flow conditions, including viscous and inertial fluid at both low and high Reynold’s numbers. 
is approach has also been applied to collapsing hyperelastic vessels by Zhang et al. with an adaptation of the arbitrary Lagrangian-
lerian (ALE) FEM [18]. As noted in [19], partitioned, body-conformal FEM approaches such as these can be expensive in some 
oblems because they require frequent remeshing of the computational domain.
For many moving boundary problems, the immersed boundary (IB) methods are a chosen means of solution. The IB methods can 
force fluid boundary conditions on arbitrarily shaped bodies that do not conform to the computational mesh; therefore, they do 
t require remeshing of the fluid domain [19]. This versatility lends itself well to problems with complex geometries and arbitrary 
formations. As such they have been used for deforming vessel problems with varied and complex fluid-structure interactions, 
cluding both active or passive (i.e., when the motion is prescribed as known a priori, or found as a solution of the full FSI, 
spectively) deformation, viscoelastic tube wall mechanics, and viscoelastic fluids [20], [21,22]. In these methods, a body-force 
rm is added to the Navier-Stokes equations that represents the influence of the immersed boundary. IB methods are generally 
tegorized as either a continuous forcing or a direct forcing method, depending upon their treatment of the added force [23]. The 
rmer was initially conceived by Peskin to model the flow around heart valves [24,25]. In this approach, the forces generated in 
e deforming interface are spread to the surrounding fluid through the body-force term, and the interface is advected using the 
rrounding fluid velocity. This formulation intrinsically models passively deforming, thin structures, which may include complex 
operties such as nonlinear viscoelasticity and bending resistance [26]. These properties make it suitable for modeling biological 
ws [27], [28,29], [30], bubbles, drops, red blood cells, vesicles, and capsules [26,31–37]. Extensions to this method, known as 
nalty IB methods, can model constrained boundary motion, including prescribed deformation [21], fixed boundaries [22], massive 
undaries [38], and rigid body motion [19,23,39,40].
In contrast to the continuous forcing method, in the direct forcing methods the force is added after discretizing the governing 
uations. As was first shown by Mohd-Yusof [41] and Verzicco et al. [42], the force term may then be rewritten to directly impose 
e desired surface velocity. This creates a “sharp” interface that is second-order accurate in space [23]. Many direct forcing methods 
ve been developed, e.g., cut-cell, ghost-cell, and volume penalization, for different applications, many of which take advantage 
 the sharp interface to resolve complex geometries [43–45]. Popular among them is a versatile ghost-cell method developed 
 Mittal [46], which has been used to model intricate systems of vessels, e.g., in capillary vascular networks [35] and cardiac 
modynamics [47,48]. Modeling passive deformation with the direct forcing method requires, in general, the use of an iterative 
rtitioned approach [49]. However, iterations can be avoided in problems which are well described by a one-way coupling, such 
 in [48], as discussed by Boustani et al. [50]. Additionally, passive rigid body motion can be modeled non-iteratively following a 
ethod introduced by Uhlmann [51], which was later modified by Breugem [52].
In this work, we present a generic, non-iterative, fully 3D computational approach for the two-way coupled FSI of flow through 
formable, thin-walled vessels. The method can uniformly consider both vessel inflation and collapse. Very large distention, tran-
nt deformation, complex flow features, and highly complex buckling shapes can be predicted using this method. The vessel wall 
n follow either linear or nonlinear material models, and the fluid inertia can vary over a wide range. The methodology combines 
ite volume and spectral methods for fluid motion, finite element method for structural mechanics, and IBM for two-way coupling. 
ecifically, we present a hybrid of the continuous forcing and the ghost node methodologies to treat the deforming wall. We then 
monstrate the versatility of the method by considering vessel inflation and collapse with large, complex, and transient deformation. 
2

ditionally, we present a second-order theory of vessel inflation and validate our computational method against it.
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Fig. 1. Problem setup. (a) Vessel, computation domain and some parameters as defined in the text. (b) a close-up of the Lagrangian mesh on the vessel surface.

 Methodology

1. Problem setup

The problem setup is given in Fig. 1(a). The undeformed tube is assumed to have a circular cross-section with radius and total 
ngth denoted by 𝑅0 and 𝐿. The vessel and fluid motion have two-way (i.e., strong) coupling; the vessel is deformed naturally (i.e., 
ithout any prescribed displacement) by the fluid motion, and the flow in turn is affected by the movement of the vessel wall. The 
eamwise flow direction is 𝑥, and 𝑥 = 0 and 𝐿 are the inlet and outlet, respectively. The vessel is immersed within a rectangular 
ox-like) computational domain with the inlet and outlet coinciding with the left and right boundaries of the domain. The flow 
side the vessel is driven by specifying a pressure 𝑃0 at the inlet and 𝑃𝐿 at the outlet. An external pressure 𝑃𝑒𝑥𝑡 is specified over the 
ft and right boundaries of the computational domain outside the tube inlet and outlet. The zero normal derivatives are specified for 
locities at the left and right boundaries, while the periodic boundary condition is specified in the 𝑧 direction, and the zero-velocity 
ndition is enforced at the 𝑦 boundaries of the computation domain. The fluids interior and exterior to the tube are assumed to 
ve same density 𝜌 and viscosity 𝜇. The tube is divided into three streamwise segments: two rigid segments at the entrance and 
it, and a deforming part of length 𝐿̌ in between. The two ends of the deforming segment are thus ‘pinned’. The rigid segments 
low the flow to adjust for the changes in the deforming section. Additionally, the rigid inlet ensures a fully developed flow enters 
e deforming part.

2. Structural mechanics

The vessel wall in the deforming section is hyperelastic and materially isotropic. The undeformed and deformed states of the 
ssel are represented by coordinates of a material point as 𝑿 and 𝒙(𝑿, 𝑡), respectively. In a general 3D description, the deformation 
adient and Green strain tensors are defined as 𝐀 = 𝜕𝒙

𝜕𝑿
and 𝐄 = 1

2

(
𝐀𝐓 ⋅𝐀− 𝐈

)
, respectively, where 𝐈 is the identity tensor. The 

uchy stress may then be given as σ= 1
𝐽
𝐀 ⋅ 𝜕𝑊

𝜕𝐄 ⋅𝐀𝑇 , where 𝐽 = det {𝐀} is a measure of volume dilation, and 𝑊 is the strain energy 
nction, whose form depends on the constitutive model of the material [53,54].
We assume that the vessel wall is thin and neglect stress variation through its thickness, ℎ. Then, the 3D wall mechanics can be 
cast as a 2D plane stress problem in the tangent plane of the wall. In this form, the surface deformation gradient 𝐀̂ and Green 
ain tensor 𝐄̂ are given as [55,56]

𝐀̂ = (𝐈− 𝒏𝒏) ⋅ 𝜕𝒙

𝜕𝑿
⋅ (𝐈−𝑵𝑵) , (1)

d

𝐄̂ = 1
2

(
𝐀̂𝐓 ⋅ 𝐀̂− (𝐈−𝑵𝑵)

)
, (2)

here 𝑵 and 𝒏 are the reference and deformed surface normal vectors, and 𝑿 and 𝒙(𝑿, 𝑡) are associated with the vessel surface. 
e left Cauchy-Green surface deformation tensor, 𝐀̂𝑇 ⋅ 𝐀̂, has two non-zero eigenvalues, 𝜆21 and 𝜆

2
2, where 𝜆1 and 𝜆2 are the stretch 

tios along the principal axes on the surface. The corresponding principal strain components are 𝜆
2
𝑖
−1
2 , 𝑖 = 1, 2. In this 2D form, the 
3

ree-dimensional Cauchy stress tensor, σ, is replaced by surface traction tensor, τ, as τ = σℎ, which is expressed as
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τ = 1
𝐽𝑆

𝐀̂ ⋅
𝜕𝑊𝑆

𝜕𝐄̂
⋅ 𝐀̂𝑇 , (3)

here 𝐽𝑆 = 𝜆1𝜆2 is the surface area dilation, and 𝑊𝑆 is the surface strain energy defined per unit area in the reference configuration, 
hich relates to the volume strain energy function 𝑊 as 𝑊𝑆 = 𝑊 ℎ [54–56]. Likewise, the 2D (surface) Young’s modulus 𝐸𝑆 is 
lated to the 3D modulus 𝐸 by 𝐸𝑆 =𝐸ℎ. The principal traction components 𝜏1 and 𝜏2 can further be written as

𝜏1 =
1
𝜆2

𝜕𝑊𝑆

𝜕𝜆1
, 𝜏2 =

1
𝜆1

𝜕𝑊𝑆

𝜕𝜆2
. (4)

e to material isotropy, the traction tensor can be expressed using the above components as

τ = 𝜏1 𝒆1 ⊗ 𝒆1 + 𝜏2 𝒆2 ⊗ 𝒆2 (5)

here 𝒆1 and 𝒆2 are the unit eigenvectors of 𝐀̂𝑇 ⋅ 𝐀̂.
Several hyperelastic material models have been considered in the current study. The 2D strain energy functions for these models 
ay be uniformly and conveniently expressed in terms of a surface shear modulus 𝐺𝑆 as follows:

Mooney-Rivlin model ∶ 𝑊 𝑀𝑅
𝑆

=
𝐺𝑆

2

[
Ψ
(
𝐼1 + 2 + 1

𝐼2 + 1

)
+ (1 −Ψ)

(
𝐼1 + 2
𝐼2 + 1

+ 𝐼2 + 1
)]

, (6)

Neo-Hookean model ∶ 𝑊 𝑁𝐻
𝑆

=
𝐺𝑆

2

(
𝐼1 + 2 + 1

𝐼2 + 1

)
, (7)

Strain hardening model

of Skalak et al. [57]
∶ 𝑊 𝑆𝑘

𝑆
=

𝐺𝑆

4
(
𝐼21 + 2𝐼1 − 2𝐼2 +𝐶𝐼22

)
. (8)

ditionally, the simplest case of linear elasticity is also implemented using 2D Hooke’s Law as mentioned later. Here we use 
ooke’s Law” to mean the constitutive model of a linear elastic material, following Fung in §2.6 of [1]. In the above, 𝐼1 = 2𝑡𝑟 

{
𝐄̂
}
=

+𝜆22−2, and 𝐼2 = 𝐽 2
𝑆
−1 are invariants of 𝐄̂, and Ψ is a material parameter ranging between 0 and 1 which controls the contribution 

 normal stretch. The shear modulus 𝐺𝑆 is related to the surface Young’s modulus as

𝐺𝑆 =
𝐸𝑆

2
(
1 + 𝜈𝑠

) , (9)

here 𝜈𝑠 is the surface Poisson ratio. The Neo-Hookean material is a special case of the Mooney-Rivlin model where Ψ is at its 
aximum value of 1. Both the Mooney-Rivlin and Neo-Hookean models represent rubber-like materials that are strain softening, and 
ey do not offer any resistance against area dilation. In contrast, Skalak’s model is strain hardening, and it offers explicit resistance 
 area dilation with the associated modulus 𝐶𝐺𝑆 [56,57]. Note that the invariant 𝐼2 is a measure of area dilation.
The principal elastic tensions for the above models are given below for 𝜏1. The other component can be found by interchanging 
e indices.

Mooney-Rivlin ∶ 𝜏1 =
𝐺𝑆

𝜆1𝜆2

(
𝜆21 −

1(
𝜆1𝜆2

)2
)[

Ψ+ 𝜆22 (1 −Ψ)
]
, (10)

Neo-Hookean ∶ 𝜏1 =
𝐺𝑆

𝜆1𝜆2

(
𝜆21 −

1(
𝜆1𝜆2

)2
)

, (11)

Skalak et al ∶ 𝜏1 =
𝐺𝑆

𝜆1𝜆2

{
𝜆21

(
𝜆21 − 1

)
+𝐶

(
𝜆1𝜆2

)2 [(
𝜆1𝜆2

)2 − 1
]}

, (12)

Hooke’s Law [56] ∶ 𝜏1 =
𝐺𝑆

1 − 𝜈𝑠

[
𝜆21 − 1 + 𝜈𝑠

(
𝜆22 − 1

)]
. (13)

r a meaningful comparison, the different models must converge in the limit of small deformation, and the material parameters 
ust be related to satisfy this consistency. The Mooney-Rivlin and Neo-Hookean models are volume incompressible, hence at small 
formation they approach the incompressible Hooke’s law for 𝜈𝑠 = 0.5. The surface shear modulus for each is, likewise, identical at 
all deformation. Skalak’s model also has an equivalent shear modulus, and the constant 𝐶 is related to 𝜈𝑠 as 𝜈𝑠 =

𝐶

1+𝐶
[56]. Taking 

= 1 makes it incompressible and thus comparable to the other models.

3. Finite element method for wall mechanics

A finite element method is used to solve elastic tensions [58]. The surface of the vessel is discretized using triangular elements, the 
rtices (nodes) of which make up a Lagrangian framework (Fig. 1(b)). We assume that the elements remain flat upon deformation. 
e deformed elements are transformed to the plane of undeformed elements using rigid-body rotation and translation. The problem 
en reduces to a 2D planar deformation. For each element, a local 2D coordinate system lying in the element plane is introduced. 
4

e displacement field in each element is assumed to vary linearly and in the local coordinate it is expressed as 𝒗̂ =
∑

𝐻𝑖𝒗̂𝑖, where 



O.

𝑖 =
ve

w

at

ob

w

th

Th

𝒆0

el

su

w

2.

str

ap

th

w

m

re

w

th

Fr

w

of

ex

on

or

ve

an

w

of
Journal of Computational Physics 508 (2024) 113026Krul and P. Bagchi

1, 2, 3 denote the three vertices of the element, and 𝒗̂𝑖 and 𝐻𝑖 are, respectively, the local displacement and shape function of 
rtex 𝑖. Then, 𝐀̂, 𝜆1, 𝜆2, and τ for each element are computed. Note that

𝜆2
𝑖
= 1

2

[
𝐺11 +𝐺22 ±

√{(
𝐺11 −𝐺22

)2 + 4𝐺2
12

}]
, 𝑖 = 1, 2, (14)

here 𝐆 = 𝐀̂𝑇 ⋅ 𝐀̂.
For the fluid/structure coupling discussed later, it is useful to obtain the elastic surface force density (force per unit area) 𝒇 𝑒

 each Lagrangian vertex. For this, the in-plane (2D) force 𝒇Δ
𝑖 at the vertex 𝑖 in the local (element-attached) coordinate is first 

tained. This may be obtained from τ as

𝒇Δ
𝑖 =

𝜕𝐻𝑖

𝜕𝑽̂
⋅ 𝐏, (15)

here 𝐏 = 𝜆1𝜆2τ ⋅ 𝐀̂−𝑇 is the first Piola-Kirchhoff stress tensor and 𝑽̂ represents the local coordinate attached to and in the plane of 
e undeformed element. Alternatively, this can be obtained from the strain energy function using the principle of virtual work as

𝒇Δ
𝑖 =

𝜕𝑊𝑆

𝜕𝒗̂𝑖

=
(

𝜕𝑊𝑆

𝜕𝜆1

)(
𝜕𝜆1
𝜕𝒗̂𝑖

)
+
(

𝜕𝑊𝑆

𝜕𝜆2

)(
𝜕𝜆2
𝜕𝒗̂𝑖

)
. (16)

e local force is then transferred to the global coordinate using the transformation matrix 𝐑 = 𝒆0𝒆𝑑 as 𝒇𝒊 = 𝐑𝑇 𝒇Δ
𝑖 where 𝒆𝑑 and 

are unit vectors attached to the deformed element and the global coordinate, respectively. Since each vertex shares six triangular 
ements, the resultant elastic force density 𝒇 𝑒 at any vertex is obtained by vector resultant of the forces 𝒇𝑚 contributed by all the 
rrounding elements which share that vertex:

𝒇 𝑒 =
∑
𝑚∈𝑀

𝒇𝑚, (17)

here 𝑀 represents the number of elements surrounding the vertex, and the summation is over 𝑚 ∈𝑀 .

4. Modeling bending

When the external pressure is greater than the internal pressure, the vessel may collapse, like the buckling of a thin-walled 
ucture [1]. In such cases, forces arising from bending become significant. To model the bending resistance, an energy-based 
proach is employed. The bending energy of a 2D flat plate was generalized by Canham and Helfrich to model highly deformable 
in-walled surfaces with significant variations in curvature as [59]

𝑊𝑏 =
𝐸𝑏

2 ∫
𝑆

(
2𝜅 − 𝑐0

)2
𝑑𝑆, (18)

here 𝐸𝑏 is a bending modulus, 𝜅 is the mean curvature, and 𝑐0 is a “spontaneous” curvature. In the linear elastic limit, the bending 
odulus is related to the Young’s modulus by 𝐸𝑏 =

𝐸ℎ3

12
(
1−𝜈2

) . It was shown in Pozrikidis [54] that the spontaneous curvature 𝑐0
presents twice the mean curvature of the undeformed configuration. Additionally, they showed that this form of bending energy, 
hen reduced to 2D, is consistent with the generic linear constitutive model of bending moments with respect to curvature, suggesting 
e model is suited for general applications. A bending force density (per unit area of the surface) can be obtained by taking the 
échet derivative of eq. (18) as [60]

𝒇 𝑏 =𝐸𝑏

[(
2𝜅 + 𝑐0

)(
2𝜅2 − 2𝜅𝑔 − 𝑐0𝜅

)
+ 2Δ𝐿𝐵𝜅

]
𝒏, (19)

here 𝜅𝑔 is the Gaussian curvature, and Δ𝐿𝐵 is the Laplace-Beltrami operator.
Now we discuss the numerical computation of the bending force density. For this, first the mean and Gaussian curvatures at vertex 

 the triangulated vessel surface are obtained by fitting a locally quadratic surface [61]. The curvatures 𝜅 and 𝜅𝑔 can be explicitly 
pressed in terms of the coefficients of the fitted surface. Several approximations are possible to obtain the Laplace-Beltrami operator 
 a triangulated surface [62]. The specific one used here is given as

Δ𝐿𝐵𝜅𝑖 =
1
2

∑
𝑗∈𝑁

𝒏𝑗 ⋅∇𝑠𝑘𝑗 +∇𝑠𝑘𝑗+
‖‖‖𝒙𝑗 − 𝒙𝑗+

‖‖‖ , (20)

 any vertex 𝑖 located at 𝒙𝑖, where the summation is over 𝑁 number of vertices that are the immediate neighbors (first ring) of the 
rtex 𝑖, and the index 𝑗 represents each of these neighboring vertices. The vertices of a triangle that share the vertex 𝑖 are 𝑖, 𝑗, 𝑗+, 
d 𝒏𝑗 is the unit vector that is normal to the edge defined by 𝑗, 𝑗+. Also,  is the sum of the areas of all surrounding 𝑀 triangles 
ith the common vertex 𝑖, and ∇𝑠 is the surface gradient at any vertex. Before obtaining ∇𝑠𝑘𝑗 , we first compute the surface gradient 
5

 𝜅 in each surrounding element 𝑚 assuming 𝜅 varies linearly within each element:



O.

w

Fr

ac

th

Eu

en

re

be

fo

No

63

2.

co

eq

Th

un

av

m

as

w

an

de

th

di

an

w

Eu

co

co

ve
Journal of Computational Physics 508 (2024) 113026Krul and P. Bagchi

∇𝑚𝜅 = 1
4𝑆2

𝑚

{
𝜅𝑖

[(
𝒙𝑖 − 𝒙𝑗

)
⋅
(
𝒙𝑗 − 𝒙𝑗+

)(
𝒙𝑗+1 − 𝒙𝑖

)
+
(
𝒙𝑖 − 𝒙𝑗+

)
⋅
(
𝒙𝑗+ − 𝒙𝑗

)(
𝒙𝑗 − 𝒙𝑖

)]
+ similar terms with 𝑖 and 𝑗 interchanged and 𝑖 and 𝑗+ interchanged},

(21)

here 𝑆𝑚 is the area of element 𝑚. Then, ∇𝑠𝑘𝑗 is computed as the weighted average as

∇𝑠𝑘𝑗 =
1


∑
𝑚∈𝑀

𝑆𝑚∇𝑚𝜅. (22)

It was shown by Peskin that the elastic force density of a material under an arbitrary deformation can be found by taking the 
échet derivative of its elastic potential energy [25]. For an elastic body immersed in fluid, by using the principle of stationary 
tion it is shown that this force density acts as a coupling term between the body and surrounding fluid. In the case of a vanishingly 
in membrane, the elastic body becomes a 2D surface that sustains an elastic surface force density, which becomes singular in the 
lerian description of the 3D domain. For this 2D membrane, Peskin explicitly wrote the total elastic potential as the sum of the 
ergetic contributions of both the in-plane deformation and curvature, classically known as the strain energy and bending energy, 
spectively. By taking the derivative, he then expressed the total elastic force density as the sum of both the in-plane elastic and 
nding force densities [63]. Motivated by this, the net force in the vessel surface is written as the sum of the elastic force and the 
rce due to bending,

𝒇 = 𝒇 𝑒 + 𝒇 𝑏. (23)

te that this approach of adding force densities has been successfully used in other problems with thin elastic membranes [55,56,
–66].

5. Flow dynamics and fluid/structure coupling

As is the case in immersed boundary methods, the entire computation domain, including the interior and exterior of the vessel, 
ntains fluid. The fluid is assumed to be incompressible, and the fluid motion is governed by the continuity and Navier-Stokes 
uations as

∇ ⋅ 𝒖 = 0, and 𝜌
𝐷𝒖

𝐷𝑡
= −∇𝑃 + 𝜇∇2𝒖 (24)

ese equations are solved in the entire computation domain (Fig. 1(a)) which is discretized using an Eulerian rectangular mesh of 
iform size.
The immersed boundary method used for the fluid/structure coupling is now discussed. As discussed in § 1, there are two choices 
ailable for the coupling of complex deforming or non-deforming boundaries to the surrounding fluid. One is the continuous forcing 
ethod, where the resultant force from deformation (i.e., eq. (23)) is introduced as a coupling force to the Navier-Stokes equations 

𝜌
𝐷𝒖

𝐷𝑡
= −∇𝑃 + 𝜇∇2𝒖+ 𝑭 (25)

here

𝑭 (𝒙, 𝑡) = ∫
𝑆

𝒇
(
𝒙′, 𝑡

)
𝛿
(
𝒙− 𝒙′

)
𝑑𝑆, (26)

d 𝒙′ is any location on the surface 𝑆 ∈ℝ3, 𝒙 ∈ℝ3 is the Eulerian variable, and 𝛿 is the 3D Dirac delta function [25]. Due to the 
lta function, 𝑭 is infinite at 𝒙 = 𝒙′ and zero elsewhere representing the zero-thickness vessel wall. To avoid the singularity of 𝛿 in 
e numerical implementation, a discrete form with a finite spread in ℝ3 is used, effectively treating the infinitely thin interface as a 
ffuse surface. Different discrete representations of 𝛿 are available in the literature, and here we use the following form [25]

𝛿
(
𝒙− 𝒙′

)
≈𝐷

(
𝒙− 𝒙′

)
=
⎧⎪⎨⎪⎩

1
(2ℏ)3

3∏
𝑖=1

[
1 + cos

{
𝜋

ℏ

(
𝑥𝑖 − 𝑥′

𝑖

)}]
if ||𝑥𝑖 − 𝑥′

𝑖
|| ≤ ℏ,

0 else,

(27)

d,

𝑭
(
𝒙𝑚

)
=
∑
𝑛

𝒇
(
𝒙′𝑛

)
𝐷

(
𝒙𝑚 − 𝒙′

𝒏

)
Δ𝑆𝑛, (28)

here ℏ = 2Δ𝐸 (where Δ𝐸 is the size of the unit Eulerian cell), Δ𝑆𝑛 is the interface area associated with each vertex, 𝑚 and 𝑛 indicate 
lerian and Lagrangian points, respectively, and the summation is over the Lagrangian points. The force coupling approach has been 
mmonly used for liquid-liquid or liquid-air interfaces governed by surface tension, and biological cell membranes governed by more 
mplex material behavior [26,31–37]. Once the fluid velocity is obtained at any time 𝑡 by solving eq. (25), the interface (i.e., the 
6

ssel wall in the present case) is advected using the local fluid velocity as
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. 2. Eulerian node classification for the deforming interface. GN: ghost node, IP: image point, BI: boundary intercept. Black and gray squares are GNs and fluid 
des, respectively. Red: a fluid node that becomes a GN; blue: a GN declassified; green: exterior nodes that are newly classified as GN; yellow: previous GNs that 
come fluid nodes. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

𝑑𝒙′

𝑑𝑡
= 𝒖𝑤

(
𝒙′, 𝑡

)
, (29)

here 𝒖𝑤 is the interface velocity that is obtained as the weighted average of the surrounding fluid velocity using the delta function as

𝒖𝑤

(
𝒙′, 𝑡

)
= ∫

𝒙

𝒖 (𝒙, 𝑡) 𝛿
(
𝒙− 𝒙′

)
𝑑𝒙. (30)

The second potential choice for the fluid/structure coupling is a direct forcing method, such as the ghost-node immersed boundary 
ethod (GNIBM) which has been used for complex rigid interfaces, moving rigid bodies, and deforming bodies [46]. The general 
ea of the GNIBM is that a velocity constraint is enforced at certain Eulerian points which satisfies the no-slip condition at the 
terface by interpolation. The interface can be defined analytically, or, in the case of a complex geometry, using a surface mesh 
hich differentiates the region of interest (which, in this case, is the interior of the vessel) from the rest of the domain. The velocity 
nstraints are imposed at the Eulerian nodes immediately neighboring the vessel exterior, termed the ghost nodes (GN). The point 
hich mirrors a GN over the vessel wall is its image point (IP), and the line joining the GN and IP (the normal probe) orthogonally 
tersects the wall at the boundary intercept (BI) (Fig. 2). The imposed velocity 𝒖𝐺𝑁 is chosen so the no-slip condition 𝒖

(
𝑥′
)
= 𝒖𝑤

satisfied at the BI; hence, 𝒖𝐵𝐼 = 𝒖𝑤. One can approximate 𝒖𝐵𝐼 to second-order accuracy as the average of the velocities at the GN 
d IP [46]. Then, the constraint to be implemented at the GN becomes

𝒖𝐺𝑁 = 2𝒖𝐵𝐼 − 𝒖𝐼𝑃 . (31)

 general, the IPs do not coincide with the Eulerian nodes. A standard trilinear interpolant is used to obtain the velocity at an IP 
m the surrounding Eulerian nodes as [46]

𝒖𝐼𝑃 =
8∑

𝑙=1
𝛽𝑙𝒖𝑙 (32)

here each 𝑙 represents a Eulerian mesh point surrounding the IP, and 𝛽𝑙 is the weight of node 𝑙 based on the distance from the IP.
For the present problem, a continuous force coupling method leads to excessive axial stretch of the vessel at the upstream pinned 
d, and a nonphysical crumpling at the downstream end. Note that the thin-walled tube considered here cannot sustain compressive 
ess, which leads to the crumpling. One could mitigate this problem by imposing a restoring force which counters the axial motion; 
wever, our numerical experiments showed that this approach leads to numerical instability. Further, when this method is applied 
 a rigid tube, the volume flow rate was significantly reduced compared to analytical solutions. Another possibility is to use a full 
IBM implementation in which the wall is represented using point masses that are moved following Newton’s law. In this case, the 
t force would be the sum of the membrane force (𝒇 ) and the transmural pressure (i.e., difference between the internal and external 
essure) at any location across the vessel wall. We find that this approach led to a stable and physically realistic vessel deformation, 
t with a large amount of fluid leakage.
To avoid such issues, we developed a hybrid of the sharp and diffuse interface methodologies. The approach seeks to resolve 
e fluid-structure interaction using the two different methods in each cartesian direction. No axial wall motion is allowed, and the 
ro-velocity (no-slip) condition in the axial (𝑥) direction is enforced using the GNIBM. For the two normal directions (𝑦 and 𝑧), the 
all is allowed to advect with the surrounding fluid, and the continuous forcing method couples the structural mechanics to the fluid.
This hybrid method can be represented using a compact form as follows. The fluid/structure coupling in general involves three 
rms: the body force 𝑭 , the BI velocity 𝒖𝐵𝐼 , and the interface velocity 𝒖𝑤. The forms of these terms vary based on the methodology, 
d they can be used to define the hybridization. In the limit of a full sharp-interface or a full continuous forcing method, the 
upling terms become

Sharp-Interface ∶ 𝑭 = 𝟎, 𝒖𝐺𝑁 = 2𝒖𝐵𝐼 −
8∑

𝑚=1
𝛽𝑚𝒖𝑚, 𝒖𝑤 = 𝟎, (33)

Continuous Forcing ∶ 𝑭 = 𝒇𝛿
(
𝒙− 𝒙′

)
𝑑𝒙′, 𝒖𝐺𝑁 = 𝒖, 𝒖𝑤 = 𝒖𝛿

(
𝒙− 𝒙′

)
𝑑𝒙. (34)
7
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. 3. Placement of the rigid-to-deforming parts transition location. Circles indicate Eulerian mesh points; filled circles are the points to which wall forces are spread. 
uares indicate Lagrangian points on the vessel surface: filled ones are the moving points from which the forces are spread. (a) Δ𝐿 >Δ𝑅 : weaker influence of the GN 
d hybrid conditions at the transition point. (b) Δ𝐿 <Δ𝑅 : stronger influence of the GN constraint.

 eq. (34), 𝒖𝐺𝑁 = 𝒖 indicates that no velocities are prescribed at the GNs. Then, the hybrid approach can be expressed as

Hybrid ∶ 𝑭 =

⎡⎢⎢⎢⎢⎢⎢⎣

0

∫
𝑆

𝑓𝑦𝛿
(
𝒙− 𝒙′

)
𝑑𝒙′

∫
𝑆

𝑓𝑧𝛿
(
𝒙− 𝒙′

)
𝑑𝒙′

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝒖𝐺𝑁 =

⎡⎢⎢⎢⎢⎣
−

8∑
𝑙=1

𝛽𝑙𝑢𝑙

𝑣

𝑤

⎤⎥⎥⎥⎥⎦
, 𝒖𝑤 =

⎡⎢⎢⎢⎢⎢⎢⎣

0

∫
𝒙

𝑣𝛿
(
𝒙− 𝒙′

)
𝑑𝒙

∫
𝒙

𝑤𝛿
(
𝒙− 𝒙′

)
𝑑𝒙

⎤⎥⎥⎥⎥⎥⎥⎦
, (35)

here 𝒇 =
[

𝑓𝑥
𝑓𝑦

𝑓𝑧

]
and 𝒖 =

[
𝑢
𝑣
𝑤

]
. The wall is advected using the 𝑣 and 𝑤 components of the fluid velocity, and only the 𝑦 and 𝑧 force 

mponents are applied to the fluid. The vessel wall force is spread to both the internal and external fluid, and, likewise, the wall 
locity is interpolated from both. Once the flow field is solved for a time 𝑡, the wall is advected in the 𝑦 and 𝑧 directions following 
. (29) using the second-order Runge-Kutta method.
The hybrid method is used for the deforming section of the tube, whereas the full GNIBM is used for the rigid sections at the 
stream and downstream ends (Fig. 2).
Careful consideration is required at the transition between the rigid and deforming segments, where the GNIBM and hybrid 
ethods interface. Overlapping the influence of two methods risks over-constraining the problem, leading to inaccuracy and numer-
al instability. The transition point is defined as the 𝑥-location of the last Lagrangian nodes of the rigid segment. The force at the 
nsition node must not be spread to the fluid, as the fixed nodes cause unphysically large elastic forces to generate. The force is 
ly spread to all relevant nodes in the deforming region. Interpolation of the membrane velocity occurs over the same stencil as the 
rce spreading for consistency. This creates a strict demarcation of methodologies on either side of the transition point.
Placement of the transition point relative to the Eulerian grid also impacts the flow to an extent (Fig. 3). The interpolation 
chniques differ between methods: standard trilinear for the GNIBM, and delta function weighted averaging for the continuous 
rcing method. These reflect the sharp versus diffuse natures of the methods, where the former acts on points within a single grid 
ace, and the latter acts over two grid spaces. If the transition point is placed close to the last Eulerian point inside the rigid segment, 
e GN constraint has too strong of an influence, and the flow does not have time to properly adjust to the force from the deforming 
gment. Additionally, the first deforming elements would have a diminished force contribution, as many nearby Eulerian nodes are 
 the rigid segment, where no force can be spread. These issues can cause spurious oscillations in the pressure at the transition. This 
uation may be avoided by placing the transition point close to the first Eulerian node in the deformable segment. The impact of the 
 constraint at the transition point is then weakened, allowing the flow to adjust within the rigid segment.

6. GN and BI update for the deforming interface

As the vessel wall deforms, some Eulerian mesh points outside of the vessel may enter the vessel interior, and vice versa (Fig. 2). 
 a result, GNs, BIs, IPs, and interpolation matrices must be updated at every step of the time marching. This process is generally 
e consuming for an arbitrary deformation. As such, a fast and parallelizable algorithm was developed which relies on finding the 
ost node-“intercept element” pairs following a procedurally determined pathway. Note that such updates are needed only for the 
component of the fluid velocity since it is treated using the GNIBM. The update follows three steps as discussed below.

 Finding the intercept element for each GN
For any timestep, we start with the GNs from the previous timestep and find their intercept elements (IE). The IE of a GN is 
fined as the triangular element on the vessel surface mesh that contains the BI. To find the updated IE, an efficient algorithm has 
en developed which minimizes computation. For this, the “projected volume” (PV) of an element is introduced as the imaginary 
8

angular prism generated by projecting the element face along its normal. The normal probe of a nearby GN lying inside an 
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. 4. Procedure for finding GN-IE pair. (a): a surface element and a nearby GN showing vectors 𝑠𝑘 and 𝑒𝐺𝑁
𝑘
. (b) Path to search the IE. 1–6 indicates different regions 

sed on the sign of 𝑠𝑘 ⋅ 𝑒𝐺𝑁
𝑘

and 𝑆1 − 𝑆6 are the elements searched. (c) Table shows the regions and element searched for combination of ± signs. 0 indicates that 
 element is the IE. (d), (e) situations when a GN may not lie within a projected volume (PV) and when a GN can lie within multiple PVs.

ement’s PV must intersect the element; therefore, the IE of a particular GN is the element whose PV contains the GN. The process 
gins by checking if a GN falls within the PV of a convenient nearby element, which is generally the IE found at the previous time 
p. To describe the element’s projected geometry, the vector 𝒔𝑘 (𝑘 = 1, 2, 3) is introduced which lies in the plane of the element and 
an outward normal to side 𝑘. We also introduce 𝒆𝐺𝑁

𝑘
as the vector from side 𝑘 to the GN (Fig. 4(a)), such that the scalar product 

⋅ 𝒆𝐺𝑁
𝑘

describes the GN’s position relative to side 𝑘. The vectors’ origins are arbitrary, so long as they are at some point on side 𝑘. 
ith this, we see that the PV contains the GN if all three 𝒔𝑘 ⋅ 𝒆𝐺𝑁

𝑘
are negative, determining that the current element is the IE.

If all three products 𝒔𝑘 ⋅ 𝒆𝐺𝑁
𝑘

are not negative, the PV does not contain the GN, and the next most likely neighboring element is 
ecked. An algorithm has been developed in which the surrounding elements are searched along a path that ensures an IE is found. 
is is done by checking the signs of the three products 𝒔𝑘 ⋅ 𝒆𝐺𝑁

𝑘
. The specific combination of ± signs indicates the region other than 

 that the GN lies in, as illustrated in Fig. 4. There are six such regions, as indicated by 1–6 in the figure, and the next element 
ecked for a possible GN-IE pair is based on the signs of 𝒔𝑘 ⋅ 𝒆𝐺𝑁

𝑘
as given in Fig. 4(b), (c).

Occasionally, a GN may not lie within the PV of any surface element. This indicates that the corresponding BI falls between 
ighboring elements. This happens, for example, for an inflated vessel (Fig. 4(d)). These cases can be uniquely determined using 
e history of the search and the knowledge of element connectivity. For example, if a search repeats between two elements, then 
e BI must lie on their common edge. For three repeated elements, the BI is located on the common vertex.
Alternatively, a single GN may lie within multiple PVs, e.g., in the case of a collapsing vessel (Fig. 4(e)). This results in multiple 
ssible BIs for the same GN. In such cases, any choice of IE is valid, and the GN can be regarded as having multiple BIs. As the BI 
locity is enforced by interpolation, this GN constrains each BI velocity to second-order accuracy. A sufficiently fine computational 
esh will ensure that any choice of IE (and its corresponding BI) results in the same prescribed GN velocity, otherwise the wall 
undary conditions cannot be correctly imposed. Therefore, it is sufficient to accept the first IE found during the search and its 
rresponding BI.

) Checking for GN declassification and new GN identification
The updated IE is then used to check whether the old GN remains a GN in the current time step (Fig. 2). Further, this information 
used to identify any new GNs, such that all GNs for the current time step are properly identified by the end of the declassification. 
is relies on the slow motion of the wall (no more than one Eulerian grid spacing per time step) ensuring that any new GNs must 
ighbor old GNs. First, we check if the old GN remains exterior; that is, 𝒏 ⋅ 𝒆𝐺𝑁

𝑘
> 0, where 𝒏 is the outward normal of the IE. In 

is case, any neighboring fluid nodes which have exited the vessel become new GNs. If all neighboring fluid nodes have exited the 
ssel, this old GN is declassified. Otherwise, it remains a GN.
If 𝒏 ⋅ 𝒆𝐺𝑁

𝑘
< 0, the node falls inside the vessel and is no longer a GN. Any neighboring nodes in the exterior now become GNs if 

ey were not GNs in the previous step.
9

Step (i) is then repeated for these new GNs.
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i) Calculation of new BIs, IPs, and interpolation matrices
Once the GN-IE pairs are found, the new BI calculation is straightforward as noted in § 2.5. The recomputing of IPs and interpo-

tion matrix weighting coefficients 𝛽𝑚 follows the same procedure outlined there.
The above method is parallelizable by sweeping over the GNs. However, to avoid any ambiguity, another sweep is performed 
er the exterior declassified GNs to ensure they do not have an interior neighbor. Furthermore, the IE search method developed 
es not require significant computation. Determining the PVs requires only 3 scalar products per element. The time step required 
r stable fluid and wall mechanics ensures that the interface moves no more than one Eulerian grid spacing per time step. As such, 
e majority of GNs remain unchanged from one time step to the next. In these cases, it is sufficient to search a maximum of three 
ements to locate the IE. Many cases will require fewer, as those GNs with unchanging IEs require only one element to be searched. 
e most expensive searches are those for new GNs, where a neighboring node’s IE is taken as the starting element, which may not 
ighbor the IE. However, such cases occur the least often which helps to offset their cost.

7. Flow solver

The flow solver is based on a projection-based method for incompressible flows, along with coupled finite-volume/spectral 
ethods for spatial discretization. A staggered-grid implementation is considered for the fluid velocity components, which are 
fined at the computational cell faces, and the pressure, defined at the cell center. As noted in our prior work [35], the use of 
e staggered grid naturally retains the strong coupling between the velocity and pressure without any special treatment, reducing 
e spurious pressure oscillations often associated with moving boundaries. Moreover, it allows an explicit implementation of the 
 constraints as discussed later. As noted before, the governing equation is the full Navier-Stokes equations including the force 
upling terms. A four-step projection method advances the velocity and pressure fields from time step 𝑛 to 𝑛 +1 [67]. An advection–
ffusion equation is first solved which yields an intermediate velocity 𝒖̂, followed by 𝒖∗, which is not divergence-free. Next steps 
volve solving a Poisson equation for pressure and correcting 𝒖∗ to make it divergence-free. The diffusion terms are treated using 
e semi-implicit Crank-Nicolson scheme, and the nonlinear and force coupling terms are treated explicitly using the second-order 
ams-Bashforth scheme.

Advection-diffusion ∶ 𝜌
𝒖̂− 𝒖𝑛

Δ𝑡
= −∇𝑃 𝑛 + 𝜇

2
[
∇2𝒖̂ +∇2𝒖𝑛

]
−
[3
2
𝑵𝑛 − 1

2
𝑵𝑛−1

]
, (36)

where 𝑵 = 𝜌𝒖 ⋅∇𝒖− 𝑭

Intermediate velocity ∶ 𝜌
𝒖∗ − 𝒖̂

Δ𝑡
=∇𝑃 𝑛, (37)

Poisson equation ∶ ∇2𝑃 𝑛+1 = 𝜌
∇ ⋅ 𝒖∗

Δ𝑡
, (38)

Pressure correction ∶ 𝜌
𝒖𝑛+1 − 𝒖∗

Δ𝑡
= −∇𝑃 𝑛+1. (39)

may be noted that, alternatively to the four-step method, one could use a three-step method where the advection-diffusion equation 
es not include the −∇𝑃 𝑛 term, thereby directly yielding 𝒖∗. Our numerical experiments, however, showed that the pressure field 
not well-behaved with the three-step scheme at a high transmural pressure. Specifically, the 3-step method leads to nonphysical 
essure oscillations near the computation domain boundary around the vessel inlet where the transmural pressure difference is 
aximal. In contrast, the 4-step method resolves the pressure change to the grid order.
The spatial derivatives in the advection-diffusion equation are treated using second-order discretization. This equation is solved 
ing an Alternating Direction Implicit (ADI) scheme so that the matrices at each ADI step can be inverted using the fast tridiagonal 
atrix inversion. The ADI scheme is implemented in four steps; the first step handles the explicit terms, while the remaining three 
ps handle the implicit sweeps in three directions.

𝜌
𝒖̂∗∗∗ − 𝒖𝑛

Δ𝑡
= −∇𝑃 𝑛 + 𝜇

2
∇2𝒖𝑛 −

[3
2
𝑵𝑛 − 1

2
𝑵𝑛−1

]
, (40)

𝜌
𝒖̂∗∗ − 𝒖̂∗∗∗

Δ𝑡
= 𝜇

2
𝜕2𝒖̂∗∗

𝜕𝑥2
, (41)

𝜌
𝒖̂∗ − 𝒖̂∗∗

Δ𝑡
= 𝜇

2
𝜕2𝒖̂∗

𝜕𝑦2
, (42)

𝜌
𝒖̂− 𝒖̂∗

Δ𝑡
= 𝜇

2
𝜕2𝒖̂

𝜕𝑧2
. (43)

e Poisson equation must be solved implicitly to satisfy the divergence-free condition. We treat the 𝑧 direction as periodic and use 
e Fourier expansion, thereby reducing the 3D Poisson equation to a 2D problem for each Fourier mode, which can be solved using 
fast direct matrix inversion. Details can be found in Mittal and Balachander [68].
The GN constraint enforced to achieve the no-slip condition is implemented at the advection-diffusion step. As noted in [35], the 
plicit use of the constraint results in the loss of the tridiagonal nature of the matrices in the ADI scheme. Instead, we use an explicit 
rm in which the velocity at time step 𝑛 is used to obtain the IP values. Furthermore, the constraint is applied to the intermediate 
10

locity 𝒖̂ as



O.

w

w

𝒖̂

GN

2.

su

hi

no

A 
pr

th

id

de

ad

2.

ra

sc

ne

Re

Di

Di

Th

pa

de

as

di

of

de

3.

flu

3.

ve

le

in

in

po
Journal of Computational Physics 508 (2024) 113026Krul and P. Bagchi

𝒖̂𝐺𝑁 = 2𝒖𝐵𝐼 −
8∑

𝑙=1
𝛽𝑙𝒖

𝑛
𝑙
, (44)

here 𝛽 are weighting coefficients for a trilinear interpolation of the image point velocity 𝒖𝐼𝑃 from the 8 surrounding nodes. It 
as shown by Choi and Moin that the intermediate velocity field is equal to the true velocity field up to second-order in time, i.e., 
= 𝒖𝑛+1 + 

(
Δ𝑡2

)
[67]. Therefore, applying the GN constraint at this step (eq. (36)) ensures that 𝒖𝑛+1 obtained from eq. (39) at any 

 is the prescribed velocity up to  
(
Δ𝑡2

)
. Further details can be found in [23,35,46].

8. Additional considerations

Since the Fourier transform is used for solving the Poisson equation for pressure, a boundary condition for pressure at the vessel 
rface, such as the zero normal derivative, is not applied. For very large transmural pressure, this can cause fluid leakage through a 
ghly curved surface. A countering force proportional to the transmural pressure is applied to mitigate this effect. At each Lagrangian 
de, the internal and external pressures are interpolated from a normal probe that extends two Eulerian grid spaces from the surface. 
force equal to the product of the pressure difference and the vertex area is applied normal to the surface in the direction of greater 
essure. The force is spread only to nodes inside the vessel. Specifically, the same force spreading formulation is used (eq. (28)), but 
ose nodes which fall outside the tube are ignored during computation.
Surface mesh smoothing is also needed for very large inflation and collapse. We use a mesh smoothing technique based on the 
ea of surface diffusion [69]. In this, a smoothing velocity is obtained as 𝒖𝑠 = −𝒏𝛼Δ𝐿𝐵𝜅, where 𝛼 is a parameter that controls the 
gree of smoothing. The smoothing velocity is calculated every timestep and is added to the membrane velocity during the surface 
vection.

9. Dimensionless parameters

Solution of the governing equations and presentation of results are done in dimensionless form. For this, the undeformed vessel 
dius 𝑅0 is taken as the length scale and the centerline velocity 𝑈𝑐 of the Poiseuille flow in the undeformed vessel as the velocity 
ale. The pressure is scaled by 𝜌𝑈2

𝑐 , corresponding to a finite inertia condition. Dimensionless variables are indicated by a ∗ when 
eded. The relevant dimensionless parameters are:

ynolds number 𝑅𝑒 = 𝜌𝑈𝑐𝑅0
𝜇

mensionless wall elasticity (or, deformability parameter) 𝜀 = 𝜇𝑈𝑐

𝐺𝑠

mensionless bending modulus 𝐵 = 𝐸𝑏

𝑅2
0𝐺𝑠

In this scaling, the initial radius enters in the Reynolds number and bending modulus, but not in the deformability parameter. 
is choice is appropriate for finite inertia. Subsequently, relevant results are presented scaling by the initial radius. Generally, the 
rameters are held constant while the pressure difference between the inlet and outlet is altered which results in altering the vessel 
formation and flow rate. To present such results in a convenient manner, we introduce the “baseline” pressure drop Δ𝑃 ∗

0 = 𝑃 ∗
0 −𝑃 ∗

𝐿

 the one that yields a dimensionless centerline velocity 𝑈∗
𝑐 = 1 for the undeformed vessel. Hence, Δ𝑃 ∗

0 = −4𝐿∗

𝑅𝑒
where 𝐿∗ is the 

mensionless total length of the vessel. A different applied pressure will be represented as Δ𝑃

Δ𝑃0
= Δ𝑃 ∗

Δ𝑃 ∗
0
which would yield values 

 𝑈∗
𝑐 other than unity for any deviation from the baseline. Additional parameters specific to an inflating or collapsing vessel are 

fined later as needed. Also note that the wall to fluid mass density ratio is 1.
A convergence study of the mesh and domain size is presented in § 3.1.1.

 Results

The validation of the method and its demonstration are presented now for inflating and deflating vessels at low and moderate 
id inertia.

1. Inflating vessel at weak inertia

In this section, the results for an inflating vessel at low fluid inertia corresponding to Re = 0.1 are presented. Initially, the fluid 
locity is zero everywhere, and the vessel is undeformed with radius 𝑅∗

0 = 1. The total length is 𝐿∗ = 4𝜋, which is subdivided into 
ngths 𝐿∗

𝑖𝑛𝑙𝑒𝑡
= 1.18 for the rigid inlet, 𝐿̌∗ = 11 for the deforming segment, and 𝐿∗

𝑜𝑢𝑡𝑙𝑒𝑡
= 0.39 for the rigid outlet. At time 𝑡∗ = 0, an 

let pressure 𝑃 ∗
0 > 0 is applied, while the outlet and external pressures are held at zero as 𝑃 ∗

𝐿
= 𝑃 ∗

𝑒𝑥𝑡 = 0. This setup is used for all 
flation problems, unless stated otherwise. Also, no bending force is used for the inflation problem.
With the applied pressure difference, the flow develops, and the tube inflates until a steady deformed shape is attained, at which 
11

int the flow also reaches a steady state. Fig. 5(a) shows a 3D view of the inflated shape for an example simulation, and (b) shows 



O.

Fig

tra

Fig

(b)

sh

th

to

ch

m

se

pr

co

Pr

se

co
Journal of Computational Physics 508 (2024) 113026Krul and P. Bagchi

. 5. Simulation of a vessel inflation. (a) 3D inflated shape, (b) time sequence of inflation, and (c) and (d) close-up of surface mesh around the up- and downstream 
nsition regions.

. 6. (a) Streamwise velocity contours (1 to 10 at increment of 1; dimensionless) and streamlines. Parameters: Neo-Hookean (NH) model; Δ𝑃

Δ𝑃0
= 4; 𝜀 = 0.01. 

Pressure contours (0.1 increment) for the same case. (c) Steady deformed shapes under varying Δ𝑃

Δ𝑃0
= 2.5, 3, 3.5, 4 for the same NH model, 𝜀 = 0.01. (d) Deformed 

apes at varying 𝜀 = 0.005, 0.01, 0.02 for Hookean model, 𝜈 = 0.5, Δ𝑃

Δ𝑃0
= 3.

e time history of inflation. The radius of the deformed tube varies axially; it rapidly increases beyond the clamped entrance due 
 the high internal pressure. Downstream of the maximum radius, the deformation gradually decreases to the clamped exit. The 
ange in the vessel radius is nearly 150% of the undeformed radius, indicating a high degree of deformation achievable by our 
odel. Also note that the discontinuity of the slope of the vessel contours at the transition points between the rigid and deforming 
gments is well resolved by our method. Close-up views of the vessel surface mesh around these transition regions, which are most 
one to mesh failure, are also shown. As seen, no mesh distortion is present even at such high deformation.
Further examples of generic behavior of an inflating vessel are considered in Fig. 6 where (a) and (b) show streamwise velocity 
ntours, streamlines, and pressure contours at steady state. Axially varying velocity and pressure fields exist inside the vessel. 
edicted pressure contours are normal to the deformed vessel wall, and the difference in internal and external pressure can be 
en. Fig. 6(c) shows the deformed shapes for increasing pressure difference Δ𝑃

Δ𝑃0
. The influence of the deformability parameter 𝜀 is 
12

nsidered in Fig. 6(d) which shows increasing deformation as 𝜀 increases.
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. 7. Resolution test. (a) Circumferential strain defined as the relative radial displacement (𝑅(𝑥) −𝑅0)∕(𝑅0) along the centerline of an inflated vessel is shown for 
rying Lagrangian and Eulerian resolutions. “Elements” refers to the number of Lagrangian elements on the vessel surface, and Δ is the Eulerian mesh size relative to 
 undeformed vessel radius. (b) Flow rate versus time for the same cases as in (a). Insets show close-ups. (c) Numerical data are presented for different resolutions 
ted. “Baseline” refers to the resolution selected. (d) Convergence rate of the error in 𝑄 with Eulerian and Lagrangian grids varied in tandem. Parameters: Hookean 
del, 𝜈 = 0.5, 𝜀 = 0.02; Δ𝑃

Δ𝑃0
= 1.

1.1. Resolution test
Grid convergence tests are shown in Fig. 7 in terms of the circumferential strain defined as the scaled radial displacement 

 (𝑥) − 𝑅0)∕𝑅0, and the flow rate through the vessel at steady state. Both the Eulerian grid discretizing the flow domain and the 
grangian mesh discretizing the vessel surface are varied simultaneously to maintain the Eulerian/Lagrangian relative mesh sizes. 
tween the lowest and highest resolutions tested, the number of Eulerian mesh points in each direction varied by a factor of 8, 
d the number of wall surface elements varied by a factor of 82. As seen, the finest resolution shows less than half a percent 
fference from the baseline, corresponding to an increase in the number of Eulerian points per direction and surface elements by 4
d 42, respectively. As seen in Fig. 7(d), the method is nearly second-order following the second-order GN method with some error 
troduced by the diffuse nature of the force-spreading, which is locally first-order [25].
Furthermore, because the tube deforms in the 𝑦-𝑧 plane, the confinement effect of the domain in this plane was verified. For 
ulations resulting in a deformed radius that is less than 70% of the domain lengths in 𝑦 and 𝑧, these lengths are taken as ∼ 4.7𝑅0. 
ubling these lengths changes the circumferential strain by less than 0.15% and the flow rate by about 0.015% (for the baseline 
se in Fig. 7), which are deemed negligible. For higher vessel deformation, it is necessary to increase the lengths. Similar tests were 
ne to verify that the results are not affected by the domain size at higher deformation.

1.2. Comparison against analytical theories
Next, the simulation results are compared against analytical theories for flow-induced inflation of a Hookean tube. First, two 
odels are considered: a classical result from Fung based on the Law of Laplace (hereafter, LL), and a shell theory approach by 
and & Christov (hereafter, AC) [1,4]. In comparing against the numerical results, some features of these models need to be noted. 
 both models, the assumption of small deformation was utilized. Additionally, these models were derived by solving the solid and 
id mechanics separately, then coupling them by treating the fluid pressure as a load deforming the structure. The results represent 
 equilibrium between the pressure-induced deformation and the flow modified by the deformed shape. The two approaches differ 
 the radius used when calculating the circumferential stress in the vessel wall: the deformed radius 𝑅(𝑥) in the Law of Laplace, and 
e undeformed radius 𝑅0 in Anand & Christov. The pressure-radius relationships for the models are as follows:

Law of Laplace (LL): 𝑅 (𝑥) =𝑅0

[
1 −

𝑅0
𝐸′ℎ

𝑃 (𝑥)
]−1

, (45)

Anand & Christov (AC): 𝑅 (𝑥) = 𝑃 (𝑥)

[(
1 − 𝜈2

) 𝑅2
0
]
+𝑅0, (46)
13
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here 𝐸′ is an “effective” 2D modulus which relates to the 3D modulus 𝐸 by 𝐸′ = 𝐸

1−𝜈2
. This is consistent with a plane strain 

rmulation [70], from which the surface modulus is written as 𝐸𝑠 = 𝐸ℎ = 𝐸′ℎ(1 − 𝜈2) (see § 2.2). In both models, 𝜈𝑠 = 𝜈, and the 
bscript 𝑠 is dropped for brevity.

second-order law of Laplace
To alleviate the limitation posed by the assumption of small deformation in the above models, we introduce a second-order 
rrection to the law of Laplace as follows. We begin by writing the 𝜃-component of the Green strain tensor in cylindrical coordinates 
, 𝜃, 𝑥) in its full form as

𝜖𝜃 =
𝑣𝑅

𝑅0
+ 1

𝑅0

𝜕𝑣𝑅

𝜕𝜃
+ 1

2𝑅2
0

[(
𝜕𝑣𝑅

𝜕𝜃

)2
+
(

𝜕𝑣𝜃

𝜕𝜃

)2
+
(

𝜕𝑣𝑥

𝜕𝜃

)2
− 2𝑣𝜃

𝜕𝑣𝑅

𝜕𝜃
+ 2𝑣𝑅

𝜕𝑣𝜃

𝜕𝜃
+ 𝑣2

𝜃
+ 𝑣2

𝑅

]
, (47)

here 𝒗 is the wall displacement (following the notation of Heil, Pedley, and Hazel [14–17]) with radial component 𝑣𝑅 =𝑅(𝑥) −𝑅0. 
aditionally, the deformation is assumed both small and axisymmetric, and the higher-order terms are neglected. Eq. (47) then 
duces to

𝜖𝜃 =
𝑣𝑅

𝑅0
. (48)

is form is used in both the AC model and the Law of Laplace.
Instead, the second-order theory retains the quadratic terms by foregoing the small-deformation assumption and only assuming 
isymmetric deformation. With this assumption eq. (47) reduces to

𝜖𝜃 =
𝑣𝑅

𝑅0
+

𝑣2
𝑅

2𝑅2
0

. (49)

llowing Hooke’s law, the strain is expressed in terms of circumferential stress 𝜎𝜃 as

𝜖𝜃 =
𝜎𝜃

𝐸′ , (50)

d, as in the Law of Laplace, the stress is further expressed in terms of pressure as

𝜎𝜃 =
𝑃 (𝑥)𝑅 (𝑥)

ℎ
. (51)

mbining eqs. (49)–(51), we arrive at

2nd order Law of Laplace: 𝑅 (𝑥) =
𝑅2
0𝑃 (𝑥)
𝐸′ℎ

+

√√√√√(
𝑅2
0𝑃 (𝑥)
𝐸′ℎ

)2

+𝑅2
0. (52)

e may also recover the standard Law of Laplace by combining eqs. (48), (50) and (51). As discussed in [4], the Law of Laplace 
ilizes the small-deformation assumption in eq. (48) but not in eq. (51), thus “mixing” the deformed and undeformed frames of 
ference. This yields an inverse radius-pressure relationship, which diverges at moderate deformations, that does not appear when 
e second-order terms are retained. On the other hand, Anand & Christov’s model avoids a divergent relationship by maintaining 
e small deformation assumption throughout, formulating the pressure load as

𝜎𝜃 =
𝑃 (𝑥)𝑅0

ℎ
. (53)

mbining eqs. (48), (50) and (53) yields the AC theory.
Now we can compare the prediction of 𝑅 (𝑥) from our numerical method against all three analytical theories as shown in Fig. 8. 
few distinctions between the theories and the numerical setup must be kept in mind while comparing the results. In the numerical 
tup, the deformable segment is clamped at the ends, while in the theories both ends are free to distend. As such, for comparison 
 the radial displacement 𝑅 (𝑥) −𝑅0, only the deforming section downstream from the point of maximum distention is considered. 
g. 8(a) shows the radial displacement along the vessel length for varying pressure drop. As seen, at the smallest pressure drop 
nsidered, there is a strong agreement between the numerical result and all three theories because deformation is small. At higher 
essure drops (with larger deformation), both the law of Laplace and AC deviate from the numerical prediction, while the second-
der theory maintains very good agreement with the numerical prediction. Fig. 8(b) compares the centerline pressure, showing the 
me strong agreement between the numerical prediction and the second-order theory.
Fig. 8(c) shows the radial displacement against centerline pressure. In this, each theoretical curve becomes independent of the 
plied pressure drop. The second-order formula again shows excellent agreement with the numerical results even for very large 
formation, while the law of Laplace and AC deviate on account of the small deformation assumption. Note that the law of Laplace 
erpredicts the numerical data while AC underpredicts. This is because in LL, as discussed previously, 𝑅(𝑥) is reciprocal with 𝑃 (𝑥)
d hence diverges at large pressure, as is evident from both eq. (45) and Fig. 8(c). In contrast, AC posits a linear radius-pressure 
lationship where the pressure acts only on the undeformed state (eq. (53)). At moderate deformation, this does not account for the 
14

ll load on the structure, leading to the underprediction.
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. 8. Comparison of the numerical prediction against the analytical theories for a Hookean vessel, 𝜈 = 0.5, 𝜀 = 0.02. In all figures, solid lines are the numerical 
ediction, dash line is the law of Laplace (eq. (45)), dash-dot is AC (eq. (46)), and long dash is the second-order formula (eq. (52)). (a) Radial displacement along 
 deformable segment for three different pressure drops Δ𝑃

Δ𝑃0
= 0.5 (black), 1.5 (blue), 3 (green). (b) Centerline pressure for the same cases. (c) Radial displacement 

rsus centerline pressure for Δ𝑃

Δ𝑃0
= 1.5 (black), 2.5 (blue), 3.5 (green), 4.5 (red).

Further comparisons of the simulated results against the above theoretical models can be made using volume flow rate versus 
essure drop. To obtain the flow rate 𝑄, the Hagen-Poiseuille relation for flow in a rigid tube is assumed to hold locally at any axial 
cation as

𝑑𝑃 (𝑥)
𝑑𝑥

= − 8𝜇
𝜋𝑅 (𝑥)4

𝑄. (54)

ing the expressions of 𝑅(𝑥) for the different analytical theories, this equation can be integrated along 𝑥 to obtain the pressure-flow 
te relations. To mitigate the effects of the clamped ends in the present numerical setup, the integration is performed from the 
cation of the maximum radial deformation 𝑥 = 𝑥 to the end of the deformed segment 𝑥 = 𝑥𝑑 . Then, the theories yield:

Fung (using

Law of Laplace)
∶ 𝑄 =

𝜋𝑅3
0𝐸

′ℎ

24𝜇
(
𝑥𝑑 − 𝑥

) {[
1 − 𝑃

(
𝑥
)]−3

−
[
1 − 𝑃

(
𝑥𝑑

)]−3}
, (55)

AC ∶ 𝑄 =
𝜋𝑅3

0𝐸
′ℎ

40𝜇
(
𝑥𝑑 − 𝑥

) {[
1 + 𝑃

(
𝑥
)]5

−
[
1 + 𝑃

(
𝑥𝑑

)]5}
, (56)

2nd order ∶

𝑄 =
𝜋𝑅3

0𝐸
′ℎ

120𝜇
(
𝑥𝑑 − 𝑥

) {
15

(
𝑃
(
𝑥
)
− 𝑃

(
𝑥𝑑

))
− 20

[(
𝑃
(
𝑥
)2 + 1

)3∕2
−
(
𝑃
(
𝑥𝑑

)2 + 1
)3∕2

]
+24

[(
𝑃
(
𝑥
)2 + 1

)5∕2
−
(
𝑃
(
𝑥𝑑

)2 + 1
)5∕2

]
+40

(
𝑃
(
𝑥
)3 − 𝑃

(
𝑥𝑑

)3)+ 24
(
𝑃
(
𝑥
)5 − 𝑃

(
𝑥𝑑

)5)}
(57)

here 𝑃 (𝑥) = 𝑅0
𝐸′ℎ

𝑃 (𝑥).
To compare the numerical results and the theories, we consider the flow rate ratio 𝑄∕𝑄0 where 𝑄0 is the flow rate in the 
deformed vessel. Furthermore, the pressure drops from 𝑥 to 𝑥𝑑 are denoted by Δ𝑃 and Δ𝑃0 for the deformed and the undeformed 
15

ssels, respectively. Fig. 9 compares 𝑄∕𝑄0 versus Δ𝑃∕Δ𝑃0 for different values of deformability 𝜀. As seen, at lower Δ𝑃∕Δ𝑃0 and 
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. 9. Comparison of the numerical predicted pressure-flow rate data against the analytical theories for Hookean model, 𝜈 = 0.5. The solid line is the numerical 
ediction, dash line is Fung’s model derived using the Law of Laplace (eq. (55)), dash-dot is AC (eq. (56)), and long dash is the second-order formula (eq. (57)). For 
0.005 and 0.01, the second-order formula is indistinguishable from the numerical results.

. 10. Vessel inflation simulations using nonlinear constitutive models. For all cases 𝜀 = 0.01. (a) radial displacement along vessel length for a fixed Δ𝑃

Δ𝑃0
= 4. 

Maximum displacement versus pressure drop. (c) Flow rate versus pressure drop. (d) Radial displacement versus centerline pressure for Δ𝑃

Δ𝑃0
= 1.5 (black), 2 (blue), 

green), 4 (red). The red dashed line is the model by Anand for a Neo-Hookean tube. For all plots except (d), the legend is in (b).

 there is a strong agreement between the numerical prediction and all three analytical theories. At higher Δ𝑃∕Δ𝑃0 and 𝜀, the 
cond-order theory shows good agreement, while the law of Laplace overpredicts and AC underpredicts.

1.3. Nonlinear constitutive models
Next, we demonstrate the model’s capability to consider vessels with nonlinear elastic behavior. The inflation simulations with 
ooney-Rivlin, Neo-Hookean, and Skalak’s models are compared with the Hookean model in Fig. 10. For the same applied pressure 
16

op, the Neo-Hookean model shows the largest deformation, followed by the Mooney-Rivlin model for Ψ < 1, then the Hookean 
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. 11. Vessel inflation at finite inertia. Radial displacement along vessel axis for (a) Hookean model at 𝜀 = 0.01 under varying 𝑅𝑒 and pressure drop, and (b) for 
erent constitutive models and varying 𝑅𝑒.

odel, while Skalak’s model deforms the least. When varying the pressure drop, the Neo-Hookean and Mooney-Rivlin models 
ickly rise above the other models as the pressure drop increases, due to their strain softening behavior. For these models, the 
aximum deformation shows a diverging trend, as opposed to the linear trend for the Hookean model. Furthermore, the deformation 
creases with increasing Ψ on account of reduced tension (as noted in § 2.2), leading to the Neo-Hookean model showing the largest 
formation. Flow rate versus pressure drop curves are shown in Fig. 10(c) and follow the same trend as the maximum displacement. 
g. 10(d) depicts the radius vs centerline pressure relationship for the Neo-Hookean tubes. The strong nonlinearity of the curve is 
ain indicative of a strain softening material. A model by Anand for a Neo-Hookean tube is shown for reference [5], though it does 
t match the results well beyond small deformations as it assumes a long, slender tube and neglects fluid traction.

2. Inflation at higher inertia

Next, we demonstrate the methodology for vessel inflation at higher fluid inertia. In this section the total tube length is 𝐿∗ = 4𝜋, 
ith section lengths 𝐿∗

𝑖𝑛𝑙𝑒𝑡
= 𝐿∗

𝑜𝑢𝑡𝑙𝑒𝑡
= 1.18, and 𝐿̌∗ = 10.2. Fig. 11(a) shows the steady radial displacement of a Hookean tube for 

rying 𝑅𝑒 and applied pressure drop. At low pressure drops, 𝑅𝑒 has very little effect on vessel deformation, but as the pressure 
op increases, significant differences appear. At higher 𝑅𝑒, we observe much higher radial displacement, with a profile that deviates 
m the decreasing linear profiles of lower 𝑅𝑒. Additionally, the location of maximum inflation moves downstream as 𝑅𝑒 increases.

Fig. 11(b) shows the effect of 𝑅𝑒 for the nonlinear constitutive models. As was the case at small inertia, the NH model shows 
aximum deformation, followed by Hookean and Skalak’s models. Large differences between the different models are seen at the 
ghest 𝑅𝑒 considered.

Numerical predictions at finite inertia can also be compared with the analytical theories. For this, in Fig. 12(a) the radial dis-
acement versus axial pressure is shown. Like the low inertia case seen before, the AC theory underpredicts and the law of Laplace 
erpredicts, while the second-order formula agrees very well with the numerical data. This is to be expected, as the solid mechanics 
 not change between the high and low Re cases. One difference with the low inertia results is that pressure near the left end of 
e deforming segment rises much more rapidly. This happens because the dominance of the inertial effects over the viscous effects 
sults in a higher pressure as the fluid velocity decreases due to area increase (i.e., Bernoulli’s principle). Further comparison in 
rms of the flow rate versus pressure drop is shown in Fig. 12(b). In this case, in contrast to the radius vs pressure relationship, all 
ree theories overpredict the flow rate to varying degrees. However, despite not including inertial terms in its derivation, the AC 
eory closely matches the data. Also plotted here is an extension to the AC theory for flows with finite inertia by Wang et al. [6], 
17

hich underpredicts the results. A potential cause for this discrepancy is that, like the other theories, it assumes a parabolic velocity 
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. 12. Vessel inflation at finite inertia and comparison with analytical theories. (a) Radial displacement versus centerline pressure at 𝑅𝑒 = 40 for a Hookean vessel 
different pressure drops. (b) Flow rate versus pressure drop.

ofile at each cross section, which is not a good match for the simulation data. This assumption, when combined with the inertial 
ects, causes the underprediction.

2.1. Transient dynamics at finite inertia
At finite inertia, the tube inflation exhibits different transient behaviors that are complex but resolved by our method. These are 
monstrated next. For moderate inertia and deformation, the inflation in response to a sudden application of pressure drop occurs 
a a damped oscillation before reaching a steady state. This is shown in Fig. 13(a) where the transient flow rate at the vessel inlet 
plotted. As seen, the flow rate exhibits a damped oscillation, and the oscillation’s amplitude and duration increase with increasing 
𝑒. The time-dependent vessel boundary is presented in Fig. 13(b) for one case which shows a complex shape evolution. Such 
cillations arise due to the back-and-forth reflections of a pressure wave between the clamped ends that occurs at this higher inertia 
 predicted by our method and shown in Fig. 13(c).
At sufficiently high 𝑅𝑒 and 𝜀, however, such oscillations sustain to become periodic as predicted by our model. Fig. 14 shows 
e example at 𝑅𝑒 = 50, 𝜀 = 0.02. Large variation in vessel shape and fluid velocity over time can be seen here. Several striking 
atures can also be noted; first, within each period of oscillation the vessel shape and fluid velocity oscillate between the maximum 
d minimum. The minimum deformation is very close to the undeformed state with very little flow. Second, a recirculation region 
erges near the end of the vessel during each oscillation period when deformation is large but disappears when deformation is 
all. The maximum inflation is noted near the end of the deforming segment, which is exactly opposite to what was observed for 
w inertia. This behavior is due to the recirculation region which causes a local increase in the internal pressure. The surface mesh 
mains smooth without any distortion even after several oscillation periods.

3. Collapsing vessels

Next, we demonstrate the capability of the methodology to simulate collapsing (or, buckling) vessels. This occurs when the vessel 
ternal pressure is greater than the internal pressure. These problems require no change to the simulation setup; only the bending 
sistance of the wall material is added (§ 2.4). Unless stated otherwise, we set 𝑃 ∗

0 = 𝑃 ∗
𝑒𝑥𝑡 = 0, 𝑃𝐿 = −Δ𝑃0, and 𝜀 = 0.005. The 

deformed tube has a circular cross-section. Results for small inertia are presented first, followed by higher inertia.
Mesh resolution tests were also performed for collapsing vessels by increasing the Eulerian points in each direction by a factor of 
18

and 4, and the surface triangular elements by a factor of 22 and 42. For the two finer resolutions, the maximum difference in the 



O.

Fig

sh

lin

sh

Fig

pe

ra

un

3.

Su

ar

m

Journal of Computational Physics 508 (2024) 113026Krul and P. Bagchi

. 13. Damped oscillations at finite Re. Parameters: Hookean tube, 𝜀 = 0.01, Δ𝑃

Δ𝑃0
= 1. (a) Time-dependent flow rate at different 𝑅𝑒. (b) Time-dependent vessel shape 

own using the radial displacement for 𝑅𝑒 = 125. The first inflation phase is represented by the solid curves, followed by a deflation phase shown using the dash 
es, and the next inflation phase by the dash-dot lines. For each phase, black, red and green curves represent three time instances in progression. (c) Sequence 
owing pressure contours moving back-and-forth for the case in (b).

. 14. Inflation at higher Re and 𝜀 showing sustained flow and shape oscillation and recirculation. Hookean tube, 𝑅𝑒 = 50, 𝜀 = 0.02. (a)–(i) show one oscillation 
riod.

dial displacement is 0.1%. Therefore, we select the intermediate resolution for which the Eulerian mesh size is 0.052𝑅0, and the 
deformed surface element area is ∼ 2 × 10−3𝑅2

0.

3.1. Collapsing vessels at small inertia
Here we fix 𝑅𝑒 = 0.1. By varying 𝑃𝐿, bending modulus 𝐵, and vessel length, different patterns of collapsed shapes can be obtained. 
ch steady shapes as predicted by our simulations are shown in Fig. 15. Under specific parameter ranges, well-characterized shapes 
e predicted as shown. These shapes are characterized by, respectively, two or more “lobes” and classically referred to as buckling 
19

odes of 𝑛 = 2, 3, etc. as in Timoshenko and Gere [9]. It should be noted that, in most cases, the tube naturally buckles into specific 
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. 15. Shapes of collapsed vessels under varying parameters. (a) to (f) represent different modes characterized by 𝑛 = 2, 3, … , 6 and 8 “lobes”, respectively. For each 
se, the 3D view and the tube perimeter at maximum collapsed location are shown.

. 16. Centerline pressure in a collapsed tube. The solid black line is from Hazel and Heil [14], while the red dashed line is our simulation data. The prescribed 
essures at the inlet and outlet are 𝑃0

Δ𝑃0
= 0.065 and 𝑃𝐿

Δ𝑃0
= −2.493, respectively. The external pressure is kept at 0. Parameters: 𝐿∗ = 21; 𝐿∗

𝑖𝑛𝑙𝑒𝑡
= 1; 𝐿̌∗ = 𝐿∗

𝑜𝑢𝑡𝑙𝑒𝑡
= 10; 

2.5 × 10−4 ; 𝐵 = 1.953 × 10−3 ; 𝜈 = 0.49.

odes for a given parameter set. Also note that the simulations are time-dependent; only the final steady shapes are shown in the 
ure.

Collapse into mode 2, or a “dumbbell” shape, has been well characterized in the literature on flows through collapsing tubes 
]. As seen in Fig. 15(a), the tube’s shape gradually buckles starting at the upstream end and moving downstream, becoming 
rrowest far downstream before rapidly adjusting to the undeformed (circular) rigid outlet. These features have been observed in 
any classical experiments with the Starling resistor [8]. Fig. 16 shows the corresponding pressure distribution along the centerline, 
hich follows a linear trend in the circular sections of the vessel corresponding to Poiseuille flow, but rapidly decreases in the most 
llapsed region. In addition to our simulation results, also shown in Fig. 16 is a steady computational result from Hazel and Heil 
4]. Despite the numerous differences between the two approaches (flow-controlled vs pressure-controlled experiment, steady vs 
steady flow, small vs large strain solid mechanics models, etc.), the two curves show excellent agreement.
Beyond such single-mode buckling, our methodology can simulate highly complex buckled shapes, as demonstrated by an example 

 Fig. 17, which are not characterized by any single mode. Even with such an extremely collapsed, complex shape, the methodology 
ovides a final stable shape and flow. The thin folds on the vessel surface as seen in the figure are well-resolved without any 
nificant distortion in the surface mesh. Note that such complex buckling occurs spontaneously without any application of forced 
rturbation.

We further simulated collapsing tubes with different constitutive models (Hookean, Neo-Hookean, and Skalak’s models). We 
d that these constitutive models make no significant change in the vessel shape, as shown in Fig. 18, since buckling is primarily 
termined by bending resistance.

3.2. Collapsing vessels at moderate inertia
We further considered collapsing vessel simulations at higher inertia. Figs. 19 and 20 compare the results for different 𝑅𝑒 for 
20

odes 𝑛 = 3 and 4, respectively. The qualitative nature of the vessel shape remains independent of 𝑅𝑒 for the range considered, 
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. 17. Prediction of a highly complex buckled shape. (a), (b) instantaneous images at an initial and a later (near-completion) time during the buckling process. 
 Close-up of surface mesh on the vessel near a surface fold for the instant in (b). Parameters: Hookean model, 𝐿∗ = 2𝜋, 𝐿̌∗ = 6, 𝐿∗

𝑖𝑛𝑙𝑒𝑡
= 𝐿∗

𝑜𝑢𝑡𝑙𝑒𝑡
= 0.142, Eulerian 

olution: 570 × 237 × 236, Lagrangian elements: 499000, 𝐵 = 10−6 .

Fig. 18. Influence of wall material constitutive models on buckled shapes. Shown here is mode 𝑛 = 2.

. 19. Finite 𝑅𝑒 effect on collapsing tube for mode 𝑛 = 3. Vessel boundary and streamwise velocity contours are shown for 𝑅𝑒 = 0.1, 10, 20 in (a), (b), and (c), 
pectively.

t a small increase in deformation, as characterized by more reduction in the cross-sectional area, with increasing 𝑅𝑒 is observed 
r all modes. This is consistent with the findings in [14]. Velocity contours are also qualitatively similar for different 𝑅𝑒, but the 
21

eamwise velocity decreases on account of the area reduction at higher 𝑅𝑒, which increases the flow resistance.
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. 20. Finite 𝑅𝑒 effect on collapsing tube for mode 𝑛 = 4. Vessel cross-sectional boundary at the location of maximum deformation and streamwise velocity contours 
 shown for 𝑅𝑒 = 0.1, 10, 50.

 Conclusion

In this article, we have developed and demonstrated a computational method capable of modeling 3D, transient, flow-induced 
formation of thin, highly compliant, hyperelastic vessels conveying viscous, inertial fluid. It combines finite volume and spectral 
ethods for fluid motion, a finite element method for the structural mechanics of the vessel wall, and IBM for two-way coupling 
tween the deforming wall and fluid. Specifically, a hybrid of the continuous forcing and ghost node methodologies has been 
veloped for the full FSI that capitalizes on the strengths of each. This method avoids the problems encountered with the continuous 
rcing methods, namely, the issue of instability associated with crumpling and excessive stretching of an elastic surface, and the 
accuracy in the streamwise flow very close to the vessel wall. It also avoids the need for domain remeshing as required in the 
rative and partitioned approaches. The method can uniformly consider vessel extension and collapse in the same setup. Very large 
flation (∼ 150%), transient deformation, complex flow features (transient recirculation), and highly complex buckling shapes are 
ell resolved by this method. The vessel wall can follow linear or nonlinear (strain softening and hardening) material models, and 
e fluid inertia can vary over a wide range.
In addition to the hybrid method, we have also presented a fast, parallelizable method for identifying GNs for an arbitrarily 
forming geometry, which allows reidentification in each timestep without significant computational overhead. Reidentification of 
des and boundary intercepts is required in any GN problem with moving boundaries, and it can be an expensive process. Specific 
ethods are not often discussed. The presented method is applicable to any moving boundary problem involving GNs to reduce the 
mputation time.
The transition from a rigid segment (solved using the ghost-node method) to a deforming segment (solved using the hybrid 
ethod) requires special treatment, which is also discussed. The singularity at the transition point is well resolved, yielding a smooth 
ssel surface contour with no mesh distortion. As such, the current method is readily applicable to vessels or surfaces that have 
ultiple rigid and deforming segments.
The specific application of the Helfrich bending energy model to the problem of collapsing vessels as presented here is also novel 

 it has not been considered previously. As discussed in § 1, the prior full FSI modeling studies on collapsing vessels used shell 
eories, which inherently include bending resistance. To our knowledge, the energy-based variational principle for bending has not 
en applied to collapsing vessels previously.
Additionally, a second-order correction to the well-known law of Laplace has been developed, as well as a corresponding flow 
te-pressure drop relationship, for an inflating Hookean tube. At large inflation, this theory shows significantly closer agreement 
ith our simulation data compared to existing small deformation models.
The methodology revealed interesting dynamics of deforming vessels. With the inflation at low fluid inertia, the flow and vessel 
hieve a steady state with larger deformation near the entrance and reduced deformation towards the exit. At moderate inertia, 
e vessel and flow can exhibit either a damped oscillation before reaching a steady state or a periodic oscillation even though the 
undary conditions are held steady. The back-and-forth movement of the pressure wave is also resolved for such time-dependent 
ses. Furthermore, at moderate inertia, the inflation is higher near the vessel exit than near the entrance, in stark contrast to the low 
ertia cases, which is the result of flow recirculation developing near the exit. For the collapsing vessel simulations, well-defined 
apes with different buckling modes (such as, dumbbell and multi-lobes) as obtained in the classic work of Timoshenko, as well as 
ghly complex buckling with fine surface folds are predicted by our model. Such varied shapes (regular or complex) occur naturally 
st under the application of a negative transmural pressure and without any artificial perturbing force.
The main limitation of this method is that it neglects axial motion. As such, this method is not suitable for problems where 
nificant axial deformation is expected, such as axial buckling, or extremely large balloon-like deformation. In problems without 
ch deformations, allowing axial motion would allow minor adjustments between adjacent Lagrangian nodes, such that the stresses 
 the finite elements will somewhat equilibrate with their neighbors. Physically, this corresponds to adjacent differential material 
ers adjusting to similar lengths, yielding the lowest energy configuration of the tube. Such changes are expected to be minor 
ithin the scope of problems considered here. Under physiological conditions where blood vessels are surrounded by tissue, the axial 
22

etch is negligible compared to radial stretch. Prior and current biological data present only the radial stretch; we have not found 
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ta on axial stretching of blood vessels intact within a tissue. The wall shear stress acts to deform the endothelial cells; we have 
t come across papers where this was shown to axially stretch blood vessels. Early theoretical and numerical models which are 
ted here also consider radial stretch. Thus, having blood flow as the application in mind, it is appropriate to neglect axial stretch. 
en though the displacement is restricted to 2D planes, the structural mechanics problem is fully 3D. Beyond this restriction, note 
so that the force spreading and velocity interpolation by discrete delta function are, in the problems reported here, less efficient 
an the computations associated with the GN method. As such, in cases with small deformations which are well described by lower 
der models for the solid mechanics, one might achieve greater computational efficiency by opting for a purely GN approach with 
e-way coupled interaction, such as in [48].
The versatility of the current methodology lends its applicability to multiple problems. Physiologically realistic constitutive 
odels can be used to represent blood vessels, lung airways, or lymphatic vessels. Further, the FEM framework used here can 
corporate viscoelastic surfaces. Pulsatile flow conditions can also be easily considered. The flow of blood as a suspension of 
formable red blood cells through the compliant vessel can be readily modeled, as well as flows in compliant microfluidic channels. 
nally, the methodology is not just limited to straight vessels, but can be applied to vessels with complex geometry, such as curves 
d bifurcations, with deforming walls, as long as the axial stretch remains negligible as in case of microvascular blood flow.

ediT authorship contribution statement

Oleksander Krul: Data curation, Investigation, Methodology, Software, Validation, Writing – original draft. Prosenjit Bagchi:
nceptualization, Funding acquisition, Project administration, Supervision, Writing – review & editing.

claration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
fluence the work reported in this paper.

ta availability

Data will be made available on request.

claration of generative AI and AI-assisted technologies in the writing process

No generative AI or assisted technology was used to prepare the manuscript.

knowledgement

This work was supported by a grant from the National Science Foundation (CBET 1922839).
Computational resources at Pittsburgh Supercomputing Center, Texas Advanced Computing Center, and Purdue University 
rough ACCESS, and at Rutgers University are acknowledged.

ferences

1] Y.C. Fung, Biomechanics: Circulation, Springer New York, New York, NY, 1997.
2] T. Gervais, J. El-Ali, A. Günther, K.F. Jensen, Flow-induced deformation of shallow microfluidic channels, Lab Chip 6 (4) (2006) 500–507, https://doi .org /10 .

1039 /B513524A.
3] S. Rubinow, J.B. Keller, Flow of a viscous fluid through an elastic tube with applications to blood flow, J. Theor. Biol. 35 (2) (1972) 299–313, https://

doi .org /10 .1016 /0022 -5193(72 )90041 -0.
4] V. Anand, I.C. Christov, Revisiting steady viscous flow of a generalized Newtonian fluid through a slender elastic tube using shell theory, J. Appl. Math. Mech. 

101 (2) (Feb. 2021), https://doi .org /10 .1002 /zamm .201900309, arXiv :1810 .05155.
5] V. Anand, A catalog of pressure and deformation profile for thin walled hyperelastic tubes conveying inertialess flow and undergoing large deformation, 

Thin-Walled Struct. 193 (2023) 111216, https://doi .org /10 .1016 /j .tws .2023 .111216.
6] X. Wang, S.D. Pande, I.C. Christov, Flow rate–pressure drop relations for new configurations of slender compliant tubes arising in microfluidics experiments, 

Mech. Res. Commun. 126 (2022) 104016, https://doi .org /10 .1016 /j .mechrescom .2022 .104016.
7] J.H. Olsen, A.H. Shapiro, Large-amplitude unsteady flow in liquid-filled elastic tubes, J. Fluid Mech. 29 (3) (1967) 513–538, https://doi .org /10 .1017 /

S0022112067001004.

8] J.B. Grotberg, O.E. Jensen, Biofluid mechanics in flexible tubes, Annu. Rev. Fluid Mech. 36 (1) (2004) 121–147, https://doi .org /10 .1146 /annurev .fluid .36 .
050802 .121918.

9] S. Timoshenko, J.M. Gere, Theory of Elastic Stability, 2nd edition, Dover Publications, Mineola, N.Y, 2009, originally published: McGraw Hill Book, New York, 
1961.

0] T. Pedley, X. Luo, Modelling flow and oscillations in collapsible tubes, Theor. Comput. Fluid Dyn. 10 (1–4) (1998) 277–294, https://doi .org /10 .1007 /
s001620050064.
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