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A B S T R A C T   

This paper describes the construction and use of a machine-learning model to provide objective support for a 
physical fit examination of duct tapes. We present the ForensicFit package that can preprocess and database raw 
tape images. Using the processed tape image, we trained a convolutional neural network to compare tape edges 
and predict membership scores (i.e., fit or non-fit category). A dataset of nearly 2000 tapes and 4000 images was 
evaluated, including various quality grades: low, medium, and high, as well as two separation methods, scissor- 
cut and hand-torn. The model predicts medium-quality and high-quality scissor-cut tape more accurately than 
hand-torn, whereas for low-quality tape predicts the hand-torn tapes more accurately. These results are 
consistent with previous studies performed on the same datasets by analyst examinations. A method of pixel 
importance was also implemented to show which pixels are used to make the decision. This method can confirm 
some fit features that correspond with analyst-identified features, like edge morphology and backing pattern. 
This pilot study demonstrates the feasibility of computational algorithms to build physical fit databases and 
automated comparisons using deep neural networks, which can be used as a model for other materials.   

1. Introduction 

Computational algorithms are increasingly common across many 
forensic science disciplines. Some uses of these models include instru
mental library database searches for the identification of unknown 
substances, image processing, comparison for fingerprint and footwear 
evidence, and data mining to recognize trends across data from a variety 
of sources [1]. The value of computational algorithms, when used in 
forensic science, is multi-fold. They improve efficiency in analysis by 
identifying potential sample sources and assist in the standardization of 
the interpretation of forensic data across laboratories. In addition, 
models can be used to address complex problems in forensic interpre
tation (e.g., speech recognition), and provide additional objective sup
port to the opinions of an analyst. Importantly, computational results are 
repeatable and can be reproduced by third parties, which adds trans
parency and allows the prosecution and the defense to have access to the 
results and the process used to analyze those results, if needed. 

The approach of using automated comparison models to assist in 

forensic examination and interpretation shortens analysis time and in
creases efficiency by identifying potential sources for an item. This is 
particularly important for pattern recognition disciplines, such as tool 
mark, friction ridge evidence, impression evidence, questioned docu
ments, and trace evidence. However, when narrowing down the po
tential sources, the risk of false positives must be carefully assessed. It is 
worth noting that in many disciplines, the use of a computational model 
in interpretation does not mean that the answer provided by the model is 
used as-is without additional validation. In forensic science this 
computational and human interaction is used in fingerprints, DNA, face 
and voice recognition, and glass, to mn. For example, Automated 
Fingerprint Identification Systems (AFIS) [2] can automatically assess 
the minutiae features from millions of fingerprints stored in its database 
and perform a comparison search to identify potential sources of an 
unknown fingerprint. However, a skilled practitioner is still required to 
participate in the process of identification. The fingerprint practitioner 
often independently mark minutiae features on an unknown fingerprint 
before running it through the AFIS system. Then, they perform the 
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comparison of the unknown against the individuals the AFIS system 
returns as potential sources [3]. 

This paper focuses on the application of a computational comparison 
model to trace evidence, through the comparison of edge features of 
fragmented materials. The commission of violent crimes often results in 
objects present at the scene becoming separated or fragmented. Exam
ples include broken windows during robberies or assaults, fragmented 
taillights during a hit-and-run, or pieces of tape recovered from assault 
or kidnapping cases. The comparison of fragments of evidence items can 
provide valuable information for investigations and reconstruction of 
the crime scene. Comparing the edges of two items to determine if they 
were once joined together is referred to as a “physical fit examination”. 
A physical fit indicates the items share not only class characteristics (e.g., 
color, width, thickness, and layer structure) but also distinctive char
acteristics that demonstrate they were once the same object (e.g., edge 
appearance, manufacturer markings, external damage). In trace evi
dence, a physical fit is considered the highest level of association be
tween evidence items [4]. While other kinds of analytical techniques can 
provide information that indicates whether two items potentially share a 
common source, a physical fit is the only indication that two items 
originated from the same individual source. However, the scientific 
consistency of these types of examinations has been subject to scrutiny 
in recent years [5,6]. 

While physical fit comparisons are performed on a variety of mate
rials, their scientific validity is rather unexplored. The studies that have 
estimated performance metrics have demonstrated relatively low error 
rates (i.e., less than 5 %), and recent work has focused on the develop
ment of more systematic and quantitative methods for performing 
physical fit comparisons [4,7–10]. This study incorporates data pro
duced by the method developed by Prusinowski et al. [7,8]. The material 
used in this study is duct tape, as this type of tape is a common material 
submitted to forensic trace evidence laboratories and has several char
acteristics that allow for physical fit examination. Duct tape is highly 
variable in physical features between different rolls but has low 
intra-roll variability within a single roll of the same physical features 
[11,12]. The reinforcement layer of cloth (known as scrim) provides 
additional support to duct tape, resisting extensive distortion and 
tearing, especially at the edges. As such, duct tape is more likely to retain 
edge morphology and features after separation than other tapes, such as 
electrical tapes. Moreover, its strength contributes to its use in binding 
and gagging victims, as packaging material in drug trafficking, and 
improvised explosive devices. 

The method proposed by Prusinowski et al. [7,8] for practitioner 
examination of duct tapes incorporates feature identification and an 
edge similarity score (ESS) to describe the quality of a fit between a 
given edge of duct tape samples. These studies report low error rates, 
with no misidentification of non-fitting edges as fits. In addition, esti
mated thresholds for ESS and additional statistical assessment through 
score-based likelihood ratios demonstrate that pairs with ESS above 80 
% provide strong support for a reported fit conclusion. These interpre
tation criteria are consistent regardless of the quality of the roll of tape 
used, as well as whether the tape was torn by hand or was cut. While the 
results of this human-based approach are encouraging, physical fit ex
aminations are inherently subjective and are more likely to be chal
lenged in court. This calls for more objective computer-based algorithms 
that can aid the practitioner in their decision-making. Moreover, com
parison methods open an opportunity to create validated databases that 
can be shared across operational forensic laboratories and researchers to 
build additional knowledge foundations for estimating rates of 
misleading evidence. Different approaches use a combination of edge 
detection and analytic approaches to attempt to provide a computa
tional solution [13,14]. These studies by McCabe et al. and Spaulding 
et al. serve as independent research examples of the feasibility of 
computational models for duct tape fit examination. However, some 
limitations in these studies are the need for validation across more 
different types of tape, improvement of the algorithms to provide better 

separation between true non-fit and true-fit classes, and the use of both 
backing and adhesive sides rather than just documenting edge features 
in one of the layers. 

The primary aim of this study is to supplement the ESS method by 
introducing a computational comparison model for duct tape edges to 
provide additional objective support for a physical fit examination. To 
achieve this, we utilize a machine-learning model to process the ac
quired tape data [7,8]. We first developed an open-source Python 
package designed for image analysis tasks such as edge detection, 
background noise-reduction, and image filtering for materials of interest 
in the field of forensics science [15]. Additionally, the package contains 
a database handler to manage the flow of data to and from 
machine-learning models. We then construct a convolutional neural 
network (CNN) model that classifies the tape images into fits and 
non-fits, providing a fit membership score output. We apply the CNN 
approach to the scrim and the backing of the scan images separately and 
combine the results using logistic regression. The supplementary infor
mation includes a brief introduction to neural networks and convolu
tional neural networks. In the Results and Discussion section of this 
manuscript, we compare the machine learning model’s performance to 
the outcomes of the examinations of the same samples by human ana
lysts who followed a standardized protocol. The results are used to draw 
conclusions about how the computational and machine-learning models 
can assist examiners in duct tape physical fit comparisons. 

2. Methods 

2.1. Dataset preparation 

2.1.1. Digitization 
The dataset of images for this study had been created using the 

samples made by Prusinowski et al. [7]. The full set included tapes 
generated from three different tape qualities, designated as low quality 
(LQ), medium quality (MQ), and high quality (HQ). The brand name and 
physical characteristics of the samples are described in Prusinowski 
et al. [7,8]. The edges are either hand-torn (HT) or scissor-cut (SC). As a 
result, there are six total subsets of tape samples. The database consists 
of images scanned from 900, 200, and 898 low-, medium-, and 
high-quality tape samples, respectively, for a total of 1998 individual 
tapes. The tapes were placed on transparent acetate film sheets, to allow 
the scrim to be seen through the adhesive. The HQ tape, however, had 
adhesive that was too obscuring so a small strip (~3 mm) of adhesive 
was removed from each comparison edge to allow the scrim fibers to be 
viewed. 

We recognize the limitations of sample size and requirements for 
continuous updating a collection set. However, when developing this 
study’s dataset, with the respective physical and digital collection of the 
fractured material’s images, we consulted with forensic practitioners 
and statisticians to purposely include samples that are closely repre
sentative of casework. For instance, we included factors such as sepa
ration methods (scissor cut and hand-torn), quality grade of the tape 
(low, medium, and high quality), and level of deformation (stretching) 
to represent types of samples commonly received at the laboratory for 
examination [4]. In separate studies, we have also addressed the effect 
of these factors on the performance of physical fit examinations. [8] 
Moreover, as part of the feedback from practitioners, we also addressed 
more complex situations in which the comparison sample (questioned 
item) was stretched and only consisted of a small proportion of the tape 
width. Interlaboratory and mock case studies have been also utilized as 
part of the method evaluation [7,10]. 

Each tape was scanned twice, once to capture the top surface of the 
tape (backing layer) and the second to capture the underside (adhesive/ 
scrim layer). The images were collected using an EPSON 12000XL 
scanner using SilverFast 8, version 8.8.0r14, interface at a resolution of a 
minimum of 600 dots-per-inch (see Supplementary information for more 
details). A black posterboard background was used to accentuate the 
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features of the tape and improve the contrast. Minor corrections to the 
image were made during scanning to enhance the contrast and visibility 
of the edges and features, such as setting the black point of the image to 
the posterboard to ensure the background was the darkest part of the 
image. Additional corrections were performed using Adobe Photoshop 
on some images to address specific issues. These corrections include 1) 
the preprocessing of scanned images featuring a very long warp fiber 
extending away from the comparison edge, and 2) the preprocessing of 
scanned images displaying protruding adhesive near the comparison 
edge, typically caused by the adhesive removal process. For the former, 
the preprocessing algorithm may fail to select the critical comparison 
edge, resulting in an image that contains only the extended warp fiber 
and omits the edge entirely. To address this issue, the warp fiber was 
manually removed from the image using Photoshop. With regard to the 
latter, the adhesive materials were identified and manually removed 
from the image. These corrections were primarily aimed at removing 
artifacts such as fingerprints, residual adhesive from the adhesive 
removal, long protruding fibers, and sample labels (example shown in 
Supplementary Fig. 6). Each tape image is stored in a 2-dimensional 
matrix where each element represents a pixel intensity value between 
0 and 255, corresponding to black and white, respectively. To generate 
the dataset that the CNN can learn from, one needs to generate a list of 
known fits and non-fits. Because there are many different combinations 
of tapes that are non-fits, one should answer the question, how many 
non-fits are needed to strike a balance between reality and high CNN 
performance? 

2.2. Data balance and appropriate statistical metrics 

It is necessary to obtain a holistic view of the fit-to-non-fit ratio 
problem because of the implications of metrics to be used and the 
inherent sampling bias that may occur. Intrinsically, the dataset is 
imbalanced because there are substantially more non-fit pairs than there 
are fit pairs. Imbalanced datasets have been studied in the machine- 
learning field [16–18]. One of the consequences is that the typical ac
curacy measure will become unreliable. Therefore, special care must be 
taken in interpreting the statistical metrics and more suitable metrics 
such as true-positive rate (TPR), true-negative rate (TNR), false-positive 
rate (FPR), and false-negative rate (FNR) must be used. For this study, a 
fit-to-non-fit ratio of 3:10 was selected. This value was selected after 
investigating the performance of the model for different ratios. For more 
details, see the Supplementary Table 1. 

2.3. Image Preprocessing 

The most important step in developing a successful machine-learning 
model is data preparation [19–22]. Data preparation consists of many 
steps such as data cleaning, transformation, feature extraction, and 
reformatting. The data preparation to a great extent depends on the kind 
of machine-learning model to be used. For example, this study uses a 
neural network, where each data entry, one pair of tapes, is represented 
by an array of numbers with a fixed length. The trivial approach is to 
concatenate the two matrices (each representing a tape image, see sec
tion ↱2.1) and flatten the resultant into one large array of numbers. 
However, for applications such as duct tape examination, where the 
small details are crucial, one needs to use images with high-resolutions 
leading to computer memory issues. Moreover, this can lead to the 
so-called “curse of dimensionality” [23–25] problem. This problem 
arises when the number of dimensions (neural network input nodes) in 
the problem is in the same order as the number of data points (total 
number of tape pairs in the dataset). A simplified analogy to this prob
lem is if one tries to find the best fit line using only a small number of 
points, e.g., two or three. Additionally, by flattening the image, the in
formation about the neighboring pixels will be practically lost. To 
address this issue, often the image is passed through a convolutional 
network before the neural network (described in more detail in section 

↱2.3↱). Before setting up the architecture of the network the image di
mensions can be reduced by; 1) using the smallest image resolution 
where the tape surface details are still visible; 2) focusing only on the 
important part of the tape — the comparison edge. For this, we have 
developed a Python package, ForensicFit [15], that bridges the gap from 
raw images to data suitable for a machine-learning model. ForensicFit 
was developed to analyze images collected from materials of interest in 
forensic science. Additionally, it can receive different image formats and 
store them efficiently on a general and flexible database. This database is 
accessible from other parts of the code for image processing, statistical 
analysis, and training a machine-learning model. The essentials of the 
package have been explained in the Supplementary Information. The 
source code is hosted on GitHub[15]. For this study, ForensicFit pro
vides the means to automatically crop the image to only include the 
comparison edge of the tape. 

The dots-per-inch (dpi) resolution was set to the minimum scanned 
dpi value (600 dpi). A window of 410 × 2400 px2 (pixels2) was selected 
around the comparison edge. The x-dimension (length of the tape) was 
achieved with relative cropping from the comparison edge (see Sup
plementary Information for more details). For the y-dimension (width of 
the tape), because tapes originating from different rolls may have 
different widths, they do not have the same size in the y-dimension. The 
width of the tapes used in this study range from 2200 to 2600 px. To 
maintain consistent inputs, the images were cropped on the borders of 
the tape and resized to 2400 px. Resizing can cause small alterations of 
the image; it is important to note that this type of alteration is different 
from the physical distortion due to the stretching of the tape. Physical 
stretching follows shearing and straining constraints that can cause the 
tape’s edge to warp in a wavy pattern, whereas the resized scanned 
image remains unchanged in its overall appearance. Nevertheless, 
because all tapes undergo the same distortion, it does not influence the 
outcome. 

The output comparison edge image was then further resized to be as 
small as possible and still retain the fine details of the tape. This resizing 
was done for computational efficiency and to accommodate GPU 
memory limitations. In this case, the edge images were reduced by half, 
leading to an edge image with a size of 205 × 1200 px2 and a resolution 
of 300 dpi. Fig. 1 shows the output of the reduction. At this point, the 
two images of the tape pair were concatenated resulting in two images 
(scrim and backing) of size 410 × 1200 px2 ready to be passed on to the 
CNN. An example of the input is shown in Fig. 2. 

2.4. Convolutional neural network configuration 

This model uses a convolutional neural network (CNN) followed by a 
fully connected neural network as implemented in TensorFlow [26] to 
train on the prepared images. A brief description of the CNN terminol
ogy used here is provided in Section 3 of the Supplementary informa
tion. The CNNs contain a series of convolutional layers followed by a 
fully connected network. The convolutional layers carry out the tasks of 
pattern recognition (feature extraction) and dimensionality reduction, 
while the fully connected layers make the decision on whether the tape 
pairs are a fit or non-fit. In Fig. 2, it is of note that the order of the 
location (left or right) of the tapes in the concatenating process is 
arbitrary — a tape can be located on the left or the right side of the 
image, in other words, if the image is mirrored with respect to the y axis 
the CNN must lead to the same result. To force the CNN to recognize this 
inherent symmetry, the input images were randomly mirrored during 
the training. 

2.4.1. Architecture 
The network was built from a series of convolution layers, where 

filters with a small kernel of 3 × 3 px2 window (smallest size capable of 
capturing the notion of left/right, up/down, and center [27]) and strides 
of 1 × 1 were used. The convolutional layers used Rectified Linear Unit 
(ReLU) [28] activation functions, and were followed by 2 × 2 pixel 
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Fig. 1. Left: Scanned image of a low-quality grade tape. Image shows the backing side of the tape. One of the edges has been cut into an arrow shape, representing a 
non-comparison edge. For this publication this image was manually cropped. Right: Preprocessing of tape image by ForensicFit. The image is automatically split in 
the middle of the tape, its background cleaned, rotated to be horizontal, and cropped to its boundaries in the y direction by ForensicFit. The dashed golden box shows 
area selected from the tape that is passed on as the input for the convolutional neural network. 

Fig. 2. Examples of the convolutional neural network image inputs. Left: Concatenated image of two tape edges on the backing side for a Known Fit. Center-Left: 
Concatenated image of two tape edges on the scrim side for a Known Fit. Center-Right: Concatenated image of two tape edges on the backing side for a Known Non- 
Fit. Right: Concatenated image of two tape edges on the scrim side for aKnown Non-Fit. The tapes on the left originated from the low-quality grade roll off tape. The 
tapes on the right originated from the high-quality grade roll off tape. Each image has a size of 1200 × 410 px2. 

Table 1 
Convolutional neural network architecture. The network consists of a series of consecutive convolutional filters followed by a fully connected neural network.  

Network type Layer name Activation function Kernel/Pool size Strides Number of filters/units Tensor shape 

Convolutional Input - - - - 1200 × 410 × 1 
Convolution ReLU 3 × 3 1 × 1 32 1200 × 410 × 32 
Max-pooling - 2 × 2 1 × 1 - 600 × 205 × 32 
Convolution ReLU 3 × 3 1 × 1 64 600 × 205 × 64 
Max-pooling - 2 × 2 1 × 1 - 300 × 103 × 64 
Convolution ReLU 3 × 3 1 × 1 128 300 × 103 × 128 
Max-pooling - 2 × 2 1 × 1 - 150 × 52 × 128 
Convolution ReLU 3 × 3 1 × 1 256 150 × 52 × 256 
Max-pooling - 2 × 2 1 × 1 - 75 × 26 × 256 
Convolution ReLU 3 × 3 1 × 1 512 75 × 26 × 512 
Max-pooling - 2 × 2 1 × 1 - 38 × 13 × 512 
Convolution ReLU 3 × 3 1 × 1 1024 38 × 13 × 1024 
Max-pooling - 2 × 2 1 × 1 - 19 × 7 × 1024 

Fully connected Flatten - - - - 136,192 
Dropout - - - - 136,192 
Dense ReLU - - 500 500 
Dropout - - - - 500 
Dense ReLU - - 100 100 
Dense Sigmoid - - 1 1  
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window Max-pooling layers to handle the dimension reductions. 
The CNN architecture was inspired by the popular VGG-16 [27], 

which with a simple architecture achieves remarkable results. The 
number of convolution layers was selected by considering the size of the 
reduced dimensions of the image and available GPU memory for 
training. At the end of the convolutional layer, the image is flattened to a 
1-dimensional vector of size 136,192 elements. Compared to the raw 
flattened input (1200 ×405 =492,000), this significantly reduces the 
number of parameters the network needs to learn. Finally, three fully 
connected dense layers of size 500, 100, and 1 are added. The 500,100 
layers use the ReLU activation function [28], whereas the final layer has 
a sigmoid activation function to map results between 0 and 1 used in a 
binary classification. A 0.5 weighted dropout layers is used to fight the 
overfitting [29]. A summary of the architecture of the CNN is provided 
in Table 1, as well as Supplementary Fig. 1. 

2.4.2. Training 
The dataset was divided into training and validation with a ratio of 

80:20. A five-fold cross-validation scheme was used to maximize the 
model’s familiarity with the data without risking overfitting. Model 
hyperparameters dictate how the learning is performed. These hyper
parameters determine the learning process and must be carefully tuned 
to ensure a robust convolutional neural network. The batch size, which 
is the number of images loaded into the memory and processed simul
taneously, was set to 5. This choice considered the size of the images, the 
network’s dimensions, and the available GPU memory. The substantial 
size of both the network and the images justified the use of smaller batch 
sizes. 

The loss function, which measures the model’s accuracy in predict
ing the training data, was selected as binary cross-entropy. The opti
mizer, responsible for guiding the model towards minimizing the loss 
function, was set to the Adaptive Moment Estimation (Adam) algorithm 
[30]. The learning rate, which defines the optimization step-size during 
the model training, was set to an initial value 10−4 and gradually 
decreased to 10−5 over 25 training epochs using a second-degree poly
nomial function. The learning rate and the number of epochs were 
determined through trial and error. It was observed that using a constant 
learning rate resulted in a highly variable validation loss, which may be 
attributed to oscillation around the problem’s global minimum. The 
weights of both CNN models are provided in the ForensicFit GitHub 
repository [15]. 

2.5. Combining scrim and backing CNNs 

Two identical CNN models were independently trained on the scrim 
and backing sides of the image tapes, resulting in two separate pre
dictions for each of the tape pairs. Logistic Regression was ultimately 
selected due to its straightforward nature and easily understood results. 
The regression provides a continuous output between 0 and 1, which can 
be interpreted as a Fit Membership score of the two edges of the duct 
tape. Its ability to differentiate between the distribution of membership 
scores for accurate fits and non-fits, along with its performance also 
influenced our choice. By selecting the logistic regression method, we 
aim to achieve a balance between model complexity and accuracy in 
merging the results from the two CNN models. 

The logistic regressor was trained using the same five-fold cross- 
validation method applied to the CNNs. The performance metrics pre
sented in this study represent the average values across the cross- 
validation folds, with minimums and maximums reported the along
side these averages. The logistic regressor implementation utilized in 
this study is part of the machine learning Python package Scikit-learn 
[31]. Additionally, the trained logistic regressor can be downloaded 
from the ForensicFit GitHub repository [15]. 

3. Results and discussion 

3.1. Evaluation of computational models through comparison to human- 
based analysis of tape samples 

In this study, the physical tape samples were examined by trained 
analysts following a standardized protocol and the respective images of 
the same samples were evaluated through the computational approach. 
The outcomes of the human-based analysis of the tape samples is used as 
a comparison point to the results from the computations model to 
evaluate common trends in their performance by tape factor (i.e., quality 
or separation mode) and to assess if they can complement each other. As 
mentioned before, the basis for the development of the computational 
model was a method developed by Prusinowski et al. [7] for the com
parison of duct tape edges by analysts. The method identified major 
features for comparison of edges, and incorporated a quantitative metric 
defined as an edge similarity score. This metric was determined by the 
analyst by assigning a score of 0, 0.5, or 1 – corresponding to non-fit, 
inconclusive, or fit, respectively – for each bin area between the scrim 
fibers along the edge of the tape. The total score was then reported as a 
relative percentage to represent the similarity between the two tape 
edges, also referred to as the quality of the fit. This study utilized the 
same samples as used in Prusinowski et al. [7] and the human 
based-results were used to compare the performance of the computa
tional model. Thus, it is worthwhile to briefly report the results obtained 
in that paper. A summary of the statistical metrics of the analyst-based 
approach can be found in Table 2. 

Overall, the examination of the samples indicated that quality grade 
of the tape has a substantial influence on the appearance of the tape edge 
features, and the occurrence of features. The HQ-HT set produces the 
most false-negative pairs of all the sets. The HQ tape roll, when torn by 
hand, tends to produce more straight edges than are observed in the 
other tape rolls. In addition, the adhesive on this tape obscures the scrim 
fibers, requiring removal before examination. While performed as 
carefully as possible, the adhesive removal process contributes uncer
tainty as alignment of warp fibers could be affected, leading to higher 
false negative and inconclusive rates than other sets. Low quality tape 
samples, however, experience more distortion as the tape tears, reducing 
the quality of many of the edges. The medium quality tape has a good 
balance, where there are enough features for comparison while also 
commonly resulting in more distinct edge morphologies. 

Table 2 
Summary of the duct tape method sample breakdown and performance rates for 
the analyst-based examination method. LQ, MQ, and HQ, represent low-quality, 
medium-quality, and high-quality grade of the tape, respectively. While SC and 
HT represent, scissor-cut and hand-torn separation methods, respectively. No 
false positives are reported for any set. Note: MQ-HT* in this study represents 
the stretched MQ-HT set discussed in Prusinowski et al.[7,8]. Scanning of the 
images took place after the set had been stretched, so there are no original im
ages of the set. TPR, TNR, FPR, and FNR denote true-positive rate, true-negative 
rate, false-positive rate, and false-negative rate, respectively. Meanwhile, IPR 
represents inconclusive rate with a positive (fit) ground truth and INR represents 
inconclusive rate with a negative (non-fit) ground truth.  

Name LQ-HT LQ-SC MQ- 
HT 

MQ-SC HQ-HT HQ-SC 

No. Comp 200 250 508 500 199 250 
No. Fit/ 

Nonfit 
104/ 
96 

130/ 
120 

99/ 
409 

99/ 
401 

98/ 
101 

124/ 
126 

TPR 1.000 0.985 0.980 0.990 0.684 1.000 
TNR 1.000 0.983 1.000 1.000 1.000 1.000 
FPR 0.000 0.000 0.000 0.000 0.000 0.000 
FNR 0.000 0.015 0.010 0.010 0.214 0.000 
IPR 0.000 0.000 0.010 0.000 0.102 0.000 
INR 0.000 0.017 0.000 0.000 0.000 0.000 
ACC 1.000 0.984 0.996 0.998 0.844 1.000  
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3.1.1. Performance of the computational model 
In this section, the performance of the model is discussed. Important 

evaluation metrics are shown in Table 3, including the percent of correct 
classifications (true positive and true negative rates), percent of mis
classifications (false positives and false negative rates), and accuracy. 
The classification results are from choosing a decision threshold of 0.2 
for the output of the logistic regression model. The threshold was chosen 
by analyzing the Receiver Operating Characteristic curve (ROC) in 
Supplementary Fig. 4. This curve shows the relationship between the 
true positive rate and the false positive rate at various decision thresh
olds. For a good classifier, one wants to maximize the true positives and 
minimize the false positives. The ROC curve suggests 0.2 is an optimal 
value for the model. 

The results are subdivided into corresponding tape quality and sep
aration methods, i.e., HQ-HT, HQ-SC, MQ-HT, MQ-SC, LQ-HT, and LQ- 
SC. Similar to the analyst examination, the metrics model shows the 
quality grade as well as the separation method has a major influence on 
the outcome decision. The overall accuracy ranges from 80 % to 95 %, 
depending on the subset. The model performs best when comparing MQ 
tape pairs across all metrics, while LQ and HQ tape pairs perform slightly 
worse. More specifically, the evaluation reveals false-positive rates 
below 10 % for the LQ-HT and HQ-SC, and for the MQ regardless of the 
separation method (MQ-SC, MQ-HT), while the false positive rates are 
higher for LQ-SC and HQ-HT. On the other hand, the LQ-HT and HQ-HT 
are the sets that produce the worst false negative rates. This trend is 
somehow consistent with the findings observed during the analyst’s 
examination of the corresponding quality-separation samples (Table 2). 
While the decreased performance on HQ samples is not surprising due to 
fewer observable features, the assumption would be that LQ pairs should 
perform better than MQ pairs as they have more distinctive features such 
as puzzle-like edges. However, as observed during the initial comparison 
by the analysts, LQ samples tend to distort during separation when torn 
by hand [8]. The increased distortion and number of extraneous artifacts 
in the tape samples contribute to lower performance in the computa
tional model. This brings up a limitation of the computational models, as 
the extraneous artifacts can be moved by an analyst during an exami
nation to find the best possible orientation for a comparison, however, 
each instance is supplied to the CNNs only in one orientation. In addition 
to the observations made about tape quality, the model also shares 
similar prediction trends about separation method. For MQ and HQ tape 
pairs, the model more accurately predicts SC compared to HT pairs, 
whereas for LQ tape the HT pairs are more accurately predicted. This 
agrees with the results seen in the analysis in Table 2. This is an inter
esting result for the MQ and HQ tape pairs because general assumptions 
about scissor cut tape suggest that they would not provide enough fea
tures for physical fit comparison. However, both, the analyst examina
tion and computation model demonstrate that scissor-cut edges retain 
sufficient features for comparison, and in many cases are predicted 
better than hand-torn edges because cutting the edges reduces the 

amount of distortion [8]. 
To better understand the trends in the observed membership scores 

for tape comparisons, violin plots (Fig. 3) and kernel density estimation 
(Fig. 5) were employed. The violin plots shown in Fig. 3 explore the 
distributions of reported ESS (assigned by the analyst) and fit mem
bership score (assigned by the ML model) for each set of tapes and are 
organized based on the ground truth (fit or non-fit). The data suggests 
that the separation between fits and non-fits is well-defined for both ESS 
and ML model scores, regardless of tape quality or separation method. In 
general, true non-fit pairs receive an ESS of 30 or lower, with the ma
jority scoring below 10. A similar pattern is observed for the ML model 
scores, where most true non-fits are assigned low fit-membership scores 
(below 0.20). Conversely, true fits typically exhibit higher ESS scores 
(often greater than 80) and fit-membership scores (greater than 0.8). 
Notably, the scissor-cut sets demonstrate greater separation compared to 
hand-torn sets, as the latter exhibit a wider range of scores and ESS for 
true fits, evident in the medians displayed in the violin plots. In general, 
the analyst performs better than the ML model for the hand torn sets. 

The values assigned to true-fit pairs in the HQ-HT set are quite 
dispersed in both human-based and computer-based approaches. This 
can be attributed to the fact that the HQ samples contain fewer 
observable features, particularly the HT set, which does not benefit from 
the presence of severed dimples like the SC samples. Furthermore, the 
range of the predictions with a fit ground truth, as illustrated by the 
distributions of the violin plots, is quite extensive for all sets except for 
MQ-SC, spanning across the entire score output range. MQ-SC does not 
follow this trend, as the medium quality set has nearly twice the amount 
of training data available. For the MQ-HT set, despite having a large 
volume of training data, the range of the whiskers is broader than ideal. 
This could be attributed to the fact that the MQ-HT set underwent 
stretching before the digitization process. 

Table 3 and Fig. 4 show the performance of the model assessed using 
a range of metrics. These results demonstrate that the scissor-cut sets 
exhibit lower false-negative rates. It is important to note that the ML 
results depicted in the bar plots of Fig. 4 represent predictions made by 
the ML model for the entire dataset. These predictions are not derived 
from the training stage but rather from the aggregated testing sets across 
all five folds of the cross-validation. Additionally, it is worth mentioning 
that the statistical analysis conducted during the analyst examinations 
was performed on the entire tape dataset, whereas the ML approach 
analyzed only twenty percent of the dataset, reserving the remaining 
portion for training. The results presented in Table 3 display the mean 
values of the statistical metrics obtained from the five-fold cross-vali
dation, with standard deviations shown as uncertainty values. This 
raises the biggest challenge of a machine learning approach to any 
problem, the size of the dataset. The high-performing CNNs are often 
trained on image datasets with orders of magnitudes larger and pre
dicting sets of classes much larger than this study. For example, the 
datasets MNIST [33], MS COCO [34], and ImageNet [35] contain 60 

Table 3 
Summary of the duct tape method sample breakdown and performance rates for the CNN-LR model. The metrics represent the average values obtained across the cross- 
validation folds, with minimums and maximums reported in the parenthesis. A 0.2 decision threshold was used to evaluate the classification. The abbreviations, LQ, 
MQ, and HQ, refer to low quality, medium quality, and high-quality tape, respectively. SC and HT refer to scissor-cut, and hand-torn separation methods, respectively. 
TPR, TNR, FPR, FNR, and ACC denote true-positive rate, true-negative rate, false-positive rate, false-negative rate, and accuracy, respectively.  

Name LQ-HT LQ-SC MQ-HT MQ-SC HQ-HT HQ-SC 

TPR 0.729 
(0.38–0.95) 

0.925 
(0.84–1.00) 

0.801 
(0.67–0.91) 

0.943 
(0.85–1.00) 

0.796 
(0.67–0.94) 

0.912 
(0.87–0.95) 

TNR 0.895 
(0.83–0.96) 

0.750 
(0.67–0.86) 

0.900 
(0.80–0.97) 

0.949 
(0.88–1.00) 

0.791 
(0.74–0.92) 

0.887 
(0.80–0.96) 

FPR 0.105 
(0.04–0.17) 

0.250 
(0.14–0.33) 

0.100 
(0.03–0.20) 

0.05 
(0.00–0.12) 

0.208 
(0.08–0.26) 

0.113 
(0.04–0.20) 

FNR 0.271 
(0.05–0.62) 

0.075 
(0.00–0.16) 

0.199 
(0.09–0.33) 

0.057 
(0.00–0.15) 

0.204 
(0.06–0.33) 

0.088 
(0.05–0.13) 

ACC 0.845 
(0.71–0.95) 

0.816 
(0.75–0.87) 

0.873 
(0.80–0.95) 

0.946 
(0.91–1.00) 

0.792 
(0.73–0.89) 

0.898 
(0.84–0.96)  
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Fig. 3. (left) Violin plot of edge similarity score for all the sets from analyst examination. (right) violin plot of fit membership score from the machine learning model. 
The data was obtained by combining the output of two convolutional neural networks, one analyzing the scrim side of the tape and the other analyzing the backing 
side, using a logistic regressor. 

Fig. 4. Model evaluation metrics. The abbreviations LQ, MQ, and HQ denote low quality, medium quality, and high-quality tapes, respectively. Similarly, SC and HT 
refer to scissor-cut and hand-torn separation methods, respectively. TPR, TNR, FPR, and FNR denote true-positive rate, true-negative rate, false-positive rate, and 
false-negative rate, respectively. Meanwhile, in the case of analyst examinations, IPR represents inconclusive rate with a positive (fit) ground truth and INR rep
resents inconclusive rate with a negative (non-fit) ground truth. (Top) Performance of the machine learning model. The bar heights represent the mean values 
obtained from the five-fold cross-validation, while the error bars indicate the corresponding standard deviations. (Bottom) Performance of analysts examination 
categorized by different duct-tape quality and separation. 
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thousand, 330 thousand, and 14 million, images, respectively. However, 
the size of the data set of this study still permits to establish the feasi
bility of deep learning CNN to assist with automated quantification of 
the similarity/dissimilarity of duct tape edges and provides a basis for 

further expansion. 
To further explore the comparison between analyst-based and 

computer-based approaches, the distribution of ESS and CNN-scores are 
estimated using kernel density estimation (Fig. 5). In both approaches, 

Fig. 5. (left) Kernel density estimation of the edge similarity score assigned by the analyst’s examination (right) Kernel density estimation of the model scores 
assigned to the tape pairs. The data was obtained by combining the output of two convolutional neural networks, one analyzing the scrim side of the tape and the 
other analyzing the backing side. The kernel densities were constructed using the Scott method [32]. 

Fig. 6. Human/Model comparison. Layer-wise Relevance Propagation (LRP) analysis is compared to human comments on Fits. Important LRP pixels are colored in 
red. The Examiner’s remarks are on the right, they denote what are the main features to determine a fit. LRP identifies the most important features found at the top 
and bottom of the tape. On the top LRP and the examiner make note of the severed dimples and the edge morphology. (top left) LRP overlay for scrim side of the duct 
tape. (bottom left) LPR overlay for the backing side of the duct tape. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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the datasets have been combined by quality grade to generate the kernel 
density plots. Fig. 5 shows that for true fit pairs, the MQ tapes more 
commonly receive high scores, followed by LQ and then HQ. The effect 
is not as pronounced in the computational model, but it is still consistent 
with the analyst examination results. A similar trend is observed for true 
non-fits, in which the majority tape pairs have low values (ESS 20 or 
less). In addition, the overlap of the densities between true fits and true 
non-fits is limited in both approaches, indicating good discrimination 
power between the populations of interest (known fits and non-fits). 
More importantly, both scores (ESS and CNN outputs) can be used as 
the basis to estimate score-based likelihood ratios to estimate the pro
bative value of the evidence [7,8]. This is an advantage afforded by both 
approaches, as it provides the opportunity to use a quantitative inter
pretation of the evidence instead of merely depending on human judg
ment to demonstrate a fit or non-fit conclusion. While the use of 
score-based likelihood ratios merits caution as they are dependent on 
the sample set and only utilize a portion of the information available 
about the evidence, they provide an intuitive means by which to present 
the probative value of a physical fit. Moreover, as the databases permit 
expansion, the larger and more representative the population of 
casework-like specimens, the more confidence can be established in the 
examination of physical fits, especially as the samples collected on a 
crime scene and casework-like specimens are not as pristine as samples 
generated in the laboratory environment. These approaches provide a 
venue to estimate rates of misleading evidence that can assist the com
munity in having better tools to support its scientific foundations. The 
findings presented here raise a flag that physical fit examinations, 
whether conducted by an analyst or by a computer-algorithm, are not 
error-free and it is therefore critical to gain knowledge of potential error 
sources and factors that can influence the accuracy of physical fit 
examinations. 

Often, neural networks are viewed as “black boxes”, which give 
predictions without knowing how the network came to the decision. 
However, for convolutional neural networks, schemes have been 
developed to give a pixel importance score depending on the output 
prediction. The technique used in this study is called Layer-wise Rele
vance Propagation (LRP) [36], where the method will highlight 
important pixels for the decision of a prediction. In Fig. 6, LRP is 
demonstrated on a true fit pair from the HQ-SC subset. The model pre
dicted this tape pair as a fit with a score of 0.87. In addition to the model 
prediction, Fig. 6 also shows the ESS calculation and documentation 
provided by the analyst for the same tape pair. 

Important LRP pixels are highlighted in cyan in Fig. 6. Overall, the 
most important pixels come from the edges, which correspond with 
where many critical features observed by the human eye are found. The 
model not only places importance on the edge morphology but texture 
information as well. The top portion of the pair has severed dimples 
close to the edge highlighted by the model. This makes sense as in the 
human-based analysis these dimples are noted as critical for use in the 
decision-making process on those same top comparison bins. In the 
bottom section, although severed dimples are absent, other features, 
such as micro alignment of edges and spacing between dimple markings 
were noted by the analyst as the basis for the fit decision. For the central 
bins not highlighted by the algorithm, the alignment of the warp scrim 
(not seen in this image side) were reported by the analyst as a dominant 
fit-favored feature. 

4. Conclusion 

This study provides a computational platform for the tape physical fit 
problem that can assist analysts in their evaluations. We report the 
development of an open-source Python package, ForensicFit [15], 
designed to pre-process images obtained for forensic physical fit exam
ination. The package has been used to provide data for machine learning 
to train two independent convolutional neural networks — one on the 
backing side, and the other on the scrim side. The results were tested for 

model calibration and then combined using logistic regression. The 
performance rates to classify images as fit or non-fits is presented using 
the combined score. The proposed computational model performed well 
with low false-positive rates and high true-negative rates. 

Moreover, this work compares the quantitative assessment of duct 
tapes using human-based and computer-based approaches, with 
encouraging results that indicate a high agreement between both 
methods and therefore demonstrate the potential of machine learning 
models to provide statistical support to the analyst conclusions. This 
study confirms the previous findings that the scissor-cut tapes indeed 
contain sufficient features for comparison examinations, while high- 
quality hand-torn tapes increase false negative occurrences [7,8]. 

To summarize, the main findings derived from this study are: 1) CNN 
have shown to be an effective mean to compare separated tape edges 
using an automated imaging processing platform, 2) The distribution of 
metrics associated with known fits and non-fits (ESS for human-based 
and CNN-membership scores for computer-base) shows a minimal 
overlap between these groups, indicating relatively low rates of 
misleading evidence and the feasibility to employ them for statistic 
assessment of the probative value of the evidence, 3) The violin plots 
and kernel distributions illustrate that the occurrence of error rates, 
mostly false negatives, is influenced by the method of separation and 
quality of the tape and that those effects are similarly captured by 
analyst-examination and by the computer-based feature recognition, 4) 
the Layer-wise Relevance Propagation (LRP) analysis can be used to 
understand the most critical features identified by the CNN and sup
plement decision criteria independently documented by the examiner. 

Even though this study used a relatively small dataset (ca. 4000 
images), it shows reasonably accurate results and the potential to help 
analysts deliver more objective examinations. This proof of principle 
study shows that the approach has great potential for improvement in 
addition to the need to generate larger datasets. This goal is only 
achievable by exposing the learners to more samples. The presented 
approach is intended to be a starting point in the seldom-explored area 
of machine learning in physical fit examinations. The model presented 
here opens opportunities to build databases that can be further devel
oped for a user-friendly platform that requires minimal human inter
vention and be expanded to other materials of forensic interest. Finally, 
computational methods could be utilized as a supportive tool for prac
titioners, and the results generated by these methods should not be taken 
at face value. Instead, they should be considered in conjunction with the 
practitioner’s judgment. The notion of familiarity differs significantly 
between humans and ML models. The human brain possesses the ability 
to adapt its knowledge to novel situations, while current ML models, in 
their current stage, have limited capabilities in this regard. In future 
research, it would be interesting to explore various data augmentation 
techniques and assess the performance of ML models in unfamiliar 
scenarios. Another method that could be employed in future research is 
an image pyramid [37,38] approach, where the comparisons are 
initially conducted at a lower resolution. If the algorithm predicts a high 
fit membership score, the resolution is increased, and the comparison is 
performed once more. This iterative process has the potential to yield 
more accurate results. 
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