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Abstract 
Here, we describe one of the first Web-scale hybrid Knowledge 
Graph (KG)-Large Language Model (LLM), populated with the latest 
peer-reviewed medical knowledge on colorectal Cancer. It is 
currently being evaluated to assist with both medical research and 
clinical information retrieval tasks at Moffitt Cancer Center, which 
is one of the top Cancer centers in the U.S. and in the world. Our 
hybrid is remarkable as it serves the user needs better than just an 
LLM, KG or a search-engine in isolation. LLMs as is are known to 
exhibit hallucinations and catastrophic forgetting as well as are 
trained on outdated corpora. The state of the art KGs, such as 
PrimeKG, cBioPortal, ChEMBL, NCBI, and other require manual 
curation, hence are quickly getting stale. CancerKG is unsupervised 
and is capable of automatically ingesting and organizing the latest 
medical findings. To alleviate the LLMs shortcomings, the verified 
KG serves as a Retrieval Augmented Generation (RAG) guardrail. 
CancerKG exhibits 5 different advanced user interfaces, each 
tailored to serve different data modalities better and more 
convenient for the user. We evaluated CancerKG on real user 
queries and report a high NDCG score on a large-scale corpora of 
approximately 44K publications. 
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1  INTRODUCTION 
Published peer-reviewed medical knowledge and practices double 
every few months [29]. This complicates quick access to it and 
hinders awareness of the latest best practices for all interested 
parties. Patients, their families, and medical professionals [38, 42–
45]– all are forced into time-consuming 
Google/PubMed/QxMD/other search, followed by reading and 
filtering out multiple Web-pages, publications, etc, which is 
prohibitively slow[19, 35, 36, 39, 40, 62, 68, 70]. Our innovation is a 
hybrid Knowledge Graph (KG)-LLM that provides quick access to 
the latest personalized best practices and other latest medical 
findings, found in the latest peer-reviewed publications. It is a RAG-
based system [15] comprised of an LLM (a choice of Meta Llama 2 
[18], Google FLAN T5 [27], GPT-2 [71] or GPT-4 [61]) moderated 
by our trustworthy Knowledge Graph (KG). This hybrid marries the 
strengths of LLMs with verifiability and multi-modal content 
compatibility of our novel KG. Traditional KGs, Deep-learning 
models, or LLMs cannot be used to reliably retrieve and organize 
complex knowledge from thousands of publications, without 
significant human supervision to ensure correctness. LLMs require 
almost no supervision, but still suffer from other major AI-related 
limitations, such as “hallucinations” [2] and “catastrophic 
forgetting” [3], often leading to “forgetting” important information 
or inventing fake facts. Furthermore, most of them are trained on 
outdated data (e.g. cut-off date of September 2021 for GPT-4 [4]), 
and are very expensive to retrain. 

Current socially maintained generic KGs, such as YAGO [65] or 
DBPedia [22]; medical ontologies and databases, such as NCBI, Viral 
[10] or PrimeKG[26]; Cancer databases, such as cBioPortal [25] or
ChEMBL [33] are all manually curated, hence quickly become stale
and have limited coverage. Other manually curated popular
resources such as CDC.gov and WebMD.com are updated more
frequently, but are very shallow, since the highly educated
personnel can only afford to cover only the most dominating topics 
due to high cost.

This makes both traditional KGs and LLMs as is unsuitable for 
solving the problem. Our RAG-based hybrid scales to thousands of 
data sources, “understands” multi-modal knowledge, does not 
hallucinate, and does not require massive supervision.  
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It learns from the latest peer-reviewed publications from 
PubMed.com and exhibits both broad topical coverage within the 
domain, as well as topical dept. It has several interactive interfaces 
– browsing, search, and natural language. This novel solution helps 
users access the latest relevant knowledge that is actionable for 
patient care. It currently undergoes evaluation and is expected to be 
reduced into medical research practice on colorectal Cancer 
patients. We take colorectal Cancer as a model domain, but without 
making our architecture depend on it, so the overall approach 
remains truly “on demand” – i.e. applicable to other scientific areas 
[17, 20, 24, 37, 46–48, 50, 54–59, 64, 67, 73]. 

We start by detailing the CancerKG architecture. Next, we 
describe some of our Deep-Learning models and the process that we 
designed to train them at scale. These models extract and organize 
knowledge from our datasets into our KG. Finally, we discuss how 
we fine-tuned our LLMs and how it interfaces with our KG to 
provide the hybrid balanced solution. We finish by reviewing 
related work and some similar systems currently used in practice in 
the Cancer Centers worldwide. 

2  ARCHITECTURE 
After researching the state of the art Knowledge Graphs [2, 22, 25, 
26, 30, 32, 33, 65, 69, 75], LLMs [18, 27, 61, 71] as well as investigating 
the needs of colorectal Cancer patients, oncologists, and data 
scientists through conducting interviews during our NSF I-Corps 
customer discovery process [14], we have designed and tested the 
current architecture of CancerKG.ORG. It is similar to [76] with 
differences in it using Large Language Models (LMM), different 
Deep Learning models, Meta-profiles, and datasets. It is illustrated 
in Figure 1. №1 in the Figure represents a Data Scientist, who 

manually initializes a very small vetted KG with 10-20 nodes and 
interconnecting edges (depending on the domain), which will serve 
as a seed of our KG. №2 corresponds to our KG, stored in a scalable 
triplestore, such as Amazon Neptune [23], Eclipse RDF4J [7] or 
sharded MongoDB storage [12]. This KG is interactive and can be 
browsed (see Figure 2) or queried via publication (see Section 3) or 
table structural search-engines (see Figure 3) or API. №3 depicts our 
CancerKG dataset. It is parsed, post-processed, and restructured 
before storage in a semi-structured format (i.e. JSON), convenient 
for training Machine/Deep-learning models, Embeddings and fine- 
tunning LLMs. №4 represents a high-performance NVidia GPU 
cluster, responsible for training, classification, clustering, and LLM 
fine-tuning and question-answering (QA) workloads. It is 
configured with Apache Spark MLLib [21], TensorFlow [16], and 
LLM such as Meta LLama 2 [18], Google FLAN T5 [27], GPT-2 [71] 
and GPT-4 [61]. №5 in Figure 1 shows the topical table clusters, 
extracted and formed from the dataset. №6 illustrates a hierarchical 
KG fragment, learned from these clusters – in this case for 
(colorectal) Cancer - new therapies, adverse-events, symptoms, etc. 
№7 corresponds to the multi-layered 3D Meta- 
profiles, generated from these clusters. Meta-profile [41, 63] is a 
concise and convenient visualization/browsing interface that we 
proposed for accessing knowledge in large topical table clusters (see 
Figure 5). №8 corresponds to the tables from the original corpus. 
№9, 10 represent users, who browse, query, and ask CancerKG 
questions. №11, 13 are the CancerKG API users that use RPC or 
REST remote calls to do the same from their application or access 
our pre-trained Deep-learning models, Embeddings, or fine-tuned 
LLMs.  
 
 

 
Figure 1: CancerKG.ORG Architecture. 
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  №12 depicts the World Wide Web (i.e. PubMed in our case) with 
the new vetted medical knowledge on colorectal Cancer published 
every day. №14 illustrates the KG enrichment process through 
fusion of new KG sub-trees or insertion of new nodes/edges. 

Currently, CancerKG stores more than 2.5 million latest peer- 
reviewed publications on Cancer (including colorectal Cancer), 

parsed, decomposed in the KG, classified, and continuously updated 
with vetted knowledge from new peer-reviewed publications. 

Hardware, Libraries, Storage: Training and validating of some 
of our models were done on a cluster of 4 machines, each having 4 
Intel Xeon 2.4Ghz 40-core CPUs, from 192GB to 1TB of RAM, with 
10TB disk space each, interconnected with a 1GB Ethernet. LLM 

 

Figure 2: A Small Fragment of the Interactive CancerKG Knowledge Graph. 

 
Figure 3: CancerKG Structural Search over Tables based on the LLM Conversational Interface. 
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fine-tunning was done using Amazon P5 AWS instances with 
NVidia latest GPUs. All software was written in the Python 
programming language. For implementing the RNN, GRU, and biL- 
STM models, we have used Keras, with Tensorflow framework as 
the backend. Our MongoDB [12] sharded cluster storing data and 
all trained Deep-learning models and embeddings takes 
approximately 965GB for its distributed dataset storage, with raw 
space consumption of more than 5TB. 

3 INTERACTING WITH CANCERKG 
CancerKG has several advanced user interfaces – an interactive KG, 
publication and table structural search engines, conversational 
interface in natural language, and 3D Meta-profile interface. 

3.1  Interactive Knowledge Graph 
Figure 2 illustrates the interactive KG that allows convenient inter- 
action with the hierarchical knowledge base learned by CancerKG. 
In Figure 2, the user clicks on the nodes and follows the unfolding 
path through metastasis, liver, colorectal cancer treatment nodes to 
the nested leaf-nodes having the topical clusters of tables connected 
to the corresponding KG leaf-nodes. After clicking on the leaf node, 
the user can choose “Show all tables” option from the contextual 
pop-up menu, which will display them in the bottom frame under 
the KG shown in Figure 3. That interface supports both drilling 
down deeper in the cluster using either the structural search or 
conversational interface. Alternatively, the user can choose “3D-
meta profile” option in the same pop-up menu, which will generate 
a Meta-profile corresponding to the selected cluster. The Meta-
profile generated for “Summaries and Case Studies” cluster is 
illustrated in Figure 5. 

3.2  Search-engines 
We currently support 2 publication search-engines and one tabular 
search-engine, coupled with a conversational interface. During 
query processing we tokenize the query and perform stemming. 
Our ranking function features include the number of matches, 
proximity between the matched terms, relative importance of the 
matched field, term, etc. Each term (its NLP “root form”) in the 
corpus has an associated Term Frequency-Inverse Document 
Frequency (TF-IDF) [52] weight in order to reward more important 
terms. For each matched term its TF-IDF is weighted in the ranking 
per document. The first publication search-engine can be used to 
search separately over title, abstract, body text, and/or table captions, 
table data and metadata, figure captions and content. It is more robust 
compared to a standard keyword-search over the entire publication 
(e.g. Pubmed.com, Google Scholar, etc) and allows more fine-
grained filtering capabilities. The search fields are inclusive in the 
search results, meaning, if a user searches on a field there must be a 
document that matches at least one term in that field or it does not 
get passed on to the next stage regardless if there are matches over 
the other fields. The results are formatted with table captions first, 
the title and authors and the full abstract. 

The second publication search-engine performs query processing 
differently – i.e. it matches the query terms to all fields used by the 
first search-engine above. It can be used whenever the user is 

unsure of where exactly the term may be. These search results are 
formatted with a brief excerpt of where it matches to the fields. The 
interface also allows the user to expand and collapse sections of the 
paper displayed in the search-results to get to the needed 
information quicker. 

The tabular search-engine allows the user to search over a set of 
popular and important for clinical use table attributes present in the 
dataset. This is to our knowledge, one of the first structural search-
engines over medical tables like that. Other solutions do not 
specifically separate tables, which leads to inability of querying 
their fields separately from the rest of the publication data or do not 
“understand” the intricacies of complex medical non-relational 
tables [53]. Generic relational [28] and semi-structured databases 
[12] can be used to load tables and use SQL to query them, but they 
do not “understand” intricacies of structure of such tables, hence fail 
to correctly support many challenging data harmonization tasks 
that are necessary to support correct and efficient structural search 
over such tables. They are usually not in 1st Normal Form [28], 
exhibit not only horizontal (HMD), but also vertical metadata 
(VMD) [53]. To query such tables efficiently many steps related to 
processing their non-standard structure with both HMD, VMD, and 
nesting have to be done correctly. Such steps include hierarchical 
vertical and horizontal schema matching, data transformation and 
unification, processing the nested tables inside the cells with their 
own metadata correctly (i.e. just unnesting would not help in this 
case), ranking search-results containing such tables by relevance – 
all of it is not addressed in the entirety in any of the solutions to our 
knowledge. 

Query processing over complex tables is a large part of our long-
term goal to advance structural information retrieval for structured 
data at scale. These search results are a product of an advanced 
tandem of embedding-based schema matching (e.g. Tumor Size, 
Effect Size, Size) and advanced query processing. Figure 3 depicts a 
screenshot of search results for tables evaluating clinical outcomes 
with risk factors for colorectal Cancer. The user (e.g. oncologist) 
enters the natural language query in the conversational interface 
(its description is below) “output all latest information available 
about risk factors and predictive models for metastatic colorectal 
cancer with tumor in lymph node, size 8.45”. The query got parsed by 
our conversational query parser and got split into two queries. The 
first - a structural query that consists of the extracted attributes - 
lymph node and tumor size 8.45 and is executed via the table search 
engine. The second query is textual and is equivalent to the input, 
amended with the synonyms for the identified table fields to 
simplify query processing for the LLM. Both matching to the fields 
and synonym amendment is done using our custom embeddings 
that we trained on tables in the dataset. Figure 3 displays synonyms 
(both for the search terms and the attribute names) in the dark grey 
message box that we enabled for demonstration purposes. The 
screenshot is cut off at the bottom due to space constraints. 

 
3.3  Conversational Interface 
We fine-tuned several LLMs, such as LLama 2 [18], GPT-2 [71], 
GPT-4 [61], FLAN-T5 [27] on our corpus and offer a conversational 
interface in natural language to the user. The query is first being 
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parsed by our conversational query parser, which identifies any 
table attributes and their values (if present) and automatically fills 
out the fields in the structural table search-engine. Second, the 
query is passed on further to one of the LLMs selected by the user, 
which generates a natural language response amending the tables 
(if any) generated by the search-engine. Figure 3 on the right, 
illustrates a user asking a question and the LLM reformulating the 
query for the search-engine that outputs the response (a table). 

Evaluation: We have evaluated this LLM interface on real user 
queries similar by nature to the one in Figure 3 and calculated 
Normalized Discounted Cumulative Gain (NDCG) at 10 to evaluate 
the quality of the first 10 responses for each query as well as 
ranking. To do that we asked 2 independent annotators annotate 
the (query, result) pairs with labels 1-5 corresponding to relevance 
of each result corresponding to the query. We observed a high 
NDCG score that gauges not only the responses, but also their 
ranking quality. 

 
Figure 4: Deep-learning Architecture for Topical Table 

Classification. 

3.4  3D Meta-profile 
A Meta-profile, informally, is a summary of metadata of a table 
cluster. Since, here our tables have both HMD and VMD, the 
metaprofile summarizes them in two separate dimensions. Figure 5 
illustrates a Meta-profile generated by the user, who was browsing 
the Knowledge Graph, drilled down to the “Summaries and Case 
Studies” leaf node and selected an option “Create a 3D-meta Profile” 
from the pop-up menu. The Meta-profile is a 3D-bar graph that on 
X-axis has attribute labels of HMD and VMD of tables from the 
cluster, selected by the user. On Y-axis it has the TF/IDF [52] score 
corresponding to each HMD or VMD attribute. 

 
 

Figure 5: A Meta-Profile generated by CancerKG.ORG for 
Summaries and Case Studies on colorectal Cancer. 

By clicking on the bars (blue corresponds to HMD, red - to VMD), 
the user can further drill down to the subset of tables from the 
cluster specifically having only the selected attributes 
corresponding to the selected bars. In other words, it can be thought 
of as a dynamic filter, creating new table sub-clusters based on the 
HMD and VMD choices made by the user. For example, if the user 
selects the “study design” blue bar in Figure 5, the system will 
generate a separate table sub-cluster, having only the tables from 
the original cluster having “study design” in their HMD. CancerKG 
will create such sub-clusters on the fly and amend the KG by 
attaching it to the original cluster. 

4  TABLE TOPICAL CLASSIFICATION 
4.1  GRU Model 
Figure 4 depicts the architecture of a GRU architecture that we used 
for topical table classification, consisting of three main stages. In the 
first stage, a table, {x1 , x2 , ..., xn  }, where xi  is the ith  term is pre-
processed to create cell-wise representations. It includes data 
cleaning along with the replacement of numbers and ranges in data 
with placeholders such as NUM, RANGE, etc as is described above. 
The pre-processed feature vectors are then used to fine-tune 
BioBERT embeddings [31] on the whole corpus. This sequence is 
passed through a GRU layer and the result is concatenated with the 
original embeddings to create our enriched contextualized vectors, 
{c1, c2, ..., cn }. The final stage of the model passes them through a 
dense layer of 32 units, a batch normalization layer, a dropout layer 
and a dense binary classifier similar to [76]. 

We opted for GRU layers over LSTM because while performance 
was slightly worse, with -0.02 ΔF1-Score, -0.07 ΔPrecision, +0.06 
ΔRecall, the training was faster.  

4.2 Pre-processing 
We have used 100,000 dimensional feature space, i.e. 100K English 
terms in our vocabulary that we have selected by taking all terms 
from our datasets, sorting by frequency and cutting off the noise 
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words and spam [73]. Increasing the dimensionality further led to 
significantly slower training time, which would prevent or make 
the experiments much more difficult. 

To streamline the processing of numerical data handled by the 
model, we have created several regular expressions that encode all 
numerical data falling in similar forms under its relevant category. 
The substitution is described in more detail in [53]. 

4.3  Training and Evaluation 
We composed the training sets from Web-scale datasets such as 
WDC [60] and CancerKG respectively [74]. We evaluated our 
models and observed approximately 95% F-measure, when validated 
with 10-fold cross-validation, for Deep-learning Bi-GRU- based 
models with slight differences depending on whether the classified 
metadata is horizontal or vertical, as well as its position.  

We composed the training sets for the topics corresponding to 
the leaf nodes in the colorectal Cancer KG by, first, asking a clinical 
Data Scientist to select a representative (i.e. centroid) table for each 
topic that we further use a seed to train our GRU binary 
classification model and create a cluster for each topic. Second, we 
created a composite embedding vector corresponding to each 
topical centroid table. Each table vector consists of 3 concatenated 
components - VHMD  for HMD, VVMD  for VMD, VD  for D. Each of 
them is calculated as a summation of our embedding vectors (we 
fine-tuned BioBERT on our dataset [31]) corresponding to each 
term located in one the table sections. The final embedding vector 
for a table is a concatenation of 3 vectors – VT = VHMD ⊕ VVMD ⊕ VD. 
Third, we take a centroid vector and select only the tables in the 
dataset within a 18 degrees from it (determined empirically). Fourth, 
we train our GRU model as a binary topic classifier on these tables 
(as positively labeled) amended with the same number of random 
tables from the dataset (as negatively labeled). Finally, we run all 
such topical binary classifiers through our dataset on colorectal 
Cancer and form the table clusters of varying size. We evaluated the 
quality of formed clusters and observed approximately 93% 
precision. 

5  KNOWLEDGE GRAPH 
5.1  Initialization 
The structural hierarchy (i.e. nodes and edges) for the Knowledge 
Graph will be initialized with the help of a Data Scientist (№1 in 
Figure 1). On the highest level, the general characteristics of Cancer 
can be extracted from PrimeKG [26], vetted static ontologies or 
dictionaries on colorectal Cancer. Once initialized, the KG gets 
automatically updated from the vetted medical sources. This 
ensures reliability, freshness, and quality of our KG (i.e. №2 in 
Figure 1). 

5.2  Enrichment and Fusion 
Once the KG initialization is complete we fuse the extracted 
information into our Knowledge Graph during the enrichment 
process. We classify and extract the clusters on prominent topics in 
colorectal Cancer (e.g. №5 in Figure 1). This process is challenging 
since all topical clusters have different structure and significant 

concepts and terms can be referred to differently (e.g. mCRC and 
metastatic colorectal Cancer). Consequently, we trained a variety of 
advanced AI models with our new tabular embeddings to help 
perform accurate clustering [34, 57]. 

The graph is populated with nodes and edges and is stored in 
JSON format. The structure of the graph is hierarchical, so all child 
nodes have parent nodes. The user can search over the KG via the 
front-end interface that except matching nodes also highlights the 
path to the matching nodes. The user can then either browse the 
graph to explore the table clusters attached to the nodes; after 
selecting a cluster clicking show tables or 3D metaprofile in the 
popup menu to query the tables in the cluster (see Figure 3) or 
generate a meta-profile corresponding to the cluster (see Figure 5). 

Fusion of the extracted hierarchical knowledge into a segment or 
several segments of our KG requires taking into consideration 
multiple levels of abstraction. For example, “Symptoms” can be a 
node in a subtree “Clinical presentation” that could be, in turn, 
linked to the “colorectal Cancer” KG root node. Because of the 
different ways to categorize, the actual symptoms may overlap in 
different KG subtrees. After consulting with several medical experts 
it was decided to store all different ways to categorize the data 
without merging them, since each of the categorization methods 
can be useful for different tasks that oncologists, trainees, and data 
scientists perform. While general public might be interested in 
common and rare symptoms, medical specialists might analyze 
specific organ systems. For example, sorting by “rare symptoms” 
and “common symptoms” can overlap with the sets of symptoms 
sorted by “organ systems”. In addition to that, even though 
“Neurological symptoms” are related to the nervous system in 
general, while “Cerebrovascular” is related to the brain and its blood 
vessels, they have significant overlap in symptoms. The first step of 
fusing the extracted hierarchical knowledge into the KG is matching 
the root node of the extracted subtree to the corresponding node(s) 
in the KG. This matching process is based on normalized NLP term 
matching, amended by the embedding-driven matching. The latter 
is especially important in context of new terms, unseen before, 
which is often the case with new therapies, adverse-events, etc. For 
example, assume we have extracted a subtree 2nd line Treatments 
 Regorafenib from the table's metadata. The root node Therapy 
may match to the KG node Therapy(ies) by normalized NLP term 
matching and then the leaves (Regorafenib) can be merged with the 
leaves of the matched node in the KG. However, if there is no 
corresponding KG node Therapy(ies) and there is no match to the 
KG leaves with existing therapies, the embedding vector 
corresponding to the new therapy (Regorafenib) extracted from 
metadata can be used to match it to the embeddings vectors of the 
existing therapies in the KG due to them being close to each other 
by distance. The node Therapy then can be added to the KG on the 
top of the Regorafenib node. If the extracted subtree has several 
layers of hierarchy, e.g. Side-effects  Pediatric side-effects  
Severe pain, it has to be left separate from the existing side-effects 
in the KG, even if matched to them by having close embedding 
vectors. This is because, it is categorized as Pediatric side-effects, 
which is a separate category from regular side-effects, so both the 
new node Pediatric side-effects and its leaves have to be added to 
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the KG, even if some of the side-effects overlap with the general 
side-effects, already present in the KG. Fusion of sub-trees, having 
several layers or insertion of new nodes matching with a low 
confidence score has to be evaluated by an expert (№14 in Figure 1); 
fusion of leaves with nodes matched with high confidence score 
may be left unsupervised. Over time, all categories of initial fusion 
mistakes identified by the expert will be learned by the fusion model 
to be automatically corrected, hence most of the fusion is expected 
to become unsupervised in long run. 

6  RELATED WORK 
[8] is an Information Retrieval (IR) system over publications at 
researchrabbit.ai. They are introducing a retrieval mechanism over 
papers that does not require the use of keyword-search. They dis- 
play a force directed graph of related, cited and referenced papers 
that a user can construct and use. They provide many features, such 
as being able to create your own custom graph of papers, curated 
collections to improve recommendations, personalized alerts, 
sharing and collaborating of papers and graphs, and among others 
the ability to discover author networks. 

PrimeKG [26] is a free KG populated from certain classic, well- 
known medical ontologies such as NCBI, UniProt and ≈20 other 
legacy databases [25, 33]. Their graph has information on genes of 
interest, transcripts, protein identifiers function names and gene 
names and is manually curated. The latter limits its scalability, and 
hence its breadth, depth of coverage as well as freshness of medical 
knowledge. 

Manually curated chemical databases such as ChEMBL [33], Zinc 
[11], Enamine [5] storing drug-like molecules, including the 
commercially available or hit molecules and their targets support 
advanced structural search for well-established drugs and 
molecules. Pharmaceutical knowledge bases - DrugBank [4], 
BindingDB [1], and Protein Data Bank (PDB) [6], the latter 
particularly for the structural biology support advanced search for 
well-established drugs and their interaction patterns. Both chemical 
and pharma- ceutical databases, however, are manually curated, 
which makes them unattractive compared to any solution, 
including ours, that is capable of ingesting/organizing the latest 
knowledge automatically. 

The following systems, even though on COVID-19 are relevant 
as they similarly to us develop advanced query-processing or 
search- engines over scientific publications and their multi-modal 
content. A system by the Center for Artificial Intelligent Research, 
HKUST [72] is a free service and that utilizes NLP to support 
question answering along with the summarization to help discover 
relevant scientific literature on COVID-19. Their system is 
comprised of 3 modules. The pipeline begins with a user query sent 
through the first module - document retrieval, which does 
paraphrasing and search. Query paraphrasing converts the user 
query to several shorter and simpler analogous questions. The 
search-engine uses Lucene [13] to retrieve related publications. 
Then the snippet selector module finds the related evidence among 
the whole text by using the answer re-ranking, and term matching 
score. Finally, a “Multi-document abstractive summarizer” 
synthesizes the final answer from multiple retrieved snippets. 

Another relevant system - [9] enables access to a COVID-19 
Intelligent Insight portal of over 100,000 curated scientific publica- 
tions. Sinequa’s search engine supports full-text search using NLP. 
The Search engine supports ranking by relevance and recognizes 
synonymy in their ranking function. The interface has 3 sections - 
one for the matched scientific results, one for showing more details 
on a selected result and the last one for filtering and sorting the 
result set. The system highlights important information throughout 
each result and tags them all by different classification labels. 
Sinequa’s system is also provided for free. 

COVIDScholar [3] is an information retrieval resource for 
COVID-19 and related scientific research, established by 
Matscholar’s re- search effort. COVIDScholar also uses NLP. The 
query terms are matched against the title and abstract. 
COVIDScholar displays title, authors, abstract, and provides a link 
to the paper full-text at its original publisher with the list of related 
works. The system neither has a Knowledge Graph, LLM or an 
advanced structural search engine. 

CancerKG organizes the documents and tables by topics into a 
Knowledge Graph (KG) and provides a wide variety of advanced 
interfaces - an interactive KG, several search-engines, including a 
structural search engine over tables, interactive 3D Meta-profiles, a 
fine-tuned, verifiable LLM interacting in natural language with the 
user. The user can either browse or search the KG, all sections of 
the original publication, title, abstract, table caption or query the 
tables. Except search, CancerKG supports structural query 
processing with embedding-based matching of query terms and 
queried attributes to the data or metadata sections of the tables. The 
search-results page provides a list of ranked scientific resources 
with access to each full-text of each section of the paper, full-text of 
the whole document, and a ranked list of tables with the most 
relevant results. The ranking function incorporates matching terms 
and synonyms, proximity, document, terms, publication 
trustworthiness, and the number of citations as well as others. The 
advanced search-engine over tables displays a brief section with the 
most relevant tables first that can be expanded to see more results. 

7  CONCLUSION 
Here we described CancerKG - the first, interactive, trustworthy, 
scalable Knowledge Graph/LLM RAG hybrid on colorectal Cancer. 
We take colorectal Cancer as a model, but without making our 
architecture depend on it, so the overall approach remains 
applicable to any other scientific and medical domains, given the 
models are retrained for that domain. The content is extracted and 
updated in unsupervised manner from PubMed.com that contains 
vetted, peer- reviewed medical publications. Hence is verifiable and 
contains the most up to date medical practices. We evaluated 
CancerKG on 100 real user queries obtained from Moffitt users - i.e. 
Oncologists and Data Scientists and report a high NDCG score at 10 
on a large-scale corpora of ≈44K publications. 
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