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Abstract

Graph neural networks are powerful graph representation
learners in which node representations are highly influenced
by features of neighboring nodes. Prior work on individual
fairness in graphs has focused only on node features rather
than structural issues. However, from the perspective of fair-
ness in high-stakes applications, structural fairness is also im-
portant, and the learned representations may be systemati-
cally and undesirably biased against unprivileged individuals
due to a lack of structural awareness in the learning process.
In this work, we propose a pre-processing bias mitigation ap-
proach for individual fairness that gives importance to local
and global structural features. We mitigate the local struc-
ture discrepancy of the graph embedding via a locally fair
PageRank method. We address the global structure dispro-
portion between pairs of nodes by introducing truncated sin-
gular value decomposition-based pairwise node similarities.
Empirically, the proposed pre-processed fair structural fea-
tures have superior performance in individual fairness metrics
compared to the state-of-the-art methods while maintaining
prediction performance.

Introduction
Graph neural networks (GNNs) are powerful for graph rep-
resentation learning and find usage in data mining, machine
learning, and optimization. Existing GNN methods compre-
hensively integrate the information of the neighboring nodes
to get the final representation of a given node. For example,
as shown in Figure 1, the final representation of each node is
the aggregation of the neighboring information and its own
features. However, the representation learned by GNNs may
be systematically and undesirably biased toward certain in-
dividuals due to their privileged structural positioning in the
network. Imagine a person who is otherwise equally quali-
fied getting a job over another person either because they are
from the same ethnic group as the hiring manager (attribute-
related bias) or because they have friends and acquaintances
in common (structure-related bias) as indicated in Figure ??.
Such biases may increase societal stereotypes in predictions
(Du et al. 2020).

Recently, there has been much research interest in algo-
rithmic fairness in graph mining. Most existing methods
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Figure 1: Differences in structural properties (such as no.
of links) can lead to varying output node embeddings for
similar individuals.

tend to obtain fair graph representations across groups in the
population (Lambrecht and Tucker 2019; Kamishima and
Akaho 2017; Saxena, Fletcher, and Pechenizkiy 2022; Liu,
Nguyen, and Fang 2023; Dong et al. 2022; Dai and Wang
2021; Agarwal, Lakkaraju, and Zitnik 2021; Loveland et al.
2022). Group fairness requires that the algorithm not yield
discriminatory predictions or decisions on average within
a specific subgroup defined by protected attributes (Dwork
et al. 2012). Another notion of fairness is individual fairness
(Wasilewski and Hurley 2016), which aims for similar out-
comes for similar individuals. This paper focuses on graph
individual fairness rather than graph group fairness.

Some existing bias mitigation algorithms for graph in-
dividual fairness are in-processing methods (Dong et al.
2021; Kang et al. 2020) that enforce fairness during training
through constraints or regularization terms in the training al-
gorithm. In-processing methods usually need additional reg-
ularization computation to enforce fairness. Alternatively,
post-processing individual fairness algorithms aim to miti-
gate biases on the embedding of the (biased) trained model
(Petersen et al. 2021). However, post-processing may re-
quire additional training of another model on the generated
embedding with some fairness constraints. Additionally, en-
forcing fairness through post-processing may not preserve
the structural property of the network embedding learned by
the GNN model. Importantly, considering node structural
information, which may yield inconsistent fairness, is essen-
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tial in preserving the structural property of the graph during
graph learning.

Preserving the structural property of the graph has been
used in many GNN tasks (Li et al. 2021a, 2023; Huang et al.
2022). Explicit use of local and global structural information
of the graph can mitigate bias issues. For instance, students
may connect with classmates and family members on so-
cial networks. The student’s classmates and family members
might have different initial features. As illustrated in Figure
??, the information flow from those two different communi-
ties to the student may lead the student’s final embedding to
be different from his/her classmates’ final embedding during
GNN learning. But learning node structural feature similar-
ity can reduce the problem of inequality between a pair of
student nodes (Liu, Nguyen, and Fang 2023). For example,
Alice, Bob, and Dave are classmates; if there is an edge be-
tween Alice and Bob, and between Bob and Dave, there is a
high probability of an edge between Alice and Dave. In a ci-
tation network, a paper with more initial citations could po-
tentially get more future citations compared to another paper
of similar quality on the same subject. In general, nodes with
higher degrees within the network tend to possess signifi-
cant advantages, leading to more favorable outcomes than
expected. Therefore, providing the structural property of the
network can help similar individuals obtain similar output
representations.

In this work, we address the challenges of GNN individ-
ual fairness by introducing node structural features as a pre-
processing step. Specifically, we extract local structure fea-
tures through locally fair PageRank (Tsioutsiouliklis et al.
2021) and global structure features through truncated sin-
gular value decomposition (SVD). Furthermore, to reduce
the cost of computing locally fair PageRank, we extract the
subgraphs of the top t important nodes as a proxy and com-
pute a fair distribution of PageRank for the nodes of each
subgraph. We concatenate the computed fair PageRank and
Truncated SVD of the graph and then compute the pairwise
similarities for all nodes, which are used as node structural
features. Two GNN models are trained on the node structural
features and the original features of the nodes, respectively;
the final representations are concatenated with a linear layer
for prediction.

The major contributions of our work are summarized as
follows:

• We propose a graph-based individually fair method
called SFIF, that considers the potential bias that arises
due to the structural disproportion of the individual
nodes of the graph.

• We propose a novel scalable structure-aware pre-
processing procedure to learn node representation for in-
dividually fair graph mining. Specifically, we minimize
the disproportional distribution of local and global struc-
tural information among the nodes in the denser part of
the graph, where influential nodes exist.

• We conduct extensive node classification and link pre-
diction experiments on different real-world datasets. The
results show that our proposed method outperforms ex-
isting baselines on prediction and individual fairness per-

formance.

Preliminaries
Graph Representation Learning Problem
Consider a graph G = (V,E), where V = {vi}ni=1 denotes
the set of nodes, E denotes the set of edges, and X = {xi ∈
Rd}ni=1 denotes the node features. Let A ∈ Rn×n denote
the adjacency matrix of the graph G. Graph representation
learning aims to generate graph or node embeddings by pro-
viding graph-structured data to the graph mining algorithm,
such that the generated embedding is used for downstream
tasks such as node classification and link prediction. Sup-
pose X → Y denotes the ground truth association between
the features and targets; the learned representation is de-
noted as Z. The downstream task takes the representation
Z and produces prediction labels Ŷ .

Individual Fairness
The goal of individual fairness (Dong et al. 2023) is that sim-
ilar individuals should be treated similarly, which may be
expressed mathematically as a Lipschitz condition (Dwork
et al. 2012) that the similarity between a pair of nodes in
the output space is less than or equal to the corresponding
scaled similarity in the input space. The most commonly
used individual fairness metrics are consistency (Zemel et al.
2013) and ranking-based fairness (Dong et al. 2021). In our
empirical section, we use ranking-based fairness because it
is more common in the GNN individual fairness literature.
Ranking-based fairness begins with a pairwise oracle sim-
ilarity matrix among the nodes SG and a pairwise similar-
ity matrix based on the predicted labels of the downstream
task Ŷ , denoted SŶ . The predictions are individually fair if,
for all nodes vi, ranked lists of similarity of node i to all
other nodes in SG and SŶ are consistent with each other.
More precisely, for each node ui, if its similarity value to
uj compared to um is greater in the SŶ matrix (where ŝi,j
represents the similarity between nodes ui and uj), then this
higher similarity relationship between ui and uj should also
hold in the oracle similarity matrix SG (where si,j represents
the similarity between nodes ui and uj). This condition is
met when ŝi,j > ŝi,m with i ̸= j ̸= m.

PageRank
PageRank is a classic graph mining algorithm (Brin and
Page 1998) for weighting and ranking the nodes of a graph.
It takes graph G as input and provides a weighted rank
p ∈ Rn to each node based on the random walk distribu-
tion on the input graph. The random walk is governed by the
transition probability matrix P , which is a normalized ver-
sion of A. In addition, with probability γ, the walk restarts
at a node selected according to restart probability vector r.
The weighted rank vector is:

pT = (1− γ)pTP + γrT . (1)

It finds practical use in scenarios like document ranking, in-
dividual prioritization, gene, protein, and molecule assess-
ment in real-world contexts (Li, Xing, and Du 2016; Lee
et al. 2011; Avrachenkov et al. 2008).
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Graph Neural Networks
Graph neural networks learn node representation by itera-
tive aggregation of neighboring node information (Ma et al.
2021). Some of the prominent architectures Graph neural
networks (GNN) are GCN (Kipf and Welling 2016), Graph-
Sage (Hamilton, Ying, and Leskovec 2017), graph isomor-
phism network (GIN) (Xu et al. 2018), and graph atten-
tion(GAT) (Veličković et al. 2017). Most of the existing
frameworks encode each node vi ∈ V with initial vector
representation hv , and update its representation by iterative
aggregation of the neighboring vector representation with its
own representation.

The GCN model, widely adopted in GNN, performs the
operation H ′ = D−1AHW , where H and H ′ are in-
put and output features, W is a transformation matrix,
and D is a diagonal matrix with degrees of nodes where
D[i, i]−1 = 1

deg(i) . Locally, for node i, it computes h′
i =

1
deg(i)

∑
j∈N(i) Wxj , with N(i) denoting neighbors of node

i. The larger neighbor information averaged by the node de-
gree provides a more robust and expressive representation
for nodes with higher degrees than those with lower degrees
during the GNN learning. This can potentially lead the GNN
to bias towards locally higher-degree nodes. From this as-
sumption, providing fair structural features helps to boost
the representation of the low-degree nodes and reduce un-
fairness.

Structural Information as Additional Node
Features
It has been proven that despite GNNs being powerful in
graph mining, they have limitations in recognizing sim-
ple graph structures, such as links and cycles (He et al.
2022). To address this problem, providing additional node
features as positional encoding through pre-processing in-
creases the representation power of GNNs (Srinivasan and
Ribeiro 2019). Motivated by such expressive power of node
structural information, in the next section we detail how we
promote individual fairness of GNNs as a pre-processing
step by introducing fair node structural features in addition
to the original node features. The fair node structural fea-
tures are a similar to a pair of nodes computed from con-
catenating a locally fair PageRank and truncated SVD.

Proposed Framework
In this section, we introduce a novel pre-processing-based
graph individual fairness framework. As shown in Figure 2,
our proposed framework mainly includes two components:
(1) computing local and global fair structural features and
(2) fair graph representation learning.

Locally Fair Structural Features
Capturing the local structure by sampling neighboring rela-
tionships of nodes has been used widely (Gu et al. 2016).
Random walk is a commonly used method to learn local
reachability between nodes. We use a random walk-based
locally fair PageRank algorithm to minimize the bias due to
the irregular graph structure (Tsioutsiouliklis et al. 2021).

Subgraph Extraction To reduce the computation cost of
the locally fair PageRank algorithm, we consider the densely
connected areas of the graph by extracting the h-hop sub-
graphs of the top t ranked nodes. Subgraphs around im-
portant nodes are areas of the graph with more structural
connections and are expected to be more informative with
respect to the rest of the graph structure (Hamilton, Ying,
and Leskovec 2017). Therefore, to compute the locally fair
PageRank, we consider the h-hop subgraph around the se-
lected s nodes.

We first designate the importance of every node in the
graph using the HITS algorithm (Kleinberg 1999) to ob-
tain an authority value vector ∈ Rn and hub value vector
∈ Rn. Nodes with high authority value and nodes with high
hub value are considered to be important. For each important
node vi subgraph extraction, let N+(vi) = {j|(i, j) ∈ E}
be the set of nodes that vi points to, N−(vi) be the set of
source nodes targeting vi and N (vi) = N+(vi) ∪ N−(vi)
be the set of all incident nodes. We recursively define Gi =
(V i, Ei), by setting Gi

0 = (V i
0 , E

i
0) = ({i}, ∅) and Gi

l =
(V i

l , E
i
l ) where V i

l =
⋃

j∈V i
l−1

N (j) and Ei
l = {(i, j) ∈

Ei|i, j ∈ V i
l )}, for l = 1, 2, . . . , t. We include node vi in

the extracted subgraph.
We extract a h-hop subgraph Gi around a node vi, where

vi is in the list of the top t important nodes. The h-hop sub-
graph around a node contains nodes within h-hop and all the
edges between these nodes. Then the extracted subgraphs
are provided to the locally fair PageRank algorithm to gen-
erate a fairly distributed PageRank score for all nodes in the
subgraphs.

Locally Fair PageRank Inspired by the broad utilization
of PageRank in assessing the specific significance of a node
in relation to a local subset of nodes, we compute locally fair
PageRank from the extracted subgraph to make each indi-
vidual node act fairly during the distribution of its PageRank
to the neighboring nodes. From the commonly used assump-
tion (Hamilton, Ying, and Leskovec 2017), each node in the
subgraph has a low dependency on nodes outside its h-hop
subgraph. Therefore, each node in the subgraph is expected
to distribute its PageRank fairly to its neighbors. The basic
idea is to change the transition probability matrix P to ob-
tain a fair random walk during the PageRank computation.
Each node in the subgraph jumps with the probability of ϕ
to the low-ranked nodes of the subgraph.

Initially, we group the nodes in the subgraph into high and
low ranked groups of nodes based on the computed authority
and hub values using the HITS algorithm. The lowest-ranked
S nodes of the given subgraph are considered structurally
protected nodes. The PageRank is asked for a fair distribu-
tion of weights to the protected nodes, which are considered
structurally unprivileged. For fairness, each node distributes
a fraction ϕ of its PageRank to the protected nodes and dis-
tributes 1−ϕ to the rest of the unprotected nodes. ϕ is com-
puted as the ratio of the number of nodes in the structurally
underrepresented |S| and the total number of nodes in the
subgraph |Vt|, ϕ = |S|

|Vt| . We provide 1
|V | PageRank value

for nodes outside the extracted subgraphs. We formulate our
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Figure 2: An Overview of the Proposed Framework

locally fair PageRank distribution as follows.
The jump vector for managing the transition matrix for

the S nodes is defined as:

PS [i, j] =

{
1
|S| , if (i, j) belong to E and j ∈ S

0, otherwise
(2)

Similarly, we define the jump vector probability to the re-
maining Vt−S nodes. Then, the transition matrix is defined
as:

Transition matrix = ϕPS + (1− ϕ)PVt−S (3)
Finally, we computed the locally fair features of each node

by using the optimized PageRank as follows:

PR[v] =
K∑
i=1

ϕ · PR[ui]

degree[ui]
, where ui is a neighbor of v.

(4)
Definition 1 (Locally Fair Structural Features of PageRank).
For a given subgraph Gt = (Vt, Et), a subset of nodes S ⊂
Vt are structurally underrepresented. A PageRank algorithm
1, PR ∈ PR(Gt) is locally ϕ-fair on S nodes, if for all
rows of the transition matrix P , every node vi ∈ Vt in the
subgraph

∑
j∈S Pi,j = ϕ and the restart jump vector r is

ϕ-fair if
∑

j∈S vj = ϕ, ϕ ∈ (0, 1).

The locally fair PageRank outlined in Algorithm 1 is ϕ-
fair by granting fairness at every step of the random walk.
Such behavior helps to achieve global PageRank fairness.
Let’s denote the computed locally fair structural feature

Algorithm 1: Locally Fair Structural Feature from
Optimization of PageRank

Input: A: adjacency matrix of the input graph G;
α: damping factor;
ϵ: convergence threshold;
n: number of nodes in G;
index: a list of nodes with the least importance score;
Output: Locally fair structural feature
while convergence = false do

for each node v in G do
newPR(v) = (1− ϕ)/n;
for each node u linked to v do

update ϕ using u′s uniform distribution
PR to its neighbors following sec. ;
newPR[v] + =
ϕ ∗ (oldPR[u]/degree[u]);

convergence = true;
for each node v in G do

if |newPR[v]− PR[v]| > ϵ then
convergence = false;
break;

PR = newPR;
return PR
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from the optimization of PageRank for a subgraph Gt as
LFPR[Vt].

Global Structural Features
Graph-level structural features help GNNs learn clean graph
structures. Singular value decomposition (SVD) based em-
bedding preserves the higher order proximity between the
nodes (Paige and Saunders 1981), allowing us to capture
long-range dependence between nodes. SVD is a matrix
factorization denoted by A = UΣV T . To reduce the di-
mensionality space for large-scale graphs, we use truncated
SVD, an approximate variant of SVD. The truncated SVD
of the adjacency matrix A(u, v) ∈ Rn×n is Ud ∈ Rn×d of
its left singular subspace corresponding to its top d singular
values, Σ is an n × n diagonal matrix containing singular
values and V is an n× n orthogonal matrix containing right
singular vectors.

Theorem 1. Let G be a graph with V vertices and E edges.
If L is the Laplacian of G, the singular value decomposition
captures the global structural information of the graph.

Proof. Let L(G) = D − A where D is the diagonal matrix
and A is the adjacency matrix. Let SVD of L(G) = UΣV T .
Let σ1 ≥ σ2 ≥ . . . ≥ σn be the singular values ordered in
non-increasing order.
Claim 1: The largest singular value σ1 corresponds to the
most significant structural component of the graph, and the
d largest singular values, σ1, σ2, . . . , σd, collectively corre-
spond to the most prominent global structural features of the
graph, which are the d left singular vectors u1, u2, . . . , ud.
Proof of Claim 1: Consider the matrix L(G) = UΣV T . Let
x be the first right singular vector corresponding to σ1, i.e.,
V T
·,1 = x. Therefore, L(G) × x = UΣV T × x = UΣe1 =

σ1u1, where e1 is the first canonical basis vector.
This shows that σ1 captures the importance of the domi-

nant structural feature of the graph u1. By considering the d
largest singular values, σ1, σ2, . . . , σd, and their correspond-
ing singular vectors, u1, u2, . . . , ud, we obtain the d most
significant global structural features in the graph.
Robustness to Structural Changes: The dominant singular
values and vectors are likely to change for any structural
change in the graph(e.g., node or edge addition/removal).

Therefore, from the above claim and proof presented, we
conclude that SVD captures global structural information of
the graph.

Combined Fair Structural Features
After computing the locally fair PageRank and the truncated
SVD as a fairness pre-processing step, we concatenate them
as:

fr(V ) =
[
LFPR[V ], truncated-SV D[V ]

]
. (5)

The pair-wise cosine similarities of nodes on the computed
fair structural features fr(V ) are used as additional node
features to promote fairness during graph mining. The main
idea of learning fair structural similarity between a pair of
nodes is to maintain the structural-semantic similarity by

Datasets Nodes Edges Features Classes
ACM 16,484 71,980 8,337 9

CS 16,484 71,980 8,337 9
Phy 34,493 247,962 8,415 5

BlogCatalog 5,196 171,743 8,189 N/A
Flickr 7,575 239,738 12,047 N/A

Facebook 4,039 88,234 1,406 N/A

Table 1: Dataset statistics

minimizing the potential discrepancy of the embedding be-
tween two similar nodes due to the additional information
aggregation from the nonessential neighboring nodes during
the GNN learning.

Fair Node Representation Learning
As described in Section and Figure 2, the extracted fair
structural features (fr(V )) are used as an additional input to
the original node feature (X) to promote fairness in down-
stream tasks of the GNN. To improve the expressive power
of the GNN, we train the fair structural features and original
features in parallel such that one can not mask the other dur-
ing training. Finally, we concatenate the representation from
the fair structural features (hfr(V )) and the original node
features (hX ) for prediction. Cross-entropy loss is used to
evaluate the downstream task, such as node classification or
link prediction.

Experiments
Datasets
For node classification tasks, we use ACM citation network
(Tang et al. 2008) and co-authorship networks of Co-author-
CS and Co-author-Phy (Shchur et al. 2018) . For the ACM
citation networks, each node represents a paper, the edges
indicate the citation relationship between two papers, and
the bag of words of the abstract of each paper are the fea-
tures for each node. For Co-author-CS and Co-author-Phy
networks, the nodes indicate the authors and the edges indi-
cate the co-author relationship for a paper. The bag of words
of the paper’s abstract is the node features.

For link prediction, we use BlogCatalog (Tang and Liu
2009), Facebook (Leskovec and Mcauley 2012), and Flickr
(Huang, Li, and Hu 2017) datasets. The nodes of these net-
works are users. The edges are interactions between users.
The node features are the bag of words of the user profile
(Dong et al. 2021).

The detailed statistics of these datasets are provided in Ta-
ble 1, including the number of nodes, the number of edges,
the dimension of their features, and the number of classes.

Experiment Settings
Baselines. We compare our proposed method with two cat-
egories of methods: 1) GNN models using the initial node
features, and 2) GNN models with state-of-the-art individ-
ual fairness methods. For the first categories, we compare
with graph convolutional network (GCN) (Kipf and Welling
2016), graph isomorphism network (GIN) (Xu et al. 2018),
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Dataset Model ACC NDCG@10(structural) NDCG@10(feature)

ACM

GCN 71.27 ± 0.64 24.52 ± 0.92 45.20 ± 1.283
GAT 77.25 ± 0.09 25.98 ± 0.18 45.20 ± 1.28
GIN 79.52 ± 0.98 28.59 ± 0.27 44.41 ± 1.57

SAGE 77.32 ± 0.75 26.51 ± 1.28 42.25 ± 0.71
REDRESS(GCN) 72.01 ± 0.75 32.04 ± 1.08 48.89 ± 0.12
INFORM(GCN) 68.37 ± 0.52 15.78 ± 0.76 40.01 ± 0.82

SFIF(GCN)(ours) 77.46 ± 0.23 69.21 ± 0.74 45.43 ± 0.27
SFIF(GAT)(ours) 76.89 ± 0.98 62.58 ± 0.43 41.92 ± 0.47
SFIF(GIN)(ours) 78.79 ± 0.62 66.65 ± 0.21 42.25 ± 0.52

SFIF(SAGE)(ours) 75.61 ± 1.02 68.84 ± 0.32 44.43 ± 0.22

Co-author-CS

GCN 87.93 ± 1.02 21.59 ± 1.37 52.72 ± 0.53
GAT 89.69 ± 0.67 20.76 ± 0.65 50.31 ± 1.09
GIN 90.43 ± 2.01 24.22 ± 1.34 53.13 ± 0.98

SAGE 88.17 ± 1.09 22.71 ± 0.82 50.49 ± 1.23
REDRESS(GCN) 88.72 ± 2.92 28.42 ± 0.96 58.42 ± 0.13
INFORM(GCN) 88.91 ± 1.06 15.78 ± 0.17 52.73 ± 0.27

SFIF(GCN)(ours) 92.47 ± 1.52 73.29 ± 0.57 59.66 ± 0.34
SFIF(GAT)(ours) 91.43 ± 1.02 67.93 ± 0.29 58.18 ± 0.47
SFIF(GIN)(ours) 93.83 ± 0.52 73.42 ± 0.15 61.67 ± 0.17

SFIF(SAGE)(ours) 89.72 ± 0.14 74.12 ± 0.55 61.02 ± 0.22

Co-author-Phy

GCN 93.73 ± 1.42 3.31 ± 0.75 37.22 ± 0.24
GAT 90.19 ± 1.07 2.54 ± 1.34 38.71 ± 0.76
GIN 92.13 ± 2.01 4.98 ± 0.23 40.35 ± 1.21

SAGE 91.18 ± 1.91 4.37 ± 0.91 38.59 ± 0.92
REDRESS(GCN) 92.51 ± 0.30 5.92 ± 0.29 44.92 ± 0.91
INFORM(GCN) 93.01 ± 0.75 2.31 ± 0.71 34.99 ± 0.28

SFIF(GCN)(ours) 95.17 ± 0.95 49.24 ± 0.96 40.79 ± 0.55
SFIF(GAT)(ours) 92.18 ± 1.02 54.08 ± 0.69 43.09 ± 0.82
SFIF(GIN)(ours) 93.10 ± 1.72 56.08 ± 0.23 46.09 ± 0.82

SFIF(SAGE)(ours) 90.11 ± 1.97 54.85± 0.35 44.96 ± 0.74

Table 2: Comparison of the performance of node representation learning methods with respect to node classification prediction
and individual fairness on ACM, Co-author-CS, and Co-author-Phy(Phy) datasets. ACC indicates node classification accuracy
performance. NDCG@k(structural) and NDCG@k(feature) refer to average ranking individual fairness based on structural and
initial node features, respectively. Our proposed method is denoted as structural features for individual fairness (SFIF). The best
values of prediction and individual fairness with GCN as the backbone model are bolded. The interval after the metric value
reports the standard deviation based on 4 runs.

GraphSage (Hamilton, Ying, and Leskovec 2017) and graph
attention (GAT) (Veličković et al. 2017). For GNNs with in-
dividual fairness constraints, we compare with REDRESS
(Dong et al. 2021) and InFoRM (Kang et al. 2020) with
GCN as the backbone GNN models. REDRESS is a rank-
based optimization method that tries to maintain the relative
similarity ranking between a given instance node and other
sample nodes. The ranking is computed based on the simi-
larity matrix for a pair of nodes relative to the instance node
before and after the GNN representation learning. InFoRM
is an optimization method based on the Lipschitz condition
on traditional graph mining tasks such as spectral clustering
and PageRank, but it is not designed for GNN. We adopt the
REDRESS approach to modify InFoRM method by combin-
ing the fairness loss and the utility loss together to improve
the individual fairness of the GNN model.

Loss for Classification: In the context of node classifi-
cation, the final layer of the Graph Neural Network (GNN)

usually adjusts its dimensionality to match the number of
classes. It employs a softmax activation function, where the
ith output dimension corresponds to the probability of class
i. We optimize the model’s parameters by minimizing the
cross-entropy loss, which is defined as follows:

L = − 1

|Y |
∑
i

∑
j

Yi,j log(Ŷi,j) (6)

Where |Yi,j | represents the number of rows in Yi,j , which
corresponds to the number of labeled examples, and Ŷi,j

represents the probability of the ith example belonging to
the jth class.

For link prediction, the objective of the training is to min-
imize the cross entropy between the reconstructed adjacency
matrix and the true adjacency matrix.

L =
∑
i∈V

∑
j∈V

(−Ai,j log Âi,j−(1−Ai,j) log(1−Âi,j)) (7)
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Dataset Model AUC NDCG@10(structural) NDCG@10(feature)

BlogCatalog

GCNLink 85.81 ± 0.75 31.89 ± 0.21 17.73 ± 0.37
GATLink 86.78 ± 0.67 30.87 ± 0.39 16.75 ± 0.82
GINLink 86.78± 0.29 31.32 ± 0.28 18.01 ± 0.56

SAGELink 86.42 ± 0.39 32.21 ± 0.62 18.12 ± 0.88
REDRESS(GCNLink) 86.59 ± 0.51 34.12 ± 0.75 17.66 ± 0.92
INFORM(GCNLink) 27.17 ± 0.35 27.01 ± 0.23 16.51 ± 0.71
SFIF(GCNLink)(ours) 86.49 ± 0.27 38.89 ± 0.58 16.47 ± 0.34
SFIF(GATLink)(ours) 85.34 ± 0.25 37.21 ± 0.36 16.72 ± 0.72
SFIF(GINLink)(ours) 87.27 ± 0.37 38.51 ± 0.27 17.24 ± 0.78

SFIF(SAGELink)(ours) 87.15 ± 0.77 40.12 ± 1.05 18.25 ± 0.21

Facebook

GCNLink 96.69 ± 0.73 17.58 ± 0.28 23.27 ± 1.02
GATLink 95.55 ± 0.74 17.29 ± 0.82 24.57 ± 0.79
GINLink 97.12 ± 0.39 17.52 ± 0.32 25.13 ± 0.55

SAGELink 95.88 ± 0.38 18.22 ± 1.23 26.71 ± 0.85
REDRESS(GCNLink) 96.49 ± 0.37 29.67 ± 0.59 27.92 ± 0.47
INFORM(GCNLink) 92.12 ± 1.35 17.19 ± 0.25 29.65 ± 0.28
SFIF(GCNLink)(ours) 98.89 ± 0.35 60.01 ± 0.65 28.79 ± 0.71
SFIF(GATLink)(ours) 97.34 ± 0.38 58.01 ± 0.88 27.88 ± 0.51
SFIF(GINLink)(ours) 98.91 ± 0.81 59.22 ± 0.39 28.25 ± 0.36

SFIF(SAGELink)(ours) 97.28 ± 0.75 60.59 ± 0.71 29.55 ± 0.77

Flickr

GCNLink 91.22 ± 0.39 22.31 ± 0.79 14.24 ± 0.84
GATLink 92.33 ± 0.77 21.81 ± 0.71 13.12 ± 0.77
GINLink 92.87 ± 0.49 22.15 ± 0.51 14.29 ± 0.81

SAGELink 92.17 ± 0.28 23.12 ± 0.33 13.52 ± 0.69
REDRESS(GCNLink) 93.67 ± 0.35 28.76 ± 0.38 14.13 ± 0.47
INFORM(GCNLink) 90.17 ± 0.76 22.89 ± 0.39 14.58 ± 0.71
SFIF(GCNLink)(ours) 91.89 ± 0.28 43.25 ± 0.61 16.61 ± 0.51
SFIF(GATLink)(ours) 92.01 ± 0.81 41.71 ± 0.66 15.12 ± 0.97
SFIF(GINLink)(ours) 93.25 ± 0.39 40.82 ± 0.73 15.55 ± 0.49

SFIF(SAGELink)(ours) 91.94 ± 0.58 42.28 ± 0.79 16.13 ± 0.48

Table 3: Comparison of the performance of node representation learning methods with respect to link prediction and individual
fairness on Blogcatalog, Facebook and Flicker datasets. AUC, indicates to the area under the curve link prediction performance.
NDCG@k(structural) and NDCG@k(feature) refer to average ranking individual fairness based on structural and initial node
features, respectively. Our proposed method is denoted as structural features for individual fairness (SFIF). The best values of
prediction and individual fairness with GCN as the backbone model are bolded. The interval after the metric value reports the
standard deviation based on 4 runs.

where Ai,j = 1 represents positive edges and Ai,j = 0 rep-
resents negative edges.

Evaluation metric. We evaluate the proposed method in
terms of both model prediction performance and fairness to-
wards individual nodes. To measure the prediction perfor-
mance, we use accuracy (ACC) for node classification and
area under the curve (AUC) for link prediction. To mea-
sure the individual fairness of the node embedding gener-
ated by the models, we adopt the widely used ranking metric
NDCG@k (Järvelin and Kekäläinen 2002).

NDCG@k for individual fairness operates on the similar-
ity between the ranked list of the outcome similarity ma-
trix SŶ and the oracle (input) similarity matrix SG for each
node, with the underlying principle that higher ranked nodes
in the list should carry more weight than lower ranked ones.
We compute the oracle similarity SG of structure from the
adjacency matrix using Jaccard similarity and the oracle
similarity SG of attributes from the original node features

using cosine similarity. For the output embedding similarity
SŶ , we use cosine similarities for both structural and node
features. To compute NDCG@k, we divide the discounted
cumulative gain (DCG) of the ranked list by the ideal DCG
(IDCG), where nodes in the list are ordered in the most op-
timal manner based on their initial input similarity in SG.
Mathematically, it can be formulated as:

NDCG@k =
DCG@k

IDCG@k
,where DCG@k =

k∑
i=1

DG(p). (8)

Here DG(p) is the discounted relative similarity score gain
at position p in the list with k nodes, and IDCG@k is the
ideal DCG@k. To get the final NDCG@k individual fairness
performance, we take the average NDCG@k of all nodes.

Average NDCG@k =
n∑

i=1

NDCG@ki/|V | (9)
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For the average ranking value of NDCG@k, we studied
different values of k, and the average ranking value improves
for both structural and attribute features with the increase of
k, and the relative ordering of methods remains constant.
For simplicity of exposition, we report results for k = 10.
For higher k = 25 is reported in the appendix.
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Figure 3: Performance comparison between SFIF and base-
lines on utility (node classification; (ACC), link prediction
(AUC)), and individual fairness (NDCG@10).

• The individual fairness NDCG@10 score for SFIF is
much larger than the baselines, as indicated in figure 3c
and figure 3d. This is because the provided fair struc-
tural feature preserves the structural property of the input
graph during the GNN learning.

• The performance of SFIF for node classification (ACC)
and link prediction (AUC) is much higher than the base-
lines in most of the datasets, as shown in Figure 3a and
Figure 3b. This shows the provided fair structural feature
helps to improve the expressive representation of GNN’s
while preserving individual fairness.

Fairness and Prediction Performance
The model’s prediction performance for node classification
and ranking-based individual fairness is shown in Table 2.
The link prediction model performance and individual fair-
ness results are shown in Table 3. The bold font indicates the
best-performing method for GCN backbone GNN model.
Our results are summarized as follows:

We compare our proposed method with several GNN
models from the structural and feature perspectives. From
a structural standpoint, we want nodes with many common
neighbors to have similar encodings after GNN to preserve
the structural property. From the feature standpoint, we want
the nodes with similar features to still have similar node em-
bedding after GNN. For node classification and link pre-
diction, for all datasets, our method consistently achieves

Datasets Structural Features ACC NDCG@10 NDCG@10
(structural) (feature)

ACM
LFPR 77.87 57.00 40.79

truncated-SVD 76.67 70.17 43.66
SFIF 77.46 71.29 45.43

Co-author-CS
LFPR 93.78 67.66 59.36

truncated-SVD 92.25 61.36 67.05
SFIF 92.47 69.17 69.66

Co-author-Phy
LFPR 95.35 46.36 48.20

truncated-SVD 96.17 48.59 50.46
SFIF 95.17 49.24 47.79

Table 4: Ablation study on node classification and individual
fairness for locally fair Pagerank(LFPR) and truncated SVD

the best performance under structural individual fairness in
NDCG@10 average ranking score. For example, our method
outperforms GCN by {44.69, 51.70, 45.93} individual fair-
ness for structural oracle similarity in node classification.
Furthermore, our method achieves comparable performance
individual fairness for the original node feature oracle simi-
larity.

We also compare with baselines that involve individ-
ual fairness methods. Our method still significantly outper-
forms these fairness methods in terms of structural indi-
vidual fairness in NDCG@10 average ranking score for all
datasets. For Example, our method outperforms REDRESS
by {37.17, 64.87, 43.32} individual fairness for structural
oracle similarity in node classification. This could be mainly
because our method involves the local and global structural
similarity between node pairs that helps preserve the origi-
nal network structure patterns. Furthermore, our method out-
performs those baseline methods in downstream task per-
formance. Even though the existing baseline methods are
mainly designed to optimize the original feature to achieve
fairness, our method achieves comparable individual fair-
ness in NDCG@10 for original node feature oracle similar-
ity.

Significant works (Srinivasan and Ribeiro 2019) have
shown that structural features are more prevalent than orig-
inal node features for link prediction tasks. This could be
one reason that link prediction tasks benefit more from our
fair structural features for structural individual fairness com-
pared to the node feature individual fairness. For example,
our method outperforms GCNLink by {7.00, 42.43, 20.94}
for structural individual fairness and {−1.26, 6.38, 2.37} for
node feature individual fairness. Therefore, those observa-
tions validate the effectiveness of our method.

Ablation Study
We conduct an ablation study to verify the effectiveness
of the computed structural features using the locally fair
PageRank and the truncated SVD. First, we remove the fea-
tures computed using the locally fair PageRank and only use
features computed using truncated SVD for pairs of node
similarity as pre-processing fairness-aware structural node
features. Next, we remove truncated SVD features and use
node pair similarity from the locally fair PageRank features
as our fairness-aware pre-processing fair structural node fea-
ture. The prediction performance and ranking-based indi-
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vidual fairness are shown in Table 4. We observe that the
fairness performance gets reduced in all variants than when
used together. We investigate the effect of different k from a
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Figure 4: Individual fairness SFIF performance with differ-
ent choices of k.

selection of [5, 10, 15, 20, 25] on the model’s individual fair-
ness performance. Figure 4a and Figure 4b shows, for both
node classification and link prediction, the larger the value
of k, the better the individual fairness performance for both
SFIF and the baselines. For different variants of k value,
SFIF consistently performs better than the baselines on indi-
vidual fairness without affecting the utility performance of
the model.

Related Work
Techniques used in fairness aware graph mining. Due to
the wide usage of graph machine learning systems in many
high-stakes applications, such as loan approval systems and
recommender systems, researchers have performed signifi-
cant work to measure the fairness of those systems (Wang
et al. 2019; Fu et al. 2020; Leonhardt, Anand, and Khosla
2018; Navarin, Oneto, and Donini 2020; Kleindessner et al.
2019; Horowitz and Kamvar 2010). Fairness can broadly
be categorized into group fairness, individual fairness, and
counterfactual fairness. Various works try to improve the
unfair graph mining algorithm via different techniques such
as optimization with regularization to encourage the fair-
ness level of the algorithm output (Franco et al. 2022; Fan
et al. 2021; Burke et al. 2017), adversarial learning where
the discriminator tries to predict the sensitive features from
the embedding generated by the generator (Bose and Hamil-
ton 2019; Xu et al. 2021; Arduini et al. 2020), and edge
rewiring to modify the network topology by adding or re-
moving some edges to balance the structural information
flow between the nodes (Li et al. 2021b; Laclau et al. 2021;
Jalali et al. 2020).

Individual fairness in graph mining. A few studies have
been done on individual fairness. However, these studies
are mainly focused on optimizing the potential bias that
emerged due to the causal influence effect of sensitive fea-
tures of the neighboring nodes during information aggre-
gation as the in-processing approach. Recent works (Kang
et al. 2020; Dong et al. 2021) on individual fairness fo-
cus on in-processing to mitigate fairness via regularization
in the form of L = Lutility + λLfair, where Lutility and
λLfair are the objectives of the downstream task and fair-

ness, respectively, and λ is a hyperparameter that controls
the level of fairness. These models require additional model
training to promote fairness. For example, REDRESS (Dong
et al. 2021) proposes a ranking-based individual fairness op-
timization method to encourage each individual node rela-
tive similarity ranking list to the other nodes during the input
and output.

Group fairness in graph mining. Group fairness em-
phasizes equitable treatment of subgroups with respect to
some sensitive attribute defining groups. FairGNN (Dai and
Wang 2021) and UGE (Wang et al. 2022) proposed a group
fairness methods based on the learned node representations.
NIFTY (Agarwal, Lakkaraju, and Zitnik 2021) incorporates
a counterfactual group fairness method for nodes and edges
to reduce bias. EDITS (Dong et al. 2022) introduced both
attribute and structural debiasing to mitigate group fairness.
Deg-FairGNN (Liu, Nguyen, and Fang 2023) aims to en-
sure fair outcomes for nodes with varying degrees within a
group. Despite EDITS and Deg-FairGNN introduced struc-
tural fairness, they are designed for group fairness and can-
not be extended for individual fairness.

Summary and Discussion
In this paper, we propose a novel approach for graph indi-
vidual fairness that considers the bias due to irregular graph
structure and learning heterogeneous features from neigh-
boring nodes by preserving the structural property between
the graph nodes. We propose novel fairness-aware structural
features through a pre-processing step to learn GNN node
representations that can scalably achieve graph individual
fairness and improve prediction performance. Specifically,
we use a locally fair PageRank to learn the local structural
property of the nodes fairly. Furthermore, we learn global
structural awareness of the nodes via truncated SVD. Fi-
nally, we couple the two structural features and train a GNN
with these as additional fairness-preserving node features.
Our proposed fairness-aware structural features maximize
the similarity between the learned node representation and
the original data. Experiment results on real-world graph
data validate the effectiveness of our proposed framework
for task prediction and individual fairness.
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