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GRAPH-STRUCTURED TENSOR OPTIMIZATION FOR
NONLINEAR DENSITY CONTROL AND MEAN FIELD GAMES\ast 
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Abstract. In this work we develop a numerical method for solving a type of convex graph-
structured tensor optimization problem. This type of problem, which can be seen as a generalization
of multimarginal optimal transport problems with graph-structured costs, appears in many appli-
cations. Examples are unbalanced optimal transport and multispecies potential mean field games,
where the latter is a class of nonlinear density control problems. The method we develop is based
on coordinate ascent in a Lagrangian dual, and under mild assumptions we prove that the algorithm
converges globally. Moreover, under a set of stricter assumptions, the algorithm converges R-linearly.
To perform the coordinate ascent steps one has to compute projections of the tensor, and doing so by
brute force is in general not computationally feasible. Nevertheless, for certain graph structures it is
possible to derive efficient methods for computing these projections, and here we specifically consider
the graph structure that occurs in multispecies potential mean field games. We also illustrate the
methodology on a numerical example from this problem class.

Key words. tensor optimization, large-scale convex optimization, optimal transport, Sinkhorn
algorithm, unbalanced optimal transport, potential mean field games
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1. Introduction. A strong trend in many research fields is the study of large-
scale systems consisting of components that are subsystems with specific character-
istics. Examples of such technological systems that are currently emerging include
smart electric grids [29] and road networks with self-driving cars [56]. There are also
many such problems in biology, ecology, and social sciences, including, e.g., cell, ani-
mal, and human populations [73]. A major challenge is understanding and controlling
the macroscopic behavior of such complex large-scale systems, but since the number
of agents in such systems is often too large to enable modeling of each agent individu-
ally, the overall system is typically viewed as a flow or density control problem. In this
setting, the aggregate state information of the agents is often described by a distri-
bution or density function, and classical problems of this form include, e.g., network
flow problems. More recently, there has been great interest in control and estima-
tion of densities, including swarm control [46, 68], modeling and control of epidemics
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GRAPH-STRUCTURED TENSOR OPTIMIZATION 2177

[50], and covariance control in stochastic systems [15]. One key result is that certain
density control problems of first-order integrators can be seen as optimal transport
problems [6]. This correspondence can be extended to general dynamics, and thus the
optimal transport problem can be interpreted as a density control problem of agents
(subsystems) with general dynamics [12, 16, 41].

While some density flow problems can be viewed as two-marginal optimal trans-
port problems, many problems involve using a time grid in order to model, e.g.,
congestion, instantaneous costs, or observations [35]. For such problems it is natural
to use versions of the multimarginal optimal transport problem. The latter is an
optimization problem where a nonnegative tensor is sought to minimize a linear cost
subject to constraints on the marginals, where the marginals are projections of the
tensor on specific modes. When modeling the evolution of a system on a time grid,
the marginals represent the distributions at different time points j = 1, . . . ,\scrT . More
specifically, for such control problems with identical and indistinguishable agents, the
problem can be separated into \scrT  - 1 parts, where each part represents the evolution
during time interval [j, j + 1] for j = 1, . . . ,\scrT  - 1. The transition of the agents from
time j to time j + 1 can thus be specified by the bimarginal projection of the ten-
sor onto the joint two marginals j and j + 1, and thus this problem is a structured
tensor problem with structure corresponding to a path graph (see, e.g., [19, 27, 37]).
However, when the agents have heterogeneous dynamics or objectives, the distri-
bution at a given time does not contain all necessary information about the past.
Nevertheless, many problems of interest can instead be modeled by introducing ad-
ditional dependencies between marginals. For example, traffic flow problems with
origin destination constraints can be formulated by introducing dependence between
the initial and final nodes [35], and Euler flow problems can be seen as a special
case of this [7]. By introducing an additional marginal representing different types
of agents, we can also formulate and solve multispecies dynamic flow problems and
large multicommodity problems [36]. The resulting optimization problems are large-
scale problems, but algorithms have been developed to solve this type of structured
multimarginal optimal transport problem [2, 7, 27, 28, 35, 36, 37, 38, 39, 67]. These
extend Sinkhorn's method, developed for solving the bimarginal problem, in which an
entropy regularization is added to the cost function and an approximate solution is
computed by using coordinate ascent in the dual problem [24, 61]. Interestingly, in the
bimarginal problem the entropy regularization term can also be interpreted as intro-
ducing stochasticity in the dynamics of the subsystems, and the entropy-regularized
problem can in fact be shown to be equivalent to the Schr\"odinger bridge problem
[18, 51, 52]. This connection has also been extended to the multimarginal setting [37].
Moreover, in this context it is also interesting to note that the algorithms developed
for solving this type of structured multimarginal problem are closely related to the
unified propagation and scaling algorithm for inference in graphical models [69].

Many of the problems in the previous paragraph can be formulated as optimal
transport problems with fixed marginals. Nevertheless, in many situations it is also
natural to consider problems where the marginals are not exactly known. A common
strategy is then to penalize deviations from some given marginals [5, 8, 20, 21, 34, 45,
53, 62]. This is sometimes referred to as unbalanced optimal transport. The cost func-
tions associated with the nonfixed marginals are often convex, but standard convex
optimization methods in general do not scale to this type of large-scale problem. In
this paper, we develop a theoretical framework for a type of convex structured tensor
optimization problem, which is a generalization of graph-structured multimarginal
optimal transport problems, along with numerical solution methods and convergence
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2178 A. RINGH, I. HAASLER, Y. CHEN, AND J. KARLSSON

results for these. We also illustrate how this type of problem can be used to model
and solve multispecies potential mean field games; this gives a solution method which
is a generalization of the method for potential mean field games developed in [8]. An
important observation is that the dual problem has a decomposable form and can be
efficiently solved by using dual coordinate ascent [45] (cf. [61]). Moreover, the struc-
ture in these problems can be represented by a graph connecting the marginals, and
by utilizing this graph we show how marginal and bimarginal projections of the tensor
can be computed efficiently, which thus alleviates the computational bottleneck of the
algorithm.

The outline of the paper is as follows: In section 2 we introduce some back-
ground material on optimal transport and convex optimization. The main results are
presented in section 3, where we formulate the graph-structured tensor optimization
problem of interest and present a primal-dual framework for solving it, together with
a Sinkhorn-type algorithm for iteratively solving the dual problem. Conditions for
convergence and R-linear convergence are also presented. Based on this, in section 4
we develop an algorithm for solving multispecies potential mean field games. This
is done by casting the problem as a graph-structured tensor optimization problem
and then specializing the general algorithm to the particular instance. In that sec-
tion, we also present a numerical example to illustrate the use and performance of
the algorithm. Finally, section 5 contains some concluding remarks. Some proofs are
deferred to Appendix A for improved readability. This paper builds on [63], where
we presented an algorithm, without proof of convergence, for the multispecies mean
field game in a simplified setting (see also Remark 4.3).

2. Background. This section presents background material, in particular on
graph-structured multimarginal optimal transport. We also introduce some concepts
from convex analysis and convex optimization that are needed in this work.

2.1. The graph-structured multimarginal optimal transport problem.
The optimal transport problem seeks a transport plan for moving mass from an initial
distribution to a target distribution with minimum cost. This topic has been exten-
sively studied; see, e.g., the monograph [72] and references therein. An extension of
this problem is the multimarginal optimal transport problem, in which a minimum-
cost transport plan between several distributions is sought [7, 27, 32, 57, 60, 65, 66]. In
this work we consider the discrete case of the latter, where the marginal distributions
are given by a finite set of \scrT nonnegative vectors1 \mu 1, . . . , \mu \scrT \in RN

+ . The transport
plan and the corresponding cost of moving mass are both represented by \scrT -mode

tensors M \in RN\scrT 

+ and C \in RN\scrT 
, respectively. More precisely, the elements M(i1...i\scrT )

and C(i1...i\scrT ) are the transported mass and the cost of moving mass associated with
the tuple (i1, . . . , i\scrT ), respectively. The total cost of transport is therefore given by

\langle C,M\rangle :=
\sum 

i1,...,i\scrT 

C(i1...i\scrT )M(i1...i\scrT ).

Moreover, for M to be a feasible transport plan, it must have the given distributions
as its marginals. To this end, the marginal distributions of M are given by the
projections Pj(M)\in RN

+ , where elements of this vector are defined as

(Pj(M))(ij) :=
\sum 

i1,...,ij - 1,ij+1,i\scrT 

M(i1...i\scrT ),

1To simplify the notation, we assume that all the marginals have the same number of elements,
i.e., \mu j \in RN . This can easily be relaxed.
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GRAPH-STRUCTURED TENSOR OPTIMIZATION 2179

and hence M is feasible if Pj(M) = \mu j for j = 1, . . . ,\scrT . A generalization of this opti-
mization problem is to not necessarily impose marginal constraints on all projections
Pj(M) but only for an index set \Gamma \subset \{ 1, . . . ,\scrT \} . The discrete multimarginal optimal
transport problem can thus be formulated as

minimize
M\in RN\scrT 

+

\langle C,M\rangle (2.1a)

subject to Pj(M) = \mu j , j \in \Gamma .(2.1b)

Problem (2.1) is a linear program; however, solving it can be computationally
challenging due to the large number of variables. An approach for obtaining approx-
imate solutions in the bimarginal case is to add a small entropy term to the cost
function and solve the corresponding perturbed problem [24] (see also [61]). This
perturbed problem can be solved by using the so-called Sinkhorn iterations.2 The
approach has been extended to the multimarginal setting [7, 27, 57]; however, in
this case it only partly alleviates the computational difficulty. More precisely, in the
multimarginal setting the entropy term is defined3 as

D(M) :=
\sum 

i1,...,i\scrT 

\bigl( 
M(i1...i\scrT ) log(M(i1...i\scrT )) - M(i1...i\scrT ) + 1

\bigr) 
,

and the optimal solution to the perturbed problem can be shown to take the form M=
K\odot U (see [7, 27]), where K= exp( - C/\epsilon ), \odot denotes the elementwise product, and

U is the rank-one tensor U(i1...i\scrT ) =
\prod 

j\in \Gamma u
(ij)
j , i.e., U= (\otimes j\in \Gamma uj)\otimes (\otimes j\in \{ 1,...,\scrT \} \setminus \Gamma 1),

where \otimes denotes the tensor product and 1 denotes a vector of ones. In fact, the loga-
rithm of the variables uj correspond to the Lagrangian dual variables in a relaxation
of the entropy-regularized version of (2.1). Moreover, the (multimarginal) Sinkhorn
iterations iteratively update uj to match the given marginals as follows:

uj\leftarrow uj \odot \mu j \oslash Pj(K\odot U) for j \in \Gamma ,

where \oslash denotes elementwise division. However, in the multimarginal case, computing
Pj(K\odot U) is challenging since the number of terms in the sum grows exponentially
with the number of marginals, and the latter is also reflected in complexity bounds
for the algorithm [54]. Nevertheless, in some cases when the underlying cost C is
structured, the projections can be computed efficiently. In particular, this is the case
for certain graph-structured costs.

To this end, let \scrG = (\scrV ,\scrE ) be a connected graph with \scrT = | \scrV | nodes, and consider
the optimization problem

minimize
M\in RN\scrT 

+

\langle C,M\rangle + \epsilon D(M)(2.2a)

subject to Pt(M) = \mu t, t\in \~\scrV ,(2.2b)

where \~\scrV \subset \scrV is a set of vertices. Moreover, consider cost tensor C with the structure

C(i1...i\scrT ) =
\sum 

(t1,t2)\in \scrE 

C
(it1 ,it2 )
t1,t2 ,(2.3)

2In fact, the iterations have been discovered in different settings and therefore also have many
different names; see, e.g., [18, 48].

3In this work, we use the convention that 0 \cdot (\pm \infty ) = (\pm \infty ) \cdot 0 = 0.
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2180 A. RINGH, I. HAASLER, Y. CHEN, AND J. KARLSSON

where Ct1,t2 \in RN\times N , which in particular means that the linear cost term in (2.2a)
takes the form \langle C,M\rangle =

\sum 
(t1,t2)\in \scrE \langle Ct1,t2 , Pt1,t2(M)\rangle . Here Pt1,t2(M) \in RN\times N

+ de-
notes the joint projection of the tensor M on the two marginals t1 and t2, given
by

(Pt1,t2(M))(it1 ,it2 ) :=
\sum 

\{ i1,...,i\scrT \} \setminus \{ it1 ,it2\} 

M(i1...i\scrT ).

Problem (2.2) with a cost tensor structured according to (2.3) is called an (entropy-
regularized) graph-structured multimarginal optimal transport problem [28, 36, 37].
Moreover, for many graph structures, the projections Pt(M) and Pt1,t2(M) can be
efficiently computed (see, e.g, [2, 7, 27, 28, 35, 36, 37, 38, 39, 67]), and hence the
Sinkhorn iterations can be used to efficiently solve such problems.

2.2. Convex analysis and optimization. We need the following definitions
and results from convex analysis and optimization. For extensive treatments of the
topic, see, e.g., the monographs [4, 64]. To this end, let f : Rn\rightarrow \=R := R \cup \{ \pm \infty \} be
an extended real-valued function. The epigraph of f is defined as epi(f) := \{ (x, \eta ) \in 
Rn\times R | f(x)\leq \eta \} , and f is called convex if epi(f )\subset Rn+1 is a convex set. A function
f is lower-semicontinuous if and only if epi(f) is closed [64, Thm. 7.1]. The effective
domain of f is defined as dom(f) := \{ x \in Rn | f(x) < \infty \} , and f is called proper
if f(x) >  - \infty for all x \in Rn and dom(f) \not = \emptyset . A convex set C is called polyhedral
if it can be written as the intersection of a finite number of closed half-spaces. A
convex function f is called polyhedral if epi(f ) is polyhedral. The Fenchel conjugate
of a function f is defined as f\ast (x\ast ) := supx\langle x\ast , x\rangle  - f(x). A convex, proper, lower-
semicontinuous function f is called cofinite if epi(f) contains no nonvertical half-lines,
which is equivalent to the fact that f\ast is finite everywhere, i.e., that dom(f \ast ) = Rn

[64, Cor. 13.3.1]. The subdifferential of a function f in a point x is the set \partial f(x) :=
\{ u \in Rn | \langle y  - x,u\rangle + f(x) \leq f(y) for all y \in Rn\} , and if f is proper, convex, and
differentiable in x with gradient \nabla f(x), then \partial f(x) = \{ \nabla f(x)\} [4, Prop. 17.31]. A
convex, proper, lower-semicontinuous function f is called essentially smooth if (i) it
is differentiable on int(dom(f )), i.e., on the interior of the effective domain; and (ii)
lim\ell \rightarrow \infty \| \nabla f(x\ell )\| \rightarrow \infty for any sequence \{ x\ell \} \ell \subset int(dom(f)) that either converges to
the boundary of int(dom(f)) or is such that \| x\ell \| \rightarrow \infty . An operator A : Rn\rightarrow Rn is
called strongly monotone if there exists a \gamma > 0 such that \langle Ax - Ay,x - y\rangle \geq \gamma \| x - y\| 2
for all x, y \in Rn. Finally, let \{ x\ell \} \ell \subset Rn be a sequence converging to some \=x \in Rn.
The sequence is said to converge Q-linearly if there exists a \gamma \in (0,1) such that
\| x\ell +1 - \=x\| \leq \gamma \| x\ell  - \=x\| , and the sequence is said to converge R-linearly4 if there exists
a sequence of nonnegative numbers \{ \gamma \ell \} \ell \subset R+ converging Q-linearly to zero and such
that \| x\ell  - \=x\| \leq \gamma \ell for all \ell [59, sect. 9.2], [58, pp. 619--620].

3. Convex graph-structured tensor optimization. In this work, we con-
sider a family of optimization problems that generalizes problems of the form (2.2).

To this end, let \scrG = (\scrV ,\scrE ) be a connected graph with \scrT = | \scrV | nodes, and let C\in \=RN\scrT 

be a cost tensor that takes the form (2.3). The convex graph-structured tensor opti-
mization problems of interest here are problems of the form

minimize
M\in RN\scrT 

+

\langle C,M\rangle + \epsilon D(M) +
\sum 
t\in \scrV 

gt(Pt(M)) +
\sum 

(t1,t2)\in \scrE 

ft1,t2(Pt1,t2(M)),(3.1)

4This is a slightly weaker notion of convergence, compared to Q-linear, that ``is concerned with
the overall rate of decrease in the error, rather than the decrease over each individual step of the
algorithm"" [58, pp. 619--620].
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GRAPH-STRUCTURED TENSOR OPTIMIZATION 2181

where gt and ft1,t2 are proper, convex, and lower-semicontinuous functions; further
assumptions on these functions will be imposed where needed. The reason for our
interest in problems of the form (3.1) is that a number of different applications can
be modeled as such problems. In particular, this is true for convex dynamic network
flow problems (cf. [36]) and potential multispecies mean field games. The latter is
studied in detail in section 4.

Remark 3.1. To see that problems of the form (3.1) are generalizations of the
graph-structured multimarginal optimal transport problem (2.2), let \iota A(\cdot ) denote the
indicator function on the set A\subseteq Rn, i.e., the function

\iota A(x) :=

\Biggl\{ 
0 if x\in A,

\infty else,

and note that this function is proper, convex, and lower-semicontinuous if and only
if A is a nonempty, closed, convex set. Now, (2.2) is recovered from (3.1) by tak-
ing gt(Pt(M)) = \iota \{ \mu t\} (Pt(M)) for t \in \~\scrV and gt(Pt(M)) \equiv 0 otherwise, and ft1,t2
(Pt1,t2(M)) \equiv 0 for all (t1, t2) \in \scrE . Other particular cases of interest are unbalanced
versions of (2.2) [5] or versions of (2.2) where some of the equality constraints are
replaced by inequality constraints; cf. [36].

Remark 3.2. In problem (3.1) the functions ft1,t2 and the tensor C are defined
on the same set of edges \scrE . This is done for convenience of notation and is not a
restrictive assumption. To see this, note that it is possible to define certain functions
ft1,t2 to be the zero function, or to take certain matrices Ct1,t2 in the decomposition
(2.3) to be the zero-matrix.

Note that (3.1) is typically a large-scale problem, where the full set of variables
may neither be stored nor manipulated directly. Therefore one must utilize the prob-
lem structure in order to compute the solution. In this section, we develop a method
for such problems, based on generalized Sinkhorn iterations. This methodology for
handling the problem builds on deriving the Lagrangian dual of an optimization prob-
lem that is equivalent to (3.1) and solving this dual using coordinate ascent. As we
will see, the method exploits the graph structure, and the algorithm is efficient when
the graph is simple, i.e., the tree-width is low (cf. [28, 36, 39]), and when the functions
gt and ft1,t2 are in some sense simple.

3.1. An equivalent problem and existence of solution. We first introduce
and analyze a problem that is equivalent to (3.1) and give conditions under which the
latter has an optimal solution. To this end, introducing the variables \mu t, t \in \scrV , and
Rt1,t2 , (t1, t2)\in \scrE , we can rewrite problem (3.1) as

minimize
M\in RN\scrT 

+ , \mu t\in RN , t\in \scrV 
Rt1,t2

\in RN\times N , (t1,t2)\in \scrE 

\langle C,M\rangle + \epsilon D(M) +
\sum 
t\in \scrV 

gt(\mu t) +
\sum 

(t1,t2)\in \scrE 

ft1,t2(Rt1,t2)(3.2a)

subject to Pt(M) = \mu t, t\in \scrV ,(3.2b)

Pt1,t2(M) =Rt1,t2 , (t1, t2)\in \scrE .(3.2c)

In order for this to be a well-posed problem, we impose the following assumptions on
the functions involved.

Assumption 3.3. Assume that all elements of C are strictly larger than  - \infty , and
that gt, t\in \scrV , and ft1,t2 , (t1, t2)\in \scrE , are all proper, convex, and lower-semicontinuous.
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2182 A. RINGH, I. HAASLER, Y. CHEN, AND J. KARLSSON

Moreover, assume that there exists a feasible point to (3.2) with finite objective func-
tion value, i.e., a nonnegative tensor M such that \langle C,M\rangle < \infty , and with marginals
and bimarginals as in (3.2b)--(3.2c), respectively, such that

gt(\mu t)<\infty for all t\in \scrV ,
ft1,t2(Rt1,t2)<\infty for all (t1, t2)\in \scrE .

In fact, these assumptions ensures that (3.2) has an optimal solution, as stated
in the following lemma.

Lemma 3.4. If Assumption 3.3 holds, then there exists a unique optimal solution
to problem (3.2).

Proof. See Appendix A.

Remark 3.5. A necessary condition for Assumption 3.3 to hold is that there exist
vectors \mu t \in RN

+ \cap dom(gt) for all t \in \scrV , matrices Rt1,t2 \in RN\times N
+ \cap dom(ft1,t2) for all

(t1, t2)\in \scrE , and a constant \gamma \geq 0 such that

\mu T
t 1= \gamma for all t\in \scrV 

Rt1,t21= \mu t1 , R
T
t1,t21= \mu t2 for all (t1, t2)\in \scrE ,

\langle Ct1,t2 ,Rt1,t2\rangle <\infty for all (t1, t2)\in \scrE .

However, unless the graph (\scrV ,\scrE ) is a tree, this is not a sufficient condition for the
existence of a tensor that fulfills Assumption 3.3. More precisely, the existence of
marginals and bimarginals that are consistent with each other does not, in general,
guarantee that there exists a tensor that matches the marginals and bimarginals. A
counterexample can be found in [37, Rem. 3].

3.2. Form of the optimal solution and Lagrangian dual. Next, we derive
the Lagrangian dual of (3.2) and show that there is no duality gap between the primal
and dual problems.

Theorem 3.6. A Lagrangian dual of (3.2) is, up to a constant, given by

sup
\lambda t\in RN , t\in \scrV 

\Lambda t1,t2
\in RN\times N , (t1,t2)\in \scrE 

 - \epsilon \langle K,U\rangle  - 
\sum 
t\in \scrV 

(gt)
\ast ( - \lambda t) - 

\sum 
(t1,t2)\in \scrE 

(ft1,t2)
\ast ( - \Lambda t1,t2),(3.3)

where K and U are given by

K(i1...i\scrT ) = exp( - C(i1...i\scrT )/\epsilon ),(3.4a)

U(i1...i\scrT ) =
\prod 
t\in \scrV 

u
(it)
t

\prod 
(t1,t2)\in \scrE 

U
(it1 ,it2 )
t1,t2 =

\prod 
t\in \scrV 

exp
\Bigl( 
\lambda 
(it)
t /\epsilon 

\Bigr) \prod 
(t1,t2)\in \scrE 

exp
\Bigl( 
\Lambda 
(it1 ,it2 )
t1,t2 /\epsilon 

\Bigr) 
.

(3.4b)

Moreover, under Assumption 3.3, the minimum in (3.2) equals the supremum in (3.3)
(up to the discarded constant). Finally, if the dual (3.3) has an optimal solution, then
the optimal solution to the primal problem takes the form M \star =K\odot U \star , where U \star is
obtained via (3.4b) from an optimal solution to (3.3).

Proof. Relaxing each of the constraints (3.2b) and (3.2c) with multipliers \lambda t \in RN

and \Lambda t1,t2 \in R
N\times N , respectively, we get the Lagrangian
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GRAPH-STRUCTURED TENSOR OPTIMIZATION 2183

L(M, \mu ,R,\lambda ,\Lambda ) := \langle C,M\rangle + \epsilon D(M) +
\sum 
t\in \scrV 

gt(\mu t) +
\sum 

(t1,t2)\in \scrE 

ft1,t2(Rt1,t2)

+
\sum 
t\in \scrV 

\lambda T
t (\mu t  - Pt(M)) +

\sum 
(t1,t2)\in \scrE 

tr[\Lambda T
t1,t2(Rt1,t2  - Pt1,t2(M))],(3.5)

where \mu denotes (\mu t)t\in \scrV , and similar notation is used for all other variables. The dual
function is given by inf L over M, \mu , and R, but the Lagrangian decouples over M,
\mu t, and Rt1,t2 . For the inf over \mu t we have that

inf
\mu t

\lambda T
t \mu t + gt(\mu t)= - sup

\mu t

( - \lambda t)
T\mu t  - gt(\mu t)= - (gt)\ast ( - \lambda t)

where \ast denotes the Fenchel conjugate; an analogous result follows for ft1,t2 and the
inf over Rt1,t2 . This means that

inf
M\geq 0,\mu ,R

L(M, \mu ,R,\lambda ,\Lambda )

= inf
M\geq 0

\scrL (M, \lambda ,\Lambda ) - 
\sum 
t\in \scrV 

(gt)
\ast ( - \lambda t) - 

\sum 
(t1,t2)\in \scrE 

(ft1,t2)
\ast ( - \Lambda t1,t2),(3.6)

where \scrL (M, \lambda ,\Lambda ):=\langle C,M\rangle +\epsilon D(M) - 
\sum 

t\in \scrV \lambda T
t Pt(M) - 

\sum 
(t1,t2)\in \scrE tr[\Lambda 

T
t1,t2Pt1,t2(M)].

Noticing that \lambda T
t Pt(M) =

\sum N
it=1 \lambda 

(it)
t

\sum 
i1,...,i\scrT \setminus \{ it\} M

(i1...i\scrT ) =
\sum 

i1,...,i\scrT 
\lambda 
(it)
t M(i1...i\scrT )

and that tr[\Lambda T
t1,t2Pt1,t2(M)] =

\sum 
i1,...,i\scrT 

\Lambda 
(it1 ,it2 )
t1,t2 M(i1...i\scrT ), we see that \scrL (M, \lambda ,\Lambda ) de-

couples over the elements of the tensor. Therefore, the inf in each element is either
attained in 0 or found by setting the first variation to 0. If C(i1...i\scrT ) =\infty , then the
trivial case M(i1...i\scrT ) = 0 holds. Otherwise, setting the first variation equal to 0 gives

0 =C(i1...i\scrT ) + \epsilon log(M(i1...i\scrT )) - 
\sum 
t\in \scrV 

\lambda 
(it)
t  - 

\sum 
(t1,t2)\in \scrE 

\Lambda 
(it1 ,it2 )
t1,t2

from which it then follows that M(i1...i\scrT ) > 0. Moreover, solving for M(i1...i\scrT ) gives
M = K\odot U, where K and U are given as in (3.4). Note that this form for M also
holds for the elements of C that are infinite. Plugging this back into \scrL (M, \lambda ,\Lambda ), we
get that infM\geq 0\scrL (M, \lambda ,\Lambda ) =  - \epsilon \langle K,U\rangle +N\scrT \epsilon , which, after removing the constant,
together with (3.6) gives the dual problem (3.3). Finally, for improved readability,
the detailed proof of the fact that there is no duality gap is deferred to Lemma A.2
in Appendix A.

By using the change of variables implicit in (3.4b), problem (3.3) can be expressed
equivalently as

sup
ut\in RN

+ , t\in \scrV 
Ut1,t2

\in RN\times N
+ , (t1,t2)\in \scrE 

 - \epsilon \langle K,U\rangle  - 
\sum 
t\in \scrV 

(gt)
\ast \bigl(  - \epsilon log(ut)

\bigr) 
 - 

\sum 
(t1,t2)\in \scrE 

(ft1,t2)
\ast \bigl(  - \epsilon log(Ut1,t2)

\bigr) 
.(3.7)

Moreover, under a Slater-type condition for the primal problem, i.e., that the relative
interiors (denoted ri)5 of the effective domains of the cost functions in (3.1) have a
nonempty intersection, we have that the suprema in (3.3) and (3.7) are attained.

5The relative interior of a set A consists of all points in A that are interior when A is regarded
as a subset of its affine hull; see [64, Chap. 6].
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2184 A. RINGH, I. HAASLER, Y. CHEN, AND J. KARLSSON

Assumption 3.7. Assume that there exists an M > 0 such that \langle C,M\rangle < \infty ,
with marginals (\mu t)t\in \scrV and bimarginals (Rt1,t2)(t1,t2)\in \scrE satisfying (3.2b) and (3.2c),
respectively, so that

\bullet for all gt and ft1,t2 that are polyhedral, \mu t \in dom(gt) and Rt1,t2 \in dom(ft1,t2);
\bullet for all gt and ft1,t2 that are not polyhedral, \mu t \in ri(dom(gt)) and Rt1,t2 \in 
ri(dom(ft1,t2)).

Corollary 3.8. Given Assumption 3.7 the conclusions of Theorem 3.6 hold,
with the addition fact that the dual (3.3) is guaranteed to have a nonempty set of
optimal solutions.

Proof. The result follows from [64, Chaps. 29 and 30].

Even if the Slater-type condition in Assumption 3.7 is not fulfilled, the form
M=K\odot U will be important in deriving a convergent algorithm for solving (3.2).

3.3. Coordinate ascent iterations for solving the dual problem. In this
section we derive an efficient solution method for (3.2), based on performing coor-
dinate ascent in the dual problem (3.3) (or, equivalently, in (3.7)). To this end, let
\phi ((\lambda t)t\in \scrV , (\Lambda t1,t2)(t1,t2)\in \scrE ) denote the objective function in the dual problem (3.3).
Given an iterate ((\lambda k

t )t\in \scrV , (\Lambda 
k
t1,t2)(t1,t2)\in \scrE ), in a coordinate ascent step we cyclically

select an element j \in \scrV or (j1, j2) \in \scrE and compute an update to the corresponding
variable by taking \lambda k+1

j to be in

argmax
\lambda j\in RN

\phi (\lambda j , (\lambda 
k
t )t\in \scrV \setminus \{ j\} , (\Lambda 

k
t1,t2)(t1,t2)\in \scrE ),(3.8a)

or \Lambda k+1
j1,j2

to be in

argmax
\Lambda j1,j2

\in RN\times N

\phi (\Lambda j1,j2 , (\lambda 
k
t )t\in \scrV , (\Lambda 

k
t1,t2)(t1,t2)\in \scrE \setminus \{ (j1,j2)\} ),(3.8b)

respectively, while taking \lambda k+1
t = \lambda k

t and \Lambda k+1
t1,t2 =\Lambda k

t1,t2 for all other elements. In order
for this to be a well-defined algorithm, we need the set of maximizing arguments in
(3.8) to always be nonempty. To guarantee this, we impose the following assumption
(which is milder than Assumption 3.7).

Assumption 3.9. Assume that C < \infty . Moreover, assume that for each index
j \in \scrV , there exists a \mu j > 0 so that

\bullet if gj is polyhedral, then \mu j \in dom(gj);
\bullet if gj is not polyhedral, then \mu j \in ri(dom(gj));

and that analogous assumptions hold for each index (j1, j2)\in \scrE , Rj1,j2 , and fj1,j2 .

Lemma 3.10. Under Assumptions 3.3 and 3.9, the subproblems in (3.8) always
have a nonempty set of maximizers.

Proof. To prove the lemma, we restrict our attention to one subproblem of the
form (3.8a); for subproblems of the form (3.8b) the proof follows analogously. Now,
note that problem (3.8a) can be see as the Lagrangian dual of the primal problem

minimize
M\in RN\scrT 

+ , \mu j\in RN

\langle C,M\rangle + \epsilon D(M) + gj(\mu j) - 
\sum 

t\in \scrV \setminus \{ j\} 

(\lambda k
t )

TPt(M)

 - 
\sum 

(t1,t2)\in \scrE 

tr[(\Lambda k
t1,t2)

TPt1,t2(M)]

subject to Pj(M) = \mu j .
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GRAPH-STRUCTURED TENSOR OPTIMIZATION 2185

Moreover, using Assumption 3.9 we have that \mu j > 0, and M= \mu j \otimes (\otimes t\in \scrV \setminus \{ j\} 1)> 0
is a point fulfilling Slater's condition for the above problem. Therefore, following [64,
Chaps. 29 and 30] we have that strong duality holds between these two problems,
and in particular that the dual (3.8a) has a nonempty set of maximizers (cf. [71, Lem.
3.1]).

By the above lemma, the coordinate ascent steps in (3.8) are well-defined. More-
over, since each problem is concave and unconstrained, the optimal solution is where
the subgradient is zero. To compute the subgradients, first note that

Pj(K\odot U)\oslash uj =
\sum 

i1,...,i\scrT \setminus ij

K(i1...i\scrT )
\prod 

t\in \scrV \setminus \{ j\} 

u
(it)
t

\prod 
(t1,t2)\in \scrE 

U
(it1 ,it2 )
t1,t2

is a well-defined vector which is independent of uj . We therefore define

wj := Pj(K\odot U)\oslash uj(3.9a)

and note that this means Pj(K\odot U) = uj \odot wj . Analogously, we also define

Wj1,j2 := Pj1,j2(K\odot U)\oslash Uj1,j2 ,(3.9b)

which in the same way is a well-defined matrix, independent of Uj1,j2 , and hence we
have Pj1,j2(K\odot U) =Uj1,j2 \odot Wj1,j2 .

Next, note that \partial \langle K,U\rangle /\partial \lambda (ij)
j = - exp

\Bigl( 
\lambda 
(ij)
j /\epsilon 

\Bigr) 
w

(ij)
j = - u(ij)

j w
(ij)
j with K and

U given as in (3.4) and wj as in (3.9a). Thus, in each update of the variable \lambda j one
has to solve the inclusion problem

0\in \partial \lambda j\phi = - exp (\lambda j/\epsilon )\odot wj + \partial (gj)
\ast ( - \lambda j),(3.10a)

where \partial \lambda j denotes the subdifferential with respect to \lambda j . By an analogous derivation,
in each update of the variable \Lambda j1,j2 one has to solve the inclusion problem

0\in \partial \Lambda j1,j2
\phi = - exp (\Lambda j1,j2/\epsilon )\odot Wj1,j2 + \partial (fj1,j2)

\ast ( - \Lambda j1,j2).(3.10b)

To verify that the two equalities in (3.10) hold, see, e.g., [4, Cor. 16.38]. These
inclusions, and hence the updates, can be reformulated in terms of the transformed
dual variables uj and Uj1,j2 , in which case they read

0\in  - uj \odot wj + \partial (gj)
\ast \bigl(  - \epsilon log(uj)

\bigr) 
,(3.11a)

0\in  - Uj1,j2 \odot Wj1,j2 + \partial (fj1,j2)
\ast \bigl(  - \epsilon log(Uj1,j2)

\bigr) 
.(3.11b)

This is summarized in Algorithm 3.1. However, note that directly computing wj and
Wj1,j2 needed in (3.11) by brute-force is computationally demanding and, effectively,
numerically infeasible for large-scale problems. Therefore, from this perspective, Al-
gorithm 3.1 is an ``abstract algorithm."" Nevertheless, for many graph structures it is
possible to compute the projections efficiently by sequentially eliminating the modes
of the tensor; see [2, 7, 27, 35, 36, 37, 38, 39, 67]. In particular, in section 4 we show
how this is done for the application of multispecies potential mean field games (see
Algorithm 4.1). Moreover, by storing and using intermediate results of eliminated
modes, we can understand the procedure also as a message-passing scheme [39]. Fi-
nally, under relatively mild assumptions, Algorithm 3.1 is convergent in the following
sense.
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2186 A. RINGH, I. HAASLER, Y. CHEN, AND J. KARLSSON

Algorithm 3.1 Generalized Sinkhorn method for solving (3.2).
1: Give: graph \scrG = (\scrV ,\scrE ), cost tensor C that decouples according to \scrG , functions

(gt)
\ast , for t\in \scrV , and (ft1,t2)

\ast , for (t1, t2)\in \scrE , nonnegative initial guesses (u0
t )t\in \scrV 

and (U0
t1,t2)(t1,t2)\in \scrE .

2: k= 0
3: while Not converged do
4: k= k+ 1
5: for j \in \scrV and (j1, j2)\in \scrE do
6: Update uk

j by solving (3.11a) with wj as in (3.9a).
7: Update Uk

j1,j2
by solving (3.11b) with Wj1,j2 as in (3.9b).

8: end for
9: end while
10: return (uk

t )t\in \scrV and (Uk
t1,t2)(t1,t2)\in \scrE .

Theorem 3.11. Given Assumptions 3.3 and 3.9, assume further that
1. gt, t\in \scrV , and ft1,t2 , (t1, t2)\in \scrE , are all continuous on dom(gt) and dom(ft1,t2),

respectively;
2. for all gt, t \in \scrV , and ft1,t2 , (t1, t2) \in \scrE , that are not polyhedral, the fea-

sible point in Assumption 3.3 is such that \mu t \in ri(dom(gt)) and Rt1,t2 \in 
ri(dom(ft1,t2)), respectively.

Let (uk
t )t\in \scrV and (Uk

t1,t2)(t1,t2)\in \scrE be the iterates of Algorithm 3.1 at iteration k, and
let Uk be the corresponding tensor as in (3.4b). Moreover, let Mk = K\odot Uk. Then
(Mk)k is a bounded sequence that converges to the optimal solution to (3.2). Fur-
thermore, if the set of optimal solutions to (3.3) is nonempty and bounded, then
((uk

t )t\in \scrV , (U
k
t1,t2)(t1,t2)\in \scrE )k is a bounded sequence, and every cluster point is an op-

timal solution to (3.7).

Proof. To prove the theorem, let h(M) := \langle C,M\rangle + \epsilon D( M), which is a strictly

convex function (cf. [4, Ex. 9.35]). Moreover, dom(h) =RN\scrT 

+ and hence is polyhedral.
Next, we observe that h is cofinite, since the Fenchel conjugate of h is given by6

h\ast (T) = - \epsilon 
\sum 

i1,...,i\scrT 

exp(( T(i1...i\scrT )  - C(i1...i\scrT ))/\epsilon ) - 1 = - \epsilon \langle K, exp( T/\epsilon )\rangle +N\scrT \epsilon ;

see [4, Ex. 13.2 and Prop. 13.23]. Therefore, following along the lines of [71, sect.
6], we have that (Mk)k is a bounded sequence and that every cluster point is an
optimal solution to (3.2). In particular, [71, Thm. 3.1] imposes some slightly stronger
assumptions,7 but it is readily checked in all places where these stronger assumptions
are invoked that the same conclusions hold in this particular case under the weaker
assumptions. For brevity, we omit the details of the modifications needed.

Since (Mk)k is a bounded sequence and every cluster point is optimal to (3.2),
by the uniqueness of the optimal solution M \star the sequence must converge to it. To
see this, note that since (Mk)k is bounded, if it does not converge, then it must have
at least two cluster points. This is a contradiction, since every cluster point must
be optimal, and the optimal solution is unique. Finally, the last statement of the
theorem follows similarly from [71, Thm. 3.1(b)].

6Compare with the expression inf\bfM \scrL (M, \lambda ,\Lambda )= - \epsilon \langle K, U\rangle +N\scrT \epsilon in the proof of Theorem 3.6.
7More precisely, to directly apply the result in [71, Thm. 3.1], we must assume that the feasible

point in Assumption 3.3 is such that M > 0; see [71, Assump. B] where ``f0"" corresponds to
\langle C,M\rangle +\epsilon D(M). For an example of where this weaker assumption is indeed used, see Example 3.14.
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GRAPH-STRUCTURED TENSOR OPTIMIZATION 2187

The above theorem guarantees convergence but does not guarantee how fast the
iterates converge. In particular, in order to guarantee R-linear convergence we need
to impose further assumptions on the functions involved.

Theorem 3.12. Given Assumption 3.3, further assume that there exists an M>
0 with marginals and bimarginals (\mu t)t\in \scrV and (Rt1,t2)(t1,t2)\in \scrE satisfying (3.2b) and
(3.2c), respectively, and that all functions gt and ft1,t2 are such that

(i) either the function is a polyhedral indicator function and \mu t \in dom(gt) or
Rt1,t2 \in dom(ft1,t2), respectively;

(ii) or the function is cofinite, essentially smooth, and continuous on the effective
domain, and the gradient operator is strongly monotone and Lipschitz con-
tinuous on any compact convex subset of the interior of the effective domain,
and such that \mu t \in int(dom(gt)) or Rt1,t2 \in int(dom(ft1,t2)), respectively.

Under these assumptions, let (uk
t )t\in \scrV and (Uk

t1,t2)(t1,t2)\in \scrE be the iterates of Algo-
rithm 3.1, and let Mk = K \odot Uk. Then Mk \rightarrow M \star at least R-linearly, where M \star 

is the unique optimal solution to (3.2), and the cost function in (3.7), evaluated in
(uk

t )t\in \scrV and (Uk
t1,t2)(t1,t2)\in \scrE , converges to the optimal value of (3.2) at least R-linearly.

Proof. Assume first that all functions are as in (ii). In this case, note that (3.2a)
is separable in the different variables, and that E in [55, eq. (1.1)] is of the form

ET =

\left[  PT1 . . . PT\scrT PT1,2 . . . PT\scrT ,\scrT  - 1

 - I 0
0  - I

\right]  
where Pt is a matrix so that Ptvec(M) is the projection on the tth marginal and Pt1,t2
is a matrix such that Pt1,t2vec(M) is the projection on the (t1, t2)-bimarginal. This
means that PTt and PTt1,t2 are the corresponding back-projections. Now, under the
given assumptions, the results in [55, Thm 6.1] are directly applicable.

In the case when some of the functions are of the form in (i), this cost function can
be replaced by a finite number of inequality constraints. By adding the corresponding
inequalities in the matrix E above, the same arguments as before shows R-linear
convergence of the algorithm.

Remark 3.13. One assumption in Theorem 3.12 is that all functions gt and ft1,t2
(that are not polyhedral indicator functions) are such that they are differentiable on
the interior of their effective domains. Under this assumption, all inclusions in (3.10)
and (3.11) are in fact equalities on the interior of the effective domain.

Example 3.14. To illustrate some of the differences between the results presented
so far, here we consider a small bimarginal example. To this end, let M,C \in R2\times 2,
and consider the problem

minimize
M\in R2\times 2

+

D(M) subject to P1(M)\leq 
\biggl[ 
1
2

\biggr] 
, P12(M)\geq 

\biggl[ 
1 0
0 0

\biggr] 
,

where for simplicity we have taken C = 0 and \epsilon = 1. The two constraints together
imply that M(1,2) = 0 for any feasible solution, and hence neither the conditions in
Assumption 3.7 nor the ones in Theorem 3.12 are fulfilled. Nevertheless, the conditions
in Assumption 3.3 are fulfilled, and hence the problem has a unique optimal solution
(Lemma 3.4); the latter is given by

M \star =

\biggl[ 
1 0
1 1

\biggr] 
.
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2188 A. RINGH, I. HAASLER, Y. CHEN, AND J. KARLSSON

Moreover, the conditions in Assumption 3.9 are fulfilled, and hence each step in the
algorithm is therefore well-defined (Lemma 3.10). In fact, the conditions in Theo-
rem 3.11 are fulfilled, which guarantees that the dual ascent algorithm is converging
to the optimal solution. For suitable initial conditions, the coordinate ascent method
gives the iterates

uk
1 =

\biggl[ 
1/(exp(k) + 1)

1

\biggr] 
, Uk

1,2 =

\biggl[ 
exp(k) 1

1 1

\biggr] 
,

and the corresponding dual cost converges towards the optimal value as k \rightarrow \infty .
However, the dual problem does not attain an optimal solution since (U (1,2))k diverges
as k\rightarrow \infty . Finally, by evaluating \| Mk  - M \star \| 2 we i can see that in fact the iterates
converge R-linearly, which indicates that there might be room for improvement with
respect to the conditions in Theorem 3.12.

As a final remark, we note that Assumptions 3.7 and 3.9 both enforce that we
must have C <\infty ---the first one implicitly and the second one explicitly. Similarly,
the functions gt and ft1,t2 must have effective domains that include marginals and
bimarginals that are elementwise strictly positive, and hence they cannot, e.g., be
indicator functions on singletons with zero elements. For some applications this is not
fulfilled, and in particular this is the case for the example in section 4. Nevertheless,
the assumptions can be weakened somewhat to accommodate for this, similarly to [36,
sect. 4.1]. More specifically, if any element C(i1...i\scrT ) =\infty , then we can fix M(i1...i\scrT ) =
0 and remove it from the set of variables. This means that M is technically no longer a
tensor, but the marginal and bimarginal projections can still be defined, and the above

derivations carry over to this setting. Similarly, if dom(gj) is such that \mu 
(ij)
j = 0, then

we can remove all the variables M(i1...i\scrT ) with indices \{ (i1, . . . , ij - 1, ij , ij+1, . . . , i\scrT ) | 
it = 1, . . . ,N for t \not = j\} , and also do so analogously for fj1,j2 and the bimarginals.
From the perspective of Algorithm 3.1, it is interesting to note that in the first case

K(i1...i\scrT ) = 0, and in the second case we can take u
(ij)
j = 0.

3.4. Extension to multiple costs on each marginal. In some problems,
marginals and bimarginals can be associated with multiple functions, typically when
they are both associated with a cost and an inequality constraint. To handle such
cases, we consider a modified version of problem (3.2) that takes the form8

minimize
M\in RN\scrT 

+ , \mu t,k1
\in RN

+ ,

Rt1,t2,k2
\in RN\times N

+

t\in \scrV and k1=1,...,\kappa 1

(t1,t2)\in \scrE and k2=1,...,\kappa 2

\langle C,M\rangle + \epsilon D(M) +
\sum 
t\in \scrV 

\kappa 1\sum 
k1=1

gt,k1(\mu t,k1)

+
\sum 

(t1,t2)\in \scrE 

\kappa 2\sum 
k2=1

ft1,t2,k2
(Rt1,t2,k2

)(3.12)

subject to Pt(M) = \mu t,k1 , k1 = 1, . . . , \kappa 1, t\in \scrV 
Pt1,t2(M) =Rt1,t2,k2 , k2 = 1, . . . , \kappa 2, (t1, t2)\in \scrE .

By modifying the arguments in the previous sections, it is straightforward to derive a
Lagrangian dual of (3.12) and to see that if the dual problem has an optimal solution,
then the optimal solution to (3.12) is of the form M=K\odot U, where

8For ease of notation, we have the same number of functions \kappa 1 and \kappa 2 associated with each
marginal and bimarginal, respectively; however, this can easily be relaxed. Moreover, note that the
constraints implicitly ensure that \mu t,k1

= \mu t,k\prime 
1
, for all k1, k\prime 1 = 1, . . . , \kappa 1 and all t\in \scrV , for any feasible

point, and that similar relations hold for the bimarginals.
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GRAPH-STRUCTURED TENSOR OPTIMIZATION 2189

U(i1...i\scrT ) =

\Biggl( \prod 
t\in \scrV 

\kappa 1\prod 
k1=1

u
(it)
t,k1

\Biggr) \left(  \prod 
(t1,t2)\in \scrE 

\kappa 2\prod 
k2=1

U
(it1 ,it2 )

t1,t2,k2

\right)  
and where K is as before (see (3.4a)). This can be interpreted as splitting ut as
ut =\odot \kappa 1

k1=1ut,k1 , and similarly Ut1,t2 =\odot 
\kappa 2

k2=1Ut1,t2,k2 . Moreover, this means that the
coordinate ascent inclusion for uj,\~k1

is given by

0\in  - uj,\~k1
\odot 

\left(  \bigodot 
k1 \not =\~k1

uj,k1

\right)  \odot wj + \partial (gj,\~k1
)\ast 
\bigl( 
 - \epsilon log(uj,\~k1

)
\bigr) 
,

where wj is defined analogously to (3.9a) as

wj = Pj(K\odot U)\oslash 

\Biggl( 
\kappa 1\bigodot 

k1=1

uj,k1

\Biggr) 
.(3.13)

Similar expressions hold for the inclusion problem for Ut1,t2,\~k2
. Furthermore, reex-

amining the proof of Theorems 3.11 and 3.12, we can readily see that by modifying
the assumptions accordingly, the results can be extended to this setting. For brevity,
we omit explicitly stating these results. Finally, by reexamining the argument of se-
quentially eliminating the modes of the tensor as in [27, 36, 37], one can see that the
efficiency in computing wj in (3.13) (and also Wj1,j2) only depends on the underly-
ing graph structure (\scrV ,\scrE ) and not on the number of cost functions associated with
each marginal (and bimarginal). Therefore, we can still efficiently solve the inclusions
for ``simple functions"" and graph structures for which the projections can be easily
computed.

4. Multispecies potential mean field games. An important tool for analyz-
ing and controlling systems of systems, which has emerged during the last decades,
is mean field games [11, 26, 42, 43, 44, 49]. Mean field games are models of dynamic
games where each player's action is negligible to other players at the individual level,
but where the actions are significant when aggregated. A subclass of such games are
potential mean field games. These can be seen as density control problems, where
the density abides by a controlled Fokker--Planck equation with distributed control
[49]. This type of control problem has been studied in, e.g., [9, 13, 17]. An important
generalization of mean field games is the multispecies setting, where the population
consists of several different types of agents or species [1, 10, 22, 43, 47, 49]. In this
section, we show that discretizations of potential multispecies mean field games take
the form of a convex graph-structured tensor optimization problem (3.2). By also
deriving efficient methods for computing the corresponding projections needed in Al-
gorithm 3.1, we here develop an efficient numerical solution algorithm for solving
such problems. In order to do so, we will first consider the nonlinear density control
problem obtained in the single-species setting, and its corresponding discretization.

4.1. The single-species problem. Let X \subset Rn be a state space, and consider
a set of infinitesimal agents on X which obeys the (It\^o) stochastic differential equation

dx(t) = f(x(t))dt+B(x(t))
\bigl( 
v(x(t), t)dt+

\surd 
\epsilon dw

\bigr) 
,(4.1)

with initial condition x(0) = x0 \sim \rho 0(x), where w is an m-dimensional Wiener process.
More precisely, assume that f : X \rightarrow Rn and B : X \rightarrow Rn\times m are continuously
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2190 A. RINGH, I. HAASLER, Y. CHEN, AND J. KARLSSON

differentiable with bounded derivatives, in which case, under suitable conditions on
the (Markovian) feedback v, there exists a unique solution to (4.1) almost surely; see,
e.g, [30, Thm. V.4.1] and [9, pp. 7--8]. Moreover, under suitable regularity conditions
[9, 13], the density \rho (t, \cdot ) which describes the distribution of particles at time point
t exists and is the solution of a controlled Fokker--Planck equation (cf. [3, p. 72]). A
potential mean field game can then be reformulated as the density optimal control
problem [49]

minimize
\rho ,v

\int 1

0

\int 
X

1

2
\| v\| 2\rho dxdt+

\int 1

0

\scrF t(\rho (t, \cdot ))dt+ \scrG (\rho (1, \cdot ))(4.2a)

subject to
\partial \rho 

\partial t
+\nabla \cdot ((f +Bv)\rho ) - \epsilon 

2

n\sum 
i,k=1

\partial 2(\sigma ik\rho )

\partial xi\partial xk
= 0,(4.2b)

\rho (0, \cdot ) = \rho 0.(4.2c)

Here, \sigma (x) := B(x)B(x)T . Moreover, \scrF t and \scrG are functionals on L2 \cap L\infty , and we
assume that they are proper, convex, and lower-semicontinuous. We also assume that
\scrF t is piecewise continuous with respect to t.

To discretize problem (4.2), we rewrite it as a problem over path space. To this
end, let \scrP v denote the distribution on path space, i.e., a probability distribution
over C([0,1],X) := the set of continuous functions from [0,1] to X, induced by the
controlled process (4.1). In particular, this means that for the marginal of \scrP v corre-
sponding to time t, denoted \scrP v

t , we have that \scrP v
t = \rho (t, \cdot ), where \rho is the solution to

(4.2b) and (4.2c). Moreover, let \scrP 0 denote the corresponding (uncontrolled) Wiener
process with initial density \rho 0. By the Girsanov theorem (see, e.g., [31, pp. 156--157]
and [25, p. 321]), we have that

1

2

\int 
X

\int 1

0

\| v\| 2\rho dtdx=1

2
E\scrP v

\biggl\{ \int 1

0

\| v\| 2dt
\biggr\} 
=\epsilon KL(\scrP v\| \scrP 0)(4.3)

where KL(\cdot \| \cdot ) is the Kullback--Leibler divergence; see, e.g., [8, 14, 17, 33, 51, 52]. To
ensure that (4.3) holds, it is important that the control signal and the noise enter the
system through the same channel, as in (4.1) [15, 16]. Moreover, the link between
stochastic control and entropy provided by (4.3) has recently led to several novel
applications of optimal control [12, 14, 15, 16, 18].

By using (4.3), the problem (4.2) can be reformulated as

minimize
\scrP v

\epsilon KL(\scrP v\| \scrP 0) +

\int 1

0

\scrF t(\scrP v
t )dt+ \scrG (\scrP v

1 )(4.4a)

subject to \scrP v
0 = \rho 0.(4.4b)

Next, we discretize this problem in both time and space. More precisely, discretizing
over time into the time points 0,\Delta t,2\Delta t, . . . ,1, where \Delta t = 1/\scrT , and over space

into the grid points x1, . . . , xN , we get that \scrP v becomes a tensor M \in RN\scrT +1

+ , i.e.,
a nonnegative (\scrT + 1)-mode tensor that represents the flow of the agents. More
precisely, M(i0...i\scrT ) is the discrete approximation corresponding to the probability of
a sample path that passes through the discrete states xi0 , . . . , xi\scrT at the corresponding
discrete time instances. Similarly, \scrP 0 becomes a nonnegative (\scrT +1)-mode tensor of
probabilities corresponding to the evolution of the (uncontrolled) Wiener process.
For reasons that will be clear shortly, we call this tensor K and let K(i0...i\scrT ) =
\gamma exp( - C(i0...i\scrT )/\epsilon ) for some tensor C and where \gamma > 0 is a normalizing constant so
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GRAPH-STRUCTURED TENSOR OPTIMIZATION 2191

that
\sum 

i0,...,i\scrT 
K(i0...i\scrT ) = 1. The Kullback--Leibler divergence can then be discretized

as

\epsilon KL(\scrP v\| \scrP 0)\approx \epsilon 
\sum 

i0,...,i\scrT 

log

\Biggl( 
M(i0...i\scrT )

K(i0...i\scrT )

\Biggr) 
M(i0...i\scrT )

= \epsilon 
\sum 

i0,...,i\scrT 

log
\Bigl( 
M(i0...i\scrT )

\Bigr) 
M(i0...i\scrT )  - \epsilon 

\sum 
i0,...,i\scrT 

log (\gamma )M(i0...i\scrT )

 - \epsilon 
\sum 

i0,...,i\scrT 

log
\Bigl( 
(exp( - C(i0...i\scrT )/\epsilon )

\Bigr) 
M(i0...i\scrT )

= \epsilon D(M) + constant - \epsilon 
\sum 

i0,...,i\scrT 

 - C(i0...i\scrT )

\epsilon 
M(i0...i\scrT )

= \epsilon D(M) + constant + \langle C,M\rangle .
Discarding the constants, the discretized version of (4.4), and thus the discretized
version of (4.2), therefore becomes

minimize
M\in RN\scrT +1

+

\mu 1,...,\mu \scrT \in RN
+

\langle C,M\rangle + \epsilon D(M) +\Delta t

\scrT  - 1\sum 
j=1

Fj(\mu j) +G(\mu \scrT )(4.5a)

subject to Pj(M) = \mu j , j = 1,2, . . . ,\scrT ,(4.5b)

P0(M) = \mu 0.(4.5c)

Here, \mu 0 is a discrete approximation of \rho 0, and \mu j is the distribution of agents at time
point j. All that is left to do is to derive the form of the (\scrT + 1)-mode tensor C,
which in (4.5) can be seen to correspond to a cost of moving agents. To this end, first
note that since \scrP 0 is the probability distribution on path space corresponding to a
time-homogeneous Markov process, we have that

K(i0...i\scrT ) =
\scrT  - 1\prod 
j=0

K(ij ,ij+1)

where K is an N\times N matrix defining the transition probabilities between the discrete
states in one time step. This in turn means that the cost tensor takes the form

C(i0...i\scrT ) =

\scrT  - 1\sum 
j=0

C(ij ,ij+1),(4.6a)

where C is an N\times N matrix defining the transition costs between time points in (4.5).
More precisely, we approximate the elements C(i,k) as the optimal cost of moving mass
from discretization point xi to discretization point xk in one time step, given by

C(i,k) =

\left\{         
minimize
v\in L2([0,\Delta t])

\int \Delta t

0

1

2
\| v\| 2dt

subject to \.x= f(x) +B(x)v,

x(0) = xi, x(\Delta t) = xk.

(4.6b)

This approximation is motivated by the fact that for small time steps (corresponding
to a small noise level in a time-rescaled version of the problem) there is a concentra-
tion of the probability around the trajectories that are solutions to the corresponding
optimal control problem [40] (cf. [25, sect. 5], [16, sect. IV], and [70, Thm. 2]). Intu-
itively, this makes sense since for small time steps, the transitions are approximately
Gaussian. However, the ``distance"" in the transition is no longer measured in the
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2192 A. RINGH, I. HAASLER, Y. CHEN, AND J. KARLSSON

Euclidean norm but instead by the optimal control cost, since a lower control cost
means that the system is ``easier"" to steer between the two states, and hence it is
more likely that the system will make that transition.

The optimal control problem (4.6b) typically cannot be solved analytically, except
in the linear-quadratic case. Nevertheless, a numerical solution to the problem suffices,
and the computation of the cost function C can be done off-line before solving (4.5).

Finally, note that the problem (4.5)--(4.6) is a convex graph-structured tensor
optimization problem of the form (3.2) on a path graph. In order to guarantee that
(4.5) has an optimal solution, one must guarantee that it has a feasible solution with

finite object function value, i.e., that there is an M \in RN\scrT +1

+ that fulfills (4.5b) and
(4.5c) and is such that (4.5a) is finite (cf. Assumption 3.3). A sufficient condition for
this to hold is that the functions Fj , for j = 1, . . . ,\scrT  - 1, and G are finite on all of
RN

+ , and that the elements (4.6b) are all finite. That latter is true if the deterministic
counterpart to system (4.1) is controllable in the (rather strong) sense that for all
x0, x1 \in X and for all t > 0 there exists a control signal in L2([0, t]) that transitions
the system from the initial state x(0) = x0 to the final state x(t) = x1. Two examples of
classes of systems that have this property are controllable linear systems and systems
where B(x) is square and invertible for all x.

Remark 4.1. Another solution method for solving problems of the form (4.5),
for agents that follow the dynamics of a first-order integrator, has been presented in
[8]. The two methods are similar, and the main difference is that the computational
method developed in [8] is based on a variable elimination technique, in contrast
to the belief-propagation-type technique used here; see the discussion just before
Theorem 3.11.

4.2. The multispecies problem. A multispecies mean field game is an exten-
sion of mean field games to a set of heterogeneous agents, and the idea was already
presented in the seminal works [43, 49]. Here, we consider a multispecies potential
mean field game which has L different populations, each of which can be associated
with different costs and constraints, and where each infinitesimal agent of species \ell 
obeys the dynamics

dx\ell (t) = f(x\ell )dt+B(x\ell )
\bigl( 
v\ell dt+

\surd 
\epsilon dw\ell 

\bigr) 
,

with initial condition x\ell (0) = x\ell ,0 \sim \rho \ell ,0(x). Next, let \rho \ell (t, \cdot ) denote the distribution of
species \ell at time point t, and note that a multispecies potential mean field game can,
analogously to the single-species game, be formulated as an optimal control problem
over densities. More precisely, the problem of interest here takes the form

minimize
\rho ,\rho \ell ,v\ell 

\int 1

0

\int 
X

L\sum 
\ell =1

1

2
\| v\ell \| 2\rho \ell dxdt+

\int 1

0

\scrF t(\rho (t, \cdot ))dt+ \scrG (\rho (1, \cdot ))

+
L\sum 

\ell =1

\biggl( \int 1

0

\scrF \ell ,t(\rho \ell (t, \cdot ))dt+ \scrG \ell (\rho \ell (1, \cdot ))
\biggr) 

(4.7a)

subject to
\partial \rho \ell 
\partial t

+\nabla \cdot ((f(x) +B(x)v\ell )\rho \ell )

 - \epsilon 

2

n\sum 
i,k=1

\partial 2(\sigma ik\rho \ell )

\partial xi\partial xk
= 0, \ell = 1, . . . ,L,(4.7b)

\rho \ell (0, \cdot ) = \rho \ell ,0, \rho (t, x) =
L\sum 

\ell =1

\rho \ell (t, x),(4.7c)
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GRAPH-STRUCTURED TENSOR OPTIMIZATION 2193

where we impose the same assumptions on \scrF \ell ,t and \scrG \ell as on \scrF t and \scrG , respectively.
The functionals

\int 1

0
\scrF t(\cdot )dt and \scrG (\cdot ) are the cooperative part of the cost, which connects

the different species. In particular, for \scrF t \equiv 0, \scrG \equiv 0, (4.7) reduces to L independent

single-species problems. Moreover, the functionals
\int 1

0
\scrF \ell ,t(\cdot )dt and \scrG \ell (\cdot ) are the ones

that give rise to the heterogeneity among the species.

4.3. Numerical algorithm for solving the multispecies problem. To de-
rive a numerical algorithm for solving (4.7), analogously to the single-species problem
we first discretize the problem over time and space. To this end, by adapting the
arguments in subsection 4.1, we arrive at the discrete problem

minimize
M\ell , \mu j , \mu \ell ,j

j=1,...,\scrT 
\ell =1,...,L

L\sum 
\ell =1

\bigl( 
\langle C,M\ell \rangle + \epsilon D(M\ell )

\bigr) 
+\Delta t

\scrT  - 1\sum 
j=1

Fj(\mu j) +G(\mu \scrT )

+
L\sum 

\ell =1

\left(  \Delta t
\scrT  - 1\sum 
j=1

F\ell ,j(\mu \ell ,j) +G\ell (\mu \ell ,\scrT )

\right)  (4.8a)

subject to Pj(M\ell ) = \mu \ell ,j , j = 1, . . . ,\scrT , \ell = 1, . . . ,L,(4.8b)

P0(M\ell ) = \mu \ell ,0, \ell = 1, . . . ,L,(4.8c)
L\sum 

\ell =1

\mu \ell ,j = \mu j , j = 0, . . . ,\scrT ,(4.8d)

where C still has the form (4.6), and where \mu \ell ,0 are discrete approximations of \rho \ell ,0.
In particular, note that the second line in the cost (4.8a) is the discretization of the
second line in (4.7a). Moreover, also note that (4.8) consists of L coupled graph-
structured tensor optimization problems, coupled via the constraint (4.8d) and the
cost imposed on \mu j , for j = 1, . . . ,\scrT , in (4.8a).

Next, we reformulate (4.8) into a single graph-structured tensor optimization

problem (cf. [36]). To this end, let M \in RL\times N\scrT +1

be the (\scrT + 2)-mode tensor such
that M(\ell i0...i\scrT ) = (M\ell )

(i0...i\scrT ), i.e., M(\ell i0...i\scrT ) is the amount of mass of species \ell that
moves along the path xi0 , . . . , xi\scrT . For this tensor M, we will use the index  - 1 to
denote the ``species index."" This means that (P - 1(M))(\ell ) =

\sum 
i0,...,i\scrT 

( M\ell )
(i0...i\scrT ),

for \ell = 1, . . . ,L, and hence the elements of the additional marginal \mu  - 1 \in RL
+ are the

total mass of the densities of the different species. Moreover, this means that Pj(M)
is the total distribution \mu j at time j\Delta t, as defined by (4.8d), while the bimarginal
projection P - 1,j(M) gives the L\times N matrix [\mu 1,j , . . . , \mu L,j ]

T . By introducing

R - 1,0 = [\mu 1,0, . . . , \mu L,0]
T \in RL\times N

+ ,

the constraint (4.8c) can be imposed by requiring that P - 1,0(M) =R - 1,0. Next, by
defining the functions FL

j :RL\times N \rightarrow R as

FL
j (R - 1,j) =

L\sum 
\ell =1

\Delta tF\ell ,j(\mu \ell ,j), j = 1, . . . ,\scrT ,

and similarly for G L, the last term in the cost (4.8a) can be written as functions
applied to the bimarginal projections. Finally, by noting that

\sum L
\ell =1D(M\ell ) =D(M),

we can write the problem as
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2194 A. RINGH, I. HAASLER, Y. CHEN, AND J. KARLSSON

minimize
M, \mu j ,R - 1,j

j=1,...,\scrT 

\langle \~C,M\rangle + \epsilon D(M) +\Delta t
\scrT  - 1\sum 
j=1

Fj(\mu j) +G(\mu \scrT )

+
\scrT  - 1\sum 
j=1

FL
j (R - 1,j) + G L(R - 1,\scrT )(4.9a)

subject to Pj(M) = \mu j , j = 1, . . . ,\scrT ,(4.9b)

P - 1,j(M) =R - 1,j , j = 1, . . . ,\scrT ,(4.9c)

P - 1,0(M) =R - 1,0,(4.9d)

where

\~C
(\ell i0...i\scrT )

=
\scrT  - 1\sum 
j=0

C(ij ,ij+1).(4.9e)

The problem (4.9) is readily seen to be a graph-structured tensor optimization
problem of the form (3.2) and hence can be solved using Algorithm 3.1. In particular,
the iterates of the transport plan produced by Algorithm 3.1 are of the form Mk =
K\odot Uk, where K= exp( - \~C/\epsilon ) and

U(\ell i0...i\scrT ) =U
(\ell ,i0)
 - 1,0

\scrT \prod 
j=1

U
(\ell ,ij)
 - 1,j

\scrT \prod 
j=1

u
(ij)
j .(4.10)

The underlying graph-structure is illustrated in Figure 1, and by adapting the argu-
ments in [36], marginal and bimarginal projections needed in the inclusion problems
(3.11) can be computed efficiently as follows.

Theorem 4.2. Let K= exp( - \~C/\epsilon ), with \~C defined as in (4.9e) and \epsilon > 0, and let
U be as in (4.10). Define K = exp( - C/\epsilon ), and let

\^\Psi j =

\Biggl\{ 
U - 1,0K, j = 1,\Bigl( 
\^\Psi j - 1 \odot U - 1,j - 1

\Bigr) 
diag(uj - 1)K, j = 2, . . . ,\scrT ,

and

\Psi j =

\Biggl\{ 
U - 1,\scrT diag(u\scrT )K

T , j = \scrT  - 1,

(\Psi j+1 \odot U - 1,j+1)diag(uj+1)K
T , j = 0, . . . ,\scrT  - 2.

\mu  - 1

\mu 1\mu 0 \mu \scrT  - 1 \mu \scrT 

P - 1,0(\bfM ) = R - 1,0

R - 1,1 R - 1,\scrT  - 1

R - 1,\scrT 

C C CC

Fig. 1. Illustration of the graph \scrG for the multispecies density optimal control problem. Gray
circles correspond to known densities, and white circles correspond to densities which are to be
optimized over.
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GRAPH-STRUCTURED TENSOR OPTIMIZATION 2195

Then we have the following expressions for projections of the tensor K\odot U:

P - 1,0(K\odot U)=U - 1,0 \odot \Psi 0,

P - 1,j(K\odot U)= \^\Psi j \odot \Psi j \odot U - 1,jdiag(uj),

P - 1,\scrT (K\odot U)=U - 1,\scrT diag(u\scrT )\odot \^\Psi \scrT ,

P\scrT (K\odot U)= u\scrT \odot 
\Bigl( 
\^\Psi \scrT \odot U - 1,\scrT 

\Bigr) T
1,

Pj(K\odot U)= uj \odot 
\Bigl( 
\^\Psi j \odot \Psi j \odot U - 1,j

\Bigr) T
1

for j = 1, . . . ,\scrT  - 1.

Proof. See Appendix A.

Finally, using Theorem 4.2 and specializing Algorithm 3.1 to solving the particular
problem (4.9), an algorithm for solving discretized multispecies potential mean field
games is given in Algorithm 4.1.

Remark 4.3. The algorithms in [63] are special instances of Algorithm 4.1. In
particular, if FL

j (\cdot ) = \langle Cj , \cdot \rangle for some Cj \in RL\times N , then (FL
j )\ast (\cdot ) = \iota \{ Cj\} (\cdot ). Hence,

U - 1,j must equal Kj := exp( - Cj/\epsilon ). Similarly, if G L(\cdot ) = \langle C\scrT , \cdot \rangle , we get that U - j,\scrT 
must be equal to K\scrT , from which we recover [63, Alg. 1]. On the other hand,
if G L(\cdot ) = \iota \{ R - 1,\scrT \} (\cdot ) for some given R - 1,\scrT , then the marginal \mu \scrT is also known,
and any cost associated with it is a constant and hence can be removed. Moreover,
(G L)\ast (\cdot ) = \langle R - 1,\scrT , \cdot \rangle , from which we recover [63, Alg. 2].

4.4. Numerical example. In this section we demonstrate Algorithm 4.1 on a
two-dimensional numerical example with L = 4 different species. To this end, we
consider the state space [0,3]\times [0,3] and uniformly discretize it into 100 \times 100 grid
points; the latter are denoted xi,k for i, k = 1, . . . ,100. No points are placed on the

Algorithm 4.1 Method for solving the multispecies potential mean field game (4.9).
1: Given: Initial guess u1, . . . , u\scrT , U - 1,0, . . . ,U - 1,\scrT 
2: while Not converged do
3: \Psi \scrT  - 1\leftarrow U - 1,\scrT diag(u\scrT )K

T

4: for j = \scrT  - 2, . . . ,0 do
5: \Psi j\leftarrow (\Psi j+1 \odot U - 1,j+1)diag(uj+1)K

T

6: end for
7: U - 1,0\leftarrow R - 1,0 \oslash \Psi 0

8: \^\Psi 1\leftarrow U - 1,0K
9: for j = 1, . . . ,\scrT  - 1 do

10: W - 1,j\leftarrow ( \^\Psi j \odot \Psi j)diag(uj), and update U - 1,j by solving (3.11b)

11: wj\leftarrow ( \^\Psi j \odot \Psi j \odot U - 1,j)
T1, and update uj by solving (3.11a)

12: \^\Psi j+1\leftarrow ( \^\Psi j \odot U - 1,j)diag(uj)K
13: end for

14: W - 1,\scrT \leftarrow \^\Psi \scrT diag(u\scrT ), and update U - 1,\scrT by solving (3.11b)

15: w\scrT \leftarrow ( \^\Psi \scrT \odot U - 1,\scrT )
T1, and update u\scrT by solving (3.11a)

16: end while
17: return u1, . . . , u\scrT , U - 1,0, . . . ,U - 1,\scrT 
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2196 A. RINGH, I. HAASLER, Y. CHEN, AND J. KARLSSON

boundary of the state space, which means that the cell size is \Delta x= 0.032. Moreover,
time is discretized into \scrT +1= 40 time steps, i.e., with a discretization size \Delta t= 1/39
and with time index j = 0, . . . ,39. The dynamics of the agents is taken to be f(x)\equiv 0
and B(x) = I. This means that the cost matrix, with elements (4.6b), is time-
independent and given by C = [\| xi1,k1

 - xi2,k2
\| 2]100i1,i2,k1,k2=1. This corresponds to the

squared Wasserstein-2 distance on the discrete grid.
For \epsilon = 10 - 2, we consider the discrete problem

minimize
M\ell \in R(1002)40

+ ,

\mu \ell ,j\in R1002

+

j=1,...,39, \ell =1,2,3,4

4\sum 
\ell =1

\Bigl( 
\langle C,M\ell \rangle + \epsilon D(M\ell )

\Bigr) 
+

39\sum 
j=1

\langle c3, \mu 3,j\rangle 

+ 0.1
39\sum 
j=1

\| \mu 4,j  - \~\nu \| 22 + 3\| \mu 19  - \~\mu 1\| 22 + 3\| \mu 39  - \~\mu 2\| 22(4.11a)

subject to Pj(M\ell ) = \mu \ell ,j , j = 0, . . . ,39, \ell = 1,2,3,4,(4.11b)
4\sum 

\ell =1

\mu \ell ,j = \mu j , j = 0, . . . ,39,(4.11c)

\mu j \leq \kappa j , j = 1, . . . ,39,(4.11d)

\mu 1,j \leq \~\kappa , j = 1, . . . ,39.(4.11e)

Here, \~\mu 1 and \~\mu 2 are the two distributions given in Figure 2(a). Moreover, the
linear cost c3, associated with species 3, and the target distribution \~\nu , associated with
species 4, are both given in Figure 2(b).9 Finally, for the capacity constraint (4.11d),
\kappa j is illustrated in Figure 2(c), while for the capacity constraint (4.11e), \~\kappa is zero in
the lower half of the domain and infinite for the upper half.

The graph-structured tensor optimization reformulation of (4.11) was solved using
Algorithm 4.1. The latter is adapted as in section 3.4 to handle both the costs on
the total marginals in (4.11a) and the inequality constraints in (4.11d); details on the
Fenchel conjugates of the functions involved can be found in Appendix B. Results are
shown in Figure 2(d), where the initial distributions \mu \ell ,0 for the different agents can
be seen in the leftmost column (showing time point j = 0).

5. Conclusions. In this paper we have seen that graph-structured tensor opti-
mization problems naturally appear in several areas in systems and control. We have
developed numerical algorithms for these problems based on dual coordinate ascent
that utilize the fact that the dual problems decouple according to the graph structure.
We also showed that under mild conditions these algorithms are globally convergent,
and in certain cases the convergence is R-linear. This framework can also be used
to solve convex multicommodity dynamic network flow problems akin to the ones
studied in [36]. Moreover, we believe that these methods are useful for addressing
many other types of problems, e.g., flow problems where the nodes or edges also have
dynamics (cf. [23]). Moreover, we also believe that these methods can be extended
to handle, e.g., multispecies potential mean field games where each species also has
different dynamics.

9Note that \~\mu 2 and \~\nu are uniform distributions. The former has the same total mass as the total
distribution \mu 0, and the latter has the same as \mu 4,0.
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GRAPH-STRUCTURED TENSOR OPTIMIZATION 2197

(a) Target densities for total
density.

(b) Species-dependent cost
and constraint.

(c) Illustration of the capacity
constraints.

(d) Optimal solution.

Fig. 2. Figures describing the setup in the numerical example in section 4.4. (a) Target densi-
ties \~\mu 1 (left) and \~\mu 2 (right) for the total density at time points j = 19 and j = 39, respectively. (b)
Illustration of species-dependent cost and constraint: left plot shows the linear cost c3 for species
3, where blue means cost 0 and yellow means a cost of 390\Delta x\Delta t. The right plots shows the target
distributions \~\nu for species 4. (c) The capacity constraint \kappa j at the different time points j: blue means
zero capacity (obstacle) while yellow means infinite capacity. (d) The optimal solution, illustrated
as time evolution of total density and densities of the individual species. (See online version for
color.)

Appendix A. Deferred proofs.

Proof of Lemma 3.4. By Assumption 3.3, there is a feasible point to problem (3.2)
with finite objective function value, and since problems (3.2) and (3.1) are equivalent,
this means that the objective function in (3.1) is proper. To show that the minimum
for the latter is attained, note that gt, t\in \scrV , and ft1,t2 , (t1, t2)\in \scrE , are all proper, con-
vex, and lower-semicontinuous, and hence they all have a continuous affine minorant
[4, Thm. 9.20]. However, since the entropy term \epsilon D(M) is radially unbounded and
grows faster than linearly towards\infty , we therefore have that the objective function in
(3.1) is radially unbounded. Since the entire objective function is also proper, convex,
and lower-semicontinuous, the minimum is attained [64, Thm. 27.2], and it is unique
since D(M) (and hence the entire objective function in (3.1)) is strictly convex.

Lemma A.1. Let f : Rn\rightarrow \=R be proper, convex, and lower-semicontinuous; then
ri(dom(f\ast )) \not = \emptyset .

Proof. Since the function f is proper, convex, and lower-semicontinuous, so is the
function f\ast [4, Cor. 13.38]. dom(f\ast ) is therefore nonempty, and by [4, Prop. 8.2] it
is convex. Using [4, Fact 6.14(i)], the result follows.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/1

2/
25

 to
 1

08
.2

30
.1

28
.2

28
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



2198 A. RINGH, I. HAASLER, Y. CHEN, AND J. KARLSSON

Lemma A.2. There is no duality gap between (3.2) and (3.3).

Proof. To prove the lemma, we derive a Lagrangian dual of an equivalent problem
to (3.3) and show that for the latter, strong duality holds with (3.2). To this end,
note that a problem with the same set of globally optimal solutions as (3.3) is the
constrained optimization problem

sup
U,\lambda ,\Lambda 

 - \epsilon \langle K,U\rangle  - 
\sum 
t\in \scrV 

(gt)
\ast ( - \lambda t) - 

\sum 
(t1,t2)\in \scrE 

(ft1,t2)
\ast ( - \Lambda t1,t2)

subject to log(U(i1...i\scrT )) =
1

\epsilon 

\left(  \sum 
t\in \scrV 

\lambda 
(it)
t +

\sum 
(t1,t2)\in \scrE 

\Lambda 
(it1 ,it2 )
t1,t2

\right)  .

However, the latter is nonconvex due to the nonaffine equality constraint. Neverthe-
less, since K \geq 0, the cost function is nonincreasing in U, and since the logarithm
is a monotone increasing function, the above problem has the same globally optimal
solution as the relaxed, convex problem with the equality changed to an inequality \geq .
Moreover, for this convex problem, by using Lemma A.1 it is easily seen that Slater's
condition is fulfilled, and hence strong duality holds. Next, relaxing the convex in-
equality constraints with multipliers Q(i1...i\scrT ) \geq 0, we get the Lagrangian

 - \epsilon \langle K,U\rangle  - 
\sum 
t\in \scrV 

(gt)
\ast ( - \lambda t) - 

\sum 
(t1,t2)\in \scrE 

(ft1,t2)
\ast ( - \Lambda t1,t2)

+
\sum 

i1,...,i\scrT 

Q(i1...i\scrT )

\left(  log(U(i1...i\scrT )) - 1

\epsilon 

\left(  \sum 
t\in \scrV 

\lambda 
(it)
t +

\sum 
(t1,t2)\in \scrE 

\Lambda 
(it1 ,it2 )
t1,t2

\right)  \right)  ,

which separates over \lambda t, \Lambda t1,t2 , andU. Moreover, we have that
\sum 

i1,...,i\scrT 
Q(i1...i\scrT ) 1

\epsilon \lambda 
(it)
t =

\langle 1/\epsilon Pt(Q), \lambda t\rangle , and therefore when taking the supremum over \lambda t we get

sup
\lambda t\in RN

 - (gt)\ast ( - \lambda t) - \langle 1/\epsilon Pt(Q), \lambda t\rangle = (gt)
\ast \ast (1/\epsilon Pt(Q)) = gt(1/\epsilon Pt(Q)),

where the last equality follows from [4, Thm. 13.37]; an analogous result holds for
(ft1,t2)

\ast and \Lambda t1,t2 . The remaining part of the Lagrangian is sup
U\in RN\scrT  - \epsilon \langle K,U\rangle +

\langle Q, log(U)\rangle , and to find this supremum we first note that if K(i1...i\scrT ) = 0, then we
must have Q(i1...i\scrT ) = 0, or else the cost function is unbounded. For all other elements,
we take the derivative with respect to U(i1...i\scrT ) and set it equal to zero, from which
it follows that U(i1...i\scrT ) = Q(i1...i\scrT )/(\epsilon K(i1...i\scrT )) > 0, which is hence the supremum.
Plugging this back into the cost, we get

 - \epsilon \langle K,U\rangle + \langle Q, log(U)\rangle =
\sum 

i1,...,i\scrT 

 - Q(i1...i\scrT ) + \langle Q, log(Q)\rangle  - \langle Q, log(\epsilon K)\rangle 

=
\sum 

i1,...,i\scrT 

 - Q(i1...i\scrT ) + \langle Q, log(Q) - log(\epsilon )\rangle + (1/\epsilon )\langle Q,C\rangle ,

together with the constraints that Q(i1...i\scrT ) = 0 if K(i1...i\scrT ) = 0. But for any element
such that K(i1...i\scrT ) = 0 we have that C(i1...i\scrT ) =\infty , and the constraints can thus be
removed since they are implicitly enforced by the cost function. Therefore, with the
change of variable Q = \epsilon M, we recover, up to a constant, the primal problem (3.1).
Since (3.1) has the same optimal value as (3.2), the result follows.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/1

2/
25

 to
 1

08
.2

30
.1

28
.2

28
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y
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Proof of Theorem 4.2. Note that K(\ell i0...i\scrT ) =
\prod \scrT  - 1

t=0 K(it,it+1). Together with
(4.10), this means that

(P - 1,j(K\odot U))(\ell ,ij) =
\sum 

i0,...,ij - 1

ij+1,...,i\scrT 

\Biggl( \Biggl( \scrT  - 1\prod 
t=0

K(it,it+1)U
(\ell ,i0)
 - 1,0

\Biggr) \Biggl( \scrT \prod 
t=1

U
(\ell ,it)
 - 1,t

\Biggr) \Biggl( \scrT \prod 
t=1

u
(it)
t

\Biggr) \Biggr) 

=U
(\ell ,ij)
 - 1,j u

(ij)
j

\^\Psi 
(\ell ,j)
j \Psi 

(\ell ,j)
j ,

where

\^\Psi 
(\ell ,ij)
j =

\sum 
i0,...,ij - 1

U
(\ell ,i0)
 - 1,0 K(i0,i1)

j - 1\prod 
t=1

U
(\ell ,it)
 - 1,t u

(it)
t K(it,it+1),

\Psi 
(\ell ,ij)
j =

\sum 
ij+1,...,i\scrT 

U
(\ell ,i\scrT )
 - 1,\scrT u

(i\scrT )
\scrT K(i\scrT  - 1,i\scrT )

\scrT  - 1\prod 
t=j+1

U
(\ell ,it)
 - 1,t u

(it)
t K(it - 1,it).

A direct calculation gives that \^\Psi j and \Psi j above fulfill the recursive definitions in
the theorem, which proves the form of the bimarginal projection for j = 1, . . . ,\scrT  - 1.
Next, the form of the bimarginal projections for j = 0 and \scrT can be readily verified
analogously. Finally, note that (Pj(K\odot U))(ij) =

\sum L
\ell =1(P - 1,j( K\odot M))(\ell ,ij), which

gives the result for the projections and proves the theorem.

Appendix B. Fenchel conjugates of some functions. In all the examples
below, let f :Rn\rightarrow \=R.

Example B.1. Let \alpha ,\beta \in \=R, \alpha i \leq \beta i, for i = 1, . . . , n, and [\alpha ,\beta ] := \{ y \in Rn | 
\alpha (i) \leq y(i) \leq \beta (i), i= 1, . . . , n\} . For a set A\subset R, let \scrI A be the characteristic function
\scrI A(x) = 1 if x \in A and 0 otherwise. The Fenchel conjugate of f(x) = \iota [\alpha ,\beta ](x) is

f\ast (x\ast ) =
\sum n

i=1

\Bigl( 
(x\ast )(i)\beta (i)\scrI R+((x

\ast )(i)) + (x\ast )(i)\alpha (i)\scrI R - ((x
\ast )(i))

\Bigr) 
.

Example B.2. Let p\in (1,\infty ), let \sigma > 0, and let y \in Rn. The Fenchel conjugate of
f(x) = \sigma \| x - y\| pp is f\ast (x\ast ) = \langle x\ast , y\rangle + 1

q \sigma q - 1 pq - 1 \| x\ast \| qq, where 1/p+ 1/q= 1.

Example B.3. Let \beta \in Rn, and let \beta i > 0 for i= 1, . . . , n. The Fenchel conjugate
of f(x) = x\oslash (\beta  - x)+ \iota [0,\beta ](x) is f

\ast (x\ast ) =
\sum n

i=1 f
\ast 
i (x

\ast 
i ), where f

\ast 
i (x

\ast 
i ) = 0 if x\ast 

i \leq 1/\beta i

and f\ast 
i (x

\ast 
i ) = x\ast 

i \beta i  - 2
\sqrt{} 
x\ast 
i \beta i + 1 if x\ast 

i > 1/\beta i.
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