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Abstract— Ensuring safety in dynamic multi-agent systems is
challenging due to limited information about the other agents.
Control Barrier Functions (CBFs) are showing promise for
safety assurance but current methods make strong assumptions
about other agents and often rely on manual tuning to balance
safety, feasibility, and performance. In this work, we delve into
the problem of adaptive safe learning for multi-agent systems
with CBF. We show how emergent behaviour can be profoundly
influenced by the CBF configuration, highlighting the necessity
for a responsive and dynamic approach to CBF design. We
present ASRL, a novel adaptive safe RL framework, to fully
automate the optimization of policy and CBF coefficients, to en-
hance safety and long-term performance through reinforcement
learning. By directly interacting with the other agents, ASRL
learns to cope with diverse agent behaviours and maintains
the cost violations below a desired limit. We evaluate ASRL
in a multi-robot system and competitive multi-agent racing,
against learning-based and control-theoretic approaches. We
empirically demonstrate the efficacy of ASRL, and assess
generalization and scalability to out-of-distribution scenarios.

I. INTRODUCTION

Safety is an prominent concern in the design of learning
algorithms, especially for safety-critical applications. Control
barrier functions (CBFs) have emerged in this context as a
very powerful formal approach to ensuring safety [1]–[3].
Moreover, the integration of CBFs in reinforcement learning
(RL) holds a huge potential for safe exploration [4]–[8].

However, the success of CBFs in RL is often confined to
simple settings, with single or multiple cooperative agents
and very limited interactions. This is because the intricate
interplay among many agents poses unique challenges to the
design of the CBFs and their associated (extended) class-K
functions, which are continuous stricly-increasing functions
γ : R → R such that γ(0) = 0. These functions control the
rate with which the agent can approach the safe-set boundary.

While manual tuning of the class-K functions is feasible
in simple tasks, it becomes challenging in multi-agent envi-
ronments due to the unpredictable effects of small changes
in their parameters. The richness of interactions and limited
information about other agents’ policies make it difficult to
trade-off safety and long-term performance by adjusting just
a few parameters. Previous work on Adaptive CBFs have
primarily concentrated on enhancing the feasibility of the op-
timization problem, by introducing time-varying coefficients
within the CBF condition [9]. However, it’s worth noting
that these approaches have been predominantly applied in
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Fig. 1: The proposed hierarchical adaptive framework for
multi-agent systems, where a policy πξ and a safety module
γψ are jointly optimized for safe and adaptive interaction.

single-agent or cooperative environments, often relying on
the availability of substantial historical data for optimization
[10], [11]. These methods face two key challenges:

• Overlooking long-term objectives: the narrow focus on
feasibility and short-term performance within the adap-
tive CBF framework, struggles in capturing long-term
objectives and potentially leads to sub-par solutions.

• Prior-data scarcity: the assumption that historical data
is available does not always hold, especially in non-
cooperative settings where other agents may be reluctant
to reveal their strategies, thereby hindering the achieve-
ment of sufficient coverage of diverse strategies.

To address these two challenges in interactive multi-agent
environments, we propose a novel approach based on RL and
adaptive CBFs. In order to account for the lack of knowledge
with regard to the other agents’ strategies, we exploit direct
interactions with these agents, to uncover their intentions.
Our main contributions in this paper are the following:

1) An adaptive safe-RL framework (ASRL), where a low-
level CBF-controller ensures safety and a high-level one
optimizes policy and state-dependent CBF coefficients.

2) A model-free learning approach, which is based on RL
for efficient adaptation to different agents and scenarios
through direct interaction with these agents.

3) A comprehensive evaluation of ASRL in multi-agent en-
vironments, in order to assess the adaptation to different
types of agents and degrees of cooperation.

As shown in Figure 1, by combining a model-based low-
level control layer with model-free RL, ASRL enhances
adaptiveness to diverse behaviors exhibited by other agents,
relieving the engineers from the burden of manual tuning the
CBF, in favour of a systematic approach to optimize general
long-term objectives and trade-off safety and performance.

Motivating Example: Consider a navigation task where
multiple robots have distinct starting positions and specific
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goals. The controlled ego robot needs to reach its goal while
avoiding collisions with other robots, without any knowledge
of their parameterization. To ensure safe navigation, we equip
the ego robot with a CBF, acting as a protective safety shield.
However, the emergent behavior of the ego robot can vary
significantly by adjusting the coefficient γ of the CBF class-
K function, as shown in Figure 2 (left). In some simulations,
the ego fails to reach its goal due to cautious maneuvers
dictated by the CBF condition, while the same controller
successfully completes the task in other configurations.

Two factors contribute to this: (1) the ego robot adapts its
maneuvers based on the CBF condition, varying assertiveness
levels; (2) other robots react to the ego’s actions, leading to
configurations that can aid or hinder task completion. Figure
2 (right) supports this hypothesis by showing how diverse
CBF coefficients influence the long-term performance of the
ego agent, measured by success and collision rates. The op-
timal coefficients depend on scenario-specific characteristics,
such as the number of agents and their parameters. This
underscores the importance of an adaptive approach, which
will be detailed in the following sections of this work.

II. BACKGROUND

Consider the stochastic game (I, S, Ā, f, r, ρ0, T, α),
where I = {1, 2, · · · , q} denotes the set of q agents, S and
Ā are the set of states and joint actions, f : S × A → S is
the deterministic transition function, r : S × A× S → R is
the reward function, ρ0 represents the distribution of initial
conditions, T ∈ N denotes the time horizon, α ∈ [0, 1] is
the discount factor, to avoid confusion with the γ adopted in
CBF. At timestep t, each agent i picks an action ait according
to its policy πi and the system state evolves according to the
joint action at = ×i∈I a

i
t by discrete-time dynamics

st+1 = f(st, at). (1)

We consider the problem of finding an optimal policy for the
ego agent π1, assuming the non-controlled agents πi, i > 1,
have unobservable parameters distributed according to ρ0.

In the following, we denote the ego with π and formulate
the problem as a constrained partially observable Markov
decision process (CPOMDP) (S,A,Ω, O, f, r, h, ρ0, T, α)
where the actions A refer to π, the observations Ω consists
of the observable states without the other agents’ parameters
obtained by O : S → Ω, h is a continuously differentiable
function delimiting the safe set of states for the ego agent.
We define the safe set, C, by the superlevel set of h:

C = {s ∈ S : h(s) ≥ 0}. (2)

Definition 1. (Forward invariance and safety) The set C is
forward invariant if for every s0 ∈ C, st ∈ C holds for all t.
If C is forward invariant, we say the system (1) is safe.

Definition 2. (CBF [12]) Given a set C ⊂ Rn defined by
(2), the continuously differentiable function h : Rn → R is
a discrete-time control barrier function (CBF) for dynamical
system (1) if there exists γ ∈ [0, 1] such that for all st ∈ C,

sup
at∈A

[
h
(
f(st, at)

)
+ (γ − 1)h(st)

]
≥ 0. (3)

Note that the parameter γ influences the conservativness
of agent’s behaviour: it will be less conservative (i.e., ap-
proaching the safe boundary) as γ goes to 1. However, γ is
fixed in the above vanilla CBF definition, which implies the
fixed degree of conservativness. To overcome this limitation,
we introduce the adaptive version of discrete-time CBF.

Definition 3. (Adaptive control barrier function) Given a
set C ⊂ Rn defined by (2), the continuously differentiable
function h : Rn → R is a discrete-time adaptive control
barrier function (Adaptive CBF) for dynamical system (1)
if for all st ∈ C, there exists γ(st) ∈ [0, 1] such that

sup
at∈A

[
h
(
f(st, at)

)
+ (γ(st)− 1)h(st)

]
≥ 0. (4)

The Adaptive CBF differs from (3) by the state-dependent
function γ : S → [0, 1]. We now demonstrate that state-
dependent coefficients do not hinder the safety guarantees of
CBF. For any potentially unsafe nominal action anomt , we
can obtain a safe action solving the optimization problem:

at = argmin
at∈A

∥at − anomt ∥22

s.t. h(f(st, at)) + (γ(st)− 1)h(st) ≥ 0.
(5)

Lemma 1. For dynamical system (1), if the problem (5) is
feasible for all s ∈ C, then the derived controller from (5)
renders set C forward invariant, i.e., safety is preserved.

Proof. For any initial state s0 ∈ C, we can derive that:

h(st) = h(f(st−1, at−1)) ≥ (1− γ(st−1))h(st−1)

≥ (1− γ(st−1)) (1− γ(st−2)) · h(st−2)

· · ·

≥
t−1∏
i=0

(1− γ(si))h(s0) ≥ 0 (6)

which implies that safety is preserved at any time t.

Practical CBF usability in multi-agent systems comes with
a few important remarks. Problem (5) is tipically non-convex,
and prior work focused on linear CBFs and convex formu-
lations, for improved efficiency and optimal solutions [4].

In contrast, ASRL does not assume the ability to optimally
solve (5). Instead, ASRL adaptiveness uses class-K func-
tions, allowing users to provide any CBF. Moreover, handling
multiple CBF constraints and input limits introduces feasi-
bility issues [13], [14]. This is further exacerbated in multi-
agent systems, where limited information of other agents
preclude full safety guarantees. These uncertainties can be
quantified and integrated explicitly in robust CBF formula-
tions, with probabilistic guarantees [15]. In this work, the
uncertainty is implicitly learned in the model, the feasibility
ensured by introducing slack variables, and the safety relaxed
into a chance constraint, as formulated in next section.

III. PROBLEM STATEMENT

We consider the problem of learning a policy πθ with
parameters θ for an agent operating in a multi-agent environ-
ment, with partial observability of the other agents’ param-
eters. We formulate it as a CPOMDP with a cost function h
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Fig. 2: Left: Simulations with non-cooperative (left) and cooperative agents (right) under different CBF coefficients γ.
Time of Arrival (ToA) and Minimum Distance to Collision (DtC) are reported for the ego agent (blue). The long-term effects
diverge based on the coefficients, showing the importance of adaptation. Right: Average performance of CBF coefficients
under different number of agents (top) and safety distances Ds,others (bottom) of other agents’ controllers (n = 25).

and aim to find a solution that keeps the occurrence of safety
violations below a desired level of tolerance d ∈ [0, 1].

Formally, the policy optimization problem is defined as:

max
θ

JR(θ) = Eτ∼πθ

[ H∑
t

αt r(st, at, st+1)
]

(7)

s.t. JC(θ) = Pτ∼πθ
(min

t
h(st) < 0) ≤ d

where the trajectory τ = (s0, a0, · · · , sH) results from
the interaction of π with the agents πi>1, given the initial
distribution s0, πi>1 ∼ ρ0, and dynamics st+1 = f(st, at).

IV. ADAPTIVE SAFE REINFORCEMENT LEARNING

We present ASRL, the main contribution of this work, an
adaptive framework for multi-agent systems, which combines
low-level model-based control and model-free RL in a hier-
archical fashion, and the associated optimization algorithm.
Hierarchical Model Architecture. We structure the agent π
into a high-level model, which selects the desired goal and
provides an adaptive class-K function, and a low-level layer,
which enforces the system safety using the barrier function
h, the actions, and the coefficients from the high-level model.

To address partial observability of other agents, we adopt
a novel multi-head actor with the following components:

Representation model: zt = φη(ot−k:t) (8)
Policy model: at ∼ πξ( · | zt) (9)
Safety model: γt ∼ γψ( · | zt) (10)

It consists of a representation model φη which encodes
the past k observations ot−k:t into an embedding z, a policy
head πξ which produces action at, and an adaptive-safety
head γψ which outputs the CBF coefficient γt. Our multi-
head model is constructed with a specific emphasis on
modularity, thereby enforcing a separation of concerns in

design. The joint training of these components is carried out
as a single integrated model, with the parameters denoted as
θ = (η, ξ, ψ), and the details described in the next section.
Learning Adaptive Behaviors. We solve the Optimization
Problem (7), considering its unconstrained relaxation:

min
λ≥0

max
πθ∈Π

J (θ, λ) = min
λ≥0

max
πθ∈Π

JR(θ)− λJC(θ) (11)

where J is the Lagrangian, and λ ≥ 0 is the Lagrange mul-
tiplier which acts as penalty weight. The two optimizations
steps are interleaved till convergence, seeking for a saddle
point of the original problem which is a feasible solution.
Policy Update. Considering the model-free setting due to the
lack of knowledge of other agents, the true return and cost
distributions are induced by the policy rollouts and unknown.
We use a policy-gradient algorithm [16], jointly optimizing
an actor πθ and a critic vζ models. The critic simply regresses
the value estimates vtarget(zt), minimizing the loss:

Lv(ζ) = Et

[
(vζ(zt)− vtarget(zt))

2
]

(12)

The actor is updated by maximizing the following loss

Lπ(θ) = LR(θ)− λkLC(θ) + βLent(θ) (13)

where λk is the Lagrange multiplier introduced in Eq. (11) at
the k-th update, LR,LC denote the surrogate clipped losses
for cumulative rewards and costs [16], and Lent denotes the
entropy bonus for exploration. We use generalized advantage
estimation (GAE) [17] to trade-off bias and variance in the
advantage estimates ÂR,t, ÂC,t for return and cost respec-
tively. The surrogate clipped losses are defined as:

LR(θ) = Et

[
min(rt(θ)ÂR,t, clip(rt(θ), 1− ε, 1 + ε)ÂR,t)

]

LC(θ) = Et

[
min(rt(θ)ÂC,t, clip(rt(θ), 1− ε, 1 + ε)ÂC,t)

]

rt(θ) =
πθ(at|zt)
πθold(at|zt)
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Lagrange Multiplier Update. The Lagrange multiplier plays
as an adaptive penalty in the unconstrained problem, to
make the infeasible solutions sub-optimal. We update the
Lagrangian multiplier with the PID update rule [18], because
of its effectiveness and simplicity in the implementation. This
update rule resembles the tuning of PID controllers to cor-
rect oscillations and overshooting of traditional Lagrangian
methods [19]. The update rule at iteration k is as follows:

λk ← (KP∆k +KIIk +KDδk)+ (14)

where KP ,KI ,KD ∈ R+ are hyperparameters for the
proportional, integral and derivative errors, defined as:

∆k = JC,k − d (15)
Ik = (Ik−1 +∆k)+ (16)
δk = JC,k − JC,k−1 (17)

Low-level Control Design. This section presents the design
of CBF for multi-agent systems, which involves two steps:

1) State and dynamics identification: we model the under-
lying system’s dynamics. This step can follow first prin-
ciples, employing physical laws and motion equations,
data-driven approaches, or a combination of these.

2) CBF design: we design CBFs to enforce safety, mapping
states to numerical values. This step presents several
challenges in formalizing safety, defining barriers, ef-
ficient modeling and parameters selection to ensure
feasibility while balancing safety and performance.

We exemplify this methodology in the motivating exam-
ple.
Multi-robot system. Consider a system with n agents [20],
where each agent i has control-affine dynamics:

si,t+1 =

[
pi,t+1

vi,t+1

]
=

[
I ∆t
0 I

] [
pi,t
vi,t

]
+

[
0
∆t

]
ai,t (18)

where ∆t is the discrete time-step, pi ∈ R2, vi ∈ R2, ai ∈
R2 denote the position, velocity and acceleration of robot i
respectively. We can write the joint multi-agent system as:

st+1 =

pt+1

vt+1

zt+1

 =

fp(st)fv(st)

fz(st)

+

gp(st)gv(st)

gz(st)

 a (19)

where p ∈ R2 and v ∈ R2 denote the position and velocity
of the ego agent, a ∈ R2 denotes the ego action, and
z ∈ Rn−4 denotes the other agent’s states. The real-valued
functions fo, go are known for o ∈ p, v. However the other
agents’ actions are unknown for the ego (i.e., gz = 0).
Without loss of generality, they can be assumed to be a
function of the joint state st and part of the dynamics fz . We
consider the CBFs as pairwise safety constraints between the
ego agent i and any other agent j ̸= i:

h(x) =
∆pTij
||∆pij ||

∆vij +
√
amax(||∆pij || −Ds) (20)

where amax denotes the maximum braking that the ego agent
can apply to avoid a collision, ∆pij represents the relative
position pi − pj , and ∆vij the relative velocity vi − vj .

Multi-agent Racing. We consider a second use case of
competitive multi-agent racing. The dynamics are modeled
using an Euler-discretization of the kinematic bicycle model
as in [21]. We consider two safety specifications for collision
with walls and opponents, and model them using distance on
Frenet and Cartesian coordinates, respectively. For concise-
ness, we describe the dynamics and CBFs in the Appendix.

V. EXPERIMENTS

In this section, we describe the experiments to evaluate
our adaptive safe-learning approach in multi-agent systems.
Simulation. We conducted our experiments in the multi-
agent environments presented in the previous section. For the
multi-robot system, we use the simulator and CBF from [15]
with its simplest collision-avoidance formulation. For the
multi-agent racing system, we use the F1tenth simulator [22],
which provides simulation of multiple vehicles and sensory
inputs. In both the environment, the CBF uses a constant-
velocity model (CVM) for the other-agents behaviors.
Training. We implemented the ASRL algorithm with the
omnisafe library [23]. During training, we randomize the
starting conditions and collect episodes of 15 seconds. The
agent observes the last 5 states and learns with progress-
based reward and sparse cost signals: for the multi-robot
system, the cumulative reward is 1 for reaching the goal
location and the cost is 1 for collision with any opponent; for
the racing system, the reward is proportional to the relative
distance in front of other vehicles and the cost is 1 for
collisions. We evaluate the agent by averaging the reward
and cost with a moving average over the last 100 episodes
and train the agents for 1 million steps. More details on the
environments and training are reported in the Appendix.
Agents’ Randomization: To create the condition for adap-
tiveness, we randomize the number of agents and policies
in each environment. In the multi-robot system, we select
between 3 and 7 agents at each episode and randomize
their policies through the safety distance Ds used to avoid
obstacles. In the multi-agent racing system, we simulate 2
vehicles starting in front of the ego vehicle and tracking a
reference line with velocity profile randomly scaled by a
factor normally distributed (µ = 0.78, σ = 0.05).
Comparison End-to-End. In Figure 3, we compare ASRL
with the following state-of-the-art safe RL baselines: PPO
Lagrangian, DDPG Lagrangian and TD3 Lagrangian, which
are safe versions of the on-policy PPO [16], and off-
policy DDPG [24] and TD3 [25] respectively; CPO, a trust-
region method with near-satisfaction guarantees [26]; IPO, an
interior-point policy optimization method [27]; PPO Sauté,
a state-augmentated PPO on the Sauté MDP [28].

In both environments, a noticeable performance gap
emerges with on-policy algorithms which struggle in achiev-
ing safe solutions within the desired limit. Their on-policy
nature may require extended training periods to attain safe
and optimal results. Meanwhile, in the multi-robot environ-
ment, the off-policy algorithms DDPG-Lag and TD3-Lag
achieve safe solutions but at the expense of poor overall
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Fig. 3: Learning curves of our approach and safe-RL base-
lines. Return, cost, and total cost averaged over 3 runs.

performance. Similarly, in the multi-agent racing environ-
ment, on-policy algorithms continue to fail, while notably,
TD3-Lag exhibits slow but consistent progress, reaching a
near-optimal level of performance by the end of training.

In contrast, our ASRL approach, incorporating trainable
policies and CBF coefficients, fastly converges to high
returns while consistently staying around the desired cost
limit. Notably, in the multi-robot task, it starts above the
cost limit and gradually reaches it, whereas in the racing
task, it initiates below the limit and gradually adjusts safety
levels to approach it. Our results suggest that our integration
of CBF into the agent model improves exploration during
training, resulting in a reduction in cumulative violation costs
comparable to or better than off-policy methods, all while
achieving significantly higher performance (Fig. 3, bottom).
Ablation Study on Learning Components. In this ex-
periment, we evaluate the impact of adaptive safety and
demonstrate its domain-adaptation skills. To assess adaptive
safety in isolation, we replace the policy module with a
non-trainable controller. During training, we use a Perturbed
Gaussian policy [29] to foster exploration. Details on training
and controllers are reported in the supplementary material.

We evaluate the performance of the ablate model against
traditional control-theoretic approaches: Standard CBF (S-
CBF), which uses CBF with fixed class-K coefficients,
and Optical-Decay Adaptive CBF (OD-CBF), which adapts
the coefficients to ensure point-wise feasibility [12]. To
account for the fact that these methods’ performance are
highly sensitive to the coefficients initialization, we discretize
the range of CBF parameters in 10 values to cover most
of the configurations. We collect 100 episodes for each

configuration and report the performance in Figure 4. We
observe comparable performance of OD-CBF and S-CBF
in both the environments, confirming that optimal-decay
adaptiveness might improve feasibility of the QP problem but
cannot capture long-term objectives, as sparse and delayed
events of success or collision. Conversely, our ablated model
outperforms the baselines by simply adapting the CBF coeffi-
cients based on interactions with other agents. This strongly
suggests that learning of adaptive safety can substantially
enhance the performance of existing controllers.

Fig. 4: Comparison of the ablate model with control-theoretic
approaches using the same nominal controller. The bars show
the mean rate with min/max delimiters for the same method.
Performance for trained models are averaged over 3 runs.

Generalization and Scalability. To evaluate the generaliza-
tion capabilities of our trained agent in multi-agent systems,
we consider diverse racing scenarios including: (1) varying
the number of agents, (2) in-distribution planners with vary-
ing velocity profiles, and (3) out-of-distribution planners with
new strategies and varying velocity profiles. We focus on
in- and out-distributions opponents, deliberately excluding
cross-track generalization because competitive high-speed
racing demands specialized strategies, even to the extent of
overfitting to track conditions. For each scenario, we sample
10 starting positions with the ego behind (Figure 5, top left)
and run simulations for 60 seconds. We consider collision
or lap completion as termination conditions and measure the
final positioning (rank) as common in racing competitions.

As shown in Figure 5, the trained agent exhibits compet-
itive performance, often reaching 1st and 2nd place despite
the initial positional disadvantage. Training with 2 oppo-
nents proves sufficient for generalization to races with many
agents. Up to 8 opponents, the agent consistently secures a
podium spot with an average rank below 3rd place. However,
with 9 agents or more, the average rank exceeds the 4-th
position due to the limited time horizon for race completion.

For in-distribution planners, the agent shows good adap-
tation and remains robust to faster velocity profile. Notably,
the rank increase appears directly linked to the training dis-
tribution. For out-distribution planners, we consider reactive
(FTG [30]), waypoint follower (PP [31]), and sampling-based
planners (Lattice [32]) with different velocities. Our agent
outperforms FTG, as expected due to its reactive nature
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which lacks of any global raceline. Moreover, we observe a
competitive racing style against the Lattice planner, a robust
baseline for comparison. Notably, our agent maintains a high
performance even against high-velocity profiles (right-most
bars), suggesting the ability to learn characteristics racing
behaviors and reuse them against unseen opponents.

Fig. 5: Generalization in multi-agent racing (top left). Per-
formance measure the ego rank (lower is better) under
previously unseen number of agents, velocity profiles vopp,
and planners. The training distribution is overlayed (blue).

Summary of Results. We assess our adaptive approach in
two multi-agent systems with a range of diverse agents. The
experiments revealed that our hierarchical integration of CBF
facilitated convergence to near-optimal agents, outperforming
a variety of safe RL baselines. Moreover, our ablation study
isolated the impact of Adaptive CBF, showcasing superior
adaptiveness than traditional control-theoretic methods. Fi-
nally, empirical evidence demonstrated our agent’s ability
to adapt and generalize across various racing scenarios,
including unseen opponents and high-velocity profiles.

VI. RELATED WORK

Safe RL via CBF. Safe RL has drawn much attentions to
prevent visiting unsafe states in safety-critical systems [33]–
[36]. The application of CBF in Safe RL has been proposed
in [4] and is getting popular because of its safety guarantees
and computational efficiency [6], [37]. Existing works train
an RL agent to propose actions and use vanilla CBF to
enforce safety. However, to the best of our knowledge, we
are the first jointly training state-dependent CBF coefficients
with an RL policy to ensure bounded chance of violations.
Adaptive CBFs. Several works focus on improving feasi-
bility and performance of CBF-controllers [9], [11], [12],
[38], [39], mostly focusing on single-agent or cooperative
systems. In these settings, the CBF coefficients are optimized
through gradient-based methods [38] or policy distillation of
a network with differentiable CBF layer, under the assump-
tion of available expert demonstrations [11]. None of these
works focus on multi-agent environments and adaptation
to changing policies. In contrast, our approach leverages
discrete-time CBF, which better fits MDP theory, to train a

model tailored for multi-agent adaptation with online RL.
CBF coefficients are updated in [39] based on the level
of cooperation of other agents towards the ego. However,
they assume the ego agent knows the other agents’ actions
information beforehand. Morevoer, they do not offer a direct
way to update CBF coefficients but only mentioning that the
derivative of them is monotonically increasing w.r.t. the level
of cooperation, still requiring user intervention. In contrast,
we do not rely on such an assumption and leverage RL to
train the coefficients, thus replacing any manual effort with
a systematic methodology. Moreover, we demonstrate our
approach in a challenging multi-agent racing scenario.
Multi-agent CBF. In multi-agent systems, prior research
proposed CBF for collision-free behavior [20], [40]. Among
these, [41] proposes a scalable decentralized approach to
control multiple agents, [15] presents a robust CBF with
uncertainty model learned from data, and [10] focuses on
the joint optimization of control policy and CBFs. However,
these works do not operate within an RL setting and do not
consider adaptation to other agents. Moreover, they mostly
rely on fixed class-K function.

VII. CONCLUSIONS

We present Adaptive Safe RL (ASRL) for multi-agent sys-
tems with partial observability from interactions with other
agents. We combine model-free RL and adaptive CBF to
optimize long-term objectives under diverse agent strategies
while adhering the desired cost constraint. ASRL surpasses
traditional learning-based and control-theoretic approaches,
demonstrating adaptiveness and generalization across various
conditions, such as number of agents and their parameters,
thus enabling safe autonomy in dynamic multi-agent setting.
Why ASRL in multi-agent systems? CBFs are a valuable
tool but their design and tuning is challenging with multiple
agents. We enhance CBFs with adaptive coefficients, inte-
grating them into a trainable architecture and optimize them
to diverse behaviors and long-term objectives.
How does ASRL compare to existing approaches? ASRL
retains benefits of CBF over learning methods, enabling ef-
ficient exploration while consistently adhering to cost limits.
Compared to control-theoretic methods, our trainable model
achieves superior performance and adaptability.
What are the limitations of ASRL? We focus on systems
with a relative degree of 1. To consider higher-order systems
and CBFs [42], it would be possible to introduce multiple
coefficients in our approach. However, expanding the action
space can make high-dimensional continuous control and
exploration challenging. Also, ASRL does not assume full
observability of other agents or explicit uncertainty quan-
tification, thereby limiting its ability to guarantee safety in
all scenarios. Finally, the assumption on CBF availability
might restrict its applicability. Ongoing research explores
alternative methods to scale to more complex dynamics and
quantify uncertainty in pursuit of robust solutions.
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