CancerKG.ORG-A Web-scale, Interactive, Verifiable
Knowledge Graph-LLM Hybrid for Assisting with Optimal
Cancer Treatment and Care

Michael Gubanov * Anna Pyayt Aleksandra Karolak
Florida State University University of South Florida Moffit Cancer Center and Research
Tallahassee, FL, USA Tampa, FL, USA Institute, Tampa, FL, USA

Abstract

Here, we describe one of the first Web-scale hybrid Knowledge
Graph (KG)-Large Language Model (LLM), populated with the latest
peer-reviewed medical knowledge on colorectal Cancer. It is
currently being evaluated to assist with both medical research and
clinical information retrieval tasks at Moffitt Cancer Center, which
is one of the top Cancer centers in the U.S. and in the world. Our
hybrid is remarkable as it serves the user needs better than just an
LLM, KG or a search-engine in isolation. LLMs as is are known to
exhibit hallucinations and catastrophic forgetting as well as are
trained on outdated corpora. The state of the art KGs, such as
PrimeKG, cBioPortal, ChEMBL, NCBI, and other require manual
curation, hence are quickly getting stale. CancerKG is unsupervised
and is capable of automatically ingesting and organizing the latest
medical findings. To alleviate the LLMs shortcomings, the verified
KG serves as a Retrieval Augmented Generation (RAG) guardrail.
CancerKG exhibits 5 different advanced user interfaces, each
tailored to serve different data modalities better and more
convenient for the user. We evaluated CancerKG on real user
queries and report a high NDCG score on a large-scale corpora of
approximately 44K publications.
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1 INTRODUCTION

Published peer-reviewed medical knowledge and practices double
every few months [29]. This complicates quick access to it and
hinders awareness of the latest best practices for all interested
parties. Patients, their families, and medical professionals [38, 42—
45]- all are forced into time-consuming
Google/PubMed/QxMD/other search, followed by reading and
filtering out multiple Web-pages, publications, etc, which is
prohibitively slow[19, 35, 36, 39, 40, 62, 68, 70]. Our innovation is a
hybrid Knowledge Graph (KG)-LLM that provides quick access to
the latest personalized best practices and other latest medical
findings, found in the latest peer-reviewed publications. It is a RAG-
based system [15] comprised of an LLM (a choice of Meta Llama 2
[18], Google FLAN T5 [27], GPT-2 [71] or GPT-4 [61]) moderated
by our trustworthy Knowledge Graph (KG). This hybrid marries the
strengths of LLMs with verifiability and multi-modal content
compatibility of our novel KG. Traditional KGs, Deep-learning
models, or LLMs cannot be used to reliably retrieve and organize
complex knowledge from thousands of publications, without
significant human supervision to ensure correctness. LLMs require
almost no supervision, but still suffer from other major Al-related
limitations, such as “hallucinations” [2] and “catastrophic
forgetting” [3], often leading to “forgetting” important information
or inventing fake facts. Furthermore, most of them are trained on
outdated data (e.g. cut-off date of September 2021 for GPT-4 [4]),
and are very expensive to retrain.

Current socially maintained generic KGs, such as YAGO [65] or
DBPedia [22]; medical ontologies and databases, such as NCBI, Viral
[10] or PrimeKG[26]; Cancer databases, such as cBioPortal [25] or
ChEMBL [33] are all manually curated, hence quickly become stale
and have limited coverage. Other manually curated popular
resources such as CDC.gov and WebMD.com are updated more
frequently, but are very shallow, since the highly educated
personnel can only afford to cover only the most dominating topics
due to high cost.

This makes both traditional KGs and LLMs as is unsuitable for
solving the problem. Our RAG-based hybrid scales to thousands of
data sources, “understands” multi-modal knowledge, does not
hallucinate, and does not require massive supervision.
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Figure 1: CancerKG.ORG Architecture.

It learns from the latest peer-reviewed publications from
PubMed.com and exhibits both broad topical coverage within the
domain, as well as topical dept. It has several interactive interfaces
- browsing, search, and natural language. This novel solution helps
users access the latest relevant knowledge that is actionable for
patient care. It currently undergoes evaluation and is expected to be
reduced into medical research practice on colorectal Cancer
patients. We take colorectal Cancer as a model domain, but without
making our architecture depend on it, so the overall approach
remains truly “on demand” - i.e. applicable to other scientific areas
[17, 20, 24, 37, 46-48, 50, 54-59, 64, 67, 73].

We start by detailing the CancerKG architecture. Next, we
describe some of our Deep-Learning models and the process that we
designed to train them at scale. These models extract and organize
knowledge from our datasets into our KG. Finally, we discuss how
we fine-tuned our LLMs and how it interfaces with our KG to
provide the hybrid balanced solution. We finish by reviewing
related work and some similar systems currently used in practice in
the Cancer Centers worldwide.

2 ARCHITECTURE

After researching the state of the art Knowledge Graphs [2, 22, 25,
26,30, 32, 33, 65, 69, 75], LLMs [18, 27, 61, 71] as well as investigating
the needs of colorectal Cancer patients, oncologists, and data
scientists through conducting interviews during our NSF I-Corps
customer discovery process [14], we have designed and tested the
current architecture of CancerKG.ORG. It is similar to [76] with
differences in it using Large Language Models (LMM), different
Deep Learning models, Meta-profiles, and datasets. It is illustrated
in Figure 1. Nel in the Figure represents a Data Scientist, who
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manually initializes a very small vetted KG with 10-20 nodes and
interconnecting edges (depending on the domain), which will serve
as a seed of our KG. Ne2 corresponds to our KG, stored in a scalable
triplestore, such as Amazon Neptune [23], Eclipse RDF4]J [7] or
sharded MongoDB storage [12]. This KG is interactive and can be
browsed (see Figure 2) or queried via publication (see Section 3) or
table structural search-engines (see Figure 3) or API. Ne3 depicts our
CancerKG dataset. It is parsed, post-processed, and restructured
before storage in a semi-structured format (i.e. JSON), convenient
for training Machine/Deep-learning models, Embeddings and fine-
tunning LLMs. Ne4 represents a high-performance NVidia GPU
cluster, responsible for training, classification, clustering, and LLM
fine-tuning and question-answering (QA) workloads. It is
configured with Apache Spark MLLib [21], TensorFlow [16], and
LLM such as Meta LLama 2 [18], Google FLAN T5 [27], GPT-2 [71]
and GPT-4 [61]. Ne5 in Figure 1 shows the topical table clusters,
extracted and formed from the dataset. Ne6 illustrates a hierarchical
KG fragment, learned from these clusters — in this case for
(colorectal) Cancer - new therapies, adverse-events, symptoms, etc.
Ne7  corresponds to  the  multi-layered 3D  Meta-
profiles, generated from these clusters. Meta-profile [41, 63] is a
concise and convenient visualization/browsing interface that we
proposed for accessing knowledge in large topical table clusters (see
Figure 5). Ne8 corresponds to the tables from the original corpus.
Ne9, 10 represent users, who browse, query, and ask CancerKG
questions. Ne11, 13 are the CancerKG API users that use RPC or
REST remote calls to do the same from their application or access
our pre-trained Deep-learning models, Embeddings, or fine-tuned
LLMs.
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Figure 2: A Small Fragment of the Interactive CancerKG Knowledge Graph.
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Figure 3: CancerKG Structural Search over Tables based on the LLM Conversational Interface.

Ne12 depicts the World Wide Web (i.e. PubMed in our case) with parsed, decomposed in the KG, classified, and continuously updated

the new vetted medical knowledge on colorectal Cancer published with vetted knowledge from new peer-reviewed publications.
every day. Nel4 illustrates the KG enrichment process through Hardware, Libraries, Storage: Training and validating of some
fusion of new KG sub-trees or insertion of new nodes/edges. of our models were done on a cluster of 4 machines, each having 4
Currently, CancerKG stores more than 2.5 million latest peer- Intel Xeon 2.4Ghz 40-core CPUs, from 192GB to 1TB of RAM, with
reviewed publications on Cancer (including colorectal Cancer), 10TB disk space each, interconnected with a 1GB Ethernet. LLM
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fine-tunning was done using Amazon P5 AWS instances with
NVidia latest GPUs. All software was written in the Python
programming language. For implementing the RNN, GRU, and biL-
STM models, we have used Keras, with Tensorflow framework as
the backend. Our MongoDB [12] sharded cluster storing data and
all trained Deep-learning models and embeddings takes
approximately 965GB for its distributed dataset storage, with raw
space consumption of more than 5TB.

3 INTERACTING WITH CANCERKG

CancerKG has several advanced user interfaces — an interactive KG,
publication and table structural search engines, conversational
interface in natural language, and 3D Meta-profile interface.

3.1 Interactive Knowledge Graph

Figure 2 illustrates the interactive KG that allows convenient inter-
action with the hierarchical knowledge base learned by CancerKG.
In Figure 2, the user clicks on the nodes and follows the unfolding
path through metastasis, liver, colorectal cancer treatment nodes to
the nested leaf-nodes having the topical clusters of tables connected
to the corresponding KG leaf-nodes. After clicking on the leaf node,
the user can choose “Show all tables” option from the contextual
pop-up menu, which will display them in the bottom frame under
the KG shown in Figure 3. That interface supports both drilling
down deeper in the cluster using either the structural search or
conversational interface. Alternatively, the user can choose “3D-
meta profile” option in the same pop-up menu, which will generate
a Meta-profile corresponding to the selected cluster. The Meta-
profile generated for “Summaries and Case Studies” cluster is
illustrated in Figure 5.

3.2 Search-engines

We currently support 2 publication search-engines and one tabular
search-engine, coupled with a conversational interface. During
query processing we tokenize the query and perform stemming.
Our ranking function features include the number of matches,
proximity between the matched terms, relative importance of the
matched field, term, etc. Each term (its NLP “root form”) in the
corpus has an associated Term Frequency-Inverse Document
Frequency (TF-IDF) [52] weight in order to reward more important
terms. For each matched term its TF-IDF is weighted in the ranking
per document. The first publication search-engine can be used to
search separately over title, abstract, body text, and/or table captions,
table data and metadata, figure captions and content. It is more robust
compared to a standard keyword-search over the entire publication
(e.g. Pubmed.com, Google Scholar, etc) and allows more fine-
grained filtering capabilities. The search fields are inclusive in the
search results, meaning, if a user searches on a field there must be a
document that matches at least one term in that field or it does not
get passed on to the next stage regardless if there are matches over
the other fields. The results are formatted with table captions first,
the title and authors and the full abstract.

The second publication search-engine performs query processing
differently - i.e. it matches the query terms to all fields used by the
first search-engine above. It can be used whenever the user is
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unsure of where exactly the term may be. These search results are
formatted with a brief excerpt of where it matches to the fields. The
interface also allows the user to expand and collapse sections of the
paper displayed in the search-results to get to the needed
information quicker.

The tabular search-engine allows the user to search over a set of
popular and important for clinical use table attributes present in the
dataset. This is to our knowledge, one of the first structural search-
engines over medical tables like that. Other solutions do not
specifically separate tables, which leads to inability of querying
their fields separately from the rest of the publication data or do not
“understand” the intricacies of complex medical non-relational
tables [53]. Generic relational [28] and semi-structured databases
[12] can be used to load tables and use SQL to query them, but they
do not “understand” intricacies of structure of such tables, hence fail
to correctly support many challenging data harmonization tasks
that are necessary to support correct and efficient structural search
over such tables. They are usually not in 1st Normal Form [28],
exhibit not only horizontal (HMD), but also vertical metadata
(VMD) [53]. To query such tables efficiently many steps related to
processing their non-standard structure with both HMD, VMD, and
nesting have to be done correctly. Such steps include hierarchical
vertical and horizontal schema matching, data transformation and
unification, processing the nested tables inside the cells with their
own metadata correctly (i.e. just unnesting would not help in this
case), ranking search-results containing such tables by relevance -
all of it is not addressed in the entirety in any of the solutions to our
knowledge.

Query processing over complex tables is a large part of our long-
term goal to advance structural information retrieval for structured
data at scale. These search results are a product of an advanced
tandem of embedding-based schema matching (e.g. Tumor Size,
Effect Size, Size) and advanced query processing. Figure 3 depicts a
screenshot of search results for tables evaluating clinical outcomes
with risk factors for colorectal Cancer. The user (e.g. oncologist)
enters the natural language query in the conversational interface
(its description is below) “output all latest information available
about risk factors and predictive models for metastatic colorectal
cancer with tumor in lymph node, size 8.45”. The query got parsed by
our conversational query parser and got split into two queries. The
first - a structural query that consists of the extracted attributes -
lymph node and tumor size 8.45 and is executed via the table search
engine. The second query is textual and is equivalent to the input,
amended with the synonyms for the identified table fields to
simplify query processing for the LLM. Both matching to the fields
and synonym amendment is done using our custom embeddings
that we trained on tables in the dataset. Figure 3 displays synonyms
(both for the search terms and the attribute names) in the dark grey
message box that we enabled for demonstration purposes. The
screenshot is cut off at the bottom due to space constraints.

3.3 Conversational Interface

We fine-tuned several LLMs, such as LLama 2 [18], GPT-2 [71],
GPT-4 [61], FLAN-T5 [27] on our corpus and offer a conversational
interface in natural language to the user. The query is first being
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parsed by our conversational query parser, which identifies any
table attributes and their values (if present) and automatically fills
out the fields in the structural table search-engine. Second, the
query is passed on further to one of the LLMs selected by the user,
which generates a natural language response amending the tables
(if any) generated by the search-engine. Figure 3 on the right,
illustrates a user asking a question and the LLM reformulating the
query for the search-engine that outputs the response (a table).

Evaluation: We have evaluated this LLM interface on real user
queries similar by nature to the one in Figure 3 and calculated
Normalized Discounted Cumulative Gain (NDCG) at 10 to evaluate
the quality of the first 10 responses for each query as well as
ranking. To do that we asked 2 independent annotators annotate
the (query, result) pairs with labels 1-5 corresponding to relevance
of each result corresponding to the query. We observed a high
NDCG score that gauges not only the responses, but also their
ranking quality.
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3.4 3D Meta-profile

A Meta-profile, informally, is a summary of metadata of a table
cluster. Since, here our tables have both HMD and VMD, the
metaprofile summarizes them in two separate dimensions. Figure 5
illustrates a Meta-profile generated by the user, who was browsing
the Knowledge Graph, drilled down to the “Summaries and Case
Studies” leaf node and selected an option “Create a 3D-meta Profile”
from the pop-up menu. The Meta-profile is a 3D-bar graph that on
X-axis has attribute labels of HMD and VMD of tables from the
cluster, selected by the user. On Y-axis it has the TF/IDF [52] score
corresponding to each HMD or VMD attribute.
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Figure 5: A Meta-Profile generated by CancerKG.ORG for
Summaries and Case Studies on colorectal Cancer.

By clicking on the bars (blue corresponds to HMD, red - to VMD),
the user can further drill down to the subset of tables from the
specifically having only the
corresponding to the selected bars. In other words, it can be thought
of as a dynamic filter, creating new table sub-clusters based on the
HMD and VMD choices made by the user. For example, if the user
selects the “study design” blue bar in Figure 5, the system will
generate a separate table sub-cluster, having only the tables from
the original cluster having “study design” in their HMD. CancerKG
will create such sub-clusters on the fly and amend the KG by
attaching it to the original cluster.

cluster selected  attributes

4 TABLE TOPICAL CLASSIFICATION
4.1 GRU Model

Figure 4 depicts the architecture of a GRU architecture that we used
for topical table classification, consisting of three main stages. In the
first stage, a table, {x;, x,, .., x, }, where x; is the i term is pre-
processed to create cell-wise representations. It includes data
cleaning along with the replacement of numbers and ranges in data
with placeholders such as NUM, RANGE, etc as is described above.
The pre-processed feature vectors are then used to fine-tune
BioBERT embeddings [31] on the whole corpus. This sequence is
passed through a GRU layer and the result is concatenated with the
original embeddings to create our enriched contextualized vectors,
{c1, €3, - cp }. The final stage of the model passes them through a
dense layer of 32 units, a batch normalization layer, a dropout layer
and a dense binary classifier similar to [76].

We opted for GRU layers over LSTM because while performance
was slightly worse, with -0.02 AF1-Score, -0.07 APrecision, +0.06
ARecall, the training was faster.

4.2 Pre-processing

We have used 100,000 dimensional feature space, i.e. 100K English
terms in our vocabulary that we have selected by taking all terms
from our datasets, sorting by frequency and cutting off the noise
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words and spam [73]. Increasing the dimensionality further led to
significantly slower training time, which would prevent or make
the experiments much more difficult.

To streamline the processing of numerical data handled by the
model, we have created several regular expressions that encode all
numerical data falling in similar forms under its relevant category.
The substitution is described in more detail in [53].

4.3 Training and Evaluation

We composed the training sets from Web-scale datasets such as
WDC [60] and CancerKG respectively [74]. We evaluated our
models and observed approximately 95% F-measure, when validated
with 10-fold cross-validation, for Deep-learning Bi-GRU- based
models with slight differences depending on whether the classified
metadata is horizontal or vertical, as well as its position.

We composed the training sets for the topics corresponding to
the leaf nodes in the colorectal Cancer KG by, first, asking a clinical
Data Scientist to select a representative (i.e. centroid) table for each
topic that we further use a seed to train our GRU binary
classification model and create a cluster for each topic. Second, we
created a composite embedding vector corresponding to each
topical centroid table. Each table vector consists of 3 concatenated
components - Vgp for HMD, Vi, for VMD, Vj, for D. Each of
them is calculated as a summation of our embedding vectors (we
fine-tuned BioBERT on our dataset [31]) corresponding to each
term located in one the table sections. The final embedding vector
for a table is a concatenation of 3 vectors — V= Vipp @ Viap @ Vp.
Third, we take a centroid vector and select only the tables in the
dataset within a 18 degrees from it (determined empirically). Fourth,
we train our GRU model as a binary topic classifier on these tables
(as positively labeled) amended with the same number of random
tables from the dataset (as negatively labeled). Finally, we run all
such topical binary classifiers through our dataset on colorectal
Cancer and form the table clusters of varying size. We evaluated the
quality of formed clusters and observed approximately 93%
precision.

5 KNOWLEDGE GRAPH

5.1 Initialization

The structural hierarchy (i.e. nodes and edges) for the Knowledge
Graph will be initialized with the help of a Data Scientist (Nel in
Figure 1). On the highest level, the general characteristics of Cancer
can be extracted from PrimeKG [26], vetted static ontologies or
dictionaries on colorectal Cancer. Once initialized, the KG gets
automatically updated from the vetted medical sources. This
ensures reliability, freshness, and quality of our KG (i.e. Ne2 in
Figure 1).

5.2 Enrichment and Fusion

Once the KG initialization is complete we fuse the extracted
information into our Knowledge Graph during the enrichment
process. We classify and extract the clusters on prominent topics in
colorectal Cancer (e.g. No5 in Figure 1). This process is challenging
since all topical clusters have different structure and significant
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concepts and terms can be referred to differently (e.g. mCRC and
metastatic colorectal Cancer). Consequently, we trained a variety of
advanced Al models with our new tabular embeddings to help
perform accurate clustering [34, 57].

The graph is populated with nodes and edges and is stored in
JSON format. The structure of the graph is hierarchical, so all child
nodes have parent nodes. The user can search over the KG via the
front-end interface that except matching nodes also highlights the
path to the matching nodes. The user can then either browse the
graph to explore the table clusters attached to the nodes; after
selecting a cluster clicking show tables or 3D metaprofile in the
popup menu to query the tables in the cluster (see Figure 3) or
generate a meta-profile corresponding to the cluster (see Figure 5).

Fusion of the extracted hierarchical knowledge into a segment or
several segments of our KG requires taking into consideration
multiple levels of abstraction. For example, “Symptoms” can be a
node in a subtree “Clinical presentation” that could be, in turn,
linked to the “colorectal Cancer” KG root node. Because of the
different ways to categorize, the actual symptoms may overlap in
different KG subtrees. After consulting with several medical experts
it was decided to store all different ways to categorize the data
without merging them, since each of the categorization methods
can be useful for different tasks that oncologists, trainees, and data
scientists perform. While general public might be interested in
common and rare symptoms, medical specialists might analyze
specific organ systems. For example, sorting by “rare symptoms”
and “common symptoms” can overlap with the sets of symptoms
sorted by “organ systems”. In addition to that, even though
“Neurological symptoms” are related to the nervous system in
general, while “Cerebrovascular” is related to the brain and its blood
vessels, they have significant overlap in symptoms. The first step of
fusing the extracted hierarchical knowledge into the KG is matching
the root node of the extracted subtree to the corresponding node(s)
in the KG. This matching process is based on normalized NLP term
matching, amended by the embedding-driven matching. The latter
is especially important in context of new terms, unseen before,
which is often the case with new therapies, adverse-events, etc. For
example, assume we have extracted a subtree 2nd line Treatments
- Regorafenib from the table's metadata. The root node Therapy
may match to the KG node Therapy(ies) by normalized NLP term
matching and then the leaves (Regorafenib) can be merged with the
leaves of the matched node in the KG. However, if there is no
corresponding KG node Therapy(ies) and there is no match to the
KG leaves with existing therapies, the embedding vector
corresponding to the new therapy (Regorafenib) extracted from
metadata can be used to match it to the embeddings vectors of the
existing therapies in the KG due to them being close to each other
by distance. The node Therapy then can be added to the KG on the
top of the Regorafenib node. If the extracted subtree has several
layers of hierarchy, e.g. Side-effects - Pediatric side-effects >
Severe pain, it has to be left separate from the existing side-effects
in the KG, even if matched to them by having close embedding
vectors. This is because, it is categorized as Pediatric side-effects,
which is a separate category from regular side-effects, so both the
new node Pediatric side-effects and its leaves have to be added to
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the KG, even if some of the side-effects overlap with the general
side-effects, already present in the KG. Fusion of sub-trees, having
several layers or insertion of new nodes matching with a low
confidence score has to be evaluated by an expert (Ne14 in Figure 1);
fusion of leaves with nodes matched with high confidence score
may be left unsupervised. Over time, all categories of initial fusion
mistakes identified by the expert will be learned by the fusion model
to be automatically corrected, hence most of the fusion is expected
to become unsupervised in long run.

6 RELATED WORK

[8] is an Information Retrieval (IR) system over publications at
researchrabbit.ai. They are introducing a retrieval mechanism over
papers that does not require the use of keyword-search. They dis-
play a force directed graph of related, cited and referenced papers
that a user can construct and use. They provide many features, such
as being able to create your own custom graph of papers, curated
collections to improve recommendations, personalized alerts,
sharing and collaborating of papers and graphs, and among others
the ability to discover author networks.

PrimeKG [26] is a free KG populated from certain classic, well-
known medical ontologies such as NCBI, UniProt and ~20 other
legacy databases [25, 33]. Their graph has information on genes of
interest, transcripts, protein identifiers function names and gene
names and is manually curated. The latter limits its scalability, and
hence its breadth, depth of coverage as well as freshness of medical
knowledge.

Manually curated chemical databases such as ChEMBL [33], Zinc
[11], Enamine [5] storing drug-like molecules, including the
commercially available or hit molecules and their targets support
advanced structural search for well-established drugs and
molecules. Pharmaceutical knowledge bases - DrugBank [4],
BindingDB [1], and Protein Data Bank (PDB) [6], the latter
particularly for the structural biology support advanced search for
well-established drugs and their interaction patterns. Both chemical
and pharma- ceutical databases, however, are manually curated,
which makes them unattractive compared to any solution,
including ours, that is capable of ingesting/organizing the latest
knowledge automatically.

The following systems, even though on COVID-19 are relevant
as they similarly to us develop advanced query-processing or
search- engines over scientific publications and their multi-modal
content. A system by the Center for Artificial Intelligent Research,
HKUST [72] is a free service and that utilizes NLP to support
question answering along with the summarization to help discover
relevant scientific literature on COVID-19. Their system is
comprised of 3 modules. The pipeline begins with a user query sent
through the first module - document retrieval, which does
paraphrasing and search. Query paraphrasing converts the user
query to several shorter and simpler analogous questions. The
search-engine uses Lucene [13] to retrieve related publications.
Then the snippet selector module finds the related evidence among
the whole text by using the answer re-ranking, and term matching
Finally, a “Multi-document abstractive summarizer”
synthesizes the final answer from multiple retrieved snippets.
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Another relevant system - [9] enables access to a COVID-19
Intelligent Insight portal of over 100,000 curated scientific publica-
tions. Sinequa’s search engine supports full-text search using NLP.
The Search engine supports ranking by relevance and recognizes
synonymy in their ranking function. The interface has 3 sections -
one for the matched scientific results, one for showing more details
on a selected result and the last one for filtering and sorting the
result set. The system highlights important information throughout
each result and tags them all by different classification labels.
Sinequa’s system is also provided for free.

COVIDScholar [3] is an information retrieval resource for
COVID-19 and related scientific research, established by
Matscholar’s re- search effort. COVIDScholar also uses NLP. The
query terms are matched against the title and abstract.
COVIDScholar displays title, authors, abstract, and provides a link
to the paper full-text at its original publisher with the list of related
works. The system neither has a Knowledge Graph, LLM or an
advanced structural search engine.

CancerKG organizes the documents and tables by topics into a
Knowledge Graph (KG) and provides a wide variety of advanced
interfaces - an interactive KG, several search-engines, including a
structural search engine over tables, interactive 3D Meta-profiles, a
fine-tuned, verifiable LLM interacting in natural language with the
user. The user can either browse or search the KG, all sections of
the original publication, title, abstract, table caption or query the
tables. Except search, CancerKG supports structural query
processing with embedding-based matching of query terms and
queried attributes to the data or metadata sections of the tables. The
search-results page provides a list of ranked scientific resources
with access to each full-text of each section of the paper, full-text of
the whole document, and a ranked list of tables with the most
relevant results. The ranking function incorporates matching terms
and synonyms, proximity, document, terms, publication
trustworthiness, and the number of citations as well as others. The
advanced search-engine over tables displays a brief section with the
most relevant tables first that can be expanded to see more results.

7 CONCLUSION

Here we described CancerKG - the first, interactive, trustworthy,
scalable Knowledge Graph/LLM RAG hybrid on colorectal Cancer.
We take colorectal Cancer as a model, but without making our
architecture depend on it, so the overall approach remains
applicable to any other scientific and medical domains, given the
models are retrained for that domain. The content is extracted and
updated in unsupervised manner from PubMed.com that contains
vetted, peer- reviewed medical publications. Hence is verifiable and
contains the most up to date medical practices. We evaluated
CancerKG on 100 real user queries obtained from Moffitt users - i.e.
Oncologists and Data Scientists and report a high NDCG score at 10
on a large-scale corpora of 44K publications.
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