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Nomenclature

a = semi-major axis
AT = number of thrust arcs
AU = acceleration unit
cp = number of initial collocation points in each mesh interval
DU = length unit
e = eccentricity
eD = desired eccentricity of terminal orbit
ef = eccentricity of terminal orbit
e0 = eccentricity of initial orbit
f = second modified equinoctial orbital element
FU = force unit
g = third modified equinoctial orbital element
g0 = standard gravitational acceleration
h = fourth modified equinoctial orbital element
i = orbital inclination
iD = desired inclination of terminal orbit
if = inclination of terminal orbit
i0 = inclination of initial orbit
Isp = specific impulse
J = cost functional
k = fifth modified equinoctial orbital element
L = true longitude (sixth modified equinoctial orbital element)
N = total revolutions around Earth
M = number of initial mesh intervals
m = mass of spacecraft
m0 = initial mass of spacecraft
MU = mass unit
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p = semi-parameter (first modified equinoctial orbital element)
pD = desired semi-parameter of terminal orbit
pf = semi-parameter of terminal orbit
p0 = semi-parameter of initial orbit
RE = radius of Earth
s0 = maximum allowable thrust acceleration
t = time
t0 = initial time
tf = terminal time
tT = total time thrusting
T = thrust magnitude
TU = time unit
Tmax = maximum thrust magnitude
VU = speed unit
u = thrust direction
un = normal component of thrust direction
ur = radial component of thrust direction
ut = transverse component of thrust direction
�n = normal non-two-body perturbations of the spacecraft
�r = radial non-two-body perturbations of the spacecraft
�t = transverse non-two-body perturbations of the spacecraft
�V = the total impulse of the spacecraft
⌘ = threshold to detect the relative size of jumps in the control
µE = gravitational parameter of Earth
⌫ = true anomaly
! = argument of periapsis
⌦ = longitude of the ascending node
⌦0 = longitude of the ascending node of the initial orbit

1 Introduction

Low-thrust orbital transfer is a topic of ongoing interest in the space community. A significant

amount of research has been conducted previously on the design of low-thrust orbital transfer

missions [1–18]. References [1–7] used various forms of direct optimization methods to optimize

very-low-thrust orbit transfers. Reference [8] obtained solutions to low-thrust orbit trajectory op-

timal control problems using genetic algorithm, while Ref. [9] combined artificial neural networks

and evolutionary algorithms to create evolutionary neurocontrollers in order to solve low-thrust

orbital transfer problems. References [10–12] employed homotopic methods to optimize low-thrust

transfers where the thrusting structure may be discontinuous. Reference [13] obtained solutions
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to low-thrust orbit trajectory optimal control problems by applying a hybrid optimization method

that incorporated a multi-objective genetic algorithm with a low-thrust trajectory optimizer that

applies calculus of variations. Reference [14] presents a novel approach to solving low-thrust or-

bit transfers, where a first-order approximated analytical solution of Gauss planetary equations

using direct finite perturbative elements was implemented in the solution process. This method

was shown to have lower computational cost and higher accuracy than a second-order explicit

numerical integrator. References [15] and [16] solved an optimal control problem of a low-thrust

orbit transfer with eclipsing. Reference [17] implemented both indirect and direct methods when

solving a minimum-fuel low-thrust Earth-to-Mars orbital transfer. Reference [18] primarily focused

on solving hybrid-optimal control problems by conducting a survey on approaches for low-thrust

trajectory optimization.

This research is inspired by the work of Ref. [4] and both works consider the problem of LEO-to-

MEO, LEO-to-HEO, and LEO-to-GEO low-thrust orbital transfer. It is noted, however, that this

research and the work of Ref. [4] di↵er in the following ways. First, in this research the thrusting

structure is determined as part of the solution process whereas Ref. [4] assumed a priori a burn-

coast-burn thrusting structure based on the work of Ref. [19]. Second, in order to determine the

thrusting structure, a recently developed bang-bang and singular optimal control (BBSOC) method

[20] is employed using multi-domain Legendre-Gauss-Radau (LGR) collocation as implemented in

the MATLAB optimal control software GPOPS� II [21]. It is important to note that, because

the thrusting structure is not assumed a priori, the performance (that is, the minimum-impulse)

obtained in this study shows a significant improvement over the performance obtained in Ref. [4]

and this improvement increases as the maximum thrust acceleration decreases. Third, the improved

performance obtained in this study leads to a thrusting structure that di↵ers significantly from the

burn-coast-burn thrusting structure assumed in Ref. [4]. Fourth, the thrusting structure obtained

for the various types of orbital transfer (LEO-to-MEO, LEO-to-HEO, and LEO-to-GEO) is shown
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for particular cases of maximum allowable thrust acceleration and provide improved insight into

the optimal thrusting structure for such transfers.

This paper is organized as follows. Section 2 presents the one-phase minimum-fuel Earth-

based orbital transfer optimal control problem by providing the modeling assumptions, dynamics,

path constraints, event constraints, the units used to solve the problem, boundary conditions, and

variable bounds. Section 3 presents the procedure on how to create the initial guess for each

problem case. Section 4 describes the bang-bang and singular optimal control (BBSOC) method

used to solve the orbital transfer problems in this paper. Section 5 shows the key results obtained

in this study and provides a discussion of these results. Finally, Section 6 provides conclusions on

this research.

2 Problem Description

2.1 Equations of Motion

The di↵erential equations of motion for the spacecraft under central body gravitation are given in

terms of modiifed equinoctial elements (MEE) as [22]
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where

(p, f, g) =
�
a(1� e2), e cos(! + ⌦), e sin(! + ⌦)

�
,

(h, k, L) = (tan(i/2) cos⌦, tan(i/2) sin⌦,⌦+ ! + ⌫) ,

q2 = 1 + h2 + k2,

w = 1 + f cosL+ g sinL,

(�r,�t,�n) =
T
m(ur, ut, un).

(2)

where � = (�r,�t,�n), are the radial, transverse, and normal components of the thrust accelera-

tion, �. The control consists of the thrust magnitude, T , and the thrust direction, u = (ur, ut, un),

where ur is the component along the direction of the position, r, where r is measured from the

center of the Earth to the spacecraft, un is the component along the specific angular momentum,

h = r ⇥ v (where v is the inertial velocity of the spacecraft), and ut is the component along the

direction h ⇥ r. Next, in order to ensure that the thrust direction is a unit vector, the control

equality path constraint

u · u = u2r + u2t + u2n = 1 (3)

is enforced to guarantee that the thrust direction is a unit vector. It is noted that the thrust direction

is parameterized using Cartesian variables because any Cartesian triplet (ur, ut,n ) defines a unique

direction in three-dimensional space. Finally, the following initial and terminal boundary conditions

(event constraints) are enforced in order to ensure that the spacecraft starts and terminates in the

desired orbits [23]:

⇥
p, f2 + g2, h2 + k2, tan�1(k, h)

⇤
t=t0

=
�
a0(1� e20), e

2
0, tan

2(i0/2),⌦0
�
,

⇥
p, f2 + g2, h2 + k2

⇤
t=tf

=
⇣
af (1� e2f ), e

2
f , tan

2(if/2)
⌘
,

(4)

where tan�1(y, x) is the four-quadrant inverse tangent. It is noted in Eq. (4) that a0, e0, i0, ⌦0,

af , ef , and if are parameters determined by the initial and terminal orbits as given in Table 2.

The numerical values of the physical constants and physical parameters used to solve the problems

under consideration in this paper are given in Table 1.
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Table 1: Physical constants.

Quantity Value

RE 6.378145⇥ 106 m

µE 3.986004418⇥ 1014 m3 · s�2

g0 9.80665 m · s�2

m0 1.000⇥ 103 kg

Isp 1.000⇥ 103 s

2.2 Boundary Conditions and Bounds

Table 2 presents the orbital elements of the initial low-Earth orbit and terminal medium-Earth,

high-Earth, or geosynchronous orbits [4]. Next, lower and upper limits on the components of the

Table 2: Orbital elements for the initial and terminal orbits.

Orbital Element LEO MEO HEO GEO

Semi-major Axis, a (km) 7, 003 26, 560 26, 578 42, 287

Eccentricity, e 0 0 0.73646 0

Inclination, i (deg) 28.5 54.7 63.435 0

Longitude of the Ascending Node, ⌦ (deg) 0 Free Free Undefined

Argument of Periapsis, ! (deg) Undefined Undefined Free Undefined

True Anomaly, ⌫ (deg) Free Free Free Free

state and control are shown in Table 3. Furthermore, all initial and terminal boundary conditions on

the state are free except the following that are fixed: (t0, p(t0),m(t0), p(tf )) = (0, p0,m0, pf ), where

p0 and pf correspond to the initial and terminal semi-parameter, respectively, where p = a(1� e2).

Finally, Table 4 gives the maximum allowable thrust acceleration, s0, and the maximum thrust

magnitude, Tmax, for all cases studied in this research [4].
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Table 3: Lower and upper bounds.

Variable [Lower, Upper]

T [0, Tmax]

f [�1,+1]

g [�1,+1]

h [�1,+1]

k [�1,+1]

m [0.01 ⇤m0,m0]

Table 4: Maximum allowable thrust acceleration and maximum thrust values for all cases.

Case s0
�
m · s�2

�
Tmax (N)

1 10 10000

2 5 5000

3 1 1000

4 0.5 500

5 0.1 100

6 0.05 50

7 0.01 10
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2.3 Optimal Control Problem

The optimal control problem for the various Earth orbit transfers is stated as follows. Determine

the state (p, f, g, h, k, L,m), control (T, ur, ut, un), and terminal time tf which maximizes the final

mass of the spacecraft, m (tf ). For that reason, the following cost functional needs to be minimized

J = �m (tf ) (5)

while satisfying the dynamics and constraints in Section 2.1 along with the variable bounds and

boundary conditions in Section 2.2.

3 Initial Guess Generation

This section explains how initial guesses required by the general-purpose MATLAB optimal control

software GPOPS� II [21] are generated to solve the single-phase minimum-fuel Earth-based orbit

transfer optimal control problem described in Section 2. Two distinct initial guess generation

methods are described in Section 3.1 and Section 3.2. The first initial guess generation method is

used for maximum allowable thrust acceleration values that lead to solutions that are less than one

orbital revolution (that is, a partial orbital revolution) while the second initial guess generation

method is used for maximum allowable thrust acceleration values that lead to solutions that are

more than one orbital revolution (that is, multiple orbital revolutions). In order to determine which

generation method is applied, each case of the optimal control problem is solved on the GPOPS� II

default initial mesh (that is, no mesh refinement is implemented) with the initial guess generation

method described in Section 3.1 to determine if the optimal solution is categorized as either a

partial orbital revolution or a multiple orbital revolution solution. If the solution is a partial

orbital revolution, then the optimal control problem is solved using the guess generation method

in Section 3.1. On the other hand, if the solution consists of multiple orbital revolutions, then the

optimal control problem is solved using the generation method in Section 3.2.
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3.1 Initial Guess for Partial Orbital Revolution Solutions

For the problem cases categorized as partial orbital revolution solutions, the ordinary di↵erential

equations solver ode113 in MATLAB is used to generate the initial guess. The ODE solver integrates

the spacecraft dynamics, (p (L) , f (L) , g (L) , h (L) , k (L) , t (L) ,m (L)), in Eqs. (6) and (7). In

this procedure, the true longitude, L, replaces time, t, as the independent variable, therefore the

dynamics in Eq. (1) must be transformed using the conversion factor

dt

dL
=

✓
dL

dt

◆�1

, (6)

so that the other states of the spacecraft, (p(L), f(L), g(L), h(L), k(L),m(L)), are given as

d

dL
(p, f, g, h, k, L) =

dt

dL

d

dt
(p, f, g, h, k, L) . (7)

The initial conditions are set as the LEO orbital elements in Table 2 that have been converted to

modified equinoctial elements. The initial guess is integrated until the semi-parameter, p, of the

orbit is equal to the corresponding terminal value, pf . For the control, (T, ur, ut, un), the thrust

magnitude, T , is considered to be at maximum for the entirety of the integration and the thrust

direction components are solved for afterwards by assuming that the thrust is always in the same

direction as the velocity vector.

3.2 Initial Guess for Multiple Orbital Revolution Solutions

For the problem cases categorized as multiple orbital revolution solutions, an initial guess procedure

was implemented [24]. The cases that contain multiple orbital revolutions require an initial guess

that contains a number of orbital revolutions that is reasonably close to the actual number of

orbital revolutions of the optimal solution. This initial guess procedure consists of solving a chain

of optimal control sub-problems, where the goal is to minimize the following objective functional

that consists of a mean square relative di↵erence

J =


p (Lf )� pD

1 + pD

�2
+
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by determining the state and control that transfers the spacecraft from the initial low-Earth orbit

to the correct terminal orbit, depending on the study. When minimizing Eq. (8), the sub-problem

attains an optimal solution that is as close in proximity as possible to the desired terminal semi-

parameter, pD, eccentricity, eD, and inclination, iD, within one orbital revolution. Each sub-

problem uses the terminal state of the previous sub-problem as the initial state of the current

sub-problem and is evaluated at most over one orbital revolution. It is noted that for the first sub-

problem, the initial state is set as the LEO orbital elements in Table 2 that have been converted

into modified equinoctial elements using Eq. (2). The procedure, then, is similar to that for the

initial guess of Section 3.1 where the true longitude, L, replaces t as the independent variable and

the dynamics are written in the form of Eq. (7).

The continuous-time optimal control sub-problem is then stated as follows. Minimize the ob-

jective functional in Eq. (8), subject to the dynamics constraints in Eqs. (6) and (7), the path

constraint in Eq. (3), and the boundary conditions
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(9)

for n = 1, · · · , N , where N is the total number of true longitude cycles. The sub-problem solutions

are combined into an initial guess once the desired terminal conditions of the terminal orbital
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elements in Table 2 are within an error tolerance of 10�4.

The sub-problems are solved using the general-purpose MATLAB optimal control software

GPOPS� II [21] together with the nonlinear program (NLP) solver IPOPT [25] in full Newton

(second derivative) mode with an NLP solver tolerance of 10�7. All derivatives required by

IPOPT were obtained using the open-source algorithmic di↵erentiation software ADiGator [26].

GPOPS� II was employed using the following settings. First, an initial guess is created using the

ordinary di↵erential equations solver ode113, where the ODE solver integrates the spacecraft dy-

namics, (p (L) , f (L) , g (L) , h (L) , k (L) , t (L) ,m (L)), in Eqs. (6) and (7). The initial conditions

are set as the LEO orbital elements in Table 2 that have been converted to modified equinoctial

elements using Eq. (2) for the first sub-problem and then, for every subsequent sub-problem, the

initial conditions are set as the terminal values of the previous sub-problem. The initial guess is in-

tegrated for one orbital revolution, where the thrust magnitude, T , is considered to be at maximum

for the entirety of the integration and the thrust direction components, (ur, ut, un), are solved for

afterwards by assuming that the thrust is always in the same direction as the velocity vector. Sec-

ond, a hp-adaptive mesh refinement method [27] is used with a mesh refinement accuracy tolerance

of 10�2. Third, the initial mesh is set to have one mesh interval with four collocation points.

4 Numerical Approach: BBSOC Method

Numerical solutions to the minimum-fuel orbital transfer problems described in Section 2 are ob-

tained using the recently developed bang-bang and singular optimal control (BBSOC) method de-

veloped in Ref. [20]. The BBSOC method implements a multiple-domain formulation of Legendre-

Gauss-Radau (LGR) collocation [28–32] together with an algorithm developed specifically for de-

tecting and solving bang-bang and singular optimal control problems. In particular, the BBSOC

method identifies the existence of switches in the optimal control, where these switches may either

be bang arcs (that is, segments where the control lies at one of its limits) or singular arcs (that
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is, segments where the Pontryagin’s minimum principle fails to yield a complete solution to the

optimal control problem). For segments identified as singular arcs, the BBSOC method performs

an iterative regularization procedure to compute the singular control. For segments identified as

bang-bang, the BBSOC method determines whether the control lies at either its lower or upper

limit and optimize values of the switch times. Once the switching structure is identified using

the Hamiltonian, the BBSOC method partitions the initial mesh into one or more domains, where

each domain is used to determine the control in that particular part of the solution. As part of

the domain partitioning, the times at which the switches occur are introduced as variables in the

optimization and are determined as part of the solution process. Figure 1 shows how the BBSOC

method obtains an optimized nonsmooth control structure.

Figure 1: Description of the BBSOC method.

Unlike previous studies in the literature where singular arcs are assumed to not exist in the

orbital transfer problem, in this research singular arcs are considered. It is noted, however, that for

the results obtained in this paper the BBSOC method never detected the existence of a singular arc

in the optimal solution and only detected a bang-bang structure in the control. As a result, in this

paper the BBSOC method determines the optimal bang-bang switching structure in the optimal

control without a priori knowledge of this structure. More details on the BBSOC method and the

multiple-domain LGR collocation can be found in Ref. [20].
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5 Results and Discussion

Each of the three orbital transfer studies is solved in canonical units (that is, where the gravitational

parameter is unity) with the value of maximum allowable thrust acceleration, s0 shown in Table 4.

All results were obtained using BBSOC method of Ref. [20] implemented in MATLAB® with the

NLP problem solver IPOPT [25] employed in full Newton (second derivative) mode with an NLP

solver tolerance of 10�7 and the mesh refinement method described in Ref. [32]. All derivatives

required by IPOPT are computed using the algorithmic di↵erentiation software ADiGator [26]. All

computations were performed using a 2.9 GHz 6-Core Intel Core i9 MacBook Pro running Mac OS

version 11.6.1 (Big Sur) with 32GB 2400MHz DDR4 RAM and MATLAB® Version R2018b (build

9.5.0.944444).

5.1 Overall Performance of Optimized Orbital Transfers

Tables 5–7 show the overall performance for the LEO-to-MEO, LEO-to-HEO, and LEO-to-GEO

transfers, respectively. In particular, Tables 5–7 show the terminal mass, m(tf ), the total thrusting

time, tT , the total number of revolutions, N , the number of thrust arcs, AT , and the total impulse,

�V , for the seven values of maximum allowable thrust acceleration, s0, studied. In addition,

for those values of s0 that appear in Ref. [4], the impulse, �V , obtained in Ref. [4] is shown in

Tables 5–7. When computing the impulse, �V , the Tsiolkovsky rocket equation

�V = g0Isp ln


m0

m (tf )

�
. (10)

is used. For all three types of transfers the solutions can be separated into two categories: orbital

transfers with partial orbital revolutions and orbital transfers with multiple orbital revolutions. In

particular, regardless of the type of transfer, the partial revolution transfers correspond to larger

values of s0 (Cases 1-4), whereas the multiple revolution transfers correspond to smaller values of

s0 (Cases 5-7). Furthermore, as s0 decreases, the terminal mass decreases, the total time thrusting

increases, the total number of orbital revolutions increases, and the total impulse increases. It is
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noted that, for the partial orbital revolution solutions, each case has two thrust arcs whereas, for

the multiple orbital revolution solutions, the number of thrust arcs increases as s0 decreases. It is

noted that the terminal mass decreases as s0 decreases because the total time thrusting increases

which leads to an increase in fuel consumption in order to attain the required terminal conditions.

When comparing the total impulse of this work to the total impulse obtained in Ref. [4] (that is,

for the four overlapping cases of maximum allowable thrust acceleration), it can be seen that this

work produces a smaller �V (except for Case 1 of Study 2). For Cases 1 and 3, the di↵erences

in �V are relatively small because the solutions for these cases consist of only two thrust arcs

(that is, burn-coast-burn) which is similar to the burn-coast-burn thrusting structure assumed in

Ref. [4]. Note, however, that for Cases 1 and 3 the burn-coast-burn thrusting structure is obtained

algorithmically via the BBSOC method without any a priori assumptions. On the other hand, for

Cases 5 and 7 the di↵erences in �V are significantly larger because the optimal control consists

of significantly more than two thrust arcs which thereby shows that the burn-coast-burn thrusting

structure assumed in Ref. [4] is less fuel e�cient. Therefore, the �V obtained in this research is

similar to the �V obtained in Ref. [4] when the BBSOC method produces a thrusting structure

similar to the assumed thrusting structure in Ref. [4] and produces a significantly lower �V as the

BBSOC method produces a thrusting structure that significantly di↵ers from the assumed thrusting

structure of Ref. [4].

Aside: It is noted for the LEO-to-HEO transfers that Cases 1 and 2 require that a procedure

di↵erent from that described in Section 3 because the procedure used in Section 3 using the initial

setup (⌘,M, cp) = (0.01, 20, 3) did not detect the bang-bang structure of the optimal control. In

order to detect the bang-bang structure for these cases, via some experimentation the following

alternate procedure was used. First, a second initial setup (⌘,M, cp) = (0.1, 10, 3) was used. The

solution obtained using this second setup is then used as an initial guess with yet a third initial

setup (⌘,M, cp) = (0.001, 70, 3). The results obtained using this alternate procedure led to the
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results shown in Table 6. The solution for Case 2 shown in Table 6 is then used as an initial

guess for Case 1 using the initial setup (⌘,M, cp) = (0.1, 10, 3). The solution obtained using this

last setup is then used as an initial guess with the setup (⌘,M, cp) = (0.01, 170, 3), leading to the

results found in Table 6.

Table 5: Performance results for Study 1: LEO-to-MEO transfers.

Case s0
�
m · s�2

�
m (tf ) (kg) tT (h) N AT �V

�
m · s�1

�
Ref. [4] �V

�
m · s�1

�

1 10 674.9651 0.0880 0.5196 2 3854.9 3863

2 5 674.7867 0.1744 0.5352 2 3857.5 –

3 1 668.2949 0.8941 0.7398 2 3952.3 3970

4 0.5 653.0154 1.8816 0.8768 2 4179.1 –

5 0.1 624.2352 10.2132 4.9579 4 4621.2 4731

6 0.05 607.2275 21.2975 9.1414 6 4892.1 –

7 0.01 606.9697 106.4970 32.8742 9 4896.2 5122

Table 6: Performance results for Study 2: LEO-to-HEO transfers.

Case s0
�
m · s�2

�
m (tf ) (kg) tT (h) N AT �V

�
m · s�1

�
Ref. [4] �V

�
m · s�1

�

1 10 716.2925 0.0766 0.5202 2 3272.2 3271

2 5 715.7138 0.1525 0.5387 2 3280.1 –

3 1 699.2824 0.8140 0.8359 2 3507.8 3555

4 0.5 663.1665 1.8242 0.9240 2 4027.9 –

5 0.1 657.2695 9.2494 4.9570 6 4115.6 5271

6 0.05 645.0881 19.1564 9.0376 9 4298.9 –

7 0.01 576.7825 114.7384 39.0413 17 5396.5 6109
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Table 7: Performance results for Study 3: LEO-to-GEO transfers.

Case s0
�
m · s�2

�
m (tf ) (kg) tT (h) N AT �V

�
m · s�1

�
Ref. [4] �V

�
m · s�1

�

1 10 656.7935 0.0925 0.5195 2 4122.6 4127

2 5 656.3850 0.1857 0.5408 2 4128.7 –

3 1 646.4416 0.9614 0.7694 2 4278.4 4308

4 0.5 626.2787 2.0140 0.9380 2 4589.1 –

5 0.1 619.0090 10.3158 4.8044 5 4703.6 5167

6 0.05 583.7997 22.5498 8.0286 6 5277.9 –

7 0.01 579.8979 114.0104 110.0091 8 5343.7 5698

5.2 Key Features of Optimized Solutions

In this section the key features of the optimized LEO-to-MEO, LEO-to-HEO, and LEO-to-GEO

transfers is analyzed by studying the solution for Case 5, s0 = 0.1 m · s�2. Each type of transfer is

studied separately in order to highlight the key features of the solution for that type of transfer.

5.2.1 Key Features of Optimized LEO-to-MEO Transfers

Figure 2 shows the optimized three-dimensional trajectory of the LEO-to-MEO transfer, where

the modified equinoctial elements were converted into scaled Cartesian coordinates [22]. It is

seen that the spacecraft begins in a low-Earth orbit and terminates in a medium-Earth orbit that

corresponds to the orbital elements in Table 2. The optimal trajectory of the spacecraft consists

of 4.9579 orbital revolutions around the Earth with a final mass of 624.2352 kg, four thrust arcs, a

total time thrusting of 10.2132 h, and a total impulse of 4621.2 m · s�1. It is noted that all of the

thrust arcs, except for the final, occur near the periapsis of the orbit.

Figure 3 shows the behavior of the orbital elements of the optimized trajectory of the spacecraft.

The semi-major axis, a, increases throughout all of the thrust arcs from 7.003⇥ 106 m to 2.6560⇥

107 m, where the change becomes more rapid in the later thrust arcs. It is more fuel e�cient to
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Figure 2: Optimal three-dimensional spacecraft trajectory for LEO-to-MEO transfer with s0 =

0.1 m · s�2.

change the size of the orbit near periapsis because the velocity of the spacecraft is the fastest the

spacecraft will travel on that specific orbit, meaning that the amount of fuel expended is less to

achieve a higher velocity in the same direction than anywhere else on the orbit. Therefore, the

thrust arcs happen near periapsis. The eccentricity, e, increases through the first three thrust arcs

from 0 to 0.3579, then decreases to zero during the last thrust arc. The eccentricity rapidly changes

during the first three thrust arcs because it is more fuel e�cient to increase the size of the orbit

first and get further from the Earth, then followed by changing the inclination of the orbit. The

last thrust arc then places the spacecraft into the final circular orbit. The inclination, i, increases

slowly from 28.5 deg to 32.8764 deg during the first three thrust arcs, and then rapidly increases to

54.7 deg during the final thrust arc. The inclination changes by 4.3764 deg during the first three

thrust arcs and by 21.8236 deg during the final thrust arc. The inclination changes much more

significantly during the final thrust arc than in the first three thrust arcs because the spacecraft

is farther away from the Earth, therefore the velocity of the spacecraft is smaller. Consequently,

the maneuver is more fuel e�cient because inclination changes require a change in the direction of

velocity. Therefore, when the velocity is smaller the maneuver will require less fuel to be expended,

so the inclination changes more during the final thrust arc.
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(a) Semi-major axis. (b) Eccentricity.

(c) Inclination.

Figure 3: Orbital elements along optimal trajectory for LEO-to-MEO transfer with s0 = 0.1 m ·s�2.

Figure 4 shows the mass of the spacecraft throughout the fuel-optimized trajectory. The mass

decreases steadily throughout the four thrust arcs from 1000 kg to 624.2352 kg, which is the

optimized final mass. For Case 5 of the LEO-to-MEO transfer, the amount of fuel expended is

375.7648 kg.

Finally, Fig. 5 shows the control components of the optimal trajectory, which are the thrust

magnitude, T , and the thrust direction components, (ur, ut, un). The thrust magnitude remains at

the maximum thrust Tmax = 100 N for the duration of the thrust arcs and 0 N for the duration of

the coast arcs. There are four thrust arcs and three coast arcs in the optimized thrusting structure.

Consequently, the thrust has six discontinuities and the structure of this solution is bang-bang.
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Figure 4: Mass of spacecraft along optimal trajectory for LEO-to-MEO transfer with s0 = 0.1 m ·

s�2.

It is noted that the structure of the thrust is not assumed before solving the problem and the

structure is detected using the BBSOC method [20]. The components of the thrust direction are

only applicable when the thrust is non-zero (that is, the four thrust arcs), therefore the behavior

will only be discussed for the thrust arcs because the components are set to zero during the coast

arcs on the plot for clarity. The radial thrust direction component, ur, increases from �0.1435 to

0.3569 throughout the first three thrust arcs, where the direction oscillates about 0 with increasing

amplitudes, then decreases from 0.4665 to 0.1319 during the final thrust arc. The transverse

thrust direction component, ut, decreases from 0.9682 to 0.9004 throughout the first three thrust

arcs, then decreases from 0.8842 to 0.7693 in the final thrust arc. The normal thrust direction

component, un, increases from �0.2048 to 0.2488 throughout the first three thrust arcs, where

the direction oscillates, then decreases from 0.0242 to �0.6251 during the final thrust arc. This

behavior demonstrates that during the first three thrust arcs the majority of the thrust is in the

transverse direction in order to increase the size of the orbit from 7.003⇥ 106 m to 1.5862⇥ 107 m

and that during the final thrust arc the majority of the thrust is in the transverse and normal

directions to increase the size of the orbit from 1.5862⇥ 107 m to 2.6560⇥ 107 m and increase the

inclination of the orbit from 32.8764 deg to 54.7 deg.
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(a) Thrust magnitude. (b) Thrust direction components.

Figure 5: Optimal control for LEO-to-MEO transfer with s0 = 0.1 m · s�2.

5.2.2 Key Features of Optimized LEO-to-HEO Transfers

Figure 6 shows the optimized three-dimensional trajectory of the LEO-to-HEO transfer, where the

modified equinoctial elements were converted into scaled Cartesian coordinates [22]. It is seen that

the spacecraft begins in a low-Earth orbit and terminates in a high-Earth orbit that corresponds

to the orbital elements in Table 2. The optimal trajectory of the spacecraft consists of 4.9570

orbital revolutions around the Earth with a final mass of 657.2695 kg, six thrust arcs, a total time

thrusting of 9.2494 h, and a total impulse of 4115.6 m · s�1. It is noted that all of the thrust arcs,

except for the final thrust arc, occur near periapsis of the transfer orbit.

Figure 7 shows the behavior of the orbital elements of the optimized trajectory of the spacecraft.

The semi-major axis, a, increases throughout the first five thrust arcs from 7.003 ⇥ 106 m to

2.8177 ⇥ 107 m, and then decreases to 2.6578 ⇥ 107 m during the final thrust arc. It is more fuel

e�cient to change the size of the orbit near periapsis because the velocity of the spacecraft is the

fastest the spacecraft will travel on that specific orbit, meaning that the amount of fuel expended is

less to achieve a higher velocity in the same direction than anywhere else on the orbit. Therefore,

the size of the orbit is changed the most during the fifth thrust arc. The eccentricity, e, increases

throughout all of the thrust arcs from 0 to 0.73646. The eccentricity rapidly changes during the
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Figure 6: Optimal three-dimensional spacecraft trajectory for LEO-to-HEO transfer with s0 =

0.1 m · s�2.

first five thrust arcs because it is more fuel e�cient to change the size of the orbit first and get far

from the Earth, then followed by changing the inclination of the orbit. The inclination, i, slowly

increases from 28.5 deg to 29.8969 deg during the first five thrust arcs, and then rapidly increases

to 63.435 deg during the final thrust arc. The inclination changes by 1.3969 deg during the first

five thrust arcs and by 33.5381 deg during the final thrust arc. The inclination changes much more

significantly during the final thrust arc than in the first five thrust arcs because the spacecraft

is farther away from the Earth, therefore the velocity of the spacecraft is smaller. Consequently,

the maneuver is more fuel e�cient because inclination changes require a change in the direction of

velocity. Therefore, when the velocity is smaller the maneuver will require less fuel to be expended,

so the inclination changes more during the final thrust arc.

Figure 8 shows the mass of the spacecraft throughout the fuel-optimized trajectory. The mass

decreases steadily throughout the six thrust arcs from 1000 kg to 657.2695 kg, which is the optimized

final mass. For Case 5 of the LEO-to-HEO transfer, the amount of fuel expended is 342.7305 kg.

Finally, Fig. 9 shows the control components of the optimal trajectory, which are the thrust

magnitude, T , and the thrust direction components, (ur, ut, un). The thrust magnitude remains at

the maximum thrust Tmax = 100 N for the duration of the thrust arcs and 0 N for the duration of
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(a) Semi-major axis. (b) Eccentricity.

(c) Inclination.

Figure 7: Orbital elements along optimal trajectory for LEO-to-HEO transfer with s0 = 0.1 m ·s�2.

the coast arcs. There are six thrust arcs and five coast arcs in the optimized thrusting structure.

Consequently, the thrust has ten discontinuities and the structure of this solution is bang-bang.

It is noted that the structure of the thrust is not assumed before solving the problem and the

structure is detected using the BBSOC method [20]. The components of the thrust direction are

only applicable when the thrust is non-zero (that is, the six thrust arcs), therefore the behavior

will only be discussed for the thrust arcs because the components are set to 0 during the coast

arcs on the plot for clarity. The radial thrust direction component, ur, increases from �0.1074 to

0.6782 throughout the first five thrust arcs, where the direction oscillates about 0 with increasing

amplitudes, then decreases from 0.0920 to �0.0157 during the final thrust arc. The transverse
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Figure 8: Mass of spacecraft along optimal trajectory for LEO-to-HEO transfer with s0 = 0.1 m·s�2.

thrust direction component, ut, decreases from 0.9712 to 0.7348 throughout the first five thrust

arcs, where the direction changes in an inverted parabolic pattern during the thrust arcs, then

increases from �0.5176 to 0.0346 in the final thrust arc. The normal thrust direction component,

un, decreases from 0.2125 to �0.0062 throughout the first five thrust arcs, where the direction

changes in a parabolic pattern during the thrust arcs, then increases from 0.8506 to 0.9997 during

the final thrust arc. This behavior demonstrates that during the first five thrust arcs the majority of

the thrust is in the transverse direction in order to increase the size of the orbit from 7.003⇥106 m

to 2.8177⇥ 107 m and that during the final thrust arc the majority of the thrust is in the normal

direction to increase the inclination of the orbit from 29.8969 deg to 63.435 deg.

5.2.3 Key Features of Optimized LEO-to-GEO Transfers

Figure 10 shows the optimized three-dimensional trajectory of the LEO-to-GEO transfer, where the

modified equinoctial elements were converted into scaled Cartesian coordinates [22]. It is seen that

the spacecraft begins in a low-Earth orbit and terminates in a geostationary orbit that corresponds

to the orbital elements in Table 2. The optimal trajectory of the spacecraft consists of 4.8044

orbital revolutions around the Earth with a final mass of 619.0090 kg, five thrust arcs, a total time

thrusting of 10.3158 h, and a total impulse of 4703.6 m · s�1. It is noted that all of the thrust arcs,
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(a) Thrust magnitude. (b) Thrust direction components.

Figure 9: Optimal control for LEO-to-HEO transfer with s0 = 0.1 m · s�2.

except for the final, occur near the periapsis of the orbit.

Figure 10: Optimal three-dimensional spacecraft trajectory for LEO-to-GEO transfer with s0 =

0.1 m · s�2.

Figure 11 shows the behavior of the orbital elements of the optimized trajectory of the spacecraft.

The semi-major axis, a, increases throughout all of the thrust arcs from 7.003⇥ 106 m to 4.2287⇥

107 m, where the change becomes more rapid in the later thrust arcs. It is more fuel e�cient to

change the size of the orbit near periapsis because the velocity of the spacecraft is the fastest the

spacecraft will travel on that specific orbit, meaning that the amount of fuel expended is less to

achieve a higher velocity in the same direction than anywhere else on the orbit. Therefore, the

24



thrust arcs happen near periapsis, except for the final thrust arc. The eccentricity, e, increases

through the first four thrust arcs from 0 to 0.5874, then decreases to 0 during the last thrust arc.

The eccentricity rapidly changes during the first four thrust arcs because it is more fuel e�cient

to increase the size of the orbit first and get far from the Earth, then followed by changing the

inclination of the orbit. The last thrust arc then creates a circular orbit. The inclination, i, slowly

decreases from 28.5 deg to 25.8893 deg during the first four thrust arcs, and then rapidly decreases

to 0 deg during the final thrust arc. The inclination changes by 2.6107 deg during the first four

thrust arcs and by 25.8893 deg during the final thrust arc. The inclination changes much more

significantly during the final thrust arc than in the first four thrust arcs because the spacecraft

is farther away from the Earth, therefore the velocity of the spacecraft is smaller. Consequently,

the maneuver is more fuel e�cient because inclination changes require a change in the direction of

velocity. Therefore, when the velocity is smaller the maneuver will require less fuel to be expended,

so the inclination changes more during the final thrust arc.

Figure 12 shows the mass of the spacecraft throughout the fuel-optimized trajectory. The

mass decreases steadily throughout the five thrust arcs from 1000 kg to 619.0090 kg, which is the

optimized final mass. For Case 5 of the LEO-to-GEO transfer, the amount of fuel expended is

380.9910 kg.

Finally, Fig. 13 shows the control components of the optimal trajectory, which are the thrust

magnitude, T , and the thrust direction components, (ur, ut, un). The thrust magnitude remains at

the maximum thrust Tmax = 100 N for the duration of the thrust arcs and 0 N for the duration of

the coast arcs. There are five thrust arcs and four coast arcs in the optimized thrusting structure.

Consequently, the thrust has eight discontinuities and the structure of this solution is bang-bang.

It is noted that the structure of the thrust is not assumed before solving the problem and the

structure is detected using the BBSOC method [20]. The components of the thrust direction are

only applicable when the thrust is non-zero (that is, the five thrust arcs), therefore the behavior
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(a) Semi-major axis. (b) Eccentricity.

(c) Inclination.

Figure 11: Orbital elements along optimal trajectory for LEO-to-GEO transfer with s0 = 0.1 m·s�2.

will only be discussed for the thrust arcs because the components are set to 0 during the coast

arcs on the plot for clarity. The radial thrust direction component, ur, increases from �0.1167 to

0.4551 throughout the first four thrust arcs, where the direction oscillates about 0 with increasing

amplitudes, then decreases from 0.1253 to 0.0929 during the final thrust arc. The transverse thrust

direction component, ut, decreases from 0.9932 to 0.8900 throughout the first four thrust arcs, then

increases from 0.5368 to 0.8313 in the final thrust arc. The normal thrust direction component, un,

increases from 0.0051 to 0.0288 throughout the first three thrust arcs, where the direction oscillates,

then increases from �0.8343 to �0.5481 during the final thrust arc. This behavior demonstrates

that during the first four thrust arcs the majority of the thrust is in the transverse direction in
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Figure 12: Mass of spacecraft along optimal trajectory for LEO-to-GEO transfer with s0 = 0.1 m ·

s�2.

order to increase the size of the orbit from 7.003 ⇥ 106 m to 2.6198 ⇥ 107 m and that during the

final thrust arc the majority of the thrust is in the transverse and normal directions to increase the

size of the orbit from 2.6198 ⇥ 107 m to 4.2287 ⇥ 107 m and decrease the inclination of the orbit

from 25.8893 deg to 0 deg.

(a) Thrust magnitude. (b) Thrust direction components.

Figure 13: Optimal control for LEO-to-GEO transfer with s0 = 0.1 m · s�2.
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6 Conclusions

A numerical optimization study of various minimum-fuel Earth-based orbital transfers from low-

Earth orbit (LEO) to both medium-Earth orbit (MEO) and high-Earth orbit (HEO) was performed.

The optimal orbital transfer trajectory optimization problem has been formulated as a nonlinear

optimal control problem. The problem was solved using a multiple-domain formulation of Legendre-

Gauss-Radau (LGR) collocation together with a method called the bang-bang and singular optimal

control (BBSOC) method. The BBSOC method partitions the domain of the independent variable

based on identifying segments where the control is either at one of its limits (bang-bang) or is

singular. A key feature of the results obtained in this research is that the optimal switching

structure of the thrust was not assumed a priori but was determined using the BBSOC method. It

was found for cases where the thrust switched many times during the maneuver that the minimum

impulse obtained in this study was significantly lower than that obtained in a previous study where

the thrust was allowed to switch only once during the maneuver. As an expected outcome, the

results of this study show that improvement in fuel consumption is obtained when it is possible

to determine the switching structure in the control as opposed to assuming a particular switching

structure in the control a priori.
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