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ARTICLE INFO ABSTRACT

Keywords: This paper describes the construction and use of a machine-learning model to provide objective support for a
Physical fit physical fit examination of duct tapes. We present the ForensicFit package that can preprocess and database raw
Duct tape

tape images. Using the processed tape image, we trained a convolutional neural network to compare tape edges
and predict membership scores (i.e., fit or non-fit category). A dataset of nearly 2000 tapes and 4000 images was
evaluated, including various quality grades: low, medium, and high, as well as two separation methods, scissor-
cut and hand-torn. The model predicts medium-quality and high-quality scissor-cut tape more accurately than
hand-torn, whereas for low-quality tape predicts the hand-torn tapes more accurately. These results are
consistent with previous studies performed on the same datasets by analyst examinations. A method of pixel
importance was also implemented to show which pixels are used to make the decision. This method can confirm
some fit features that correspond with analyst-identified features, like edge morphology and backing pattern.
This pilot study demonstrates the feasibility of computational algorithms to build physical fit databases and

Machine learning
Convolutional neural networks
Decision tree

automated comparisons using deep neural networks, which can be used as a model for other materials.

1. Introduction

Computational algorithms are increasingly common across many
forensic science disciplines. Some uses of these models include instru-
mental library database searches for the identification of unknown
substances, image processing, comparison for fingerprint and footwear
evidence, and data mining to recognize trends across data from a variety
of sources [1]. The value of computational algorithms, when used in
forensic science, is multi-fold. They improve efficiency in analysis by
identifying potential sample sources and assist in the standardization of
the interpretation of forensic data across laboratories. In addition,
models can be used to address complex problems in forensic interpre-
tation (e.g, speech recognition), and provide additional objective sup-
port to the opinions of an analyst. Importantly, computational results are
repeatable and can be reproduced by third parties, which adds trans-
parency and allows the prosecution and the defense to have access to the
results and the process used to analyze those results, if needed.

The approach of using automated comparison models to assist in
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forensic examination and interpretation shortens analysis time and in-
creases efficiency by identifying potential sources for an item. This is
particularly important for pattern recognition disciplines, such as tool
mark, friction ridge evidence, impression evidence, questioned docu-
ments, and trace evidence. However, when narrowing down the po-
tential sources, the risk of false positives must be carefully assessed. It is
worth noting that in many disciplines, the use of a computational model
in interpretation does not mean that the answer provided by the model is
used as-is without additional validation. In forensic science this
computational and human interaction is used in fingerprints, DNA, face
and voice recognition, and glass, to mn. For example, Automated
Fingerprint Identification Systems (AFIS) [2] can automatically assess
the minutiae features from millions of fingerprints stored in its database
and perform a comparison search to identify potential sources of an
unknown fingerprint. However, a skilled practitioner is still required to
participate in the process of identification. The fingerprint practitioner
often independently mark minutiae features on an unknown fingerprint
before running it through the AFIS system. Then, they perform the
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comparison of the unknown against the individuals the AFIS system
returns as potential sources [3].

This paper focuses on the application of a computational comparison
model to trace evidence, through the comparison of edge features of
fragmented materials. The commission of violent crimes often results in
objects present at the scene becoming separated or fragmented. Exam-
ples include broken windows during robberies or assaults, fragmented
taillights during a hit-and-run, or pieces of tape recovered from assault
or kidnapping cases. The comparison of fragments of evidence items can
provide valuable information for investigations and reconstruction of
the crime scene. Comparing the edges of two items to determine if they
were once joined together is referred to as a “physical fit examination™.
A physical fit indicates the items share not only class characteristics (e.g,
color, width, thickness, and layer structure) but also distinctive char-
acteristics that demonstrate they were once the same object (e.g., edge
appearance, manufacturer markings, external damage). In trace evi-
dence, a physical fit is considered the highest level of association be-
tween evidence items [4]. While other kinds of analytical techniques can
provide information that indicates whether two items potentially share a
common source, a physical fit is the only indication that two items
originated from the same individual source. However, the scientific
consistency of these types of examinations has been subject to scrutiny
in recent years [5,6].

While physical fit comparisons are performed on a variety of mate-
rials, their scientific validity is rather unexplored. The studies that have
estimated performance metrics have demonstrated relatively low error
rates (i.e., less than 5 %), and recent work has focused on the develop-
ment of more systematic and quantitative methods for performing
physical fit comparisons [4,7-10]. This study incorporates data pro-
duced by the method developed by Prusinowski et al. [7,8]. The material
used in this study is duct tape, as this type of tape is a common material
submitted to forensic trace evidence laboratories and has several char-
acteristics that allow for physical fit examination. Duct tape is highly
variable in physical features between different rolls but has low
intra-roll variability within a single roll of the same physical features
[11,12]. The reinforcement layer of cloth (known as scrim) provides
additional support to duct tape, resisting extensive distortion and
tearing, especially at the edges. As such, duct tape is more likely to retain
edge morphology and features after separation than other tapes, such as
electrical tapes. Moreover, its strength contributes to its use in binding
and gagging victims, as packaging material in drug trafficking, and
improvised explosive devices.

The method proposed by Prusinowski et al. [7,8] for practitioner
examination of duct tapes incorporates feature identification and an
edge similarity score (ESS) to describe the quality of a fit between a
given edge of duct tape samples. These studies report low error rates,
with no misidentification of non-fitting edges as fits. In addition, esti-
mated thresholds for ESS and additional statistical assessment through
score-based likelihood ratios demonstrate that pairs with ESS above 80
% provide strong support for a reported fit conclusion. These interpre-
tation criteria are consistent regardless of the quality of the roll of tape
used, as well as whether the tape was torn by hand or was cut. While the
results of this human-based approach are encouraging, physical fit ex-
aminations are inherently subjective and are more likely to be chal-
lenged in court. This calls for more objective computer-based algorithms
that can aid the practitioner in their decision-making. Moreover, com-
parison methods open an opportunity to create validated databases that
can be shared across operational forensic laboratories and researchers to
build additional knowledge foundations for estimating rates of
misleading evidence. Different approaches use a combination of edge
detection and analytic approaches to attempt to provide a computa-
tional solution [13,14]. These studies by McCabe et al. and Spaulding
et al. serve as independent research examples of the feasibility of
computational models for duct tape fit examination. However, some
limitations in these studies are the need for validation across more
different types of tape, improvement of the algorithms to provide better
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separation between true non-fit and true-fit classes, and the use of both
backing and adhesive sides rather than just documenting edge features
in one of the layers.

The primary aim of this study is to supplement the ESS method by
introducing a computational comparison model for duct tape edges to
provide additional objective support for a physical fit examination. To
achieve this, we utilize a machine-learning model to process the ac-
quired tape data [7,8]. We first developed an open-source Python
package designed for image analysis tasks such as edge detection,
background noise-reduction, and image filtering for materials of interest
in the field of forensics science [15]. Additionally, the package contains
a database handler to manage the flow of data to and from
machine-learning models. We then construct a convolutional neural
network (CNN) model that classifies the tape images into fits and
non-fits, providing a fit membership score output. We apply the CNN
approach to the scrim and the backing of the scan images separately and
combine the results using logistic regression. The supplementary infor-
mation includes a brief introduction to neural networks and convolu-
tional neural networks. In the Results and Discussion section of this
manuscript, we compare the machine learning model’s performance to
the outcomes of the examinations of the same samples by human ana-
lysts who followed a standardized protocol. The results are used to draw
conclusions about how the computational and machine-learning models
can assist examiners in duct tape physical fit comparisons.

2. Methods
2.1. Dataset preparation

2.1.1. Digitization

The dataset of images for this study had been created using the
samples made by Prusinowski et al. [7]. The full set included tapes
generated from three different tape qualities, designated as low quality
(LQ), medium quality (MQ), and high quality (HQ). The brand name and
physical characteristics of the samples are described in Prusinowski
et al. [7,8]. The edges are either hand-torn (HT) or scissor-cut (SC). As a
result, there are six total subsets of tape samples. The database consists
of images scanned from 900, 200, and 898 low-, medium-, and
high-quality tape samples, respectively, for a total of 1998 individual
tapes. The tapes were placed on transparent acetate film sheets, to allow
the scrim to be seen through the adhesive. The HQ tape, however, had
adhesive that was too obscuring so a small strip (~3 mm) of adhesive
was removed from each comparison edge to allow the scrim fibers to be
viewed.

We recognize the limitations of sample size and requirements for
continuous updating a collection set. However, when developing this
study’s dataset, with the respective physical and digital collection of the
fractured material’s images, we consulted with forensic practitioners
and statisticians to purposely include samples that are closely repre-
sentative of casework. For instance, we included factors such as sepa-
ration methods (scissor cut and hand-torn), quality grade of the tape
(low, medium, and high quality), and level of deformation (stretching)
to represent types of samples commonly received at the laboratory for
examination [4]. In separate studies, we have also addressed the effect
of these factors on the performance of physical fit examinations. [8]
Moreover, as part of the feedback from practitioners, we also addressed
more complex situations in which the comparison sample (questioned
item) was stretched and only consisted of a small proportion of the tape
width. Interlaboratory and mock case studies have been also utilized as
part of the method evaluation [7,10].

Each tape was scanned twice, once to capture the top surface of the
tape (backing layer) and the second to capture the underside (adhesive/
scrim layer). The images were collected using an EPSON 12000XL
scanner using SilverFast 8, version 8.8.0r14, interface at a resolution of a
minimum of 600 dots-per-inch (see Supplementary information for more
details). A black posterboard background was used to accentuate the
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features of the tape and improve the contrast. Minor corrections to the
image were made during scanning to enhance the contrast and visibility
of the edges and features, such as setting the black point of the image to
the posterboard to ensure the background was the darkest part of the
image. Additional corrections were performed using Adobe Photoshop
on some images to address specific issues. These corrections include 1)
the preprocessing of scanned images featuring a very long warp fiber
extending away from the comparison edge, and 2) the preprocessing of
scanned images displaying protruding adhesive near the comparison
edge, typically caused by the adhesive removal process. For the former,
the preprocessing algorithm may fail to select the critical comparison
edge, resulting in an image that contains only the extended warp fiber
and omits the edge entirely. To address this issue, the warp fiber was
manually removed from the image using Photoshop. With regard to the
latter, the adhesive materials were identified and manually removed
from the image. These corrections were primarily aimed at removing
artifacts such as fingerprints, residual adhesive from the adhesive
removal, long protruding fibers, and sample labels (example shown in
Supplementary Fig. 6). Each tape image is stored in a 2-dimensional
matrix where each element represents a pixel intensity value between
0 and 255, corresponding to black and white, respectively. To generate
the dataset that the CNN can learn from, one needs to generate a list of
known fits and non-fits. Because there are many different combinations
of tapes that are non-fits, one should answer the question, how many
non-fits are needed to strike a balance between reality and high CNN
performance?

2.2. Data balance and appropriate statistical metrics

It is necessary to obtain a holistic view of the fit-to-non-fit ratio
problem because of the implications of metrics to be used and the
inherent sampling bias that may occur. Intrinsically, the dataset is
imbalanced because there are substantially more non-fit pairs than there
are fit pairs. Imbalanced datasets have been studied in the machine-
learning field [16-18]. One of the consequences is that the typical ac-
curacy measure will become unreliable. Therefore, special care must be
taken in interpreting the statistical metrics and more suitable metrics
such as true-positive rate (TPR), true-negative rate (TNR), false-positive
rate (FPR), and false-negative rate (FNR) must be used. For this study, a
fit-to-non-fit ratio of 3:10 was selected. This value was selected after
investigating the performance of the model for different ratios. For more
details, see the Supplementary Table 1.

2.3. Image Preprocessing

The most important step in developing a successful machine-learning
model is data preparation [19-22]. Data preparation consists of many
steps such as data cleaning, transformation, feature extraction, and
reformatting. The data preparation to a great extent depends on the kind
of machine-learning model to be used. For example, this study uses a
neural network, where each data entry, one pair of tapes, is represented
by an array of numbers with a fixed length. The trivial approach is to
concatenate the two matrices (each representing a tape image, see sec-
tion p2.1) and flatten the resultant into one large array of numbers.
However, for applications such as duct tape examination, where the
small details are crucial, one needs to use images with high-resolutions
leading to computer memory issues. Moreover, this can lead to the
so-called “curse of dimensionality” [23-25] problem. This problem
arises when the number of dimensions (neural network input nodes) in
the problem is in the same order as the number of data points (total
number of tape pairs in the dataset). A simplified analogy to this prob-
lem is if one tries to find the best fit line using only a small number of
points, e.g., two or three. Additionally, by flattening the image, the in-
formation about the neighboring pixels will be practically lost. To
address this issue, often the image is passed through a convolutional
network before the neural network (described in more detail in section
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2.3r). Before setting up the architecture of the network the image di-
mensions can be reduced by; 1) using the smallest image resolution
where the tape surface details are still visible; 2) focusing only on the
important part of the tape — the comparison edge. For this, we have
developed a Python package, ForensicFit [15], that bridges the gap from
raw images to data suitable for a machine-learning model. ForensicFit
was developed to analyze images collected from materials of interest in
forensic science. Additionally, it can receive different image formats and
store them efficiently on a general and flexible database. This database is
accessible from other parts of the code for image processing, statistical
analysis, and training a machine-learning model. The essentials of the
package have been explained in the Supplementary Information. The
source code is hosted on GitHub[15]. For this study, ForensicFit pro-
vides the means to automatically crop the image to only include the
comparison edge of the tape.

The dots-per-inch (dpi) resolution was set to the minimum scanned
dpi value (600 dpi). A window of 410 x 2400 px2 (pixelsz) was selected
around the comparison edge. The x-dimension (length of the tape) was
achieved with relative cropping from the comparison edge (see Sup-
plementary Information for more details). For the y-dimension (width of
the tape), because tapes originating from different rolls may have
different widths, they do not have the same size in the y-dimension. The
width of the tapes used in this study range from 2200 to 2600 px. To
maintain consistent inputs, the images were cropped on the borders of
the tape and resized to 2400 px. Resizing can cause small alterations of
the image; it is important to note that this type of alteration is different
from the physical distortion due to the stretching of the tape. Physical
stretching follows shearing and straining constraints that can cause the
tape’s edge to warp in a wavy pattern, whereas the resized scanned
image remains unchanged in its overall appearance. Nevertheless,
because all tapes undergo the same distortion, it does not influence the
outcome.

The output comparison edge image was then further resized to be as
small as possible and still retain the fine details of the tape. This resizing
was done for computational efficiency and to accommodate GPU
memory limitations. In this case, the edge images were reduced by half,
leading to an edge image with a size of 205 x 1200 px? and a resolution
of 300 dpi. Fig. 1 shows the output of the reduction. At this point, the
two images of the tape pair were concatenated resulting in two images
(serim and backing) of size 410 x 1200 px? ready to be passed on to the
CNN. An example of the input is shown in Fig. 2.

2.4. Convolutional neural network configuration

This model uses a convolutional neural network (CNN) followed by a
fully connected neural network as implemented in TensorFlow [26] to
train on the prepared images. A brief description of the CNN terminol-
ogy used here is provided in Section 3 of the Supplementary informa-
tion. The CNNs contain a series of convolutional layers followed by a
fully connected network. The convolutional layers carry out the tasks of
pattern recognition (feature extraction) and dimensionality reduction,
while the fully connected layers make the decision on whether the tape
pairs are a fit or non-fit. In Fig. 2, it is of note that the order of the
location (left or right) of the tapes in the concatenating process is
arbitrary — a tape can be located on the left or the right side of the
image, in other words, if the image is mirrored with respect to the y axis
the CNN must lead to the same result. To force the CNN to recognize this
inherent symmetry, the input images were randomly mirrored during
the training.

2.4.1. Architecture

The network was built from a series of convolution layers, where
filters with a small kernel of 3 x 3 px? window (smallest size capable of
capturing the notion of left/right, up/down, and center [27]) and strides
of 1 x 1 were used. The convolutional layers used Rectified Linear Unit
(ReLU) [28] activation functions, and were followed by 2 x 2 pixel
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Fig. 1. Left: Scanned image of a low-quality grade tape. Image shows the backing side of the tape. One of the edges has been cut into an arrow shape, representing a
non-comparison edge. For this publication this image was manually cropped. Right: Preprocessing of tape image by ForensicFit. The image is automatically split in
the middle of the tape, its background cleaned, rotated to be horizontal, and cropped to its boundaries in the y direction by ForensicFit. The dashed golden box shows
area selected from the tape that is passed on as the input for the convolutional neural network.
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Fig. 2. Examples of the convolutional neural network image inputs. Left: Concatenated image of two tape edges on the backing side for a Known Fit. Center-Left:
Concatenated image of two tape edges on the scrim side for a Known Fit. Center-Right: Concatenated image of two tape edges on the backing side for a Known Non-
Fit. Right: Concatenated image of two tape edges on the scrim side for aKnown Non-Fit. The tapes on the left originated from the low-quality grade roll off tape. The
tapes on the right originated from the high-quality grade roll off tape. Each image has a size of 1200 x 410 px>.

Table 1
Convolutional neural network architecture. The network consists of a series of consecutive convolutional filters followed by a fully connected neural network.

Network type Layer name Activation function Kernel/Pool size Strides Number of filters/units Tensor shape

Convolutional Input - - - - 1200 x 410 x 1
Convolution ReLU 3x3 1x1 32 1200 x 410 x 32
Max-pooling - 2x2 1x1 - 600 x 205 x 32
Convolution ReLU 3x3 1x1 64 600 x 205 x 64
Max-pooling - 2x2 1x1 - 300 x 103 x 64
Convolution ReLU 3x3 1x1 128 300 x 103 x 128
Max-pooling - 2x2 1x1 - 150 x 52 x 128
Convolution ReLU 3x3 1x1 256 150 x 52 x 256
Mazx-pooling - 2x2 1x1 - 75 x 26 x 256
Convolution ReLU 3x3 1x1 512 75 x 26 x 512
Max-pooling - 2x2 1x1 - 38 x 13 x 512
Convolution ReLU 3x3 1x1 1024 38 x 13 x 1024
Max-pooling - 2x2 1x1 - 19 x 7 x 1024

Fully connected Flatten - - - - 136,192
Dropout - - - - 136,192
Dense ReLU - - 500 500
Dropout - - - - 500
Dense ReLU - - 100 100
Dense Sigmoid - - 1 1
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window Max-pooling layers to handle the dimension reductions.

The CNN architecture was inspired by the popular VGG-16 [27],
which with a simple architecture achieves remarkable results. The
number of convolution layers was selected by considering the size of the
reduced dimensions of the image and available GPU memory for
training. At the end of the convolutional layer, the image is flattened to a
1-dimensional vector of size 136,192 elements. Compared to the raw
flattened input (1200 x405 =492,000), this significantly reduces the
number of parameters the network needs to learn. Finally, three fully
connected dense layers of size 500, 100, and 1 are added. The 500,100
layers use the ReLU activation function [28], whereas the final layer has
a sigmoid activation function to map results between 0 and 1 used in a
binary classification. A 0.5 weighted dropout layers is used to fight the
overfitting [29]. A summary of the architecture of the CNN is provided
in Table 1, as well as Supplementary Fig. 1.

2.4.2. Training

The dataset was divided into training and validation with a ratio of
80:20. A five-fold cross-validation scheme was used to maximize the
model’s familiarity with the data without risking overfitting. Model
hyperparameters dictate how the learning is performed. These hyper-
parameters determine the learning process and must be carefully tuned
to ensure a robust convolutional neural network. The batch size, which
is the number of images loaded into the memory and processed simul-
taneously, was set to 5. This choice considered the size of the images, the
network’s dimensions, and the available GPU memory. The substantial
size of both the network and the images justified the use of smaller batch
sizes.

The loss function, which measures the model’s accuracy in predict-
ing the training data, was selected as binary cross-entropy. The opti-
mizer, responsible for guiding the model towards minimizing the loss
function, was set to the Adaptive Moment Estimation (Adam) algorithm
[30]. The learning rate, which defines the optimization step-size during
the model training, was set to an initial value 10™* and gradually
decreased to 10> over 25 training epochs using a second-degree poly-
nomial function. The learning rate and the number of epochs were
determined through trial and error. It was observed that using a constant
learning rate resulted in a highly variable validation loss, which may be
attributed to oscillation around the problem’s global minimum. The
weights of both CNN models are provided in the ForensicFit GitHub
repository [15].

2.5. Combining scrim and backing CNNs

Two identical CNN models were independently trained on the scrim
and backing sides of the image tapes, resulting in two separate pre-
dictions for each of the tape pairs. Logistic Regression was ultimately
selected due to its straightforward nature and easily understood results.
The regression provides a continuous output between 0 and 1, which can
be interpreted as a Fit Membership score of the two edges of the duct
tape. Its ability to differentiate between the distribution of membership
scores for accurate fits and non-fits, along with its performance also
influenced our choice. By selecting the logistic regression method, we
aim to achieve a balance between model complexity and accuracy in
merging the results from the two CNN models.

The logistic regressor was trained using the same five-fold cross-
validation method applied to the CNNs. The performance metrics pre-
sented in this study represent the average values across the cross-
validation folds, with minimums and maximums reported the along-
side these averages. The logistic regressor implementation utilized in
this study is part of the machine learning Python package Scikit-learn
[31]. Additionally, the trained logistic regressor can be downloaded
from the ForensicFit GitHub repository [15].
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3. Results and discussion

3.1. Evaluation of computational models through comparison to human-
based analysis of tape samples

In this study, the physical tape samples were examined by trained
analysts following a standardized protocol and the respective images of
the same samples were evaluated through the computational approach.
The outcomes of the human-based analysis of the tape samples is used as
a comparison point to the results from the computations model to
evaluate common trends in their performance by tape factor (i.e., quality
or separation mode) and to assess if they can complement each other. As
mentioned before, the basis for the development of the computational
model was a method developed by Prusinowski et al. [7] for the com-
parison of duct tape edges by analysts. The method identified major
features for comparison of edges, and incorporated a quantitative metric
defined as an edge similarity score. This metric was determined by the
analyst by assigning a score of 0, 0.5, or 1 — corresponding to non-fit,
inconclusive, or fit, respectively — for each bin area between the scrim
fibers along the edge of the tape. The total score was then reported as a
relative percentage to represent the similarity between the two tape
edges, also referred to as the quality of the fit. This study utilized the
same samples as used in Prusinowski et al. [7] and the human
based-results were used to compare the performance of the computa-
tional model. Thus, it is worthwhile to briefly report the results obtained
in that paper. A summary of the statistical metrics of the analyst-based
approach can be found in Table 2.

Overall, the examination of the samples indicated that quality grade
of the tape has a substantial influence on the appearance of the tape edge
features, and the occurrence of features. The HQ-HT set produces the
most false-negative pairs of all the sets. The HQ tape roll, when torn by
hand, tends to produce more straight edges than are observed in the
other tape rolls. In addition, the adhesive on this tape obscures the scrim
fibers, requiring removal before examination. While performed as
carefully as possible, the adhesive removal process contributes uncer-
tainty as alignment of warp fibers could be affected, leading to higher
false negative and inconclusive rates than other sets. Low quality tape
samples, however, experience more distortion as the tape tears, reducing
the quality of many of the edges. The medium quality tape has a good
balance, where there are enough features for comparison while also
commonly resulting in more distinct edge morphologies.

Table 2

Summary of the duct tape method sample breakdown and performance rates for
the analyst-based examination method. LQ, MQ, and HQ, represent low-quality,
medium-quality, and high-quality grade of the tape, respectively. While SC and
HT represent, scissor-cut and hand-torn separation methods, respectively. No
false positives are reported for any set. Note: MQ-HT* in this study represents
the stretched MQ-HT set discussed in Prusinowski et al.[7,8]. Scanning of the
images took place after the set had been stretched, so there are no original im-
ages of the set. TPR, TNR, FPR, and FNR denote true-positive rate, true-negative
rate, false-positive rate, and false-negative rate, respectively. Meanwhile, IPR
represents inconclusive rate with a positive (fit) ground truth and INR represents
inconclusive rate with a negative (non-fit) ground truth.

Name LQ-HT LQ-SC MQ- MQ-SC HQ-HT  HQ-SC
HT
No. Comp 200 250 508 500 199 250
No. Fit/ 104/ 130/ 99/ 99/ 98/ 124/
Nonfit 96 120 409 401 101 126
TPR 1.000 0.985 0.980 0.990 0.684 1.000
TNR 1.000 0.983 1.000 1.000 1.000 1.000
FPR 0.000 0.000 0.000 0.000 0.000 0.000
FNR 0.000 0.015 0.010 0.010 0.214 0.000
IPR 0.000 0.000 0.010 0.000 0.102 0.000
INR 0.000 0.017 0.000 0.000 0.000 0.000

ACC 1.000 0.984 0.996 0.998 0.844 1.000
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3.1.1. Performance of the computational model

In this section, the performance of the model is discussed. Important
evaluation metrics are shown in Table 3, including the percent of correct
classifications (true positive and true negative rates), percent of mis-
classifications (false positives and false negative rates), and accuracy.
The classification results are from choosing a decision threshold of 0.2
for the output of the logistic regression model. The threshold was chosen
by analyzing the Receiver Operating Characteristic curve (ROC) in
Supplementary Fig. 4. This curve shows the relationship between the
true positive rate and the false positive rate at various decision thresh-
olds. For a good classifier, one wants to maximize the true positives and
minimize the false positives. The ROC curve suggests 0.2 is an optimal
value for the model.

The results are subdivided into corresponding tape quality and sep-
aration methods, i.e., HQ-HT, HQ-SC, MQ-HT, MQ-SC, LQ-HT, and LQ-
SC. Similar to the analyst examination, the metrics model shows the
quality grade as well as the separation method has a major influence on
the outcome decision. The overall accuracy ranges from 80 % to 95 %,
depending on the subset. The model performs best when comparing MQ
tape pairs across all metrics, while LQ and HQ tape pairs perform slightly
worse. More specifically, the evaluation reveals false-positive rates
below 10 % for the LQ-HT and HQ-SC, and for the MQ regardless of the
separation method (MQ-SC, MQ-HT), while the false positive rates are
higher for LQ-SC and HQ-HT. On the other hand, the LQ-HT and HQ-HT
are the sets that produce the worst false negative rates. This trend is
somehow consistent with the findings observed during the analyst’s
examination of the corresponding quality-separation samples (Table 2).
While the decreased performance on HQ samples is not surprising due to
fewer observable features, the assumption would be that LQ pairs should
perform better than MQ pairs as they have more distinctive features such
as puzzle-like edges. However, as observed during the initial comparison
by the analysts, LQ samples tend to distort during separation when torn
by hand [8]. The increased distortion and number of extraneous artifacts
in the tape samples contribute to lower performance in the computa-
tional model. This brings up a limitation of the computational models, as
the extraneous artifacts can be moved by an analyst during an exami-
nation to find the best possible orientation for a comparison, however,
each instance is supplied to the CNNs only in one orientation. In addition
to the observations made about tape quality, the model also shares
similar prediction trends about separation method. For MQ and HQ tape
pairs, the model more accurately predicts SC compared to HT pairs,
whereas for LQ tape the HT pairs are more accurately predicted. This
agrees with the results seen in the analysis in Table 2. This is an inter-
esting result for the MQ and HQ tape pairs because general assumptions
about scissor cut tape suggest that they would not provide enough fea-
tures for physical fit comparison. However, both, the analyst examina-
tion and computation model demonstrate that scissor-cut edges retain
sufficient features for comparison, and in many cases are predicted
better than hand-torn edges because cutting the edges reduces the

Table 3
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amount of distortion [8].

To better understand the trends in the observed membership scores
for tape comparisons, violin plots (Fig. 3) and kernel density estimation
(Fig. 5) were employed. The violin plots shown in Fig. 3 explore the
distributions of reported ESS (assigned by the analyst) and fit mem-
bership score (assigned by the ML model) for each set of tapes and are
organized based on the ground truth (fit or non-fit). The data suggests
that the separation between fits and non-fits is well-defined for both ESS
and ML model scores, regardless of tape quality or separation method. In
general, true non-fit pairs receive an ESS of 30 or lower, with the ma-
jority scoring below 10. A similar pattern is observed for the ML model
scores, where most true non-fits are assigned low fit-membership scores
(below 0.20). Conversely, true fits typically exhibit higher ESS scores
(often greater than 80) and fit-membership scores (greater than 0.8).
Notably, the scissor-cut sets demonstrate greater separation compared to
hand-torn sets, as the latter exhibit a wider range of scores and ESS for
true fits, evident in the medians displayed in the violin plots. In general,
the analyst performs better than the ML model for the hand torn sets.

The values assigned to true-fit pairs in the HQ-HT set are quite
dispersed in both human-based and computer-based approaches. This
can be attributed to the fact that the HQ samples contain fewer
observable features, particularly the HT set, which does not benefit from
the presence of severed dimples like the SC samples. Furthermore, the
range of the predictions with a fit ground truth, as illustrated by the
distributions of the violin plots, is quite extensive for all sets except for
MQ-SC, spanning across the entire score output range. MQ-SC does not
follow this trend, as the medium quality set has nearly twice the amount
of training data available. For the MQ-HT set, despite having a large
volume of training data, the range of the whiskers is broader than ideal.
This could be attributed to the fact that the MQ-HT set underwent
stretching before the digitization process.

Table 3 and Fig. 4 show the performance of the model assessed using
a range of metrics. These results demonstrate that the scissor-cut sets
exhibit lower false-negative rates. It is important to note that the ML
results depicted in the bar plots of Fig. 4 represent predictions made by
the ML model for the entire dataset. These predictions are not derived
from the training stage but rather from the aggregated testing sets across
all five folds of the cross-validation. Additionally, it is worth mentioning
that the statistical analysis conducted during the analyst examinations
was performed on the entire tape dataset, whereas the ML approach
analyzed only twenty percent of the dataset, reserving the remaining
portion for training. The results presented in Table 3 display the mean
values of the statistical metrics obtained from the five-fold cross-vali-
dation, with standard deviations shown as uncertainty values. This
raises the biggest challenge of a machine learning approach to any
problem, the size of the dataset. The high-performing CNNs are often
trained on image datasets with orders of magnitudes larger and pre-
dicting sets of classes much larger than this study. For example, the
datasets MNIST [33], MS COCO [34], and ImageNet [35] contain 60

Summary of the duct tape method sample breakdown and performance rates for the CNN-LR model. The metrics represent the average values obtained across the cross-
validation folds, with minimums and maximums reported in the parenthesis. A 0.2 decision threshold was used to evaluate the classification. The abbreviations, LQ,
MQ, and HQ, refer to low quality, medium quality, and high-quality tape, respectively. SC and HT refer to scissor-cut, and hand-torn separation methods, respectively.
TPR, TNR, FPR, FNR, and ACC denote true-positive rate, true-negative rate, false-positive rate, false-negative rate, and accuracy, respectively.

Name LQ-HT LQ-SC MQ-HT MQ-SC HQ-HT HQ-SC
TPR 0.729 0.925 0.801 0.943 0.796 0.912
(0.38-0.95) (0.84-1.00) (0.67-0.91) (0.85-1.00) (0.67-0.94) (0.87-0.95)
TNR 0.895 0.750 0.900 0.949 0.791 0.887
(0.83-0.96) (0.67-0.86) (0.80-0.97) (0.88-1.00) (0.74-0.92) (0.80-0.96)
FPR 0.105 0.250 0.100 0.05 0.208 0.113
(0.04-0.17) (0.14-0.33) (0.03-0.20) (0.00-0.12) (0.08-0.26) (0.04-0.20)
FNR 0.271 0.075 0.199 0.057 0.204 0.088
(0.05-0.62) (0.00-0.16) (0.09-0.33) (0.00-0.15) (0.06-0.33) (0.05-0.13)
ACC 0.845 0.816 0.873 0.946 0.792 0.898
(0.71-0.95) (0.75-0.87) (0.80-0.95) (0.91-1.00) (0.73-0.89) (0.84-0.96)
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Fig. 3. (left) Violin plot of edge similarity score for all the sets from analyst examination. (right) violin plot of fit membership score from the machine learning model.
The data was obtained by combining the output of two convolutional neural networks, one analyzing the scrim side of the tape and the other analyzing the backing
side, using a logistic regressor.
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Fig. 4. Model evaluation metrics. The abbreviations LQ, MQ, and HQ denote low quality, medium quality, and high-quality tapes, respectively. Similarly, SC and HT
refer to scissor-cut and hand-torn separation methods, respectively. TPR, TNR, FPR, and FNR denote true-positive rate, true-negative rate, false-positive rate, and
false-negative rate, respectively. Meanwhile, in the case of analyst examinations, IPR represents inconclusive rate with a positive (fit) ground truth and INR rep-
resents inconclusive rate with a negative (non-fit) ground truth. (Top) Performance of the machine learning model. The bar heights represent the mean values
obtained from the five-fold cross-validation, while the error bars indicate the corresponding standard deviations. (Bottom) Performance of analysts examination
categorized by different duct-tape quality and separation.
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Fig. 5. (left) Kernel density estimation of the edge similarity score assigned by the analyst’s examination (right) Kernel density estimation of the model scores
assigned to the tape pairs. The data was obtained by combining the output of two convolutional neural networks, one analyzing the scrim side of the tape and the
other analyzing the backing side. The kernel densities were constructed using the Scott method [32].

thousand, 330 thousand, and 14 million, images, respectively. However,
the size of the data set of this study still permits to establish the feasi-
bility of deep learning CNN to assist with automated quantification of
the similarity/dissimilarity of duct tape edges and provides a basis for
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To further explore the comparison between analyst-based and
computer-based approaches, the distribution of ESS and CNN-scores are
estimated using kernel density estimation (Fig. 5). In both approaches,
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Fig. 6. Human/Model comparison. Layer-wise Relevance Propagation (LRP) analysis is compared to human comments on Fits. Important LRP pixels are colored in
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the datasets have been combined by quality grade to generate the kernel
density plots. Fig. 5 shows that for true fit pairs, the MQ tapes more
commonly receive high scores, followed by LQ and then HQ. The effect
is not as pronounced in the computational model, but it is still consistent
with the analyst examination results. A similar trend is observed for true
non-fits, in which the majority tape pairs have low values (ESS 20 or
less). In addition, the overlap of the densities between true fits and true
non-fits is limited in both approaches, indicating good discrimination
power between the populations of interest (known fits and non-fits).
More importantly, both scores (ESS and CNN outputs) can be used as
the basis to estimate score-based likelihood ratios to estimate the pro-
bative value of the evidence [7,8]. This is an advantage afforded by both
approaches, as it provides the opportunity to use a quantitative inter-
pretation of the evidence instead of merely depending on human judg-
ment to demonstrate a fit or non-fit conclusion. While the use of
score-based likelihood ratios merits caution as they are dependent on
the sample set and only utilize a portion of the information available
about the evidence, they provide an intuitive means by which to present
the probative value of a physical fit. Moreover, as the databases permit
expansion, the larger and more representative the population of
casework-like specimens, the more confidence can be established in the
examination of physical fits, especially as the samples collected on a
crime scene and casework-like specimens are not as pristine as samples
generated in the laboratory environment. These approaches provide a
venue to estimate rates of misleading evidence that can assist the com-
munity in having better tools to support its scientific foundations. The
findings presented here raise a flag that physical fit examinations,
whether conducted by an analyst or by a computer-algorithm, are not
error-free and it is therefore critical to gain knowledge of potential error
sources and factors that can influence the accuracy of physical fit
examinations.

Often, neural networks are viewed as “black boxes”, which give
predictions without knowing how the network came to the decision.
However, for convolutional neural networks, schemes have been
developed to give a pixel importance score depending on the output
prediction. The technique used in this study is called Layer-wise Rele-
vance Propagation (LRP) [36], where the method will highlight
important pixels for the decision of a prediction. In Fig. 6, LRP is
demonstrated on a true fit pair from the HQ-SC subset. The model pre-
dicted this tape pair as a fit with a score of 0.87. In addition to the model
prediction, Fig. 6 also shows the ESS calculation and documentation
provided by the analyst for the same tape pair.

Important LRP pixels are highlighted in cyan in Fig. 6. Overall, the
most important pixels come from the edges, which correspond with
where many critical features observed by the human eye are found. The
model not only places importance on the edge morphology but texture
information as well. The top portion of the pair has severed dimples
close to the edge highlighted by the model. This makes sense as in the
human-based analysis these dimples are noted as critical for use in the
decision-making process on those same top comparison bins. In the
bottom section, although severed dimples are absent, other features,
such as micro alignment of edges and spacing between dimple markings
were noted by the analyst as the basis for the fit decision. For the central
bins not highlighted by the algorithm, the alignment of the warp scrim
(not seen in this image side) were reported by the analyst as a dominant
fit-favored feature.

4. Conclusion

This study provides a computational platform for the tape physical fit
problem that can assist analysts in their evaluations. We report the
development of an open-source Python package, ForensicFit [15],
designed to pre-process images obtained for forensic physical fit exam-
ination. The package has been used to provide data for machine learning
to train two independent convolutional neural networks — one on the
backing side, and the other on the scrim side. The results were tested for
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model calibration and then combined using logistic regression. The
performance rates to classify images as fit or non-fits is presented using
the combined score. The proposed computational model performed well
with low false-positive rates and high true-negative rates.

Moreover, this work compares the quantitative assessment of duct
tapes using human-based and computer-based approaches, with
encouraging results that indicate a high agreement between both
methods and therefore demonstrate the potential of machine learning
models to provide statistical support to the analyst conclusions. This
study confirms the previous findings that the scissor-cut tapes indeed
contain sufficient features for comparison examinations, while high-
quality hand-torn tapes increase false negative occurrences [7,8].

To summarize, the main findings derived from this study are: 1) CNN
have shown to be an effective mean to compare separated tape edges
using an automated imaging processing platform, 2) The distribution of
metrics associated with known fits and non-fits (ESS for human-based
and CNN-membership scores for computer-base) shows a minimal
overlap between these groups, indicating relatively low rates of
misleading evidence and the feasibility to employ them for statistic
assessment of the probative value of the evidence, 3) The violin plots
and kernel distributions illustrate that the occurrence of error rates,
mostly false negatives, is influenced by the method of separation and
quality of the tape and that those effects are similarly captured by
analyst-examination and by the computer-based feature recognition, 4)
the Layer-wise Relevance Propagation (LRP) analysis can be used to
understand the most critical features identified by the CNN and sup-
plement decision criteria independently documented by the examiner.

Even though this study used a relatively small dataset (ca. 4000
images), it shows reasonably accurate results and the potential to help
analysts deliver more objective examinations. This proof of principle
study shows that the approach has great potential for improvement in
addition to the need to generate larger datasets. This goal is only
achievable by exposing the learners to more samples. The presented
approach is intended to be a starting point in the seldom-explored area
of machine learning in physical fit examinations. The model presented
here opens opportunities to build databases that can be further devel-
oped for a user-friendly platform that requires minimal human inter-
vention and be expanded to other materials of forensic interest. Finally,
computational methods could be utilized as a supportive tool for prac-
titioners, and the results generated by these methods should not be taken
at face value. Instead, they should be considered in conjunction with the
practitioner’s judgment. The notion of familiarity differs significantly
between humans and ML models. The human brain possesses the ability
to adapt its knowledge to novel situations, while current ML models, in
their current stage, have limited capabilities in this regard. In future
research, it would be interesting to explore various data augmentation
techniques and assess the performance of ML models in unfamiliar
scenarios. Another method that could be employed in future research is
an image pyramid [37,38] approach, where the comparisons are
initially conducted at a lower resolution. If the algorithm predicts a high
fit membership score, the resolution is increased, and the comparison is
performed once more. This iterative process has the potential to yield
more accurate results.
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