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Abstract— Deep reinforcement learning (DRL) is a promising
method to learn control policies for robots only from demon-
stration and experience. To cover the whole dynamic behaviour
of the robot, DRL training is an active exploration process
typically performed in simulation environments. Although this
simulation training is cheap and fast, applying DRL algorithms
to real-world settings is difficult. If agents are trained until
they perform safely in simulation, transferring them to physical
systems is difficult due to the sim-to-real gap caused by the
difference between the simulation dynamics and the physical
robot. In this paper, we present a method of online training
a DRL agent to drive autonomously on a physical vehicle
by using a model-based safety supervisor. Our solution uses
a supervisory system to check if the action selected by the
agent is safe or unsafe and ensure that a safe action is always
implemented on the vehicle. With this, we can bypass the sim-to-
real problem while training the DRL algorithm safely, quickly,
and efficiently. We compare our method with conventional
learning in simulation and on a physical vehicle. We provide a
variety of real-world experiments where we train online a small-
scale vehicle to drive autonomously with no prior simulation
training. The evaluation results show that our method trains
agents with improved sample efficiency while never crashing,
and the trained agents demonstrate better driving performance
than those trained in simulation.

I. INTRODUCTION

A. Motivation

Deep reinforcement learning (DRL) is a growing, popular
method in autonomous system control [1]. Like humans
that learn from experiences over time, DRL algorithms
learn control mappings from sensor readings to planning
commands using only observations from the environment
and reward signals defined by the engineer. In contrast
to humans who learn in the real world, DRL agents are
usually trained in simulation. These simulation environments
require accurate sensor and dynamics models to represent the
robot and its surrounding environment. Unfortunately, the
accuracy of simulation environments is limited to maintain
good computation time, resulting in the sim-to-real gap when
the simulation-trained DRL agent is transferred to a real-
world system [2].
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Fig. 1. A supervisor ensures the safety of a real-world vehicle during
training a DRL agent. The supervisor uses the agent’s action and the
vehicle’s pose to ensure that a safe action is selected.

It is desirable to train an agent directly on the robot,
thus altogether avoiding the sim-to-real gap [3]. An inherent
challenge in the online training of DRL algorithms on
real-world robots is that DRL algorithms rely on crashing
during training, meaning that training on a physical robot
is very difficult or nearly impossible [4]. Crashing physical
robots is expensive and a safety concern for the surrounding
humans [5]. Therefore, being able to train DRL agents safely,
crash-free onboard physical robots would enable the appli-
cation of DRL agents to more physical platforms. Further, it
can be expected that bypassing the sim-to-real gap will lead
to improved DRL policies.

B. Contributions

We address the problem of training DRL agents (with no
prior simulation training) on physical vehicles, thus ensuring
their safety during the training process. Figure 1 shows our
approach of using a supervisor to guarantee the vehicle’s
safety during the DRL agent training. The supervisory sys-
tem uses a viability kernel (set of safe states) and vehicle
model to check if the DRL agent’s action is safe. If the DRL
action is unsafe, a safe action from a pure pursuit controller
is implemented. After training is completed, the supervisor is
removed and the performance of the DRL agent is evaluated.
This work has three main contributions:

• We combine a supervisory system with a DRL agent to
guarantee crash-free training.

• We demonstrate that training an agent with a supervisor
results in safe, robust, sample-efficient training of DRL
agents in simulation and reality.

• We demonstrate agents trained onboard a real-world
robot with the supervisor can effectively bypass the
sim-to-real gap by outperforming an agent trained in
simulation.
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In §II, we study the literature on using DRL for au-
tonomous vehicles. The methodology describes the F1Tenth
platform in §III-A, the supervisory system in §III-B, the
DRL formulation in III-C and the safety kernel generation in
§III-D. We present the simulation and real-world evaluation
results in §IV-A and §IV-B, respectively.

II. RELATED WORK

We discuss works related to DRL for autonomous vehicles,
safe DRL training, and online DRL training.

DRL for autonomous vehicles: Many variations of
DRL-based methods (model-based, model-free) have been
implemented to derive control commands for autonomous
vehicles from raw sensor inputs. The authors of [6], [7]
used Deep Q-Learning (DQN) to learn steering manoeuvres
for autonomous systems and [8], [9] used the soft-actor-
critic (SAC) algorithm. Numerous deep learning studies are
only evaluated in simulation because they are not practically
feasible [10], [11], [12]. Of the DRL algorithms applied to
physical systems, the dominant approach in the literature is
to train the agents in simulation before transferring them
to real vehicles [13], [14]. Evaluations show that DRL is
an effective method of autonomous vehicle control, but the
sim-to-real gap remains a challenge [15].

Safe DRL training: In [16] and [17], a risk-based ap-
proach is used to guarantee safety constraints during DRL
training. While [16] uses a Monte Carlo tree search (MCTS)
to reduce unsafe behaviours of the agent while training, [17]
uses the estimation of trust region constraint to allow large
update steps. Temporal logic specifications have also been
used to enforce safety constraints during training [18], [19],
[20]. A risk-based approach is poorly suited to autonomous
vehicles since estimates of the risk cannot provide safety
guarantees. Wang et al. [21] focuses on ensuring the legal
safety of the vehicle by following traffic rules by using
a safety layer based on control barrier functions. Control
barrier functions and similar set theory techniques have been
used in several safety-critical learning problems [22], but
have been focused on applications where a safe setting can
be assumed [23] or the dynamics can be simplified to linear
(affine) equations [24].

Online DRL training: Training a DRL agent for au-
tonomous driving is difficult since the only input regarding
the map is an occupancy grid indicating if a block is open
or filled. Kendal et al. [25] trained a DRL agent on a real-
world vehicle using a safety driver (human intervention [26])
that decides to intervene if they think the car’s position is
unsafe. Bosello et al. [27] showed that a DRL algorithm on
an autonomous vehicle could be trained by simply reversing
the vehicle if it was near to crashing. These approaches
demonstrate that online training for autonomous robots is
a viable idea but is limited by a simplistic safety system.
Musau et al. [28] used formal reachability theory to enable
online training on a small-scale vehicle. Their method esti-
mates future states of the vehicle in real-time resulting in it
being computationally intensive and poorly suited to onboard
hardware with limited computation.

In summary, safe online DRL training is a growing field
that requires further investigation to explore how DRL agents
can be trained onboard real-world robots while guaranteeing
safety at the same time. Viable approaches should use the
track occupancy grid to determine when the vehicle is on
the edge of safety and only then intervene.

III. METHODOLOGY

A. F1Tenth Platform

F1Tenth racing cars are 1/10th the size of real F1 ve-
hicles and are used as a test-bed for autonomous algo-
rithms [29]. The platform focuses on safe algorithms that run
autonomously onboard the vehicle. The cars are equipped
with a LiDAR scanner for sensing the environment, an
NVIDIA Jetson NX as the main computation platform, a
variable electronic speed controller (VESC) and drive motor
to move the vehicle forwards, and a servo motor to steer
the front wheels. The vehicle uses the ROS2 middleware
for the sensors, software components and control signals to
communicate with each other.

Problem: We approach the problem of training a DRL
agent to drive a F1Tenth vehicle autonomously around a
provided race track. The task of planning is to use the
onboard sensor measurements, LiDAR scan and odometry
(estimated using a particle filter [30]) to calculate an optimal
steering angle δ and velocity v that results in the vehicle
driving around the track. Training a DRL agent means
randomly initializing a policy (neural network), then using
the policy to collect experience, and using the collected
samples to adjust the policy parameters until the agent can
drive around the track.

Vehicle Model: The vehicle is a controlled discrete-time
system such that xk+1 = f(xk,u). The vehicle state at
the current timestep xk, comprises the vehicle location in
the x and y directions and the vehicle orientation, such
that xk = [X,Y, θ]. The vehicle control u consists of a
steering angle δ, and velocity v, such that u = [δ, v]. In our
experiments, the vehicle speed is kept constant. State updates
are performed using the single-track vehicle model [31]. The
additional state variables in the single-track model (e.g. slip
angle) are set to 0 before each update.

B. Supervisory Safety System

In contrast to solutions that train DRL agents in simulation
and transfer them to physical vehicles [13], we present a
safety supervisor that enables the training of DRL agents
onboard the physical vehicle. We present the training archi-
tecture followed by a description of the supervisor operation.

Supervisory Training Architecture: The training archi-
tecture, shown in Figure 1, uses the supervisor to monitor the
agent and ensure that only safe actions are implemented on
the vehicle. Safe actions are those that do not lead the vehicle
to crash into the boundary and are recursively feasible, i.e.
after taking a safe action; another safe action will definitely
exist. When training is complete, the agent is tested by
removing the supervisor to demonstrate that the agent has
learned to drive safely around the track.
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Supervisor Operation: Figure 2 shows how the super-
visor fulfils its role of ensuring that only safe actions are
implemented on the vehicle through a three-step process of
(1) using the current state and action to calculate the next
state, (2) checking if the next state is safe, and (3) if unsafe,
selecting a safe action.

The supervisor checks if an action u0 is safe by using the
current vehicle pose xt and a dynamics model to simulate
the next state where the vehicle will be after the planning
timestep. A kernel of all the possible states (positions and
orientation) of the vehicle on the map is divided into the
subsets of safe states Xsafe and unsafe states through a
process described in Section III-D. The next state is evaluated
for safety by checking if it is in the subset of safe states. If the
next state is safe, then the agent action can be implemented;
otherwise, a safe action must be selected.

Selecting a safe action usafe is done using a pure pursuit
controller [32] that uses the single-track model of the car to
calculate a steering angle that follows the centerline of the
race track [33]. Using the pure pursuit controller in this way
ensures that the vehicle will always move towards the center
of the track where it is safe, away from the potential danger
of the track boundaries.

C. Supervisory Reinforcement Learning

Reinforcement learning problems are modelled as Markov
Decision Processes (MDPs) having a state space, action
space, reward signal and transition probability. During train-
ing, the agent, consisting of a neural network, receives a state
and selects an action that is implemented and a new state and
reward are returned to the agent. The agent’s experience of
states, actions, next states and rewards is stored in a buffer
and used to update the neural network parameters to select
actions that maximise the reward signal. We use the twin-
delayed-deep-deterministic-policy-gradient (TD3) algorithm
[34] to train our agents to select continuous control actions.

The DRL agent uses neural networks with two fully
connected hidden layers of 100 neurons each and the ReLu
activation function. The agent’s state vector (input) consists
of 20 evenly sliced beams from the LiDAR scan scaled from
the LiDAR beam range of 10 m to the range [0, 1]. The
output is the steering angle, scaled from [-1, 1] (realized

Unsafe

Safe

Simulate Next State Check Safety
Select Safe Action1 2
3

Centre line
Kernel of

Safe states
Vehicle dynamic model

If unsafe

Fig. 2. The supervisor ensures safety by simulating the next state, checking
if the resulting state is safe and if unsafe, then selecting a safe action.

using the tanh activation function) to the steering angle range
of 0.4 rad. The planners operate at a frequency of 10 Hz.

Training Reformulation: In conventional RL, an episode
is an ordered set (or trajectory) of state, action, reward,
and done tuples, from an initial state to a terminal state
(crashing or completing a lap). Using the supervisor, the
agent never crashes and always completes laps. Additionally,
if the supervisor intervenes, a different action is implemented
on the vehicle to that which the agent selected, breaking the
link between state, action and next state.

Original Episode Format

Reformulated Episode Number
1

Ep. 1

Ep. 2

2 3 4 5 6 7 8

Ep. 3

Start

Vehicle 
Path

Crash

Supervisor
Intervention

Fig. 3. Example vehicle paths comparing the original episode format of
crashing and resetting against the reformulated episodes of the supervisor
intervening.

Using the supervisor, we define an episode to run from
the initial state until the supervisor intervenes. When the
supervisor intervenes, it is recorded as a terminal state, and
the supervisor gives the agent a penalty of -1. This penalty
for unsafe actions is the only reward used by our method.
Figure 3 shows how the definition of an episode has been
changed from conventionally requiring many episodes with
resetting the vehicle to shorter episodes running while the
supervisor does not intervene.

D. Safety Kernel Generation

The supervisor uses a list (or kernel) of recursively safe
states to ensure vehicle safety. As previously mentioned, safe
states are defined as states that do not lead to the vehicle
crashing into the boundary and are recursively feasible,
meaning that every safe state has an action that leads to
another safe state. The formulation and generation of the
kernel of safe states are based on the work by Liniger et
al. [35].

The state space X is discretized into a countable number
of states Xh. The track map is split into a finite number
of blocks by gridding the map with a uniform grid with
a resolution of 40 blocks per meter. The orientation angle
θ is split into 41 even angle segments. The control space
U , consisting of the steering angle range, is split into 9
evenly spaced control modes. The discrete states are used
to formulate the dynamics as a difference inclusion where
the next state xk+1 is in the set of possible next states,
xk+1 ∈ F (xk). For a given state, the set of all possible next
states is written as F (xk) = {f(xk, δ) | δ ∈ [−δmax, δmax]}.

The kernel of safe states Xsafe is a subset of the discrete
state space Xh, for which there exists a safe action. The
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kernel is calculated using the recursive viability kernel algo-
rithm,

K0 = Ktrack

Ki+1 = {xh ∈ Ki | ∀ F (xh) ∩Ki �= ∅}.
(1)

Track Boundary Unsafe Region Safe Region, 

31 2

Fig. 4. Three stages of kernel growth for a corner on a race track with
the vehicle pointing towards the right. Note that the kernel shape (and safe
region) depends on the vehicle orientation.

The viability kernel algorithm in Equation 1 generates
a set of states for which there recursively exists an action
that causes the vehicle to remain within the kernel. The
algorithm’s safe set is initialized (K0) to all the states on
the drive-able area of the race track being safe, Ktrack. The
algorithm then recursively generates smaller safe sets by
looping through each safe state from the previous iteration
and including only states for which there exists an action that
leads to another safe state. Formally, this process is defined
as selecting states for which the intersection of the next states
and the kernel is not equal to the empty set. This process
results in a 3-dimensional kernel of recursively feasible safe
states, Xsafe. Figure 4 shows how the kernel grows inwards
from the track boundaries until all remaining states are safe.
While the kernel shape depends on the vehicle orientation,
Figure 4 visualises the kernel with the vehicle orientation
pointing towards the right.

IV. EVALUATION

We compare training using a supervisor against the con-
ventional learning baseline in simulation. Then, online learn-
ing onboard a physical vehicle is compared to an agent
trained in simulation and tested on a real-world platform.

Baseline: The baseline agent is trained with conventional
DRL, where it crashes and is reset to a starting position. The
baseline agent reward has a punishment of -1 for crashing, a
reward of 1 for completing a lap and a shaped reward relative
to the centerline progress (same as [13]). The shaped reward
is calculated as, rt = (pt − pt−1)/ptotal, where pt is the
centerline progress at timestep t, scaled according to the total
centerline length ptotal. For completed laps, the baseline agent
receives a reward of 2, where 1 is the sum of intermediate
progress rewards and 1 is for lap completion.

A. Simulation Tests

Conventional and online learning are compared in the
open-source F1Tenth simulator [36] on scaled F1 race tracks.
The experiments are repeated three times using different
random seeds and the average used, and for each repetition,

20 test laps are completed. The simulation results use a
constant speed of 2 m/s. Table I shows the shape of the
AUT, MCO, GBR, and ESP tracks (from [27]), with the
mean times used for the lap time normalisation. The maps
come from Austria, Spain, England, and Monaco.

Track AUT ESP GBR MCO

Image

Mean lap time (s) 46.7 116.4 100.2 86.6

TABLE I
TRACK IMAGES AND MEAN LAP TIMES FOR THE SCALED MAPS.

Training Comparison: Figure 5 shows the average
episode rewards earned during the training of the baseline
agents for 40,000 steps (left) and the online agents for 6,000
steps (right). The conventional agents start with earning a
reward near -1, indicating they crash quickly. After around
20k steps, the average reward converges to between 1 and
2. The online agents start earning large negative rewards of
around -100 or the AUT track and -250 for the other tracks,
indicating that the supervisor intervenes a lot at the beginning
of training. After around 4k training steps the agents all
receive near to 0 reward indicating that the supervisor seldom
intervenes.

Fig. 5. Rewards earned during training of the baseline (left) and online
(right) agents on the AUT, MCO, GBR and ESP maps in simulation.

Therefore, the simulated training comparison demonstrates
that online training is more sample efficient than conven-
tional training requiring only 6k training steps.

Performance Comparison: We study the performance of
the baseline and online agents by considering the normalised
lap times and success rates.
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Fig. 6. Lap times and total curvature of the baseline and online agents
compared to a pure pursuit planner.
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Fig. 7. Training lap (starting at the red cross) of the
safety agent (blue line) with the locations where the
agent stopped to train (yellow dots).
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Fig. 8. Comparison of steering actions selected by the agent (green) and those implemented
by the safety system (blue) during training of the safety agent in simulation in environment 1.

Figure 6 shows bar plots of the normalised lap times
and success rates of the baseline and online agents. The
error bars represent the minimum and maximum values
from the three repetitions. The lap times are normalised by
dividing them by the mean times shown in Table I. The
success rate is the percentage of the test laps that were
completed without the vehicle colliding. The agents trained
with the supervisor achieved lower normalised lap times and
higher success rates on all maps. For example, on the MCO
track, the agent trained with the supervisor achieves a 95%
average completion rate, while the conventionally trained
agent achieves only 70%. The simulation results indicate that
training with a supervisor results in faster lap times with
higher success rates.

B. Real-world Tests
The supervisor is used to train a DRL agent, with no

a priori knowledge or training, onboard a vehicle to drive
around a track autonomously. The vehicle is trained by
completing two laps in environment 1 (around 800 steps),
driving at a constant speed of 2 m/s. Figure 7 shows the
first training lap of a randomly initialised agent being trained
online using the supervisor. The trajectory shows the agent’s
squiggles as it veers to one side and then to the other. Due
to the computation burden of training the agent, the vehicle
collects 20 steps of experience and then stops to train before
continuing to collect more data (shown by yellow dots). The
entire training process of driving two laps while stopping to
train takes around 10 minutes.

Supervisor Effect: A graph comparing the steering angles
selected by the agent (green) and the safe actions imple-
mented by the supervisor (blue) is shown in Figure 8. At
the beginning of the training, the agent rarely selects safe
actions. As the training progresses, the agent selects more
safe actions, and towards the end, the agent rarely selects an
unsafe action. This result shows the supervisor’s behaviour
in preventing the agent from taking unsafe actions during the
initial stage of training, and how, as the agent is trained, it
learns to select safe actions without requiring the supervisor.

Online Training Rewards: We investigate the rewards
earned by the agent during training with the supervisory
system. We use the sum of the reward achieved every 20
steps (the interval of data collection between the agent
stopping to train) as the metric to measure the online training
performance. The worst reward is -20 if the supervisor

intervenes at every step, and the maximum reward is 0 if
the supervisor never intervenes.

0 2 4 6 8
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−10

0

Training Steps (x100)
R

ew
ar

d
(2

0
St

ep
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Fig. 9. Training rewards per 20 steps for safety agent trained on the
physical vehicle (blue dots) with moving average (red).

Figure 9 shows a graph of the sum of rewards achieved
every 20 steps by the agent trained online the physical
vehicle. The graph shows that in the beginning, the agent
receives low rewards; as time progresses, the agent receives
higher rewards. After around only 400 steps, the agent
displays a significant improvement, which corresponds to
the graph of safe steering actions in Figure 8 showing that
the agent requires less intervention between 300-400 training
steps. This result shows that our method of using a supervisor
is effective for training a DRL agent onboard a real-world
vehicle in only 800 training steps.

Quantitative Analysis: We compare a DRL agent trained
online a physical vehicle with the safety system against
a baseline agent, trained offline in a simulator and then
transferred to the vehicle. The baseline agent is trained in
simulation on the environment 1 map for 30,000 steps.

Table II presents the quantitative results of the offline
(baseline), and online (supervisor) trained DRL agents in
two different environments with the metrics of distance
travelled, lap time, absolute mean steering and curvature.
The agent trained with the supervisor generally leads to
a lower mean steering angle and lower total curvature of
the trajectories, resulting in lower distance travelled and
lower corresponding lap times than the baseline agents. For
example, on the physical vehicle driving in environment 1
(shown in Figure 10), the baseline agent travelled 65.0 m,
while the supervisory agent travelled only 59.8 m, which is
5.2 m shorter. The average steering angle for the supervisory
agent was 0.03 radians, compared to the mean steering angle
for the baseline of 0.3 radians. The baseline total curvature

329

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 13,2025 at 20:36:07 UTC from IEEE Xplore.  Restrictions apply. 



Environment 1 Environment 2

Simulation Reality Simulation Reality
Baseline Supervisor Baseline Supervisor Baseline Supervisor Baseline Supervisor

Distance Driven in m 65.0 59.8 65.68 61.6 17.0 15.6 18.8 17.3
Lap-time in s 32.8 31.1 35.5 32.5 12.9 11.1 12.8 10.1
Mean Steering Angle in rad 0.30 0.03 0.22 0.06 0.36 0.11 0.31 0.09
Total Curvature in m−1 274.6 34.2 207.5 86.3 119.1 44.9 86.6 49.3

TABLE II
QUANTITATIVE COMPARISON OF ONLINE AND OFFLINE TRAINED DRL AGENTS IN TWO DIFFERENT ENVIRONMENTS.

was significantly more (207.5) than the supervisory agent’s
(86.3).

This result demonstrates that training agents with the
supervisor outperforms conventionally trained DRL agents
on real-world vehicles with smoother steering actions. Al-
though the supervisory agent also performs worse in reality
compared to simulation, training the DRL agent on the real
car shows a definite improvement in the performance of the
physical vehicle compared to the baseline.

Qualitative Analysis: Figure 10 shows the real-world
trajectories for the baseline agent trained in simulation (red)
and our method trained onboard the vehicle (blue). In the left
image on environment 1 (training track), the baseline selects
a squiggly, un-smooth path, regularly coming close to the
track boundaries and almost crashing. In contrast, the DRL
agent trained onboard the vehicle using the supervisor has a
much smoother trajectory, driving in a line through straights
and smoothly turning corners.

Fig. 10. Comparing the test trajectories of the baseline (red) and online
(blue) agents on environment 1 (left) and environment 2 (right)

Robustness: A crucial aspect of DRL agents is their
ability to learn general policies that can be transferred to
other environments. Both the agents trained in simulation
and on the physical vehicle are tested on the track they
were trained on (environment 1) and a different test track
(environment 2, right in Figure 10). Due to the reduced
size of the track, the speed was reduced to 1.5 m/s. The
first observation is that both the baseline and supervisory

agents can complete laps on a different track to the one
that they were trained on, highlighting the advantage of
the flexibility and adequate generalization of DRL agents.
The right image in Figure 10 shows that the trajectories
followed in environment 2 display a similar pattern to that
of environment 1. The supervisory agent takes a smoother
path and swerves less than the baseline. This outcome is
reinforced by the quantitative results in Table II, which
show that the agent trained with the supervisor achieves a
shorter lap time (1.5 s different), with a lower mean steering
angle (0.09 versus 0.31) and less total curvature (49.3 versus
86.6) than the baseline planner. Therefore, we conclude that
training a DRL agent onboard with a supervisor results
in more general behaviour, as demonstrated by improving
performance on a different track.

V. CONCLUSION

This paper presented a supervisory safety system capable
of training a DRL agent for autonomous driving online
on the vehicle car. The supervisor ensures vehicle safety
by checking if the DRL agent’s action is safe or unsafe,
using a pure pursuit planner to select a safe action. We did
two evaluations to prove the algorithm’s robustness, once
in simulation and once on a physical real-world vehicle.
The evaluation in simulation demonstrated that using the
supervisor to train agents results in lower lap times and
higher success rates while requiring fewer training steps.
The real-world test demonstrated that the supervisory sys-
tem is effective for safely training a randomly initialized
agent onboard a physical vehicle. The autonomous vehicle
demonstrated a safely driven path in the given environment.
The results showed that the agent trained online with the
supervisor performed better than the agent trained purely in
simulation by driving a shorter path around the track, and
selecting a smoother path than the baseline without requiring
additional measures (such as reward hacking in [27] or
action regularisation in [13]). The agent trained with the
supervisor could transfer to an environment unseen during
training where it outperformed the conventionally trained
agent. These results demonstrate that our method effectively
bypasses the sim-to-real gap by training agents onboard real-
world vehicles.

Future work should address expanding safe learning on-
board physical robots to other physical platforms such as
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UAV control and high-speed autonomous racing. This task
requires extending the principle of formulating a supervisor
and a safety policy to operate the robotic system at its perfor-
mance limits and include more control actions, e.g. velocity,
acceleration, and various vehicle dynamics parameters.
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