Computer Physics Communications 297 (2024) 109063

Contents lists available at ScienceDirect

COMPUTER PHYSICS
COMMUNICATIONS

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics ' :.)]

Jo Check for

Expanding PyProcar for new features, maintainability, and reliability " e

Logan Lang **, Pedram Tavadze °, Andres Tellez, Eric Bousquet ”, He Xu®, Francisco Mufioz®,
Nicolas Vasquez ¢, Uthpala Herath ¢, Aldo H. Romero *

 Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26505-6315, USA

b Physique Théorique des Matériaux, QMAT, CESAM, Université de Liége, B-4000 Sart-Tilman, Belgium

¢ Departamento de Fisica & CEDENNA, Facultad de Ciencias, Universidad de Chile, Santiago, Chile

d Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA

ARTICLE INFO ABSTRACT

Keywords: This paper presents a comprehensive update to PyProcar, a versatile Python package for analyzing and
Electronic structure visualizing density functional theory (DFT) calculations in materials science. The latest version introduces a
DFT

modularized codebase, a centralized example data repository, and a robust testing framework, offering a more
reliable, maintainable, and scalable platform. Expanded support for various DFT codes broadens its applicability
across research environments. Enhanced documentation and an example gallery make the package more
accessible to new and experienced users. Incorporating advanced features such as band unfolding, noncollinear
calculations, and derivative calculations of band energies enriches its analytic capabilities, providing deeper
insights into electronic and structural properties. The package also incorporates PyPoscar, a specialized toolkit
for manipulating POSCAR files, broadening its utility in computational materials science. These advancements
solidify PyProcar’s position as a comprehensive and highly adaptable tool, effectively serving the evolving needs
of the materials science community.

Post-processing

New version program summary

Program title: PyProcar

CPC Library link to program files: https://doi.org/10.17632/d4rrfy3dy4.2

Developer’s repository link: https://github.com/romerogroup/pyprocar

Licensing provisions: GPLv3

Programming language: Python

Supplementary material: Pyprocar-Supplementary Information

Journal reference of previous version: Comput. Phys. Commun. 251 (2020) 107080, https://doi.org/10.1016/j.
cpc.2019.107080

Does the new version supersede the previous version?: Yes

Reasons for the new version: Changes in the directory structure, the addition of new features, enhancement of the
manual and user documentation, and generation of interfaces with other electronic structure packages.
Summary of revisions: These updates enhance its capabilities and ensure developers’ and users’ maintainability,
reliability, and ease of use.

Nature of problem: To automate, simplify, and serialize the analysis of band structure and Fermi surface,
especially for high throughput calculations.

Solution method: Implement a Python library able to handle, combine, parse, extract, plot, and even repair data
from density functional calculations from diverse electronic structure packages. PyProcar uses color maps on the
band structures or Fermi surfaces to give a simple representation of the relevant characteristics of the electronic
structure.

* The review of this paper was arranged by Prof. W. Jong.
** This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
* Corresponding author.
E-mail address: 1llang@mix.wvu.edu (L. Lang).

https://doi.org/10.1016/j.cpc.2023.109063
Received 8 October 2023; Received in revised form 6 December 2023; Accepted 11 December 2023

Available online 19 December 2023
0010-4655/© 2023 Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
https://doi.org/10.17632/d4rrfy3dy4.2
https://github.com/romerogroup/pyprocar
https://doi.org/10.1016/j.cpc.2019.107080
https://doi.org/10.1016/j.cpc.2019.107080
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:lllang@mix.wvu.edu
https://doi.org/10.1016/j.cpc.2023.109063
https://doi.org/10.1016/j.cpc.2023.109063
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.109063&domain=pdf

L. Lang, P. Tavadze, A. Tellez et al.

Computer Physics Communications 297 (2024) 109063

Additional comments including restrictions and unusual features: PyProcar can produce high-quality figures of band
structures and Fermi surfaces (2D and 3D), projection of atomic orbitals, atoms, and/or spin components.

1. Introduction

Density functional theory (DFT) has emerged as a prominent quan-
tum mechanical methodology for investigating materials’ electronic
structures and properties from first principles. It is a powerful and ex-
tensively employed computational tool in condensed matter physics,
materials science, and chemistry. With reasonable computational costs,
DFT enables sensibly accurate predictions of material properties. For pe-
riodic solids, DFT calculations are commonly conducted using diverse
software packages, including Abinit [1-3], VASP [4-7], SIESTA [8] and
Quantum Espresso [9,10]. Each software package has distinct input and
output formats, syntax, and data structures catering to specific research
needs and preferences.

In recent years, significant strides have been made in developing
packages, web interfaces, or application programming interfaces (APIs)
aimed at handling high-throughput and streamlining workflows for
property calculations such as PyMatgen [11], AIIDA [12], AFLOW [13],
AbiPy [3], etc. These efforts have been directed towards creating user-
friendly interfaces that seamlessly interact with electronic structure
packages, essential tools in materials science, and computational chem-
istry. These advancements have undeniably enhanced the efficiency and
accessibility of conducting simulations, computations, and modeling re-
lated to materials, providing better experiences for both experienced
and inexperienced users. However, as the landscape of materials charac-
terization evolves, a new challenge has emerged as a focal point: the in-
tricate process of data extraction and subsequent analysis the so-called
post-processing analysis. This phase constitutes a critical bottleneck in
the overall workflow of materials characterization. While the tools for
performing calculations have become increasingly sophisticated and
user-friendly, extracting meaningful insights from the generated data
presents challenges that cannot be overlooked.

Efforts are being directed towards developing methodologies and
tools that can automate and streamline data extraction and analy-
sis [14-17]. Machine learning algorithms, for instance, are being har-
nessed to identify patterns within datasets that might be challenging
to discern through manual methods. Even in these cases, images and
specific data must be extracted from these electronic structure calcu-
lations [18,19]. Therefore, there is a growing need for packages that
support direct data extraction from these calculations. This will facil-
itate the analysis and practical interpretation into the broader con-
text of materials research. In particular, the significance of pre- and
post-processing steps in DFT simulations is often overlooked despite
their critical roles in the computational workflow. Pre-processing in-
cludes preparing input files and setting up initial conditions, while
post-processing encapsulates the analysis and visualization of output
data to deduce crucial information about material properties. The ex-
tensive data generated during DFT calculations can be daunting and
necessitates efficient, user-friendly tools to facilitate the management
and interpretation of this data

PyProcar was conceived to address this requirement. It offers com-
prehensive pre- and post-processing solutions for DFT calculations, fre-
quently employed in predicting material properties. The PyProcar pack-
age eases the analysis and visualization of DFT results generated by the
following widely used codes: Abinit [1-3], VASP [4-7], and Quantum
Espresso [10,9], Siesta [8], ELK [20], and the density functional tight-
binding code DFTB+ [21].

While several commendable packages such as FermiSurfer [22],
Abipy [23,3], pymatgen [11], and XCrySDen [24] offer similar function-
alities, PyProcar stands out with its simple line interfaces. The PyProcar
approach is designed in the spirit that powerful visualization and anal-
ysis should not come at the cost of complexity. Users, regardless of

their level of experience, can effortlessly exploit the capabilities of PyP-
rocar. A testament to its user-centric design is the ability to interface
with multiple DFT codes by altering a single function call argument.
This seamless adaptability ensures that researchers are not bound by
the constraints of a particular DFT package, offering unparalleled flexi-
bility and ease of use.

PyProcar has evolved from a single script for plotting projected band
structures, derived from the PROCAR file output, to a broader utility
tool. The publication of our first paper [25] led to its expansion for more
general analyses of electronic structure codes, including Fermi surface
plotting, band unfolding, property projections, and band structure com-
parisons from multiple DFT packages. Early versions of PyProcar were
restricted to reading the PROCAR format for parsing band projections,
limiting its broad applicability. This restriction required the parent DFT
packages to convert their output to the PROCAR format, a feature only
available in Abinit and VASP. However, PyProcar’s parsing capabilities
have since evolved to accommodate multiple electronic structure code
formats, including Abinit, VASP, Quantum Espresso, Siesta, ELK, and
BXSF. Additionally, PyProcar now includes classes and methods for ma-
nipulating and plotting the projected density of states, a feature absent
in previous versions. We have introduced several core objects, like Elec-
tronicBandStructure, DensityOfStates, Structure, and FermiSurface3D,
to streamline data manipulation for analysis and visualization.

Moreover, we have significantly improved the documentation, en-
abling users to quickly and easily utilize the code. An example gallery
has been added as a practical demonstration of the code’s usability
and showcasing the various features available in PyProcar. Collectively,
these enhancements contribute to a more versatile, user-friendly, and
powerful tool for electronic structure analysis, broadening its appeal
and applicability across the scientific community.

For those interested in using PyProcar, detailed instructions for
the installation process are provided in the Supplementary Informa-
tion (SI) of this paper. Multiple installation avenues are supported to
cater to varied user preferences, including the Python package manager
(pip), the conda package manager, direct GitHub source code cloning
https://romerogroup.github.io/pyprocar/index.html, and more. Com-
prehensive documentation is available to assist users through the in-
stallation process and to provide further insights into the package’s
functionalities. Additionally, a supplementary Google Drive link offers
extended resources, including example files. We encourage users to uti-
lize these resources to use PyProcar in their research.

In this paper, we present the updated PyProcar package, which
not only expands its support to multiple DFT codes but also enhances
its overall maintainability, reliability, and usability. These updates are
aimed at making PyProcar a more versatile and accessible tool, em-
powering researchers in the field of materials science to better analyze
and visualize DFT results, ultimately contributing to the advancement
of material property prediction and discovery.

2. Summary of improvements

In this paper, we present significant updates and improvements to
the PyProcar package. These updates enhance its capabilities and ensure
maintainability, reliability, and ease of use for developers and users.
The main contributions of this work are as follows:

1. Enhanced and Expanded Support for DFT Codes: PyProcar has
improved its interface for previously supported codes—Abinit and
VASP, while extending its support to include new codes: BXSF for-
mat, DFTB+, ELK, Quantum Espresso, and Siesta. This broadens its
applicability across various computational platforms.

https://romerogroup.github.io/pyprocar/index.html

L. Lang, P. Tavadze, A. Tellez et al.

Computer Physics Communications 297 (2024) 109063

io module
abinit.py

bxsf.py
DFT Codes elk.py
Abinit lobster.py

ELK
ge.py

siesta.py

Lobster

Quanutm Espresso vasp.py

Siesta
VASP

pre-processing
kpath()

generate2dkmesh()

pyposcar module

a

DOSPlot()
EBSPlot()

bandsplot()
bandsplot2d()

ElectronicBandStructure() dosplot()
DensityOfStates() bandsdosplot()
KPath() unfold()
Structure() filter()
FermiSurface() bandgap()

FermiSurface2D() FermiHandler()

Fig. 1. Structural overview of the PyProcar library.

2. Streamlined data processing: The introduction of a core class
object standardizes the parsed DFT code data, reducing code com-
plexity and allowing for smoother integration with different DFT
codes, even to those not included in our release.

3. Modularized code structure: By confining DFT code dependen-
cies to the input/output (I/0) module, we have simplified the
overall code structure, making it more maintainable and easier to
extend for future developments, in particular for new properties for
interested developers.

4. Updated documentation: We have updated and expanded the
documentation to better assist users in understanding and utiliz-
ing PyProcar’s features.

5. Enhanced features: We have incorporated several new function-
alities, including plotting of energy levels with only one k-points
(e.g. molecules, defects), calculation of the inverse participation
ratio, the density of states plotting, refined 2D Fermi surface vi-
sualization, a 3D Fermi surface cross-section widget, an interactive
3D Fermi surface isosurface slider, a GIF creator for dynamic rep-
resentation, and a class that handles all band structure information
and allows for band derivatives and integrals to be calculated.

6. Geometry analysis: We have added functionalities that automa-
tize the analysis of the input geometry. For instance, point defects,
surfaces, etc. can be detected [26]. These features can be corre-
lated with electronic structure allowing automatic recognition of
defect/surface states or similar. Also geometry descriptors can be
easily integrated. Currently the Global Connectivity descriptor is im-
plemented [27].

3. Refining architecture, DFT compatibility, and usability
3.1. PyProcar architecture

This section delves into the revised architecture of the PyProcar
package, which has been overhauled for enhanced structure, easier
maintenance, and an improved user experience. An overview of the
architectural changes in the library is illustrated in Fig. 1.

As with the previous rendition of PyProcar, this updated version
continues to interface with DFT codes either as a pre-processing or
post-processing instrument. To facilitate this interaction with other DFT
codes, modifications were implemented for a more seamless integration
with the existing codebase. The first step in this process involved the

creation of core objects that standardize the output generated by the
DFT codes. These core objects are instantiated within the input/output
parsers, after which the primary Parser object extracts the initialized
core object from the diverse DFT codes.

Subsequently, the Parser object is passed to the post-processing tools
or the plotting module. Importantly, this procedure simplifies the inte-
gration of new code into our package. The only required inputs are the
necessary information for the initialization of the core objects.

3.1.1. Modularized library

The PyProcar library has been reorganized into more user-friendly
module names, which improves the package’s maintainability and fa-
cilitates easier extension and integration of new features. The main
sub-packages in the updated library are:

‘core’: This sub-package hosts modules, which are responsible for
representing main data objects used in plotting and handling data. It
standardizes the parsed data from various DFT codes, ensuring consis-
tency and compatibility across different input formats.

‘plotter’: This sub-package contains the Plotter class, which controls
the generation of plots based on the processed DFT data. The Plotter
class simplifies the creation of various types of plots and provides a
unified interface for visualization tasks.

‘i0’: This sub-package is responsible for parsing the output data from
different DFT codes. It abstracts the parsing process, allowing users to
work with various DFT codes without having to worry about the under-
lying differences in data formats.

‘scripts’ This sub-package contains easy-to-use functions that pro-
vide convenient access to common tasks and analysis routines. These
scripts facilitate user interaction with the package and can serve as a
starting point for custom analysis workflows. These scripts are also used
in the command-line functionality of pyprocar

‘utils” This sub-package contains specialized mathematical func-
tions, plot customization configurations, orbital name indexing, and
other utilities not provided in standard Python libraries

The updated modular architecture of PyProcar not only enhances its
maintainability but also improves its usability for both developers and
users. By clearly separating the different components of the package,
the new structure allows for easier navigation, a better understanding
of the code base, and efficient implementation of new features and im-
provements.

L. Lang, P. Tavadze, A. Tellez et al.
3.2. DFT code support

In this section, we discuss the expansion of PyProcar to support a
wider range of DFT codes, specifically Abinit, VASP, Quantum Espresso,
ELK, and Siesta. This support now includes the non-DFT electronic
structure code DFTB+ package. The main challenges faced during this
process was handling the varying data formats produced by each DFT
code and addressing DFT code dependencies throughout the package.
To overcome these challenges and enable integration with multiple DFT
codes, we introduced several new classes to standardize the parsed data
and created a unified Parser class to handle the parsing process.

3.2.1. Standardizing data with core classes
We introduced the following core classes to standardize the data
from different DFT codes:

1. ElectronicBandStructure: This class is designed to store and man-
age data related to electronic band structures derived from Den-
sity Functional Theory (DFT) calculations. It stores details such as
k-points, band energies, and other potential characteristics that de-
fine a material’s electronic structure, crucial for understanding the
material’s properties and behavior. The class serves as an interface
for consistent manipulation and analysis of electronic band struc-
ture data, providing a standardized data structure across different
Density Functional Theory (DFT) codes, thus allowing seamless
data exchange and integration.

2. DensityOfStates: This class is designed to represent and handle
data related to the density of states (DOS) resulting from density
functional theory (DFT) calculations. This includes data about en-
ergies, total densities, and projected densities. It takes as inputs
energies, total, and projected numpy arrays which represent points
on the energy spectrum, densities at each point, and projections of
elements, orbitals, spins, respectively. It optionally accepts an in-
terpolation_factor parameter that determines the density of states
points’ increment during the interpolation. By default, the interpo-
lation factor is set to 1.

3. BandStructure2D: class is utilized to represent and manipulate the
2D band structure of a material, which is a critical aspect in exam-
ining the electronic properties of a material. It takes parameters
such as the electronic band structure, spin quantum number, in-
terpolation factor, and others to construct a 2D representation of
the band structure. It allows for the generation of a 2D band struc-
ture and the combining of band surfaces to form a complete band
structure, making it an indispensable tool in materials science and
physics for studying the energy levels available for electrons to oc-
cupy in a material.

4. FermiSurface3D: This class is designed to represent and manipu-
late a 3D Fermi surface, which is crucial in analyzing the electronic
structure of a material. This class takes in parameters such as the
electronic band structure, Fermi energy, interpolation factor, and
others to construct a 3D representation of the Fermi surface. It pro-
vides methods to generate isosurfaces for each band, combine them
into a complete Fermi surface, and calculate the area of the Fermi
surface. It’s used for advanced materials science applications where
understanding the behavior of electrons in a material, especially at
the Fermi level, is of significant importance.

5. Kpath: This class is designed to store and manage k-path informa-
tion necessary for band structure calculations in Density Functional
Theory (DFT) simulations. It helps to standardize the representa-
tion of k-path data across different DFT software.

6. BrouillinZone: This class is a specific type of Surface that calcu-
lates the first Brillouin zone corresponding to a given reciprocal
lattice. It uses the Wigner-Seitz method to calculate the vertices and
faces of the Brillouin zone. Additional utility methods are provided
for fixing normal direction to ensure a correct graphical represen-
tation.

Computer Physics Communications 297 (2024) 109063

7. BrouillinZone2D: This class extends the functionality of Brillouin-
Zone to two dimensions. It takes an additional two parameters,
e_min, and e_max, which are used to map the Z-coordinates of the
3D vertices to a 2D plane. This class can be used when a 2D repre-
sentation of the Brillouin zone is required. Both BrillouinZone and
BrillouinZone2D inherit from the Surface class and can therefore
be plotted directly using pyvista.PolyData [28] functionalities.

8. Structure: This class is designed to encapsulate and manage the
structural data of a material, storing crucial information such as
atomic species, atomic coordinates, lattice parameters, and sym-
metry rotations. It offers a standardized way to represent structural
information, facilitating seamless integration of data across differ-
ent Density Functional Theory (DFT) codes. This consistent repre-
sentation of structural data simplifies the analysis and modeling
processes, enhancing compatibility and efficiency in materials sci-
ence research and computational material simulations.

3.2.2. Unified parsing with the parser class

To address the DFT code dependency issue, we created the Parser
class, which handles the parsing of the ElectronicBandStructure, Den-
sityOfStates, Kpath, and Structure objects. The Parser class serves as a
central point for parsing the output data from various DFT codes, mak-
ing it easier to integrate new DFT codes into the package.

Instead of calling multiple parsers throughout the codebase, users
can now call a single Parser object and pass the DFT code string pa-
rameter to obtain the required core data object. This approach stream-
lines the parsing process and simplifies the code structure, making it
more maintainable and easier to extend. This approach works even for
DFTB+, which uses a different notation than usual DFT codes.

By implementing a Parser class for each DFT code, developers can
easily expand PyProcar’s support to additional DFT codes, further en-
hancing the package’s versatility and applicability across various com-
putational platforms.

The expanded DFT code support in PyProcar greatly broadens its
user base and facilitates more efficient and consistent handling of DFT
results, regardless of the underlying DFT code. This expansion signif-
icantly enhances PyProcar’s capabilities and positions it as a compre-
hensive and versatile tool for the analysis and visualization of DFT
calculations in the field of materials science.

3.2.3. Required files for supported codes

To make the most out of PyProcar’s functionalities, users must pre-
pare specific output files generated by the various supported DFT codes.
A comprehensive list of required files and versions for each supported
code, along with more detailed information about the prerequisites of
DFT codes, has been provided in the Supplementary Information (SI) of
this paper. For further insights and elaboration on these requirements,
readers are also encouraged to consult our official documentation at

https://romerogroup.github.io/pyprocar/dftprep/index.html

By ensuring that these files are generated by the respective DFT codes,
users can more easily integrate their data into PyProcar for analysis and
visualization.

3.3. Example data repository and testing

To enhance the reliability and maintainability of PyProcar, we have
implemented a example data repository stored on Google Drive, which
users and developers can access at any time. This repository provides
a consistent and up-to-date source of data for testing and development
purposes, ensuring that the package remains robust and reliable.

3.3.1. Repository structure
The example data repository is organized in a hierarchical structure:
<material>/<DFT code>/<magnetic calculation types>/

https://romerogroup.github.io/pyprocar/dftprep/index.html

L. Lang, P. Tavadze, A. Tellez et al.

<calculation types. This organization facilitates easy navigation
and retrieval of data, allowing users and developers to quickly locate
and download the relevant files for their specific needs.

Users and developers can download data from the centralized
database using two convenient functions:

3.3.2. Data download functions
1. pyprocar.download_dev_data(): This function is intended for de-
velopers, providing access to the data necessary for testing and
developing new features.
2. pyprocar.download_example(): This function is designed for users,
offering example data sets that can be used to explore and demon-
strate the capabilities of the PyProcar package.

3.3.3. Testing

The example data repository serves as the foundation for testing the
package. By providing a consistent source of data for testing purposes,
the repository ensures that the tests accurately reflect the package’s per-
formance under a variety of conditions and inputs. This testing frame-
work helps identify and address potential issues, contributing to the
overall reliability and robustness of PyProcar.

The implementation of the data repository and a testing framework
significantly enhances the reliability and maintainability of PyProcar.
By providing a consistent source of data and facilitating rigorous test-
ing, these features ensure that the package remains dependable, en-
abling users and developers to confidently rely on PyProcar for their
DFT analysis and visualization needs.

4. New features

This section highlights new features introduced to PyProcar, each
of which enhances its versatility and expands its capabilities for analyz-
ing and visualizing Density Functional Theory (DFT) calculations. These
new features are detailed in individual subsections.

4.1. Configuration files

One of the significant updates in the latest version of PyProcar is the
introduction of centralized configuration files that govern the plotting
options for various visualization modules, including the Fermi Surface
2D, Fermi Surface, Band Structure 2D, Band Structure, and the Den-
sity of States. Previously, plotting options were hard-coded or passed as
parameters, which, while functional, lacked flexibility and scalability.

The configuration files, written in the human-readable YAML for-
mat, organize plotting parameters under distinct sections for each vi-
sualization module. Each section contains key-value pairs that define
various plotting attributes such as color schemes, axis limits, labels,
and more. This structured approach provides a clear overview of all
available options, making it intuitive even for users unfamiliar with the
internal workings of PyProcar. Furthermore, the modular design of the
configuration management system paves the way for future enhance-
ments. As PyProcar continues to evolve, adding new plotting options or
even entirely new visualization modules becomes substantially more
straightforward. Developers can simply extend the configuration file
with new sections or parameters, ensuring that the software remains
adaptable to emerging visualization needs.

The following examples illustrate this feature:

1. Band Structure Plotting (bandsplot): By default there is color
scheme set in the configuration file for band structures. For a spe-
cific plot, this can be changed by overwriting it as the keyword
argument color. This can be achieved as follows:

bandsplot (data, color='blue’)

Computer Physics Communications 297 (2024) 109063

import pyprocar

Plot atomic bands using VASP as the DFT code
Specify the directory, mode, energy limits, and atoms for the
plot

pyprocar.bandsplot (
code="'vasp', DFT code used for calculations

dirname=data_dir, Directory containing data

elimit=[-0.4, 3],

atoms=[96, 97]

Energy range for the plot

#
#
mode="'atomic', # Mode for plotting
#
Atoms to be plotted

)

Listing 1: Example code for plotting atomic bands using PyProcar and
VASP.

2. Density of States Plotting (dosplot): Similarly, to adjust the
Fermi line width and linestyles for a particular Density of States
plot:

dosplot (data, fermi linewidth=[2.5],
fermi linestyle='solid’)

These examples underscore the ease with which users can customize
their plots in PyProcar. By merely adding keyword arguments to the
function calls, users can swiftly tailor their visualizations without the
need to modify the configuration file or the core code base.

For users keen on exploring the numerous plotting options available
in PyProcar, there are multiple ways to do this. Firstly, the configura-
tion file itself serves as a comprehensive guide. Embedded within it are
descriptions of each option, providing users with immediate clarity on
the purpose and potential values of each parameter. Additionally, for a
more interactive approach, users can opt to print the available plotting
options directly from their function calls. By simply passing the argu-
ment print plot opts, a detailed list of all available options, along
with their current values, will be displayed. This feature is particularly
handy for users who wish to quickly adjust their plots without delv-
ing into external documentation. Lastly, for a thorough understanding,
users are encouraged to consult the official PyProcar documentation.
The docs are meticulously curated to offer detailed explanations, ex-
amples, and potential use cases for each plotting option, ensuring that
users can harness the full potential of PyProcar’s visualization capabili-
ties.

4.2. Atom-like energy levels plot

The Atom-like Energy Levels Plot feature of PyProcar provides an av-
enue to visualize atomic, molecular and defect energy levels, with only
one k-point. Also it can be used with for plotting the energy bands of
a material at one specific k-point. This functionality proves particularly
useful for dissecting the electronic structure and discerning the impact
of defects in materials. For demonstration purposes, we use hexagonal
boron nitride with carbon defects [29] (hBN-C, Cp /) as an example.

The Python code snippet below illustrates how to invoke this fea-
ture. The function pyprocar.bandsplot is set to ‘atomic’ mode’,
enabling visualization of energy levels for specified carbon atoms. As
seen in Fig. 2, this allows for a nuanced analysis of the role of the car-
bon defect in the energy landscape of the material. Notably, carbon
atoms introduce states in close proximity to the Fermi level, specifically
at spin-0 bands-195, spin-0 bands-196, spin-1 bands-195, and spin-1
bands-196. Listing 1 shows the script used to generate Fig. 2.

4.3. Inverse participation ratio

Often it is needed to search for localized modes within the band
structure, typical examples are surface/interface states and defect lev-
els. The usual procedure for detecting them is looking for bands with
a large projection around the atoms at the surface or defect. This pro-
cedure is both cumbersome for the user and error-prone. For instance,

L. Lang, P. Tavadze, A. Tellez et al.

3 0.35
030
s-1:b-196
s-1:b-195 >
2 025 &
3
- (s}
3 020 §
= g
' o
wl 015 g
2
2
010 3
0 0.05
s-0: b-195 s-0:b-196
0.00

Fig. 2. Visualization of atom-like energy levels in close vicinity to the Fermi
level for hBN-CNCN. The color scale corresponds to the carbon atom’s contribu-
tion to the band levels near the Fermi level (spin-0 bands-195, spin-0 bands-196,
spin-1 bands-195, spin-1 bands-196). (For interpretation of the colors in the fig-
ure(s), the reader is referred to the web version of this article.)

import pyprocar

pyprocar.bandsplot (
dirname='.', # Actual directory
elimit=[-1.0, 1.0],

mode='ipr', # Selecting the 'IPR'

code="'vasp',
spins=[0],
clim=[0, 0.2] # Set the colormap range for IPR

)

Listing 2: Example code for plotting bands with Inverse Participation
Ratio (IPR) using PyProcar and VASP.

the lowest unoccupied levels of the neutral C, defect in h-BN has prac-
tically no projection on the defect atom and its nearest neighbors. This
delayed its identification as a single-photon emitter [30,31]. A much
simpler way to detect these localized levels is by means of the Inverse
Participation Ratio, defined as

Za |ana|4
-
(za |cnka|2)

where ¢ are the wavefunction’s coefficient, the indexes n, k,a are the
band, k-point and atom, respectively. This function has been applied in
the context of Anderson localization [32-34]. However, it can capture
any kind of localization. [35-37] A perfectly localized state — i.e. lo-
calized in a single atom — would have I PR =1, but a fully extended
state has I PR = %, with N being the total number of atoms.

In PyProcar, using the I PR in bandsplot is straightforward, it can
be done simply by setting mode="ipr’. By definition, all orbitals and
atoms are summed. We have included two typical, and very different
examples. The first example is the detection of topologically protected
surface states in Bi,Se;, [38] see Fig. 3a. The whole slab has six van
der Waals layers (quintuple layers), each is five atom thick. The surface
states localize on the outer quintuple layers, in contrast, an extended
state covers the six quintuple layers. The ratio between the localization
of both types of states is 1 to 3, and the I PR has enough resolution to
provide a clear visual identification. Listing 2 shows an example of this
process.

The second example is the NV~ defect in diamond, it is a negatively
charged N substitution plus an adjacent vacancy. This defect is of inter-
est as a source of single photons. Its ground state is a triplet, allowing
the control of the spin by microwave radiation [39]. The energy levels
of a diamond supercell hosting the defect are portrayed in Fig. 3b. The
supercell has 215 atoms, hence I PR — 0 for bulk states (blue lines).
Several defect levels lie within the fundamental band gap of diamond

IPR,; =)

Computer Physics Communications 297 (2024) 109063

import pyprocar

pyprocar.bandsplot (
dirname='.', # Actual directory
elimit=[-3.0, 2.5],
mode='ipr', # Selecting the 'IPR'
code="'vasp',

spins=[0, 1], # I prefer both spin values in a single figure

clim=[0, 0.1] # Set the optimal colormap range

)

Listing 3: Example code for plotting bands with Inverse Participation
Ratio (IPR) for both spin values using PyProcar and VASP.

(dark red lines). The closest levels to the Fermi energy are double de-
generate (i.e. triplet), but only occupied for the spin majority. Hence,
according to the optical transition takes place between the bands with
index 430 — 431 or 430 — 432 of the spin channel labeled ‘spin-1’. The
calculation of the main emission line involves a calculation of the ex-
cited state, which can be simulated by fixing the occupations of the
mentioned levels, i.e. the A SCFmethod [40]. Listing 3, shows an exam-
ple of this process.

4.4. Automatic correlation between geometrical and electronic ‘features’

One of the most powerful capabilities of PyProcar is allowing one
to correlate the real space with the electronic structure, for instance,
finding surface states or defect levels. Traditionally, this task is done by
the user, providing a list of atoms representing the surface or the defect
(parameter ‘atom’ in bandsplot). Also, the user needs to choose a
relevant energy window for the plot and set the boundaries of the color
scale to highlight the relevant states. That process is both tedious and
error prone: for instance, the user needs to find the special atoms (e.g.
defect, surface, etc.) and take care of whether the indexes are O- or
1-based.

In the latest update, we have introduced the autobandsplot func-
tion, designed to automate several key tasks for enhanced visualization
and analysis. Specifically, the function aims to:

Determine an optimal energy window for the plot, which includes
bulk-like bands both above and below the fundamental band gap
for insulators, as well as any localized states within that gap.
Identify important real-space features, such as defects, surfaces,
and van der Waals layers.

Locate the localized electronic states within the selected energy
window.

Calculate suitable values for the color map to emphasize these lo-
calized states.

All these tasks are executed without requiring user intervention. The
identification of real-space features is carried out using PyPoscar, as
detailed in Section 4.12. Localized states are identified through the In-
verse Participation Ratio (IPR), as explained in Section 4.3. The function
correlates the geometry and electronic structure by evaluating the par-
ticipation of relevant atoms in the IPR calculations.

This automated identification of key features is most effective when
the atoms of interest are statistically distinct from the rest of the sys-
tem, both in real space and in electronic structure. In scenarios where
such distinctions are not readily apparent, the function will default to
generating a standard band structure plot. It is important to note that
while our current implementation is robust, there may be some geomet-
rical features it does not yet capture. However, we anticipate that the
function will continue to improve based on user feedback.

As an example of this functionality, we calculate a slab of a
theoretically-predicted phase Bi, which is topologically nontrivial [41].
It features surface states with Dirac cones at high-symmetry points, see
Fig. 4. As a reference, the surface states of the stable bulk phase Bi are
difficult to calculate with DFT [42]. Returning to the predicted topolog-

L. Lang, P. Tavadze, A. Tellez et al.

1.0 0.20
A
5
\ 3
0.5 E 0.15 3
@
— - .)
3 / g
[=X
L 0.0 PN 0.10g
W VA 8
py]
—0.5 SR 0.05 &
=
< A
1.0« /N LM 00
K I M
K vector

Computer Physics Communications 297 (2024) 109063

0.10
B 2
5
0.08 5
s-1:b-431 s-1:b-432 3
@
< o
% 0.06 &
2o =
« Q.
w S
' s-0:b-431 s-0:b-432 0.04 5
w ;
s-1:b-430 S
Py
2
—21s-0 : b-430 0.02 ¢
0.00

Fig. 3. Examples of band structures colored by their inverse participation ratio, I PR. (a) Topological insulator Bi, Ses, its surface states are in red. (b) Defect levels
of the NV~ color center in diamond, several localized states (dark red) exist within the fundamental band gap, particularly the spin minority has two degenerate

unoccupied levels enabling the optical transition.

Defect 0
1.0 0.8
0.5)
— 0.6
S pd
= L
i 0.0
W T~ 0.4
-05t
0.2
—1.01
150 = 0.0
M T

K vector

Fig. 4. Surface states of a theoretically predicted topological crystalline phase
of Bi. The color coding reflects the projection into ‘defects’, such as a surface.
These ‘defects’ are automatically detected.

import pyprocar

pyprocar.autobandsplot (code="'vasp')

Listing 4: Example code for automatically plotting band structures using
PyProcar and VASP.

ical crystalline phase of Bi, Listing 4 shows an example of the code used
to obtain the figure.

The title of Fig. 4 is Defect 0, which correspond to the upper sur-
face of the slab, the other surface generates a second figure, with title
Defect 1. When running the Listing 4, a file report.txt is gener-
ated with information about the atoms comprising each defect, and the
associated localized states.

4.5. Support for density of states and projected density of states

The PyProcar package now has enhanced capabilities for computing
and visualizing both the density of states (DOS) and projected density
of states (PDOS). These new functionalities deepen our understanding
into the electronic structure of a material, providing a more compre-
hensive analysis of the system. To showcase the capabilities of these
features, we performed a colinear spin-polarized calculation on SrVO;.
The resulting visualizations for DOS and PDOS are shown in Fig. 6. The
orbital indexing is given in Fig. 5

import pyprocar

pyprocar.dosplot (
code="'vasp',
dirname=data_dir,
mode="'parametric',
atoms=[0, 1], # Target atoms for the plot

orbitals=[4, 5, 6, 7, 8] # Specifying d orbitals

)
Listing 5: Example code for plotting density of states (DOS) for specific
atoms and d orbitals using PyProcar and VASP.

The dosplot function facilitates plotting the density of states and
accepts the directory containing the calculation data and the type of
DFT code used as arguments. Furthermore, this function provides a va-
riety of modes that can be selected via the mode keyword argument.
The orbital indexing are given in Fig. 5.

For instance, Listing 5 outlines how one can plot the parametric
density of states, highlighting contributions specifically from d orbitals.

4.6. Unified plotting of band structure and density of states

A notable enhancement in PyProcar is the introduction of a fea-
ture that allows for the simultaneous plotting of the EBS and DOS, as
illustrated in Fig. 7. We demonstrate this capability using colinear spin-
polarized calculations on SrVO;. This combined view offers a more
intuitive and comprehensive understanding of a material’s electronic
structure. Critically, the energy axes for both the EBS and DOS are per-
fectly aligned, allowing for visual comparison between the two.

The bandsdosplot function serves to create these unified plots. It
accepts two primary arguments—bands_settings and dos_settings—which
are dictionaries containing settings specific to bandsplot and dosplot,
respectively. This ensures that the various functionalities of the two
methods are seamlessly integrated into one unified plot.

To further clarify, the Listing 6 demonstrates how to utilize this fea-
ture.

4.7. Simultaneous comparison of band structures from different DFT codes

A unique capability of PyProcar is the option to compare multi-
ple band structures within the same plot. This is particularly useful for
assessing similarities or discrepancies between calculations performed
with different Density Functional Theory codes. This feature is made
possible by PyProcar’s support for reusing the matplotlib.Axes ob-
ject across multiple bandsplot calls, thereby providing a unified axis for
comparison.

L. Lang, P. Tavadze, A. Tellez et al.

Computer Physics Communications 297 (2024) 109063

S| Py | Pz | Pz (11'1/ (ly: (122 (lJ:: (lAl'zfyz fy(.'irzfyz) fl'y: fy;2 f::‘ fj':'z f:(.r‘-lfyz) fJ:(J:'zfiiyz)
0 11]21]3 4 b)) 7 8 9 10 | 11 | 12| 13 14 15
Fig. 5. Orbital indexing for the ‘orbitals’ keyword argument.
1.0
12 1 121
10 A 104 0.8 >
o
3
8 o
06 O
s
" =4
@0 -
8 6 8 o
o
04 3
o] 2
=3
o
=1
2] 02
0
. . : : 0.0
-6 -4 -2 0 2 4 0 2 4 6
Energy (eV) Energy (eV)
(a) mode="plain’ (b) mode=’parametric’
1.0
. SrV-s T
124 124 B Sr-V-p T
. Sr-vd 1
10 08 > 101
o
3
B
8 06 O
S
=2
Qa I3
g 4| o
]
04 3
/ []
44/ a
o
5
02
2
\
0 " " ; " 0.0
-6 -4 -2 0 2 4 6

Energy (eV)

(¢) mode="parametric-line’

Energy (eV)

(d) mode="stack-orbitals’

Fig. 6. Examples of different modes available in dosplot for SrVO;. The subfigures illustrate various modes such as plain, which presents a straightforward
visualization of the DOS, and parametric or parametric-line, that emphasize contributions from specific atomic orbitals—here, the d-orbitals of Sr and V atoms are
under focus. stack-orbitals mode provides another representation by scaling the area under the DOS curve based on the specified projections.

To demonstrate, the following example contrasts the band structures
of SrVOj; as calculated using VASP and Quantum Espresso. In this case,
the ‘mode’ is set to ‘parametric’ for the VASP data and ‘plain’ for the
Quantum Espresso data (Fig. 8).

4.8. 2D Fermi surface and projected Fermi surface plotting

PyProcar introduces advanced capabilities for plotting 2D cross-
sections of the Fermi surface, offering a powerful tool for understanding
electronic properties near the Fermi level. This is crucial for predict-
ing material behavior, including transport properties and applications
in various scientific domains. To illustrate, Fig. 9 showcases the k, =0
plane of Iron.

The feature is accessed through the fermi2D function, which accepts
various modes for detailed visualization. Listing 8 demonstrates how to
use this feature with ‘plain’ mode for Iron.

4.9. Visualizing 3D and projected Fermi surfaces with PyProcar

PyProcar has enhanced its plotting capabilities of the 3D Fermi sur-
face. This advancement enhances not only visualization but also enables
in-depth analysis of electronic behavior near the Fermi level. Such in-
sights are crucial for predicting material properties like transport phe-
nomena and potential real-world applications. In the subsections that
follow, we will showcase the extensive features of this new addition,
focusing particularly on iron as a case study.

Iron serves as an exemplary subject for this demonstration due to
its unique electronic structure. As a transition metal, iron’s valence
electrons populate d orbitals, significantly influencing its material char-
acteristics.

To access these advanced plotting features, one must initialize the
‘FermiHandler’ object. Doing so will fetch relevant data from the speci-
fied calculation directory, allowing you to employ various class methods
for Fermi surface plotting.

Example usage to initialize the ‘FermiHandler’ object is as follows:

L. Lang, P. Tavadze, A. Tellez et al.

Computer Physics Communications 297 (2024) 109063

-4

/ \/ 3 1.0

0.8
=
o
% :
(a]
/ 06 O
— e |
3 t &
-~ [
o 0 2
i e o
K— 04 o
e
2
=
3

\&% 0.0

r X M r R
K vector

X -6

o

Fig. 7. Simultaneous visualization of the band structure and density of states for SrVO;. The band structure is rendered in plain mode, employing different colors to
distinguish between spin channels. The DOS plot, on the other hand, represents both spin channels, with color scales indicating the contributions from the d-orbitals

of Sr and V atoms.

1.0

0.8
>
L -
o
3
(@]
06 O
— =
> =3
~ +
ulj" N [Q_)
w ad
0.4 o
[0}
0
(=
o
i =}
02 ¥

-10 2 m m - 0.0

K vector

Fig. 8. Comparison of SrVO; band structures computed using Quantum Espresso and VASP. While the VASP results are represented in parametric mode to show
orbital contributions, the Quantum Espresso data is depicted in plain mode, rendered in black for clarity.

4.9.1. plot fermi_surface

The plot_fermi_surface function is key to visualizing the intricacies of
iron’s Fermi surface within the first Brillouin zone. The mode argument
allows for the setting of different modes of operation for visualizing the
Fermi surface.

By setting mode =‘plain’, we obtain a visualization of the Fermi
surface (Fig. 10a) where colors differentiate the bands that compose
the surface. This figure offers a detailed depiction of the band structure
of iron at the Fermi level, with each color corresponding to a different
band. Here, the bands include both spin-polarized bands. The bands ar-
gument enables the selection of specific bands to be plotted. We also use
the keyword argument extended_zone_directions to extend the Fermi
surface along the reciprocal axis.

Fig. 10b is generated when mode = ‘parametric’ is used. This mode
plots the orbital-resolved projections onto the Fermi surface, providing

an in-depth look at the contribution of specific orbitals to the Fermi
surface. For iron, the d orbitals are particularly important and are,
therefore, our focus. To specify the d orbitals for projection, additional
keyword arguments are used: atoms, orbitals, and spins. In this plot,
we look at one of the spin-polarized bands (spins= [1]).

The below snippet provides an example of how to generate a ‘plain’
Fermi surface plot for iron using the plot_fermi_surface function:

4.9.2. plot fermi isoslider

In our continued exploration of iron’s electronic structure, the
plot_Fermi_isoslider function plays a pivotal role. This function equips
users with the ability to interactively navigate between various isosur-
faces around the Fermi level interactively, providing a comprehensive
view of the material’s electronic landscape.

L. Lang, P. Tavadze, A. Tellez et al. Computer Physics Communications 297 (2024) 109063

300 A 300 1 R
— -— —— Band 6- Spin - 0
—— Band 7- Spin- 0
250 4 250 4 Band 8- Spin - 0
Band 9- Spin - 0
) (—— Band 6- Spin -1
200 1 200 Band 7- Spin - 1
7 T
< 1501) (< 150 1) (
& &
100 A 100 A
50 50 1 /\
— -
0 L T T T T T T T T T 0 L T T T T T T T T T
-50 0 50 100 150 200 250 300 350 -50 0 50 100 150 200 250 300 350
k, (A7) k, (A71)
(a) mode="plain’ (b) mode=’plain_bands’
1.0
300 300 4
— —— Band 6- Spin - 0 e
—— Band 7- Spin - 0
250 250 A 0.8
=
o
200 200 - 3
[a)
—~ _ 0.6
T 7 =
< 150) (< 1501) { 5
> > nl
x ~ =X
(=]
0.4%
100 1 100 =
[=]
3
n
504 50 0.2
- ~
01 0
i . iy T T T T T T T 0.0
-50 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300
ke (A7h) ke (A7)
— M b
(c) mode="plain _bands (d) mode="parametric’

Fig. 9. Various modes for 2D Fermi surface visualization in Iron. plain mode shows the Fermi surface in uniform color, differentiating spin channels in blue and red.
plain bands mode adds band and spin channel coloration. Subfigure ¢ demonstrates the option to display only the first spin channel. In parametric mode (Subfigure
d), the plot highlights contributions from specific atomic orbitals, shown here for the d-orbitals of Fe across both spin channels.

import pyprocar import pyprocar
import os
bands_settings = {

'mode': 'plain', # Plot bands using VASP data and store the plot object
'dirname': bands_dir, ebs_plot = pyprocar.bandsplot (
'linestyle': ['solid', 'solid'], code='vasp',
'elimit': [-6, 6] dirname=vasp_data dir,
} mode="'parametric',
elimit=[-10, 10],
dos_settings = { orbitals=[4, 5, 6, 7, 8],
'mode': 'parametric', show=False

'dirname': dos_dir,
'atoms': [0, 11,

'orbitals': [4, 5, 6, 7, 8], # Overlay bands using Quantum ESPRESSO data on the same plot
'spins': [0, 1], pyprocar.bandsplot (
'elimit': [-6, 6], code='qge',
'elim': [0, 1] dirname=ge_data_ dir,
} mode="'plain',
elimit=[-10, 10],
pyprocar.bandsdosplot (color='k"',
code="'ge"', ax=ebs_plot.ax,
bands_settings=bands_settings, show=False,
dos_settings=dos_settings savefig=f"{figure dir}{os.sep}comparing bands.pdf"
))
Listing 6: Example code for plotting both band structures and density of Listing 7: Example code for comparing band structures generated by
states (DOS) using PyProcar and Quantum ESPRESSO. VASP and Quantum ESPRESSO using PyProcar.

10

L. Lang, P. Tavadze, A. Tellez et al.

(a) mode="plain’

Energy iso-value

(c¢) Fermi isoslider - 5.4989

(f) mode=’plain’, cross_ section

A

Energy iso-value

(d) Fermi isoslider - 5.5989

0.800

5.6

Computer Physics Communications 297 (2024) 109063

S8,

I e gl
LS Py
Atomic Orbital Projections
0.00 0.200 0.400 0.600 0.800 1.0
o
(b) mode="parametric’
57
| |

Energy iso-value

(e) Fermi isoslider - 5.6989
el
v
o
A <
NG e s
- 4’4
P -
)% # /:1425 “ éifz
el S e Vg ¢
oG, St e, G
e, "o e
Bt 2 5 g
G, e
1 P
T 4
S
e 5
T
=

1.0

(g) mode="plain’, cross_section _ slice

Fig. 10. Demonstration of 3D Fermi surface plotting for Iron. Here, the subfigures demonstrate the functionalities of the 2D Fermi surface plotting. Subfigure a, plain
mode plots the bands of the 3D Fermi surface for both spin channels by color. Subfigure b, parametric mode shows the contribution of the d-orbitals of iron on the
Fermi surface. In subfigures a and b, both surfaces are extended to the next zone, given a direction vector. Subfigures c, d, and e show how to use the Fermi_isoslider.
Here, we choose to generate three surfaces around Fermi energy. (€)-(Eg,,,,;?-0.1) (d)-(Ef,.,i?)> (€)-(Efpe.mi?+0.1). The colors here represent the spin channels.
Subfigures f and g show the cross-section widget used on the Fermi surface. In this case, we are slicing the Fermi surface of Iron for a non-colinear calculation. The
arrows represent the magnitude of the spin textures. Subfigure f shows how the widget looks. The red outline plane can be interacted with to slice the Fermi surface.

Subfigure g will be the 2d slice saved once the render window is closed.

import pyprocar
import os

Define the data directory path
os.path.join (PROJECT_DIR,
'spin-polarized-colinear'

'data',
'Fermi')

data_dir =
qe',

'examples', 'Fe', '

Generate a 2D Fermi surface plot
pyprocar.Fermi2D (

code=\'gel;

dirname=data_dir,

mode="plain'

)

Listing 8: Example code for generating a 2D Fermi surface plot using
PyProcar and Quantum ESPRESSO.

As illustrated in Fig. 10d 10e 10c, the iso-slider enables the visu-
alization of iron’s electronic states within an energy range of interest

11

FermiHandler = pyprocar.FermiHandler (
code="qge",
dirname=data_dir,

apply_symmetry=True)

Listing 9: Example code for initializing the FermiHandler object using
PyProcar and Quantum ESPRESSO.

FermiHandler.plot_fermi_surface (mode="plain",
spins=[1],
extended zone directions=[[0,0,1],[0,1,0]],
show=True,)

Listing 10: Example code for plotting the ’plain’ fermi surface using
PyProcar and Quantum ESPRESSO.

around the Fermi level. The advantage of this dynamic representation

L. Lang, P. Tavadze, A. Tellez et al.

fermiHandler.plot_ fermi_isoslider(
iso_values=[5.5989-0.1,5.5989,5.5989+0.1],
spins=[0,1],
spin colors=['red', 'blue'],
mode="plain",
show=True)

Listing 11: Example code for plotting the fermi surface with an interac-
tive isoslider using PyProcar.

FermiHandler.create_isovalue gif (

iso values=[5.5989-0.1,5.5989,5.5989+0.1],

spins=[0,1],

spin colors=['red', 'blue'l],

mode="plain")
Listing 12: Example code for plotting the fermi surface as a gif using
PyProcar.

is two-fold. First, it provides an in-depth understanding of the electronic
structure and transport properties of iron, providing clues to potential
applications. Second, it enables the creation of animated GIFs, which
provide a fluid, real-time exploration of the electronic state shifts with
the varying Fermi level, further enhancing our understanding of the
material’s properties.

The plot_fermi_isoslider method takes in the arguments iso_range
and iso_surfaces. The iso_range sets the energy range around the Fermi
level (in eV), while iso_surfaces determines the number of surfaces to
be generated within this energy range.

Below is an example of calling the plot_fermi_isoslider function,
which will generate an iso-slider for iron with an energy range of 2 eV
around the Fermi level and display five different isosurfaces:

4.9.3. create_isovalue_gif

The create_isovalue_gif method allows the user to create a gif anima-
tion of the surfaces around the Fermi Level. Like in the isoslider, takes
as arguments iso_range and iso_surface which sets the energy range in
eV and the number of surfaces around the Fermi level generated. In ad-
dition, instead of specifying the range and the number of surfaces, the
argument iso_values can be used to generate surfaces at exact energy
values.

Below is an example of how this feature can be used:

4.9.4. plot fermi cross_section

The plot_fermi_cross_section method provides an interactive inter-
face for users to explore the Fermi surface, particularly useful when
studying materials like iron, where spin properties play a significant
role. This interactive cross-section widget allows users to create cross-
sections of the Fermi surface in real time, offering an in-depth exami-
nation of the material’s electronic structure.

One notable feature of this method is the option to display spin tex-
tures on the cross-sectional slice. This is particularly useful for studying
materials with intricate spin characteristics, such as iron. The spin_tex-
ture =True argument activates this feature, while the arrow_size pa-
rameter allows control over the visualization of the spin texture.

Below is an example of how this feature can be used:

This example creates a cross-section of the Fermi surface with a nor-
mal in the z-direction, originating at the origin of the plot. It then plots
the resulting cross-section with a spin texture overlay, with each arrow’s
size set to 0.5.

In Fig. 10f, we demonstrate the cross-section widget. The first sub-
plot (Fig. 10f) shows the widget in its initial state, while the second
subplot (Fig. 10g) shows a cross-sectional slice of the Fermi surface with
spin texture. This live and interactive feature can significantly enhance
the understanding of the material’s electronic and spin properties.

12

Computer Physics Communications 297 (2024) 109063

FermiHandler.plot_ fermi_ cross_section(
slice_normal=(1,0,0),
slice_origin=(0,0,0),
cross_section slice linewidth=5.0,
mode="spin_texture",
spin_texture=True,
texture_size=0.25,
surface_opacity=0.10,
surface_clim=[0,1],
show=True)

Listing 13: Example code plotting the fermi surface with a cross section
widget using PyProcar.

Table 1
Comparison of experimental and predicted Van
Alphen frequencies for Gold.

Orbit Type A, (A2 F(G) Fop (G)

Belly 001 4.1586 4.365*10% 4.50*10%
Neck 001 0.1597 1.68*107 1.50%107
Belly 011 4.3956 4.61*10% 4.85%10%

FermiHandler.plot_ fermi_ cross_section_box_widget (
slice_normal=[0,0,1],
slice_origin=[0,0,0],
surface opacity=0.05,
add_scalar bar=False,
cross_section_slice_linewidth=False,
cross_section_slice_show_area=True,
mode="parametric",
show=True,)

Listing 14: Example code plotting a fermi surface with cross section and
box widget with PyProcar.

4.9.5. plot fermi_cross_section_box widget
The method plot_fermi_cross_section_box_widget operates in a
similar vein to its predecessor, plot_fermi_cross_section, but provides
a supplementary feature - a box clipping widget. This enhancement al-
lows users to inspect discrete slices of the Fermi surface. An additional
attribute, show_cross_section_area, facilitates the acquisition of the
largest cross-sectional area of the inspected slice. This feature is partic-
ularly invaluable in discerning de Haas-van Alphen frequencies, which
serve as a tool for corroborating experimental findings and deepening

the comprehension of material characteristics at the quantum scale.
Fig. 11 demonstrates the utility of the tool in identifying extremal
cross-section areas of the Fermi surface. In his paper in 1952, Onsager
showed that the frequencies of these oscillations were determined by
the following simple relationship. These areas have a direct relationship
with the Van Alphen frequencies, which the formula can be written as:
chA,

F=
2re (cgs)

where the units of this equation of given in centimetre-gram-second
(cgs) system of units. ¢, 7, and e are the speed of light, Plank’s constant,
and the electron charge, respectively. A, is the extremal cross section
Area of the fermi surface in a plane normal to the direction of the mag-
netic field. These extremal cross sections are what we measure below
for gold. Table 1 catalogs the frequencies predicted using this formula.
Here, we juxtapose these predicted frequencies with the experimental
values extracted from the paper by David Shoenberg [43]. Shoenberg
calculates the Fermi surfaces of copper, silver, and gold using the Van
Alphen Effect in his work.

This comparison effectively validates the utility of our tool in pre-
dicting and comparing Van Alphen frequencies, thereby providing a
reliable method to enhance our understanding of quantum material
properties. Here is the example code used to generate the slice shown
below.

(2)

L. Lang, P. Tavadze, A. Tellez et al.

Cross sectional area : 4.1586 AngA-2

Vba

K
uLy

(a) Belly Orbit [0,0,1] direction

Computer Physics Communications 297 (2024) 109063

Cross sectional area : 0.1597 AngA-2

(b) Neck Orbit [0,0,1] direction

Cross sectional area : 4.3956 Ang/-2

(c) Belly Orbit [0,1,1] direction

Fig. 11. Van Alphen extremal cross section areas for Gold.

4.10. 2D bandstructure plotting

Pyprocar now supports the generation of 2D band structure plots,
providing a clear and concise representation of the electronic structure
of materials. This feature lets users visualize and analyze the relation-
ship between the electronic bands and the underlying crystal structure.

The key novelty of the 2D band structure plotting feature lies in
its ability to elucidate the complex relationship between the electronic
bands and the underlying crystal structure visually intuitively. Such a
feature is particularly useful for investigating and understanding intri-
cate material behaviors such as anisotropy, where material properties
depend on the direction of interest.

To access the 2D band structure plotting feature, users should utilize
the BandStructure2DHandler object, a central component of our pack-
age’s updated functionality. This will load the data from the calculation
directory. The plotting can then be done by calling plot_band_structure.
Below is how we initiate the BandStructure2DHandler object.

Usage:

13

handler = pyprocar.BandStructure2DHandler (
code=llget;
dirname=data_ dir,

apply_ symmetry=False)

atoms=[0]
orbitals=[4,5,6,7,8]
handler.plot_band structure(mode='spin texture',
spin_texture=True,
atoms=atoms,
orbitals=orbitals,
surface_clim=[-1,1])

Listing 15: Example code for initializing the BandStructure2D object

using PyProcar and Quantum ESPRESSO, and then plotting the spin
texture band structure.

In this code snippet, the code parameter refers to the code used
in performing the Density Functional Theory (DFT) calculations, and
dirname is the directory where the data of these calculations reside.
The apply_symmetry parameter allows users to decide whether or not

L. Lang, P. Tavadze, A. Tellez et al.

Energy (&V)
53 01 00 01 03

\\\K// / “_‘J W

0300% o -0 TIR-eonSs

-0.500 0.100

(a) 2d bandstructure of BiSb

Energy €V)

Kz
,“XLKV

2

Computer Physics Communications 297 (2024) 109063

00 08

Energy (&V)
08

? Band Velocity ()
0.00 8.42e+05 1.68e+06 2.53e+06 3.37e+06 4.21e+06
I

(c) 2d bandstructure of graphene with band velocity projec-

tions

Fig. 12. Demonstration of plotting of the 2d bandstructure for Graphene and monolayer BiSb.

to apply symmetry to the band structure plots, which can provide en-
hanced visual clarity and aid in identifying particular patterns.

The plot_band_structure method is responsible for generating the
actual 2D band structure plot. The mode parameter defines the plot
mode; ‘spin_texture’ mode has been used in this instance, illustrating
the bands’ spin texture. The spin_texture parameter activates the depic-
tion of spin texture, a vital tool in spintronics and quantum computing
research. The atoms and orbitals parameters allow users to select spe-
cific atoms and orbitals for the plot, providing flexibility and versatility.
The save_2d parameter is where you can specify the name and location
of the saved plot. Lastly, surface_clim allows for the adjustment of the
color scale range on the plot.

As seen in Fig. 12, the implementation of 2D band structure plotting
has proven to be highly effective in visualizing the electronic structure
of two sample materials: a BiSb monolayer and graphene.

These sample plots demonstrate the effectiveness of the feature in
providing a clear and detailed overview of the electronic structures of
the materials. As such, the new 2D band structure plotting capability is
a significant upgrade to our package, offering users a powerful tool for
the efficient visualization and analysis of electronic band structures.

4.11. Derivative calculation of band energies

PyProcar has recently been enriched with a method for computing
the first and second derivatives of band energies concerning the k-mesh.
This feature allows users to discern better and analyze crucial band
structure attributes, including band gaps, band curvatures, and effec-
tive masses. As a result, it offers valuable insights into the electronic
properties of materials, marking a significant stride in our understand-
ing of material science.

This enhancement propels PyProcar further ahead as a robust and
versatile tool in the visualization and analysis of Density Functional
Theory (DFT) calculations in material science research. By integrating
these capabilities, the package caters to a broader range of research
applications and promotes a more comprehensive understanding of ma-
terials’ electronic structure and properties.

To clearly depict these newly incorporated features, refer to Fig. 13.
The first subplot, Fig. 13a, presents the bands on the k-points mesh.
This visualization of the first band reveals the shape and distribution of
energy bands in the material’s Brillouin zone.

In the second subplot, Fig. 13b, band gradients, represented by ar-
rows, are superimposed on the k-points mesh. Each arrow depicts the
direction and magnitude of the band velocity at a given k-point, pro-
viding a powerful visual tool for understanding the variations in band
energies across the Brillouin zone.

4.12. PyPoscar

PyPoscar is a specialized subpackage within PyProcar, designed to
offer an extensive toolkit for the manipulation and analysis of crystal
geometry files. More importantly, it also offers advanced features as
defect recognition. Here, PyPoscar employs sophisticated algorithms to
identify defects within the crystal lattice, offering valuable insights into
material properties, or similarly, it can also perform cluster identifi-
cation, where PyPoscar can also discern disjoint clusters, whether they
exist in the original lattice—such as van der Waals layers—or among de-
fect atoms. The identification of defects, surfaces, and other anomalies
is achieved through a series of tests that examine the local environment
of each atom. Atoms exhibiting statistically significant deviations are
classified as defects. This comparison is facilitated by machine learn-

L. Lang, P. Tavadze, A. Tellez et al.

teeg %

&

‘.... §

1.43 281

(a) Bands on k-points mesh

Computer Physics Communications 297 (2024) 109063

.
Band 0 - Band Velocity (Z)

0.00 7.87;”65 1.57e+06 2.36e+06

3.15e+06

(b) Band Gradients on k-points mesh

Fig. 13. Comprehensive Visualization of Band Structures using the ElectronicBandStructure Class in PyProcar: This figure showcases two aspects of band structure
analysis facilitated by PyProcar. Subfigure (a) 13a presents the electronic band energies plotted across the k-points mesh, offering a clear view of the energy
distribution and band dispersion in the material’s Brillouin zone. (b) 13b extends this analysis by overlaying the band velocity, represented as arrows, onto the same
k-points mesh. Each arrow indicates the direction and magnitude of the band velocity at specific k-points.

ing methods from the scikit-learn package [26]. A pivotal aspect of our
methodology is the identification of neighboring atoms. This is accom-
plished using the radial distribution function, g(r), in conjunction with
a table of maximum values for specific interactions. Kernel density es-
timation [44] of g(r) -an algorithm to estimate the probability density
of a function- is employed to cluster similar values without the need
for binning (e.g. the layer structure of van der Waals can be identified,
for instance the quintuple layers of Bi,Se; are recognized as different
clusters) or among the defect atoms (e.g. the both surfaces of a slab be-
long to different clusters). The identification of defects, clusters, and
other features is invoked through the pyprocar.autobandsplot function
(see Section 4.4). The results, including a list of special atoms and their
associated electronic states, are documented in a report.txt file.

PyPoscar extends its utility beyond basic functionalities by incorpo-
rating advanced descriptors rooted in the crystal geometry of materi-
als. A notable example of such a descriptor is the Global Connectivity
(), a quantifiable measure reflecting the comprehensive bonding net-
work within a material. This descriptor is particularly significant be-
cause it has been demonstrated, as cited in ref. [27], to offer accurate
predictions regarding the material’s reactivity, especially in hydrogen
intercalation processes. One of the key advantages of using Q is its in-
dependence from Density Functional Theory (DFT) calculations. This
implementation is a substantial benefit, as DFT calculations are typi-
cally resource-intensive and complex. By bypassing the need for these
calculations, Q provides a more efficient yet reliable method for as-
sessing material reactivity, making it an invaluable tool in materials
science and computational chemistry. This capability of PyPoscar to
leverage such descriptors enhances its applicability and effectiveness in
the study and prediction of material properties, particularly in scenarios
where quick and accurate assessments are crucial. The usage is:

This study analyzes the same metal oxides cited in ref. [27]. Our
primary objective was calculating the Global Connectivity (€2) for these
oxides to demonstrate the efficiency of using PyProcar’s advanced capa-
bilities. Miu et al. integrated these Q values with the binding energies
of hydrogen atoms derived from meticulous Density Functional The-
ory (DFT) calculations. This integration was pivotal in establishing a
clear and quantifiable correlation between the Global Connectivity of
the metal oxides and their affinity for hydrogen atom binding. The sig-
nificance of this correlation is visually represented in Fig. 14. This figure
is not merely an illustration but a crucial piece of evidence that un-

15

from pyprocar.pyposcar import globalConectivity
from pyprocar.pyposcar import poscar

Nearest neighbors cutoff distances

custom_distances = {"Mo-0":2.59 , "H-0":1.2, "H-Mo": 2.01}

POSCAR = poscar.Poscar ('POSCAR MoO3')

POSCAR.parse ()

gc = globalConectivity (POSCAR= POSCAR, custom nn_dist=
custom_distances)

print ("Global conectivity", gc.GC)

Listing 16: Example code for the global connectivity.

derscores the relationship between the structural properties of metal
oxides (as denoted by Q) and their chemical reactivity towards hy-
drogen atoms. The correlation depicted in the figure provides valuable
insights into the fundamental interactions at play, offering a more nu-
anced understanding of the material properties. Combining PyProcar’s
computational efficiency in determining Q with the precision of DFT
calculations for hydrogen binding energies, this approach exemplifies
the power of integrating different computational methods. It highlights
how such synergistic use of computational tools can lead to a deeper
understanding of material properties, essential in advancing materials
science and chemistry.

5. Outlook

In the ongoing development of PyProcar, our focus is on refining
the software to enhance its usability and functionality. A key aspect
of this process involves regular code refactoring, ensuring that PyP-
rocar remains efficient and accessible for both users and developers.
We are also planning to collaborate with developers of various DFT
codes to enable compatibility with PyProcar’s features. For example,
we want to extend our service to users of the package Lobster [45]
used for chemical-bonding analysis in periodic systems. For instance,
facilitating band unfolding in other DFT codes, similar to what is cur-
rently achievable in VASP, is a significant goal. This requires these
codes to output the phase of the projections, a capability we intend
to work on collaboratively. Another important development is incorpo-
rating support for VASP’s PROCAR files in HDF5 format, which will be

L. Lang, P. Tavadze, A. Tellez et al.

3
* MoO3
TiO2
2 ® V205
3 1
>
<
2
o 0
o
£
°
£
Qo
1]
-2
-3 T T T T T T
0 20 40 60 80 100 120

Global connectivity (1/€2)

Fig. 14. Binding energy of H in metal oxides as a function of the global connec-
tivity (Q). Each point corresponds to different H concentrations and absorption
sites. For details see Ref. [27].

instrumental in handling large-scale DFT calculations more effectively.
Furthermore, we aim to enhance the functionalities of our existing plot-
ters, including bandsplot, dosplot, fermi3d, bands_2d, and fermi_2d, to
provide users with advanced tools for material property and electronic
structure analysis. In addition, we will continue to develop PyPoscar,
focusing on improving its capability in POSCAR file manipulation for
applications such as defect recognition and structural analysis. For in-
stance, the recent integration of the global connectivity descriptor into
PyPoscar represents a significant advancement, illustrating how innova-
tive different geometrical analysis techniques can be incorporated into
this software. This enhancement is particularly beneficial for conduct-
ing more comprehensive structural analyses in PyPoscar before delving
into electronic analysis. By leveraging these new geometrical analysis
capabilities, researchers can gain deeper insights into structural proper-
ties, which is crucial for a more accurate and thorough understanding
of the material’s behavior at the electronic level. This development not
only broadens the scope of PyPoscar’s applications but also underscores
the ongoing evolution in computational tools used in materials science,
paving the way for more sophisticated and precise research methodolo-
gies. These development initiatives are aligned with our commitment
to keeping PyProcar a versatile and valuable tool in the field of DFT
analysis and visualization.

6. Conclusion

This manuscript presents a thorough update on the improvements
to the PyProcar package and its ecosystem, rendering it more maintain-
able, versatile, and scalable. The architectural improvements, alongside
the centralized repository and testing framework introduction, have for-
tified the package’s backbone, creating a foundation that promises a
user-friendly and developer-friendly experience.

The extension in support of a broader range of DFT codes marks
an important milestone in enhancing PyProcar’s adaptability. Our en-
riched documentation further simplifies user interaction and provides
valuable resources for those looking to get the most out of PyProcar’s
extensive feature set. Additionally, incorporating new features such as
band unfolding, noncollinear calculation support, density of states, pro-
jected density of states, Fermi surface plotting, and 2D bandstructure
plotting not only diversifies its applicability but also deepens its ana-
lytic capabilities. The recent introduction of derivative calculations of
band energies marks a substantial advance, offering insightful analy-
sis into material electronic properties like band gaps, effective masses,
and band curvatures. Expanding the PyProcar ecosystem to include Py-
Poscar, a specialized toolkit for manipulating and analyzing POSCAR

16

Computer Physics Communications 297 (2024) 109063

files, brings added functionality and integrative capabilities. With fea-
tures such as coordinate system conversion, structural generation, and
property calculations, PyPoscar establishes itself as an indispensable
tool in computational material science, especially in conjunction with
PyProcar.

CRediT authorship contribution statement

Logan Lang: Conceptualization, Data curation, Formal analysis,
Methodology, Software, Visualization, Writing — original draft, Writing
- review & editing. Pedram Tavadze: Methodology, Software, Visu-
alization, Writing — review & editing. Andres Tellez: Methodology,
Software, Visualization, Writing — review & editing. Eric Bousquet:
Funding acquisition, Resources, Supervision, Writing — review & edit-
ing. He Xu: Methodology, Supervision, Visualization, Writing — review
& editing. Francisco Munoz: Conceptualization, Formal analysis, Fund-
ing acquisition, Methodology, Resources, Software, Supervision, Valida-
tion, Visualization, Writing — original draft, Writing — review & editing.
Nicolas Vasquez: Methodology, Software, Validation, Visualization,
Writing — review & editing. Uthpala Herath: Methodology, Software,
Visualization, Writing — review & editing. Aldo H. Romero: Concep-
tualization, Funding acquisition, Methodology, Project administration,
Supervision, Writing — original draft, Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability
Data will be made available on request.

Declaration of generative Al and Al-assisted technologies in the
writing process

During the preparation of this work the author(s) used ChatGPT in
order to improve the clarity of the writing. After using this tool/service,
the author(s) reviewed and edited the content as needed and take(s) full
responsibility for the content of the publication.

Acknowledgements

This was supported by the U.S. Department of Energy (DOE),
Office of Science, Basic Energy Sciences (BES), under Award DE-
SC0021375. This work used Bridges2 and Expanse at the Pittsburgh
Supercomputer and the San Diego Supercomputer Center through allo-
cation DMR140031 from the Advanced Cyberinfrastructure Coordina-
tion Ecosystem: Services & Support (ACCESS) program, which National
Science Foundation supports grants 2138259, 2138286, 2138307,
2137603, and 2138296. Some of the computational resources were
provided by the WVU Research Computing Dolly Sods HPC cluster,
which is funded in part by NSF OAC-2117575. E.B. and X.H. acknowl-
edge the FNRS and the Excellence of Science program (EOS “ShapeME”,
No. 40007525) funded by the FWO and F.R.S.-FNRS (theory and algo-
rithm development) and the CECI supercomputer facilities funded by
the F.R.S-FNRS (Grant No. 2.5020.1) and the Tier-1 supercomputer of
the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant
No. 1117545). This work was also partially supported by Fondecyt
Grants No. 1231487 and 1220715, by the Center for the Development
of Nanoscience and Nanotechnology CEDENNA AFB220001, from Con-
icyt PIA/Anillo ACT192023 and by the supercomputing infrastructure
of the NLHPC (ECM-02).

L. Lang, P. Tavadze, A. Tellez et al.

Appendix A. Supplementary material

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cpc.2023.109063.

References

[1] X. Gonze, F. Jollet, F.A. Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze,
J.-M. Beuken, J. Bieder, A. Bokhanchuk, et al., Recent developments in the abinit
software package, Comput. Phys. Commun. 205 (2016) 106-131.

[2] X. Gonze, B. Amadon, G. Antonius, F. Arnardi, L. Baguet, J.-M. Beuken, J. Bieder, F.

Bottin, J. Bouchet, E. Bousquet, et al., The abinit project: impact, environment and

recent developments, Comput. Phys. Commun. 248 (2020) 107042.

A.H. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L. Baguet, J.

Bieder, F. Bottin, J. Bouchet, E. Bousquet, F. Bruneval, G. Brunin, D. Caliste, M. Coté,

J. Denier, C. Dreyer, P. Ghosez, M. Giantomassi, Y. Gillet, O. Gingras, D.R. Hamann,

G. Hautier, F. Jollet, G. Jomard, A. Martin, H.P.C. Miranda, F. Naccarato, G. Petretto,

N.A. Pike, V. Planes, S. Prokhorenko, T. Rangel, F. Ricci, G.-M. Rignanese, M. Royo,

M. Stengel, M. Torrent, M.J. van Setten, B. Van Troeye, M.J. Verstraete, J. Wiktor,

J.W. Zwanziger, X. Gonze, Abinit: overview and focus on selected capabilities, J.

Chem. Phys. 152 (12) (2020) 124102, https://doi.org/10.1063/1.5144261.

G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B

47 (1993) 558-561.

G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-

metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (1994)

14251-14269.

G. Kresse, J. Furthmiiller, Efficiency of ab-initio total energy calculations for metals

and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1) (1996)

15-50.

[7] G. Kresse, J. Furthmiiller, Efficient iterative schemes for ab initio total-energy cal-
culations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.

[8] A. Garcia, N. Papior, A. Akhtar, E. Artacho, V. Blum, E. Bosoni, P. Brandimarte, M.

Brandbyge, J.I. Cerd4, F. Corsetti, et al., Siesta: recent developments and applica-

tions, J. Chem. Phys. 152 (20) (2020).

P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, R.

Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A.D. Corso,

S. de Gironcoli, P. Delugas, R.A.D. Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo,

R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A.

Kokalj, E. Kiiciikbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-

V. Nguyen, A.O. de-la Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra,

M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N.

Vast, X. Wu, S. Baroni, Advanced capabilities for materials modelling with quantum

espresso, J. Phys. Condens. Matter 29 (46) (2017) 465901, http://stacks.iop.org/

0953-8984/29/i=46/a=465901.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,

G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G.

Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-

Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,

C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M.

Wentzcovitch, Quantum espresso: a modular and open-source software project for

quantum simulations of materials, J. Phys. Condens. Matter 21 (39) (2009) 395502,

http://www.quantum-espresso.org.

S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter,

V.L. Chevrier, K.A. Persson, G. Ceder, Python materials genomics (pymatgen): a

robust, open-source python library for materials analysis, Comput. Mater. Sci. 68

(2013) 314-319, https://doi.org/10.1016/j.commatsci.2012.10.028, https://www.

sciencedirect.com/science/article/pii/S0927025612006295.

G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, B. Kozinsky, Aiida: automated inter-

active infrastructure and database for computational science, Comput. Mater. Sci.

111 (2016) 218-230.

S. Curtarolo, W. Setyawan, G.L. Hart, M. Jahnatek, R.V. Chepulskii, R.H. Taylor, S.

Wang, J. Xue, K. Yang, O. Levy, et al., Aflow: an automatic framework for high-

throughput materials discovery, Comput. Mater. Sci. 58 (2012) 218-226.

V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, Vaspkit: a user-friendly interface

facilitating high-throughput computing and analysis using vasp code, Comput. Phys.

Commun. 267 (2021) 108033.

AM. Ganose, A. Searle, A. Jain, S.M. Griffin, Ifermi: a python library for Fermi

surface generation and analysis, J. Open Sour. Softw. 6 (59) (2021) 3089.

M.J. Rutter, C2x: a tool for visualisation and input preparation for castep and other

electronic structure codes, Comput. Phys. Commun. 225 (2018) 174-179.

K. Boguslawski, A. Leszczyk, A. Nowak, F. Brzek, P.S. Zuchowski, D. Kedziera,

P. Tecmer, Pythonic black-box electronic structure tool (pybest). An open-source

python platform for electronic structure calculations at the interface between chem-

istry and physics, Comput. Phys. Commun. 264 (2021) 107933.

K. Choudhary, K.F. Garrity, A.C. Reid, B. DeCost, A.J. Biacchi, A.R. Hight Walker,

Z. Trautt, J. Hattrick-Simpers, A.G. Kusne, A. Centrone, et al., The joint automated

repository for various integrated simulations (jarvis) for data-driven materials de-

sign, npj Comput. Mater. 6 (1) (2020) 173.

[3]

[4

=

[5]

[6]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

17

Computer Physics Communications 297 (2024) 109063

[19] K. Choudhary, B. DeCost, Atomistic line graph neural network for improved materi-
als property predictions, npj Comput. Mater. 7 (1) (2021) 185.
[20] EIk, http://elk.sourceforge.net/. (Accessed 26 November 2023), 2023.
[21] B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C. Camacho, C. Cevallos, M.
Deshaye, T. Dumitrica, A. Dominguez, et al., Dftb+, a software package for efficient
approximate density functional theory based atomistic simulations, J. Chem. Phys.
152 (12) (2020).
S.B. Dugdale, Life on the edge: a beginner’s guide to the Fermi surface, Phys. Scr.
91 (5) (2016) 053009, https://doi.org/10.1088/0031-8949/91/5/053009, https://
dx.doi.org/10.1088/0031-8949/91/5/053009.
[23] G. Petretto abipy, https://github.com/abinit/abipy, 2013.
[24] A. Kokalj, Xcrysden—a new program for displaying crystalline structures and
electron densities, J. Mol. Graph. Model. 17 (3) (1999) 176-179, https://
doi.org/10.1016/51093-3263(99)00028-5, https://www.sciencedirect.com/
science/article/pii/$1093326399000285.
U. Herath, P. Tavadze, X. He, E. Bousquet, S. Singh, F. Muiioz, A.H. Romero, Pyp-
rocar: a python library for electronic structure pre/post-processing, Comput. Phys.
Commun. 251 (2020) 107080, https://doi.org/10.1016/j.cpc.2019.107080, http://
www.sciencedirect.com/science/article/pii/S0010465519303935.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python, J.
Mach. Learn. Res. 12 (2011) 2825-2830.
E.V. Miu, J.R. McKone, G. Mpourmpakis, Global and local connectivities de-
scribe hydrogen intercalation in metal oxides, Phys. Rev. Lett. 131 (2023)
108001, https://doi.org/10.1103/PhysRevLett.131.108001, https://link.aps.org/
doi/10.1103/PhysRevLett.131.108001.
C.B. Sullivan, A.A. Kaszynski, Pyvista: 3d plotting and mesh analysis through a
streamlined interface for the visualization toolkit (vtk), J. Open Sour. Softw. 4 (37)
(2019) 1450, https://doi.org/10.21105/joss.01450.
[29] F. Pinilla, N. Vasquez, I. Chacén, J.R. Maze, C. Cardenas, F. Munoz, Spin-active
single photon emitters in hexagonal boron nitride from carbon-based defects, Phys.
Scr. 98 (9) (2023) 095505, https://doi.org/10.1088/1402-4896/acebld, https://
dx.doi.org/10.1088/1402-4896/acebld.
C. Jara, T. Rauch, S. Botti, M.A.L. Marques, A. Norambuena, R. Coto, J.E.
Castellanos-Aguila, J.R. Maze, F. Munoz, First-principles identification of single pho-
ton emitters based on carbon clusters in hexagonal boron nitride, J. Phys. Chem. A
125 (6) (2021) 1325-1335, https://doi.org/10.1021/acs.jpca.0c07339.
P. Auburger, A. Gali, Towards ab initio identification of paramagnetic substitutional
carbon defects in hexagonal boron nitride acting as quantum bits, Phys. Rev. B
104 (2021) 075410, https://doi.org/10.1103/PhysRevB.104.075410, https://link.
aps.org/doi/10.1103/PhysRevB.104.075410.
F. Evers, A.D. Mirlin, Fluctuations of the inverse participation ratio at the Ander-
son transition, Phys. Rev. Lett. 84 (2000) 3690-3693, https://doi.org/10.1103/
PhysRevLett.84.3690, https://link.aps.org/doi/10.1103/PhysRevLett.84.3690.
N.C. Murphy, R. Wortis, W.A. Atkinson, Generalized inverse participation ra-
tio as a possible measure of localization for interacting systems, Phys. Rev. B
83 (2011) 184206, https://doi.org/10.1103/PhysRevB.83.184206, https://link.aps.
org/doi/10.1103/PhysRevB.83.184206.
C. Pashartis, O. Rubel, Localization of electronic states in iii-v semiconduc-
tor alloys: a comparative study, Phys. Rev. Appl. 7 (2017) 064011, https://
doi.org/10.1103/PhysRevApplied.7.064011, https://link.aps.org/doi/10.1103/
PhysRevApplied.7.064011.
F. Munoz, F. Pinilla, J. Mella, M.I. Molina, Topological properties of a bipartite
lattice of domain wall states, Sci. Rep. 8 (1) (2018) 17330, https://doi.org/10.1038/
541598-018-35651-6.
C. Linderilv, W. Wieczorek, P. Erhart, Vibrational signatures for the identification of
single-photon emitters in hexagonal boron nitride, Phys. Rev. B 103 (2021) 115421,
https://doi.org/10.1103/PhysRevB.103.115421, https://link.aps.org/doi/10.1103/
PhysRevB.103.115421.
M. Malki, G.S. Uhrig, Delocalization of edge states in topological phases, Europhys.
Lett. 127 (2) (2019) 27001, https://doi.org/10.1209/0295-5075/127/27001.
H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Topological insulators in
Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5 (6)
(2009) 438-442.
M.W. Doherty, N.B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L.C. Hol-
lenberg, The nitrogen-vacancy colour centre in diamond, in: The Nitrogen-
Vacancy Colour Centre in Diamond, Phys. Rep. 528 (1) (2013) 1-45, https://
doi.org/10.1016/j.physrep.2013.02.001, https://www.sciencedirect.com/science/
article/pii/S0370157313000562.
Y. Jin, M. Govoni, G. Wolfowicz, S.E. Sullivan, F.J. Heremans, D.D. Awschalom,
G. Galli, Photoluminescence spectra of point defects in semiconductors: val-
idation of first-principles calculations, Phys. Rev. Mater. 5 (2021) 084603,
https://doi.org/10.1103/PhysRevMaterials.5.084603, https://link.aps.org/doi/10.
1103/PhysRevMaterials.5.084603.
F. Munoz, M. Vergniory, T. Rauch, J. Henk, E.V. Chulkov, 1. Mertig, S. Botti, M.A.
Marques, A. Romero, Topological crystalline insulator in a new bi semiconducting
phase, Sci. Rep. 6 (1) (2016) 21790, https://doi.org/10.1038/srep21790.

[22]

[25]

[26]

[27]

[28]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

https://doi.org/10.1016/j.cpc.2023.109063
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib71A16A8EE702D4669AACCBC080E66659s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib71A16A8EE702D4669AACCBC080E66659s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib71A16A8EE702D4669AACCBC080E66659s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib57C70FBB57BCCDF0ECCEAFF50208B40Fs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib57C70FBB57BCCDF0ECCEAFF50208B40Fs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib57C70FBB57BCCDF0ECCEAFF50208B40Fs1
https://doi.org/10.1063/1.5144261
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib1738294D9B59BCEC5705EF09B3AF18D8s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib1738294D9B59BCEC5705EF09B3AF18D8s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bibB77CF164218561AA4A7FFB67B69D286Fs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bibB77CF164218561AA4A7FFB67B69D286Fs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bibB77CF164218561AA4A7FFB67B69D286Fs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib00D351E64B9EA93A1D851CEC212A7F7Cs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib00D351E64B9EA93A1D851CEC212A7F7Cs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib00D351E64B9EA93A1D851CEC212A7F7Cs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib9471939F9C38F40C245172A02672E08Fs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib9471939F9C38F40C245172A02672E08Fs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib70A51839A6CFE3CD7A834E751A78DE58s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib70A51839A6CFE3CD7A834E751A78DE58s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib70A51839A6CFE3CD7A834E751A78DE58s1
http://stacks.iop.org/0953-8984/29/i=46/a=465901
http://stacks.iop.org/0953-8984/29/i=46/a=465901
http://www.quantum-espresso.org
https://doi.org/10.1016/j.commatsci.2012.10.028
https://www.sciencedirect.com/science/article/pii/S0927025612006295
https://www.sciencedirect.com/science/article/pii/S0927025612006295
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib110166C71909F1A30477E8CD115B7AE0s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib110166C71909F1A30477E8CD115B7AE0s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib110166C71909F1A30477E8CD115B7AE0s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib3E14A5473DD1E08B28FFD3AABDD753DFs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib3E14A5473DD1E08B28FFD3AABDD753DFs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib3E14A5473DD1E08B28FFD3AABDD753DFs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib26F00696CB9691DB0A023628F6B9820As1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib26F00696CB9691DB0A023628F6B9820As1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib26F00696CB9691DB0A023628F6B9820As1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib7DE65EAC4F7C82DA899D7E3770980CFDs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib7DE65EAC4F7C82DA899D7E3770980CFDs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib3D903F5279849795BB7659C4BA6FE557s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib3D903F5279849795BB7659C4BA6FE557s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib0CE2E990D574080554E0E630F9FEC82Fs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib0CE2E990D574080554E0E630F9FEC82Fs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib0CE2E990D574080554E0E630F9FEC82Fs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib0CE2E990D574080554E0E630F9FEC82Fs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bibE1AFC6C431027CF72BD6BA195BF6FE8Ds1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bibE1AFC6C431027CF72BD6BA195BF6FE8Ds1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bibE1AFC6C431027CF72BD6BA195BF6FE8Ds1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bibE1AFC6C431027CF72BD6BA195BF6FE8Ds1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bibBA271F60694066A3797A33A8E8D7A338s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bibBA271F60694066A3797A33A8E8D7A338s1
http://elk.sourceforge.net/
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib5C216869F444687387C66B0389C7EE00s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib5C216869F444687387C66B0389C7EE00s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib5C216869F444687387C66B0389C7EE00s1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib5C216869F444687387C66B0389C7EE00s1
https://doi.org/10.1088/0031-8949/91/5/053009
https://dx.doi.org/10.1088/0031-8949/91/5/053009
https://dx.doi.org/10.1088/0031-8949/91/5/053009
https://github.com/abinit/abipy
https://doi.org/10.1016/S1093-3263(99)00028-5
https://doi.org/10.1016/S1093-3263(99)00028-5
https://www.sciencedirect.com/science/article/pii/S1093326399000285
https://www.sciencedirect.com/science/article/pii/S1093326399000285
https://doi.org/10.1016/j.cpc.2019.107080
http://www.sciencedirect.com/science/article/pii/S0010465519303935
http://www.sciencedirect.com/science/article/pii/S0010465519303935
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
https://doi.org/10.1103/PhysRevLett.131.108001
https://link.aps.org/doi/10.1103/PhysRevLett.131.108001
https://link.aps.org/doi/10.1103/PhysRevLett.131.108001
https://doi.org/10.21105/joss.01450
https://doi.org/10.1088/1402-4896/aceb1d
https://dx.doi.org/10.1088/1402-4896/aceb1d
https://dx.doi.org/10.1088/1402-4896/aceb1d
https://doi.org/10.1021/acs.jpca.0c07339
https://doi.org/10.1103/PhysRevB.104.075410
https://link.aps.org/doi/10.1103/PhysRevB.104.075410
https://link.aps.org/doi/10.1103/PhysRevB.104.075410
https://doi.org/10.1103/PhysRevLett.84.3690
https://doi.org/10.1103/PhysRevLett.84.3690
https://link.aps.org/doi/10.1103/PhysRevLett.84.3690
https://doi.org/10.1103/PhysRevB.83.184206
https://link.aps.org/doi/10.1103/PhysRevB.83.184206
https://link.aps.org/doi/10.1103/PhysRevB.83.184206
https://doi.org/10.1103/PhysRevApplied.7.064011
https://doi.org/10.1103/PhysRevApplied.7.064011
https://link.aps.org/doi/10.1103/PhysRevApplied.7.064011
https://link.aps.org/doi/10.1103/PhysRevApplied.7.064011
https://doi.org/10.1038/s41598-018-35651-6
https://doi.org/10.1038/s41598-018-35651-6
https://doi.org/10.1103/PhysRevB.103.115421
https://link.aps.org/doi/10.1103/PhysRevB.103.115421
https://link.aps.org/doi/10.1103/PhysRevB.103.115421
https://doi.org/10.1209/0295-5075/127/27001
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib8B0B77278AB089F648FF31CEC8DE02EBs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib8B0B77278AB089F648FF31CEC8DE02EBs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bib8B0B77278AB089F648FF31CEC8DE02EBs1
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1016/j.physrep.2013.02.001
https://www.sciencedirect.com/science/article/pii/S0370157313000562
https://www.sciencedirect.com/science/article/pii/S0370157313000562
https://doi.org/10.1103/PhysRevMaterials.5.084603
https://link.aps.org/doi/10.1103/PhysRevMaterials.5.084603
https://link.aps.org/doi/10.1103/PhysRevMaterials.5.084603
https://doi.org/10.1038/srep21790

L. Lang, P. Tavadze, A. Tellez et al. Computer Physics Communications 297 (2024) 109063

[42] 1. Aguilera, H.-J. Kim, C. Friedrich, G. Bihlmayer, S. Bliigel, z_2 topology of bismuth, [44] E. Parzen, On estimation of a probability density function and mode, Ann. Math.
Phys. Rev. Mater. 5 (2021) L091201, https://doi.org/10.1103/PhysRevMaterials.5. Stat. 33 (3) (1962) 1065-1076, https://doi.org/10.1214/aoms/1177728190.
1091201, https://link.aps.org/doi/10.1103/PhysRevMaterials.5.L.091201. [45] R. Nelson, C. Ertural, J. George, V.L. Deringer, G. Hautier, R. Dronskowski,

[43] D. Shoenberg, The Fermi surfaces of copper, silver and gold. I. The de Haas-Van Lobster: local orbital projections, atomic charges, and chemical-bonding analysis
alphen effect, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 255 (1052) (1962) from projector-augmented-wave-based density-functional theory, J. Comput. Chem.
85-133, https://doi.org/10.1098/rsta.1962.0011, https://royalsocietypublishing. 41 (21) (2020) 1931-1940.

org/doi/pdf/10.1098/rsta.1962.0011, https://royalsocietypublishing.org/doi/abs/
10.1098/rsta.1962.0011.

18

https://doi.org/10.1103/PhysRevMaterials.5.L091201
https://doi.org/10.1103/PhysRevMaterials.5.L091201
https://link.aps.org/doi/10.1103/PhysRevMaterials.5.L091201
https://doi.org/10.1098/rsta.1962.0011
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1962.0011
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1962.0011
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1962.0011
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1962.0011
https://doi.org/10.1214/aoms/1177728190
http://refhub.elsevier.com/S0010-4655(23)00408-3/bibE5CFFF6038362A420380A0730A09D1ADs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bibE5CFFF6038362A420380A0730A09D1ADs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bibE5CFFF6038362A420380A0730A09D1ADs1
http://refhub.elsevier.com/S0010-4655(23)00408-3/bibE5CFFF6038362A420380A0730A09D1ADs1

	Expanding PyProcar for new features, maintainability, and reliability
	1 Introduction
	2 Summary of improvements
	3 Refining architecture, DFT compatibility, and usability
	3.1 PyProcar architecture
	3.1.1 Modularized library

	3.2 DFT code support
	3.2.1 Standardizing data with core classes
	3.2.2 Unified parsing with the parser class
	3.2.3 Required files for supported codes

	3.3 Example data repository and testing
	3.3.1 Repository structure
	3.3.2 Data download functions
	3.3.3 Testing

	4 New features
	4.1 Configuration files
	4.2 Atom-like energy levels plot
	4.3 Inverse participation ratio
	4.4 Automatic correlation between geometrical and electronic ‘features’
	4.5 Support for density of states and projected density of states
	4.6 Unified plotting of band structure and density of states
	4.7 Simultaneous comparison of band structures from different DFT codes
	4.8 2D Fermi surface and projected Fermi surface plotting
	4.9 Visualizing 3D and projected Fermi surfaces with PyProcar
	4.9.1 plot_fermi_surface
	4.9.2 plot_fermi_isoslider
	4.9.3 create_isovalue_gif
	4.9.4 plot_fermi_cross_section
	4.9.5 plot_fermi_cross_section_box_widget

	4.10 2D bandstructure plotting
	4.11 Derivative calculation of band energies
	4.12 PyPoscar

	5 Outlook
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Declaration of generative AI and AI-assisted technologies in the writing process
	Acknowledgements
	Appendix A Supplementary material
	References

