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Abstract— We consider perception-based control using state
estimates that are obtained from high-dimensional sensor
measurements via learning-enabled perception maps. However,
these perception maps are not perfect and result in state
estimation errors that can lead to unsafe system behavior.
Stochastic sensor noise can make matters worse and result
in estimation errors that follow unknown distributions. We
propose a perception-based control framework that i) quantifies
estimation uncertainty of perception maps, and ii) integrates
these uncertainty representations into the control design. To
do so, we use conformal prediction to compute valid state
estimation regions, which are sets that contain the unknown
state with high probability. We then devise a sampled-data
controller for continuous-time systems based on the notion
of measurement robust control barrier functions. Our con-
troller uses idea from self-triggered control and enables us to
avoid using stochastic calculus. Our framework is agnostic to
the choice of the perception map, independent of the noise
distribution, and to the best of our knowledge the first to
provide probabilistic safety guarantees in such a setting. We
demonstrate the effectiveness of our proposed perception-based
controller for a LiDAR-enabled F1/10th car.

I. INTRODUCTION

Perception-based control has received much attention
lately [1]-[4]. System states are usually not directly ob-
servable and can only be estimated from complex and
noisy sensors, e.g., cameras or LiDAR. Learning-enabled
perception maps can be utilized to estimate the system’s state
from such high-dimensional measurements. However, these
estimates are usually imperfect and may lead to estimation
errors, which are detrimental to the system safety.

The above observation calls for perception-based control
with safety guarantees as it is crucial for many autonomous
and robotic systems like self-driving cars. Recent work has
been devoted to addressing these safety concerns while ap-
plying perception-based control using perception maps, see,
e.g., [3], [5]-[8]. These work, however, either assume simple
or no sensor noise models, consider specific perception maps,
or lack end-to-end safety guarantees. In realistic settings,
stochastic sensor noise may be unknown and follow skewed
and complex distributions that do not resemble a Gaussian
distribution, as is often assumed. Additionally, perception
maps can be complex, e.g., deep neural networks, making
it difficult to quantify estimation uncertainty.
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In this paper, we study perception-based control under
stochastic sensor noise that follows arbitrary and unknown
distributions. To provide rigorous safety guarantees, we have
to account for estimation uncertainty caused by i) imper-
fect learning-enabled perception maps, and ii) noisy sensor
measurements. As shown in Figure 1, to perform safety-
critical control, we first leverage conformal prediction [9], a
statistical tool for uncertainty quantification, to obtain state
estimation regions that are valid with high probability. We
then integrate these uncertain state estimation regions into the
control design inspired by the notion of measurement robust
control barrier functions from [5]. Specifically, we design
a sampled-data controller using idea from self-triggered
control to ensure safety for continuous-time systems while
avoiding the use of stochastic calculus.

To summarize, we make the following contributions:

o We use conformal prediction to quantify state estima-
tion uncertainty of complex learning-enabled perception
maps under arbitrary sensor and noise models;

o« We use these uncertainty quantifications to design a
sampled-data controller for continuous-time systems.
We provide probabilistic safety guarantees which, to our
knowledge, is the first work to do so in such a setting;

o We demonstrate the effectiveness of our framework in
the LiDAR-enabled F1/10th vehicle simulations.

II. RELATED WORK

Perception-based  control: Control from high-
dimensional sensor measurements such as cameras or
LiDAR has lately gained attention. While empirical success
has been reported, e.g., [1], [2], [10], [11], there is a need for
designing safe-by-construction perception-enabled systems.
Resilience of perception-enabled systems to sensor attacks
has been studied in [12], [13], while control algorithms that
provably generalize to novel environments are proposed in
[14], [15]. In another direction, the authors in [16] plan
trajectories that actively reduce estimation uncertainty.

Control barrier functions under estimation uncer-
tainty: Control barrier functions (CBFs) have been widely
used for autonomous systems since system safety can be
guaranteed [17]-[21]. For example, an effective data-driven
approach for synthesizing safety controllers for unknown
dynamic systems using CBFs is proposed in [22]. Perception
maps are first presented in combination with measurement-
robust control barrier functions in [5], [8] when true system
states are not available but only imprecise measurements. In
these works, the perception error is quantified for the specific
choice of the Nadarya-Watson regressor. Our approach is
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Fig. 1: Overview of the system and robust safe controller. The stochastic sensor noise and imperfect perception module result
in state estimation error. Conformal prediction is used to obtain the estimation error upper bound, which is then integrated

into the sampled-data safe controller.

agnostic to the perception map and, importantly, allows
to consider arbitrary stochastic sensor noise which poses
challenges for continuous-time control. Measurement robust
control barrier functions are learned in different variations
in [6], [23], [24]. Perception maps are further used to
design sampled-data controllers [25]-[27] without explicit
uncertainty quantification of the sensor and perception maps.
The works in [28], [29] consider state observers, e.g.,
extended Kalman filters, for barrier function-based control
of stochastic systems. On the technical level, our approach
is different as we avoid dealing with Ito calculus using
sampled-data control. Similarly, bounded state observers
were considered in [30], [31]. However, state observer-
based approaches are generally difficult to use in perception-
systems as models of high-dimensional sensors are difficult
to obtain. The authors in [32] address this challenge by
combining perception maps and state observers. However,
the authors assume a bound on the sensor noise and do not
explicitly consider the effect of stochastic noise distributions.
Uncertainty quantification of perception maps is vital. In
similar spirit to our paper, [7], [33] use (self-)supervised
learning for uncertainty quantification of vision-based sys-
tems. While success is empirically demonstrated, no formal
guarantees are provided as we pursue in this paper.
Conformal prediction for control: Conformal prediction
is a statistical method that provides probabilistic guarantees
on prediction errors of machine learning models. It has been
applied in computer vision [34], [35], protein design [36],
and system verification [37], [38]. Recently, there are works
that use conformal prediction for safe planning in dynamic
environments, e.g., [39], [40]. However, conformal prediction
is only used for quantifying the prediction and not perception
uncertainty, as we do in this work. To our knowledge, our
work is the first to integrate uncertainty quantification from
conformal prediction into perception-based control.

III. PRELIMINARIES AND PROBLEM FORMULATION

We denote by R, N, and R" the set of real numbers, natural
numbers, and real vectors, respectively. Let 5: R — R denote
an extended class Ko, function, i.e., a strictly increasing

function with 3(0) = 0. For a vector v € R™, let ||v|| denote
its Euclidean norm.

A. System Model

We consider nonlinear control-affine systems of the form
@(t) = f(x(t)) + g(x(t)ut) = F(z(t), ult)) 1)

where z(t) € R™ and u(t) € U are the state and the
control input at time ¢, respectively, with &/ C R™ denoting
the set of permissible control inputs. The functions f :
R™ — R™ and g : R™ — R™*™ describe the internal and
input dynamics, respectively, and are assumed to be locally
Lipschitz continuous. We assume that the dynamics in (1)
are bounded, i.e., that there exists an upper bound F such
that || F(z,u)| < F for every (z,u) € R™ xU. For an initial
condition z(0) € R™ and a piecewise continuous control law
u : R>9 — R™, we denote the unique solution to the system
in (1) as z : T — R"™ where 7 C R is the maximum time
interval on which the solution z is defined.

In this paper, we assume that we do not have knowledge
of z(t) during testing time, but that we observe potentially
high-dimensional measurements y(t) € R! via an unknown
locally Lipschitz continuous senor map p : R" x R =R/ as

y(t) =p(a(t),0(x(t), 1)), @

where 6(x(t),t) is a disturbance modeled as a state-
dependent random variable that is drawn from an unknown
distribution D, over R?, ie., § (v,t) ~ D,.! A special case
that equation (2) covers is those imperfect and noisy sensors
that can be modeled as y(t) = x(t)+0(¢), e.g., as considered
in [4], [41]. The function p(z,d(z,t)) can also encode a
simulated image plus noise emulating a real camera. In
general, the function p can model high-dimensional sensors
such as camera images or LiDAR point clouds. A common
assumption in recent work that we adopt implicitly in this
paper is that there exists a hypothetical inverse sensor map q :
R! — R™ that can recover the state z as ¢(p(z,0)) = x when

ITo increase readability, we omit time indices when there is no risk of
ambiguity, i.e., in this case we mean §(x(t),t) ~ Dy ).
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there is no disturbance [5], [42]. This inverse sensor map q is,
however, rarely known and hard to model. One can instead
learn perception map ¢ : R' — R™ that approximately
recovers the state x such that ||q(y,0) — ¢(y)]|| is small and
bounded, which can then be used for control design [5], [32],
[42]. Note that learning an approximation of p is much harder
than learning the approximation ¢ of ¢ when [ > n.

Remark 1. The assumption on the existence of an inverse
map q is commonly made, as in [5], [32], [42], and realistic
when the state x consists of positions and orientations that
can, for instance, be recovered from a single camera image.
If the state x additionally consists of other quantities such as
velocities, one can instead assume that q partially recovers
the state as q(p(z,0)) = Cx for a selector matrix C while
using a contracting Kalman filter to estimate the remaining
states when the system is detectable [32]. For the sake of
simplicity, we leave this consideration for future work.

Based on this motivation, we assume that we have obtained
such a perception map ¢ : R — R™ that estimates our state
z(t) at time ¢ from measurements y(t), and is denoted as

B(t) = q(y(t)).

Note that ¢ could be any state estimator, such as a convo-
lutional neural network. In our case study, we used a multi-
layer perceptron (MLP) as the estimator.

B. Safe Perception-Based Control Problem

We are interested in designing control inputs u from
measurements ¥y that guarantee safety with respect to a
continuously differentiable constraint function h : R" —
R, i.e., so that h(z(t)) > 0 for all ¢ > 0 if initially
h(z(0)) > 0. Safety here can be framed as the controlled
forward invariance of the system (1) with respect to the safe
set C := {z € R"|h(z) > 0} which is the superlevel set
of the function h. The difficulty in this paper is that we are
not able to measure the state x(t) directly during runtime,
and that we have only sensor measurements y(t) from the
unknown and noisy sensor map p available.

Problem 1. Consider the system in (1) with initial state
x(0) € R™ and sensor model in (2). Let h : R™ — R be
a continuously differentiable constraint function, T C Rx
be a time interval, and o be a failure probability. Design
a control input u from sensor measurements y such that

Prob(z(t) eC,VteT)>1—a.

C. Uncertainty Quantification via Conformal Prediction

In our solution to Problem 1, we use conformal prediction
which is a statistical tool introduced in [9], [43] to obtain
valid uncertainty regions for complex prediction models
without making assumptions on the underlying distribution
or the prediction model [44], [45]. Let Z, Z() ..., Z(*) be
k41 independent and identically distributed real-valued ran-
dom variables, known as the nonconformity scores. Our goal
is to obtain an uncertainty region for Z defined via a function
Z : R¥ — R so that Z is bounded by Z(Z(W),... Z*))
with high probability. Formally, given a failure probability

a € (0,1), we want to construct an uncertainty region Z
such that Prob(Z < Z) > 1 — a where we omitted the
dependence of Z on ZW ... Z®*) for convenience.

By a surprisingly simple quantile argument, see [460,
Lemma 1], the uncertainty region Z is obtained as the
(1—a)th quantile of the empirical distribution over the values
of ZW, ..., Z®*) and co. We recall this result next.

Lemma 1 (Lemma 1 in [46]). Ler Z,ZM) ..., Z") be k+1
independent and identically distributed real-valued random
variables. Without loss of generality, let ZV) ... ZF) pe
sorted in non-decreasing order and define Z*t1D = oo
For o € (0,1), it holds that Prob(Z < Z) > 1 — o where

Z = Z") with r = [(k +1)(1 — a)]
and where [-] is the ceiling function.

Some clarifying comments are in order. First, we remark
that Prob(Z < Z) is a marginal probability over the random-
ness in Z,ZM) ..., Z® and not a conditional probability.
Second, note that [(k+1)(1—a)] > k implies that Z = oco.

IV. SAFE PERCEPTION-BASED CONTROL WITH
CONFORMAL PREDICTION

Addressing Problem 1 is challenging for two reasons.
First, the perception map ¢ may not be exact, e.g., even in the
disturbance-free case, it may not hold that §(p(z,0)) = =.
Second, even if we have accurate state estimates in the
disturbance-free case, i.e., when §(p(x,0)) is close to z, this
does not imply that we have the same estimation accuracy
with disturbances, i.e., ¢(p(z,d)) may not necessarily be
close to x. Our setting is thus distinctively different from
existing approaches and requires uncertainty quantification
of the noisy error between Z(t) and =(t).

A. Conformal Prediction for Perception Maps

Let us now denote the stochastic state estimation error as

e(x,t) = ||z — z| = 1g(p(x,d(x,1)) ) — ]|
—_———
=y
For a fixed state © € R", our first goal is to construct a
prediction region E, so that

Prob(e(z,t) < E,) > 1 -« (3)

holds uniformly over ¢ € R>(. Note that the distribution
D, of ¢ is independent of time t so that we will get
uniformity automatically. While we do not know the sensor
map p, we assume here that we have an oracle that gives
us N > [(N 4+ 1)(1 — «)] state-measurement data pairs
(z,y") called calibration dataset, where i € {1,..., N}
and y® = p(z,6@) with §¢) ~ D,. This is a common
assumption, see, e.g., [5], [32], and such an oracle can, for
instance, be a simulator that we can query data from. By
defining the nonconformity score Z() := ||G(y*)) — z||, and
assuming that Z(*) are sorted in non-decreasing order, we
can now obtain the guarantees in equation (3) by applying
Lemma 1. In other words, we obtain E,, := Z () with r from
Lemma 1 so that Prob(z € {¢ € R"|||lz—¢|| < E,}) > 1—«
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holds. Note that this gives us information about the estimate
Z, but not about the state x which was, in fact, fixed a-priori.
To revert this argument and obtain a prediction region for x
from 2, we have to ensure that equation (3) holds for a set of
states instead of only a single state x, which will be presented
next. To do so, we use a covering argument next.

Consider now a compact subset of the workspace X C R"
that should include the safe set C. Let € > 0 be a gridding
parameter and construct an e-net X of X , 1.e., construct a
finite set X' so that for each z € X there exists an z; € X
such that || — z;|| < e. For this purpose, simple gridding
strategies can be used as long as the set X has a convenient
representation. Alternatively, randomized algorithms can be
used that sample from X [47]. We can now again apply a
conformal prediction argument for each grid point z; € X
and then show the following proposition?.

Proposition 1. Consider the Lipschitz continuous sensor
map p in (2) and a perception map § with respective Lipschitz
constants L, and Eq.3 Assume that we constructed an e-
net X of X. For each z; € X, let (xj,y§l)) be N >
[(N 4+ 1)(1 — «)] data pairs where y](-l) = p(xj,6W) with
5@ ~ Dy,. Define Z](»l) = ||(j(yj(l)) -z
ZJ@ are sorted in non-decreasing order, and let E‘xj = ZJ(T)
with r from Lemma 1. Then, for any x € X, it holds that

, and assume that

Prob(e(x,t) < sup Eo, + (LpL4 + l)e) >l—a, &
J

The above result says that the state estimation error e(z, t)
can essentially be bounded, with probability 1 — «, by the
worst case of conformal prediction region Emj within the grid
X and by the gridding parameter e. Under the assumption
that our system operates in the workspace X and based on
inequality (4), we can hence conclude that

Prob(:v e{¢eR"|||¢—2] Ssqu‘Ij+(ﬁp£q+1)e}) >1—a.
J

Remark 2. We note that the Lipschitz constants of the sensor
and perception maps are used in the upper bound in (4) (as
commonly done in the literature [5], [25], [32]), which may
lead to a conservative bound. One practical way to mitigate
this conservatism is to decrease the gridding parameter e,
i.e., to increase the sampling density in the workspace X.

B. Sampled-Data Controller using Conformal Estimation
Regions

After bounding the state estimation error in Proposition 1,
we now design a uncertainty-aware controller based on equa-
tion (4). However, a technical challenge in doing so is that the
measurements are stochastic. By designing a sampled-data
controller, we can avoid difficulties dealing with stochastic
calculus. To do so, we first present a slightly modified version

2Due to space constraints, all proofs have been omitted, but they can be
found in our online technical report [48].

3We assume that the Lipschitz constant of the sensor map p is uniform
over the parameter 4, i.e., that § does not affect the value of L.

of measurement robust control barrier function (MR-CBF)
introduced in [5].

Definition 1. Let C C R"™ be the zero-superlevel set of
a continuously differentiable function h : R® — R. The
function h is a measurement robust control barrier function
(MR-CBF) for the system in (1) with parameter function pair
(a,b) : Rl — Réo if there exists an extended class K
Sfunction (8 such that

ilelg[th(i) + Lgh(2)u — (aly) + b(y)[|ul))] = —B(h(%))
(&)

for all (y,z) € V(C), where V(C) = {(y,2) € Rl x
R™3(z,0) € C x Dy s.t. & = §(p(x,0))}, and Lyh(Z) and
Lyh(Z) denote the Lie derivatives.

Compared to regular CBFs [17], a MR-CBF introduces
a non-positive robustness term —(a(y) + b(y)||u||) which
makes the constraint in (5) more strict. Now, given a MR-
CBF h(x), the set of MR-CBF consistent control inputs is

KCBF(?J) = {’LL € U‘th(j) + Lgh(i)u
= (a(y) + b(y)[lull) + B(h(2)) = 0}. (6)

Note that we can not simply follow [5, Theorem 2] to obtain
a safe control law as u(t) € Kcopr(y(t)) since y(t) and
consequent u(t) are stochastic. We hence propose a sampled-
data control law that keeps the trajectory x(t) within the set
C with high probability. The sampled-data control law @ is
piecewise continuous and defined as

ﬂ(t) = u(ti)7 YVt € [ti,ti+1), 7

where u(t;) at triggering time ¢, is computed by solving the
following quadratic optimization problem

u(t;) = argmin

weKcpr(y)

[w = tnom ()17, (8)

where Upom (t;) is any nominal control law that may not
necessarily be safe. Then, we select the triggering instances
t; as follows:

tg :=0,
tit1:= (A —sup By, —(LpLog+1)e)/F +ti, (9
j

where A is a user-defined parameter that will define the
parameter pair (a,b) of the MR-CBF and that has to be
A > sup; B, +(L£,L4+1)e. Naturally, larger A lead to less
frequent control updates, but will require more robustness
and reduce the set of permissible control inputs in Kopr(y).
Based on the computation of triggering times in (9), the
following lemma holds.

Lemma 2. Consider the sampled-data control law 4(t) in (7)
with the triggering rules (9), it holds that

Prob<||x(t) ()| < At € [ti,tiﬂ)) >1—a. (10)

Intuitively, the above lemma says that ||z (t) — & (¢;)]| < A
holds with high probability in between triggering times if
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the sampled-data control law @(t) in (7) with the
rules (9) is executed. Then, we can obtain the
probabilistic safety guarantees.

Theorem 1. Consider a MR-CBF h with |
pair (a(y),b(y)) = ((Lr;n + Lpon)A, Li,ne
Lrins Lgon, and Ly, are the Lipschitz consta
functions L¢h,3 o h and Lgh, respectively. Thei
nominal control law U,om, the sampled-data law
with the triggering rule in (9) will render the set
invariant with a probability of at least 1 — . In oti
we have that

Prob(x(t) eC,Vte [ti,ti+1)) >1—-«

The above theorem solves Problem 1 for the tin
T = [ti, ti+1). If we want to consider a larger tin
T =1[0,T) under the sampled-data control law, w
following guarantees.

Proposition 2. Under the same condition as in Theorem I,
for a time interval T = [0,T), we have that:

Prob(x(t) eC,Vte [O,T)) >1-a)™, (12

where m € Nxg such that t,,_1 <T < t,.

Note that if we want to achieve any probability guarantee
p € (0,1), we can just let (1 — o)™ = p and obtain o =
1—pt/m,

V. SIMULATION RESULTS

To demonstrate our proposed safe perception-based control
law, we consider navigating an F1/10th autonomous vehicle
in a structured environment [49], which is shown in Figure 2.
The vehicle system has the state © = [p,,p,,0], where
[pz, py] denotes its position and é denotes its orientation. We
have [pg, py] = [uz, uy], where u, and u, are control inputs
denoting velocities, and # = arctan(u,/u;). The control
input constraint is (ug,uy) € [—1,1] x [—1,1]. Thus, the
assumption that there exists an upper bound F' for dynamics
holds for this system.

Observation model: The vehicle is equipped with a 2D
LiDAR scanner from which it obtains LIDAR measurements
as its observations. Specifically, the measurement include 64
LiDAR rays uniformly ranging from —%T“ to %Tﬂ relative to
the vehicle’s heading direction. To model the uncertainty
of measurements, unknown noise conforming to exponential
distribution is added to each ray:

yE=y* +45, &~ eap()),

where y* is the ground truth for ray k, y* is the corrupted
observed ray k, and X is the parameter of exponential distri-
bution, where the noise § is drawn from. In our experiments,
we let \ :=2/3.

Perception map: We trained a feedforward neural network
to estimate the state of the vehicle. The input is the 64-
dimensional LiDAR measurement and output is the vehicle’s
state. The training dataset Dy,.q;,, contains 4x 10 data points,
and the calibration dataset D., for conformal prediction

!
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<+— 1.5m —p

--» LiDAR rays

Fig. 2: The F1/10 vehicle is equipped with a 2D LiDAR
sensor that outputs an array of 64 laser scans. The vehicle
starts at a random position on the starting line.
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Fig. 3: The empirical model errors e(x) w.r.t. p, and &
measured on a validation set. p, and ¢ are fixed.

contains 1.25 x 10* data points. For illustration, under a fixed
heading 6 and longitudinal position p,, the errors e(x) of the
learned perception map with respect to sensor noise J and
horizontal position p, is shown in Figure 3.

Barrier functions: To prevent collision with the walls,
when the vehicle is traversing the long hallway, the CBF is
chosen as h(z) = min{hy(z), ha(z)}, where hi(x) = p,
and hy(z) = 1.5 — p,. Then we have the safe set C =
{z € R3|h(z) > 0}. CBFs can be similarly defined when
the vehicle is operating in the corner. To demonstrate the
effectiveness of our method, we compare the following two
cases in simulations:

1) Measurement robust CBF: as shown in Theorem 1, we
choose the parameters pair (a(y),b(y)) = ((Lr,;n +
Lson)A, L1,nA) to ensure robust safety.

2) Vanilla CBF: we choose the parameters pair
(a(y),b(y)) = (0,0), which essentially reduces
to the vanilla non-robust CBF [17]. However, the
perceived state is from perceptual estimation rather
than real state, so this CBF cannot provide any safety
guarantee.

Note that we obtain necessary Lipschitz constants using

sampling-based estimation method in simulations.
Uncertainty and results: The vehicle is expected to track

along the hallway and make a successful turn in the corner as
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Fig. 4: Nonconformity scores R, histogram during runtime.
We select the coverage rate as 75%.
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Fig. 5: Traces for the sampled-data measurement robust CBF
and vanilla CBF (5 traces are presented). All traces are tested
with horizon T = 30s. We run 100 traces totally, and the
safety rates are 93% and 16%, respectively.

shown in Figure 2. The nominal controller is a PID controller.
We set the coverage error a = 0.25, so we desire P(||z; —
2] <€) > 1—a = 75%. Based on calibration of conformal
prediction and Proposition 1, we calculate that ¢ = 0.34,
and we choose A = 0.35 > €. The nonconformity score
histogram is presented in Figure 4, in which the 75% quantile
value is R%7 = 0.32 < €, so our Proposition 1 holds in
practice. As presented in Figure 5, the safety rate of sampled-
data measurement robust CBF is 93%, which is significantly
higher than vanilla non-robust CBF case (16%).

VI. CONCLUSION

In this paper, we consider the safe perception-based con-
trol problem under stochastic sensor noise. We use conformal
prediction to quantify the state estimation uncertainty, and
then integrate this uncertainty into the design of sampled-
data safe controller. We obtain probabilistic safety guaran-
tees for continuous-time systems. Note that, in this work,
the perception map only depends on current observation,
which might limit its accuracy in some cases. We plan to
incorporate history observations into perception maps in the
future. Also, we are interested in providing a more sample-
efficient scheme while constructing calibration dataset.
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